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Abstract. Europay MasterCard Visa (EMV) Tokenisation specification
details how the risk involved in Personal Account Number (PAN) com-
promise can be prevented by using tokenisation. In this paper, we identify
two main potential problem areas that raise concerns about the security
of tokenised EMV contactless mobile payments, especially when the same
token also called a static token is used to pay for all transactions. We
then discuss five associated attack scenarios that would let an adversary
compromise payment transactions. It is paramount to address these se-
curity concerns to secure tokenised payments, which is the main focus
of the paper. We propose a solution that would enhance the security
of this process when a smart phone is used to make a tokenised con-
tactless payment. In our design, instead of using a static token in every
transaction, a new dynamic token and a token cryptogram is used. The
solution is then analysed against security and protocol objectives. Finally
the proposed protocol was subjected to mechanical formal analysis using
Scyther which did not find any feasible attacks within the bounded state
space.
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1 Introduction

EMV is a globally accepted standard, initially introduced for “Chip & PIN” pay-
ment transactions [2, 3] and contactless transactions [6]. However, compromising
the Personal Account Number (PAN) sent during EMV transactions to be used
in card-holder not present or magnetic-stripe transactions was a problem. EMV
Tokenisation was adopted as a countermeasure to PAN compromise [4]. Tokeni-
sation replaces the PAN by a substitutive value called the Token which is a 13-19
digit numeric value that does not reveal the PAN and passes validation checks
set by the payment scheme [4]. Since its introduction, EMV tokenisation has
seen early adoption in contactless mobile payment applications [5, 7, 16].
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Near Field Communication (NFC) modules in smart phones and portable de-
vices enable users to carry out close proximity communication which also include
contactless payments. Here the mobile emulates a contactless smart card. In this
paper, the payment device that emulates a contactless smart card is referred to
as a mobile. Mobiles let users store a number of payment applications in one
place and have hardware or software secure element technologies. Secure ele-
ments provide a secure execution environment to carry out sensitive executions.
Compared to a contactless smart card, one of the additional capabilities of a
mobile is the readily available communication channels via the network operator
or Wi-Fi.

In this study, we identify two problem areas that raise concerns about the
security of tokenised contactless mobile payments. The first problem area is that
the payment terminal is assumed to be a trusted device and during a transac-
tion, the terminal authenticates the card/mobile but the card/mobile does not
authenticate the terminal. Because of this lack of mutual authentication, an ad-
versary at a rogue terminal, can carry out a number of attacks during a tokenised
payment transaction. The second problem area is that similar indelible trust as-
sumptions are placed on the intermediary entities between the terminal and the
Scheme Operator (SO) / Card Issuing Bank (CIB). When this trust assumption
is disregarded, an adversary compromising one of the intermediaries is able to
compromise payment transaction details. The acronyms used in this paper are
listed in Table 1.

Table 1. Acronyms used in the paper
ARC : Authorisation Response Code PAN : Primary Account Number
CDA : Combined Data Authentication SDA : Static Data Authentication
CIB : Card Issuing Bank SO : Scheme Operator
DDA : Dynamic Data Authentication SPDL : Security Protocol Description
DTD : Dynamic Token Data Language
DTT : Dynamic Transaction Token TAR : Token Authorisation Request
EMV : Europay MasterCard Visa TSP : Token Service Provider
NFC : Near Field Communication TVR : Terminal Verification Result

The main contributions of this paper are threefold. They are: 1) The pro-
posed solution provides mutual-authentication, so that both the mobile and the
terminal is able to authenticate each other. 2)The protocol uses a new Dynamic
Transaction Token (DTT) that is unique to a particular transaction instead of
using a static token for improved security. 3) The protocol also provides end-
to-end encryption between the terminal and the Token Service Provider (TSP)
as well as the terminal and the mobile, eliminating the need of placing indelible
trust assumptions on intermediary nodes between the terminal and the TSP.

The paper is structured as follows. In Section 2, the use of tokenisation in
the current contactless mobile payment architecture is introduced. In Section 3
the two potential problem areas and the corresponding attack scenarios are dis-
cussed. The proposed protocol is introduced in Section 4 and evaluated in Sec-
tion 5 against protocol objectives. Finally the protocol is subject to mechanical
formal analysis in Section 6.



2 EMV Tokenisation

In this section, we expand our discussion to tokenisation on contactless mobile
payments. One potential security issue in contactless payments is PAN com-
promise, where PAN related data is compromised by adversaries during EMV
point-of-sale transactions or from merchants’ databases. The compromised pay-
ment card details are then used to carry out cross channel fraud1. PAN com-
promise can be prevented by mapping the PAN with a substitute value. The
process that manages the conversion from a PAN to a token and vice-versa
is called tokenisation and the substitute value is called a token. The EMV To-
kenisation Specification details requirements to support payment tokenisation in
EMV transactions [4]. From the merchants’ perspective, storing and managing
tokens as opposed to PANs in databases, simplifies compliance audits such as the
Payment Card Industry-Data Security Standard (PCI-DSS) [8, 23]. The tokeni-
sation discussed in this study refers to the EMV Tokenisation Specification [4].
The payment architecture and the transaction message flow of a generic EMV
contactless mobile transaction based on tokenisation is illustrated in Figure 1.
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Fig. 1. Generic EMV Tokenised Payment Architecture

At the start of the transaction, the mobile passes the token and token re-
lated data to the terminal. The terminal then sends the additional token related
data in the transaction authorisation message to the SO/CIB via a number of
intermediaries that engage in key-translation for approval. This means that two
entities connected with arrows on both ends in Figure 1 share a symmetric key
to communicate with each other. When the message is forwarded to the next
entity, it is deciphered and enciphered using the shared symmetric key with the
next entity. Once the authorisation request is received at the SO, the TSP is
contacted to de-tokenise the token in order to retrieve the corresponding PAN
of the token and to validate the token cryptogram [4, 16]. The retrieved PAN
and validation results are forwarded to the SO. The SO then forwards the au-
thorisation request with the mapped PAN to the bank. Following this, the bank
generates an Authorisation Response Code (ARC) and sends it in an authorisa-
tion response message to the SO [4, 19]. The SO now forwards the authorisation
response to the terminal. The terminal then approves or declines the transaction.

1 Cross-Channel Fraud: capturing card details in a point-of-sale transaction and using
the details fraudulently in other payment channels such as e-commerce payments.



2.1 Operating Environment

In this section, we discuss the operating environment of tokenised EMV con-
tactless mobile payments in its current architecture as illustrated in Figure 1.
The SO has a direct communication channel to the TSP and the bank. The
payment terminal operator supplies terminals to a number of merchants. It also
engages in collecting transactions originating from the merchant’s terminals and
forwards them towards the SO/CIB. A payment terminal operator can either be
a third party, or an acquirer’s subcontractor. However, this does not change our
attack scenarios discussed later. The same communication path between the ter-
minal and the SO that was taken to send the transaction authorisation request
is also taken in reverse to send the transaction authorisation response back to
the terminal.

In this study, we consider the bank, SO, mobile and TSP as secure and
trusted. In contrast to this, we consider that the terminal has the potential to be
compromised. This is evident from reports and research shown in [11, 13, 18, 24].
We also consider that the intermediaries have the potential to be compromised.
This assumption is reasonable, based on reports and research shown in [9, 19,
21, 22, 25]. Taking this operating environment into consideration, we expand the
discussion to outline potential attack scenarios in the next section.

3 Potential Attacks

In this section, we outline potential attack scenarios associated with two main
problem areas in tokenised contactless mobile payments.

3.1 Adversary Compromises A Terminal

In this problem area, there are three different potential attacks. The attack sce-
narios are outlined and discussed in Attacks 1, 2 & 3 given below. The terminal
is considered to be a trusted device but, there is no mutual-authentication be-
tween the terminal and the card/mobile. When the trust assumption is taken
out, a rogue terminal controlled by an adversary could be in EMV contactless
payment process. For these attacks, we assume an adversary with the following
capabilities. An adversary:
– can gain full control of the terminal including what is displayed on screen

for the payer.
– can change transaction related details such as the amount.
– cannot break standardised encryption algorithms.
– might collude with another adversary that compromises and controls an

intermediary between the terminal and the SO/CIB.
Attack 1: Over Charging
In this attack scenario, the adversary fraudulently enters a large payment amount
(within the contactless limit) for a transaction but displays the correct purchas-
ing product price on the terminal screen for the consumer. It is not possible for



the mobile to detect whether the terminal is genuine or rogue as the transac-
tion amount is not displayed on the mobile at the time of payment. Therefore
the user does not have any alternative option other than to believe the amount
displayed on the merchants terminal is true. So the user continues the payment
unaware of the fraudulently over charged amount.
Attack 2: Capturing Static Token & Related Data
In this attack scenario, an accomplice controlling the rogue terminal transacts
with a genuine mobile making a tokenised contactless mobile payment. The
genuine mobile sends the static token and token cryptogram to the rogue ter-
minal. The accomplice captures the static token, its associated cryptogram and
other transaction related data. The rogue terminal may display an authentica-
tion failed message on the terminal and refuse purchase for the consumer. The
captured details are used by the adversary in Attack 4.
Attack 3: Capturing The Unpredictable Number2

The EMV tokenisation specification does not specify whether offline data authen-
tication needs to be carried out by the terminal [4]. Because tokenised payments
operate in an online setting, at first, it is not apparent as to why offline data
authentication is actually needed. However, we highlight why failing to carry-
ing out offline data authentication aggregates the identified security concern. In
this attack scenario, an adversary attempts a payment at a genuine terminal
to obtain the unpredictable number generated by the genuine terminal. At the
absence of offline data authentication, the terminal is unable to verify whether
the payment application related data presented by the mobile is genuine. There-
fore, the terminal nonce is sent to the mobile as a challenge to be signed by the
mobile in order to carry out dynamic data authentication. The nonce forms part
of the dynamic application data which is later signed by the mobile to generate
the digital signature expected by the terminal. Soon as the nonce is received,
the adversary captures the nonce and halts any further communication with the
terminal.

In some instances, even if Static Data Authentication (SDA) is carried out
by the terminal, it may still be possible to compromise the terminal nonce if
SDA is not carried out before the nonce is sent. For example, as explained
in [12], Visa’s payWave qVSDC protocol sends the terminal generated nonce
before SDA. This would enable an adversary to obtain the terminal unpredictable
number. Potential attacks and other security concerns related to compromising
terminal unpredictable numbers are shown in [10, 11].

3.2 Adversary Compromises An Intermediary

In the current EMV architecture, indelible trust assumptions are placed on the
intermediaries between the terminal and the SO/CIB. When this trust assump-
tion is disregarded, an adversary compromising one of the intermediaries has

2 The EMV Specification defines the Unpredictable Number as a “Value to provide
variability and uniqueness to the generation of a cryptogram [3]”. In this paper we
refer to this as the terminal nonce.



a potential attack scenario to infiltrate transaction details and make fraudu-
lent transactions. The adversary at the compromised intermediary observes all
transaction data passing through it, which also include transaction authorisa-
tion requests, tokens and token related data. For these attacks, we assume the
following adversary’s capabilities. An adversary:

– can compromise any of the intermediaries.
– can gain access to transaction data at the compromised intermediary.
– can break standardised and strong encryption algorithms.
– cannot compromise smart cards, the SO or the CIB.
– might collude with the adversary that compromises a terminal.

Attack 4: Adversary Replays An Authorisation Response For Cloned
Token Data
The attack scenario is realised when the transacting terminal fails to carry out
adequate offline data authentication method such as Dynamic Data Authen-
tication (DDA) or Combined Data Authentication (CDA) [2], but sends the
transaction data for online transaction authorisation. The adversary at the com-
promised intermediary gets to observe all transaction data passing through it
and these include transaction authorisation requests intended for the SO/CIB.
The attack steps are described below.

1. The adversary works together with the accomplice, who captured the static
token and the corresponding token data in the precursor Attack 2.

2. The accomplice chooses a terminal that has an established communication
path to the SO/CIB via the compromised intermediary and makes a con-
tactless payment with the captured static token data.

3. The terminal carries out SDA on the presented static token data. As the data
were captured from a genuine mobile, the SDA verification at the terminal
completes successfully. However, without DDA or CDA where a dynamic sig-
nature is generated by the mobile and verified by the terminal, the terminal
is not able to detect the cloned data.

4. The terminal sends the transaction data online for transaction authorisation.
5. The adversary, instead of passing the transaction authorisation request to

the authorising entity, stops the request from reaching the authorising entity
by identifying static token included in the message.

6. Instead, the adversary replays an ARC pretending to have come from the
authorising entity. Once the authorisation response is received, the terminal
approves the transaction.

7. Unlike in a contact-based EMV transaction, the transaction authorisation
response cryptogram is not sent to the contactless card/mobile [2]. One of
the reasons for this is that in contactless EMV, there is no assurance that
the card is kept in the reader’s field by a cardholder, so the transaction
authorisation response is not enciphered by the bank with a key shared
between the card/mobile and the bank.

Attack 5: Replaying An Authorisation Response For DDA/CDA
In Attack 4, the attack was realised when the terminal did not carry out DDA/
CDA as offline data authentication. However, in this attack scenario, we assume



that the terminal is carrying out DDA/CDA and identify a similar compromise.
The attack steps are described below.
1. The adversary works together with an accomplice, who is in possession of a

number of lost & stolen contactless mobiles. The attack is carried out during
the time-slot between the cards/mobiles are lost/stolen and the relevant
issuing banks are notified by the owners.

2. The accomplice chooses a terminal that has an established communication
path to the SO/CIB via the compromised intermediary and makes a con-
tactless payment.

3. The terminal carries out the dynamic offline data verification. As the dy-
namic signature is generated by a genuine mobile, the terminal verification
finishes successfully. The terminal then sends the transaction data online for
authorisation.

4. The adversary, instead of passing the transaction authorisation request to
the authorising entity, captures it.

5. The adversary replays a previously communicated ARC generated by the
authorising entity. Once the authorisation response is received, the terminal
approves the transaction.

4 Proposed Solution

In this section, a solution that addresses the security concerns discussed in Sec-
tion 3 is proposed. The main objectives of the protocol are listed below.
1. Should prevent Attacks 1, 2, 3, 4 & 5.
2. Mutual authentication should be carried out between the terminal and the

mobile.
3. End-to-end encryption should be provided between the secure element and

the terminal, as well as between the terminal and the TSP.

4.1 Protocol Assumptions

The following have been assumed in our proposed solution:
– The communication between the mobile and the TSP is carried out using a

secure channel.
– The TSP is a trusted entity that provides transaction token issuing, de-

tokenisation, token updates and management on behalf of the CIB.
– The SO acts as the TSP in the payment architecture.

The notation used in the proposed solution is given in Table 2. The tokenised
contactless mobile payment architecture of the proposed protocol is illustrated
in Figure 2. The protocol proposed in this study has a setup stage and a payment
stage. In the Setup Stage, the payment app and related data are securely pro-
visioned to the mobile. The Payment Stage is used when making a contactless
mobile payment. The transaction scenario focused in this paper is when both the
terminal and the mobile are online capable to reach the TSP. Providing offline



tokenised payments is not the focus of this paper and related work can be found
in [20].

Table 2. Notation used in the proposed protocols

T/SE/x : Terminal/Secure Element/Identity of X.
TATC : Token Application Transaction Counter, count of token transactions

since personalisation. It is shared between mobile, bank & TSP and
used during key derivations.

K : SE generated Symmetric Session Key.
Ks1 : Symmetric Encryption Session Key shared between TSP and SE.
Ks2 : TSP generated Symmetric Encryption Session Key used by the termi-

nal to communicate with the TSP .
KTo′ : Token Cryptogram Generation Symmetric Session Key derived by a

key derivation function used by TSP.
EK{Z} : Symmetric Encryption of data string Z using key K.
SX : Private Signature Key of entity X.
sSX [Z] : Digital signature outcome (without message recovery) from applying

the private signature transformation on data string Z using SX of X.
PX , P−1

X : Public Encryption/Decryption Key Pair of entity X.
ePX{Z} : Encryption of data string Z using a public algorithm with PX .
CertY (X) : Public Key Certificate of X issued and certified by Y .
h(Z) : Hash of data string Z.
nX / n2X : First / second nonce issued by entity X.
A||B : Concatenation of A and B in that order.

4.2 Setup Stage

During the setup phase of the protocol, the personalisation of the payment ap-
plication and provisioning of security sensitive data elements of the payment
application and credentials are carried out using a secure channel. Following the
application personalisation, the security sensitive data elements of the payment
application reside in the SE and the user interface part of the payment appli-
cation reside in the mobile platform. The data elements in the SE consist of
all cryptographic keys needed by the mobile eg: KSE , Ks1, SSE & PSE/P

−1
SE .

The SE also stores: Certbank(TSP ), Certbank(SE), Token Application Transac-
tion Counter (TATC). Following personalisation of the payment app, the user
is required to enter a strong pass-code on first access which is used for future
authentication of the user to the payment app. The subsequent transaction pro-
tocols are constructed based upon the above mentioned data elements.

Terminals and secure elements participating in the payment scheme can verify
certificates issued by the SO or entities that have been certified to be trusted in
the certificate hierarchy. The TSP also takes part in the payment scheme.

4.3 Payment Phase

The protocol messages of the proposed solution are illustrated in Table 3 and
explained as follows. To make a payment, the user opens the payment application
by entering the pass-code and taps the device on the terminal.
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Fig. 2. Tokenised Contactless Mobile Payment Architecture of the Proposed Protocol

Message 1: The T provides its identity, nt and CertSO(T ) to the SE.

Message 2: The SE obtains PT after verifying CertSO(T ). A message is con-
structed that includes: both identities, nse, nt, the Processing Options Data
Object List (PDOL) that instructs the T what information to send back to the
T [6], a session key generated by the SE to be used in further communication
between the T and the identity of the TSP. The SE enciphers the message using
PT . A digital signature of the message is generated by the SE and both the
enciphered part and the digital signature is sent to the T. The SE’s public key
certificate is also sent in the same message.

Message 3: The T authenticates the device by verifying the signature using
the certificate hierarchy, then deciphers message 2. The T encrypts and signs a
message which includes: the identities, nse, n2t, the amount of the transaction
and an encipherment carried out using PTSP on the T’s identity, amount and
n3t. The full message and the signature is then sent to the SE.

Message 4: Using the certificate hierarchy, the SE verifies the signature, au-
thenticates the T and deciphers message 3. To request a token from the TSP, a
message is constructed which includes: the identities, n2se, Token Requester ID,
amount, the Token Application Transaction Counter (TATC), CertSO(T ) and
ePTSP {t||amount||n3t}. The message is then encrypted using the symmetric key
Ks1 shared between the TSP and the SE before sending.

Message 5: The TSP, first verifies the CertSO(T ) and obtains the T’s public
key. The TSP deciphers ePTSP {t||amount||n3t} and checks whether the amount
recovered from this matches the amount requested by the SE. If satisfied, the
TSP queries the CIB and verifies the user credibility for a new token. Then the
TSP generates a DTT and a session key Ks2. The TSP then creates Dynamic
Token Data (DTD) which includes: the identities, n2tsp, DTT and Ks2. The
TSP signs the hash of DTD. The DTD is then enciphered using PT . The TSP
then creates a message that includes: the identities, n2se, ntsp, ePT {DTD} and
sSTSP [h(DTD)]. The message is then enciphered using
Ks1 before sending. DTT is constructed as follows;



Table 3. Dynamic Transaction Token Protocol Messages.

1. T → SE : t||nt||CertSO(T )

2. SE → T : V ||sSSE [h(V )] ||CertBank(SE)
V = ePT {se||t||nse||nt||PDOL||K||tsp}

3. T → SE : W ||sST [h(W )]
W = EK{t||se||nse||n2t||amount|| ePTSP {t||amount||n3t}}

4. SE → TSP : EKs1{se||tsp||n2se||TokenR-ID||amount||
TATC||CertSO(T )||ePTSP {t||amount||n3t}}

5. TSP → SE : EKs1{tsp||se||n2se||ntsp||ePT {DTD}||sSTSP [h(DTD)]}
DTD = tsp||se||t||n2tsp||n3t||DTT ||Ks2

6. SE → T : EK{se||t||n3se||n2t||ePT {DTD}||sSTSP [h(DTD)]}

7. T → TSP : Token||EKs2{t||tsp||Token||n2tsp||n4t||DTT ||POSem||TV R}

8. TSP → T : Token||EKs2{tsp||t||n3tsp||n4t||Token||TokenAssuranceLevel||
PANlast4digits||ARC}

DTT = TokenData||TokenCryptogram

TokenData = TokenID||TokenExpiry||TokenR-ID

TokenCryptogram = EKTo′{TokenData||amount||n3t}

Message 6: The SE, prepares a message to send the ePT {DTD} and
sSTSP [h(DTD)] to the T. The message includes: the identities, n3se, n2t,
ePT {DTD} and sSTSP [h(DTD)]. The message is then enciphered using K be-
fore sending. If the SE is not in the NFC field, the user taps the SE on the T
again to transmit the message. The SE may leave the NFC field once the message
is successfully sent to the T.

Message 7: After deciphering the message received from the SE, the T first ex-
amines the nonces to detect any replay attempts. Then deciphers the ePT {DTD}
to obtain DTD and verifies sSTSP [h(DTD)] to have been generated by the
TSP . Once satisfied the T carries out dynamic token data authentication to
verify the authenticity of the presented data. For this the T generates the hash
of the DTD received in the previous message and compares this with the hash
recovered in the sSTSP [h(DTD)]. If the two hashes match, dynamic token data
authentication is verified successfully, otherwise the transaction is declined due
to the potential of a replay attack.

Depending on the outcome of the dynamic token data authentication, the T
constructs a Token Authorisation Request (TAR) and forwards it to the TSP
for payment authorisation. To construct the payment authorisation message,
the T first constructs a message which includes: identities, Token, n2tsp, n4t,



DTT , Point-Of-Sale Entry Mode (POSem)3 and the Terminal Verification Result
(TVR) indicating the outcome of the offline dynamic token data verification.
This message is then enciphered using Ks2. The T before forwarding the message
to the TSP also appends the Token to the encipherment. The T uses the key
translation mechanism to forward the TAR to the TSP via the Intermediaries,
for financial transaction authorisation.

The only data sent in the clear is the Token, which on its own cannot be
used by the Intermediary to obtain any useful information corresponding to
the PAN . In the operating environment of the proposed solution, the SO acts
as the TSP, therefore the message is received at the TSP.

Message 8: After receiving the TAR, the TSP carries out the following checks
to validate the token:

– queries its database records in-relation to the issued tokens and checks details
such as: expiry, requester ID, amount and the token cryptogram.

– if the token related data is validated properly, the TSP conducts payment
token de-tokenisation to map the token details into PAN details.

Following these verifications the TSP retrieves the PAN details and contacts
the CIB to obtain an ARC. The TSP provides information such as: the PAN,
PAN expiry date, amount, POSem, token, token expiry, token requester ID and
the Token Authorisation Request Result (TARresult) in order to obtain the
ARC. The TARresult contains three main components. They are: the outcome
of TSP’s token verification has passed or failed, TokenAssuranceLevel which
indicates the level of assurance that the TSP has assigned to the token depending
on the confidence of the TSP and TokenAssuranceData which indicates the
data used by the TSP to assign a token assurance level. The CIB before issuing
the ARC carries out the following account level validations:

– retrieve account details corresponding to the PAN.
– check whether there are sufficient funds available and no account restrictions.
– verify POSem and the token has not been presented for authorisation before.
– check the outcome of the TARresult validation carried out by the TSP.

Following all the validation steps, the ARC is issued and the TSP constructs
a message that includes: the identities, n3tsp, n4t the Token, Token Assurance
Level, the last 4 digits of the PAN and the ARC generated by the CIB. The
message is then enciphered using Ks2. The TSP also appends the Token to the
encipherment before the message is sent to the T via the Intermediaries. The
Intermediary cannot deduce any information corresponding to the PAN or the
authorisation response other then the Token.

Once the message is received, the T deciphers the message using the session
key and examines the results in order to approve/decline the transaction. The
outcome is displayed on the T. The merchant may produce a receipt that includes
transaction details such as the amount, last 4 digits of the PAN, date, time and
ARC to be given to the user upon request.

3 The POSem acts as a Token Domain Restriction Control [4] to prevent other cross
channel fraud by restricting the tokens to a specific payment channel (contactless
mobile payments in this scenario).



5 Analysis

In this section, the proposed protocol is analysed for its security and protocol
objectives. The operating environments outlined in Sections 2.1, adversary ca-
pabilities outlined in Sections 3.1 & 3.2 and protocol assumptions outlined in
Section 4.1 have been taken into consideration in this analysis.

At the beginning of the protocol, both the secure element and the terminal
are authenticated to each other. This establishes a mutual-authentication before
security sensitive transaction data are communicated. Due to the unforgeability
of the digital signature algorithm used, only a genuine secure element and the
terminal is able to generate their own signatures. The signatures can be verified
using the certificate hierarchy.

The proposed protocol provides end-to-end encryption between the termi-
nal and the secure element. This eliminates the need for placing indelible trust
assumptions on the intermediaries. The protocol also provides end-to-end en-
cryption for the communication between the terminal and the TSP which pro-
vides confidentiality to token transaction related data by preventing adversaries
from eavesdropping. Below we describe how the identified attacks that compro-
mise token transaction data in Section 3 are prevented in the proposed protocol.
Table 4 categorises different countermeasures used for each attack.
Attack 1 (Over Charging): In the proposed protocol, message 3 sent by the
terminal to the secure element has transaction related data including the amount
which is displayed on the users mobile. The mobile contacts the TSP to request
the dynamic token, only after the user authorises the amount displayed on the
user’s mobile screen. If the merchant is trying to overcharge the user, this will be
detected and the transaction can be cancelled. Furthermore, the corresponding
token is requested by the mobile using the data received in message 3, hence a
rogue merchant is not in a position to change the amount to a different value.
The DTD also includes the amount and any changes to the transaction amount
can be detected TSP.
Attack 2 (Capturing Static Token & Related Data): In the proposed pro-
tocol, before the token and token related data is given to the terminal, a mutual
authentication process is carried out. The mobile sends nse as a challenge in
message 2 for the terminal to sign with other related data. The signature is veri-
fied by the mobile after receiving message 3 where the terminal is authenticated.
If the terminal is not authenticated at this stage the mobile aborts the protocol.
Furthermore, the token used in the proposed protocol is a dynamic transaction
token, meaning the token issued by the TSP is unique and can only be used
in the particular transaction. A replay of DTT can be detected by a genuine
terminal due to a replayed message 6 not having the terminal-generated n3t

in the sSTSP [h(DTD)]. These countermeasures prevent rogue terminals from
carrying out Attack 2. In case the token was compromised and attempted on
another fraudulent transaction, the TSP would not authorise the transaction for
the second time. As the mobile requests a DTT for every transaction, the TSP is
aware of a transaction even before a payment authorisation request is made by a
terminal, this introduces an additional layer of security to prevent unauthorised



transactions, as well as facilitating accurate approvals & risk assurance levels for
the tokenised payment transaction.

Attack 3 (Capturing The Unpredictable Number): Due to the unforge-
ability of the digital signature scheme used, the terminal can verify the signature
to have been generated by a genuine secure element. Furthermore, nt included
in the signature prevents a signature from being replayed and indicates to the
terminal that the transaction is fresh. If the verification fails, then the terminal
declines the overall transaction which prevents the terminal from generating the
third nonce n3t which is used in the DTT . Furthermore, the protocol provides
end-to-end encryption between the terminal and the SO which also prevents any
malicious entity from compromising n3t.

Attack 4 (Adversary Replays An Authorisation Response For Cloned
Token Data): The proposed protocol uses the following countermeasures.
Firstly, mutual authentication is established at the beginning of the protocol.
This way the terminal only proceeds to the transaction by sending transaction
related details in message 3, only if the secure element is authenticated in mes-
sage 2. Secondly, the solution uses a DTT rather than a static token. This means
that the token is specific for a transaction and it includes nonces from both the
transacting terminal and the TSP. A replay of DTT can be detected by the ter-
minal due to a replayed message 6 not having the terminal-generated n3t in the
sSTSP [h(DTD)]. Furthermore, the protocol provides end-to-end encryption for
the communication between the terminal and the TSP . This prevents the adver-
sary at the compromised intermediary from replaying an authorisation response
back to the terminal and any such attempts are detected by the terminal.

Attack 5 (Replaying An Authorisation Response For DDA/CDA):
Unlike Attack 4 where only SDA is carried out, this attack scenario is even
possible with DDA/CDA. To prevent this attack, the solution provides end-to-
end encryption which prevents the adversary at the compromised intermediary
from learning the data communicated between the terminal and the TSP. Also,
nonces generated from both the terminal and the TSP are included in messages
communicated between each other as well as in the DTT. This prevents any
replay attempts detectable for the terminal in the event of any authorisation
response replay attempts. Furthermore, the payment application needs the user
to enter a passcode before use. It must be also noted that as the mobile requests
a DTT online before each transaction, in the event of the mobile being lost or
stolen, the user can inform the CIB in order to deny access to token requests.

Table 4. Attacks and countermeasures used in the proposed protocol

Attack
Mutual End-To-End DTT Other

Authentication Encryption

1:Over Charging X X Amount displayed on mobile

2:Capturing Static Token & Related Data X X
3:Capturing The Unpredictable Number X X X
4:Adversary Replays An Authorisation X X X
Response For Cloned Token Data

5:Replaying An Authorisation X X X Passcode for payment app
Response For DDA/CDA



6 Mechanical Formal Analysis

In this section, the proposed protocol is subject to mechanical formal analy-
sis using Scyther [15]. The proposed protocol was modelled and provided as
input to Scyther using the Security Protocol Description Language (spdl) de-
fined in [14]. The spdl provides three main protocol modelling features: roles,
events and claims. The roles define the entities in a protocol, which characterise
events. The send and receive operations are classed as send and recv events
respectively; each corresponding send and recv event has the same sequence
number. The security goals and objectives of a protocol that require verification
are specified using claim events. We used the Dolev-Yao model as the adversar-
ial model used in this analysis [17]. The following security claims are verified in
the analysis: Aliveness (Alive), Weak agreement (Weakagree), Non-injective
agreement (Niagree) Non-injective synchronisation (Nisynch) and Secrecy of
data (Secret) for: DTT , ARC, K, Ks2 [14, 15].

The script was run on an Intel CORE-i7 2GHz machine with 8GB of RAM.
When the security claim events were run together during protocol analysis,
Scyther tool was crashing. We identified that the reason for this was the RAM
getting full after a few hours of protocol analysis. To overcome this issue, the
security claims were analysed one by one. Following successful execution of the
script, the security of data in the claim events were verified and Scyther did not
find any feasible attacks within the bounded state space. The Scyther script can
be downloaded from [1].

7 Conclusion & Future Work

The work carried out in this paper first looked into the current architecture
of EMV contactless mobile payments based on tokenisation. Then five potential
attack scenarios in two problem areas that would compromise tokenised contact-
less mobile payments were discussed. To meet the objectives of the paper and to
address the raised security concerns a protocol was proposed in the paper. The
proposed protocol was analysed for its security and objectives. Finally the proto-
col was subjected to mechanical formal analysis which did not find any feasible
attacks within bounds. In our further research directions, we are in the process
of implementing the protocol in order to carry out measurements. We also aim
to extend to include additional transaction modes and expand our threat model
to include the mobile being compromised by an adversary.
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