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Abstract

It is well-known that the Chinese Postman Problem on undirected
and directed graphs is polynomial-time solvable. We extend this result
to edge-colored multigraphs. Our result is in sharp contrast to the Chi-
nese Postman Problem on mixed graphs, i.e., graphs with directed and
undirected edges, for which the problem is NP-hard.

1 Introduction

In this paper, we consider edge-colored multigraphs. In such multigraphs,
each edge is assigned a color; a multigraph G is called k-edge-colored if only
colors from [k] := {1, 2, . . . , k} are used in G. A walk1 W in an edge-colored
multigraph is called properly colored (PC) if no two consecutive edges of W
have the same color. PC walks are of interest in graph theory applications,
e.g., in genetic and molecular biology [18, 20, 21], in design of printed circuit
and wiring boards [22], and in channel assignment in wireless networks [3, 19].
They are also of interest in graph theory itself as generalizations of walks in
undirected and directed graphs. Indeed, if we assign different colors to all
edges of an undirected multigraph, every walk not traversing the same edge

1Terminology on walks used in this paper is given in the next section.
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twice becomes PC. Also, consider the standard transformation from a directed
graph D into a 2-edge-colored graph G by replacing every arc uv of D by a
path with a blue edge uwuv and a red edge wuvv, where wuv is a new vertex
[4]. Clearly, every directed walk in D corresponds to a PC walk in G (with
end-vertices in V (G)) and vice versa. There is an extensive literature on PC
walks: for a detailed survey of pre-2009 publications, see Chapter 16 of [4],
more recent papers include [2, 8, 13, 14, 15].

A walk is closed if it starts and ends in the same vertex. (A closed walk
W has no last edge, every edge in W has a following edge; if W is PC, each
edge of W is of different color to the following edge.) An Euler trail in a
multigraph G is a closed walk which traverses each edge of G exactly once.
PC Euler trails were one of the first types of PC walks studied in the literature
and the first papers that studied PC Euler trails were motivated by theoretical
questions [7, 12] as well as questions in molecular biology [18]. To formulate
a characterization of edge-colored graphs with PC Euler trails by Kotzig [12],
we introduce additional terminology. A vertex in an edge-colored multigraph
is balanced if no color appears on more than half of the edges incident with
the vertex, and even if it is of even degree. We say that an edge-colored graph
is PC Euler if it contains a PC Euler trail.

Theorem 1. [12] An edge-colored multigraph G is PC Euler if and only if G
is connected and every vertex of G is balanced and even.

Benkouar et al. [6] described a polynomial-time algorithm to find a PC
Euler trail in an edge-colored multigraph, if it contains one. Studying DNA
physical mapping, Pevzner [17] came up with a simpler polynomial-time algo-
rithm solving the same problem.

In this paper, we consider the Chinese Postman Problem on edge-colored
graphs (CPP-ECG): given a connected edge-colored multigraph G with non-
negative weights on its edges, find a PC closed walk in G which traverses all
edges of G and has the minimum weight2 among such walks.

Observe that to solve CPP-ECG, it is enough to find a PC Euler edge-
colored multigraph G∗ of minimum weight such that V (G∗) = V (G) and for
every pair of distinct vertices u, v and color i, G∗ has p∗ > 0 parallel edges
between vertices u and v of color i if and only if G has at least one and at
most p∗ edges of color i between u and v. (To find the actual walk, we can
use the algorithm from [6] or [18].)

CPP-ECG is a generalization of the PC Euler trail problem as an instance
G has a PC Euler trail if and only if G∗ = G. CPP-ECG is also a generaliza-
tion of the Chinese Postman Problem (CPP) on both undirected and directed
multigraphs (the arguments are the same as for PC walks above). However,

2The weight of a walk is the sum of the weights of its edges.
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while CPP on both undirected and directed multigraphs has a solution on
every connected multigraph G, it is not the case for CPP-ECG. Indeed, there
is no solution on any connected edge-colored multigraph containing a vertex
incident to edges of only one color.

It is not hard to solve CPP on undirected and directed multigraphs [11].
For a directed multigraph G, we construct a flow network N by assigning
lower bound 1, upper bound ∞ and cost ω(uv) to each arc uv, where ω(uv) is
the weight of uv in G. A minimum-cost circulation in N viewed as an Euler
directed multigraph corresponds to a CPP solution and vice versa. For an
undirected multigraph G, we construct an edge-weighted complete graph H
whose vertices are odd degree vertices of G and the weight of an edge xy in H
equals the minimum weight path between x and y in G. Now find a minimum-
weight perfect matching M in H and add to G a minimum-weight path of G
between x and y for each edge xy of M . The resulting Euler multigraph
corresponds to a CPP solution and vice versa.

We will prove that CPP-ECG is polynomial-time solvable as well. Note
that our proof is significantly more complicated than that for CPP on undi-
rected and directed graphs. As in the undirected case, we construct an aux-
iliary edge-weighted complete graph H and seek a minimum-weight perfect
matching M in it. However, the construction of H and the arguments justi-
fying the appropriate use of M are significantly more complicated. This can
partially be explained by the fact that CPP-ECG has no solution on many
edge-colored multigraphs.

Note that there is another generalization of CPP on both undirected and
directed multigraphs, namely, CPP on mixed multigraphs, i.e., multigraphs
that may have both edges and arcs. However, CPP on mixed multigraphs
is NP-hard [16]. It is fixed-parameter tractable when parameterized by both
number of edges and arcs [5, 9] and W[1]-hard when parameterized by path-
width [10]. For more information on the classical and parameterized complex-
ity of CPP and its generalizations, see an excellent survey by van Bevern et
al. [5].

2 Preliminaries

Walks. A walk in a multigraph is a sequence W = v1e1v2 . . . vp−1ep−1vp of
alternating vertices and edges such that vertices vi and vi+1 are end-vertices of
edge ei for every i ∈ [p− 1]. A walk W is closed (open, respectively) if v1 = vp
( v1 6= vp, respectively). A trail is a walk in which all edges are distinct.

For technical reasons we will consider walks with fixed end vertices and
call them fixed end-vertex (FEV) walks. Note that an open walk is necessarily
an FEV walk since the end-vertices are predetermined, whereas any vertex
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in a closed walk can be viewed as its two end-vertices and thus fixing such a
vertex is somewhat similar to assigning a root vertex in a tree. An FEV walk
W = v1e1v2 . . . vp−1ep−1vp is PC in an edge-colored graph if the colors of ei
and ei+1 are different for every i ∈ [p − 2]. Note that we do not require that
colors of ep−1 and e1 are different even if v1 = vp. Thus, a PC FEV walk
might not be a PC walk if v1 = vp.

Let e = xy be an edge in an edge-colored multigraph G. The operation
of double subdivision of e replaces e with an (x, y)-path Pe with three edges
such that the weight of Pe equals that of edge e.

It is easy to see that in our study of PC walks, we may restrict ourselves
to graphs rather than multigraphs. Indeed, it suffices to double subdivide every
parallel edge e and assign the original color of e to the first and third edges of
Pe and a new color to the middle edge.

Finding PC FEV walks. Let R+ denote the set of non-negative real num-
bers. To show a polynomial-time algorithm for CPP-ECG, we will use the
following:

Lemma 1. Let G = (V,E) be a k-edge-colored graph and ω : E → R+ a
weight function. Let vertices u, v ∈ V and edge colors c1, c2 be given, where
we may have u = v. In polynomial time we can find a minimum-weight PC
FEV walk from u to v in G whose first edge has color c1 and whose last edge
has color c2, or conclude that there is no such PC FEV walk in G.

Proof. Define an auxiliary digraph H as follows. Let the vertex set of H be
{(u, 0)} ∪ {(x, i) : x ∈ V, i ∈ [k]}. For every edge xy ∈ E, of color i, we add to
H all arcs (x, j)(y, i) and (y, j)(x, i) where j ∈ [k], j 6= i. We also add an arc
from (u, 0) to (z, c1) for every edge uz ∈ E of color c1. Every arc in H retains
the weight of the corresponding edge in G. We claim that the minimum-weight
PC FEV walk we seek in G corresponds to a minimum-weight directed path
from (u, 0) to (v, c2) in H, which can be found in polynomial time, e.g., using
Dijkstra’s algorithm.

On the one hand, let (x1, d1)(x2, d2) . . . (x`, d`) be a directed path in
H such that (x1, d1) = (u, 0) and (x`, d`) = (v, c2). Then by construction,
x1e2x2 . . . e`x`, where ei is an edge between xi−1 and xi of color di, is a PC
FEV walk in G with required properties. On the other hand, consider a
minimum-weight PC FEV walk W in G with the properties requested. Ori-
ent the edges of the walk away from u. We may assume that no vertex has
two in-coming directed edges in the walk of the same color, as the walk could
otherwise be shortened. As above it is not hard to verify that the walk corre-
sponds to a directed path P in H from (u, 0) to (v, c2). By construction, the
weight of P equals that of W . It remains to observe that P is a minimum-
weight directed path from (u, 0) to (v, c2), as otherwise there is a PC FEV
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u4 u3

u1 u2

color 1

color 3

color 2

Figure 1: 3-edge-colored graph G

walk between u and v with required edge colors of weight smaller than W , a
contradiction.

Finally, we observe that the construction works without modification if
u = v.

3 Main Result

We are now ready to prove the main result.

Theorem 2. We can solve CPP-ECG in polynomial time.

Proof. Let G be an input of CPP-ECG. That is, G is a connected k-edge-
colored graph with at least one edge. We may assume that no vertex of G
is incident with edges of a single color only (G cannot have PC closed walks
through such vertices). We may also assume that k ≥ 2 is odd (if not, we
double subdivide an edge e of G and assign a new color to the middle edge of
Pe and the original color of e to the other two edges).

For a vertex u ∈ V (G) and color i ∈ [k], let di(u) be the number of edges
incident with u of color i. Let d(u) (=

∑k
i=1 di(u)) be the degree of u in G. We

say that color i is dominant for u in G if 2di(u) > d(u); note that a vertex has
at most one dominant color, and is balanced if and only if it has no dominant
color.

We now show how to construct, in polynomial time, an undirected graph
H such that H has a perfect matching if and only if G has a PC closed walk
traversing all edges of G, and the minimum weight of a perfect matching in
H is equal to the minimum weight of such a walk in G minus the weight of G.
As computing a minimum-weight perfect matching can be done in polynomial
time, the claim follows. An example is shown in Figures 1 and 2.

We will build the undirected graph H as follows. Define θi(u) as follows:

θi(u) = max{0, d(u)− 2di(u)}.

Let Xi(u) be a set of independent vertices of size θi(u) and let X(u) =⋃k
i=1Xi(u). We now consider the cases when u is balanced and when u is not

balanced, separately.
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X(u4) X3(u3)

X2(u3)

X2(u1)

X3(u1) X(u2)

Y (u1)

Y (u3)

artificial edge

non-artificial edge

Figure 2: Constructed graph H from the graph of Figure 1. Some edges,
including artificial edges within X(u2) and X(u4), are omitted for clarity.

Case 1: u is not balanced. Let Y (u) be a set of (k − 2)d(u) independent
vertices and add all possible edges between Y (u) and X(u) and all possible
edges within Y (u). Let the weight of all these edges be zero and let us call
them artificial edges. Let Z(u) = X(u) ∪ Y (u).

Case 2: u is balanced. Add all possible edges within X(u). Let the weight
of all these edges be zero and let call them artificial edges. Let Z(u) = X(u).

For every pair a ∈ Xi(u) and b ∈ Xj(v) of distinct vertices such that
ab is not an artificial edge, i, j ∈ [k] and u, v ∈ V (G) (we may have i = j
and/or u = v), add an edge between a and b with the weight equal to that
of a minimum-weight PC FEV walk from u to v in G, starting in color i and
ending in color j if one exists, otherwise add no edge ab; this can be computed
in polynomial time by Lemma 1. This completes the description of H.

Assume that H has a perfect matching and M is a minimum-weight perfect
matching in H. We will show that the weight of M plus the weight of all edges
in G is the weight of an optimal solution to the CPP-ECG instance.

We begin with an observation about the structure of M .

Claim 1. We say that a vertex a ∈ X(u) for some u ∈ V (G) is affected by
M if a is incident with a non-artificial edge in M . Then M has the following
properties.
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1. If u is unbalanced with dominant color i ∈ [k], then at least 2di(u)−d(u)
vertices of X(u) are affected by M . Furthermore Xi(u) = ∅.

2. If d(u) is odd, then an odd number of vertices of X(u) are affected by
M .

3. If d(u) is even, then an even number of vertices of X(u) are affected by
M .

Furthermore, for any matching M0 in H with no artificial edges that has the
above properties, M0 can be completed to a perfect matching by adding artificial
edges.

Proof. 1. Assume that u is unbalanced with dominant color i, i.e., 2di(u) >
d(u), i ∈ [k]. Then necessarily, 2dj(u) < d(u) for every other color j ∈ [k],
hence θj(u) = d(u)− 2dj(u) if i 6= j, whereas θi(u) = 0. Thus

|X(u)| =
∑
j 6=i

(d(u)− 2dj(u)) = (k − 2)d(u) + (2di(u)− d(u)),

where the last equality uses
∑

j 6=i d(u) = (k−1)d(u) and
∑

j 6=i dj(u) = d(u)−
di(u). Artificial edges on X(u) can only match vertices of X(u) against Y (u).
Since |Y (u)| = (k − 2)d(u) < |X(u)|, this leaves at least |X(u)| − |Y (u)| =
2di(u)−d(u) vertices in X(u) which must be affected by M . Finally, Xi(u) = ∅
since θi(u) = 0.

2 and 3. Assume first that u is unbalanced, so there is a set of vertices
Y (u). Since k is odd, the parity of |Y (u)| matches the parity of d(u), hence
an odd (resp. even) number of vertices of X(u) are matched against Y (u)
if and only if d(u) is odd (resp. even). Now, as calculated in the previous
paragraph, |X(u)| = (k− 3)d(u) + 2di(u), which is always even. Furthermore,
the affected vertices of X(u) are exactly those not matched against Y (u). The
claim follows.

Finally, if u is balanced, then |X(u)| =
∑

j(d(u) − 2dj(u)) = (k − 2)d(u),
which again has the same parity as d(u). Since every artificial edge matches
two vertices of X(u), and the remaining vertices are exactly the affected ver-
tices in X(u), the claim follows.

Completing a non-perfect matching. Let M0 be a matching in H such that
for every vertex u, (1) if u has a dominant color i, then at least 2di(u)− d(u)
vertices of X(u) are affected by M0, and (2) an odd number of vertices of
X(u) are affected by M0 if and only if d(u) is odd. By the above, the second
point here implies that the number of unmatched vertices of Z(u) is even for
every vertex u. If u is balanced, then Z(u) = X(u) is a clique and we can
add artificial edges from the clique. If u is unbalanced, then Y (u) is entirely
unmatched, and by the first point here, the number of unmatched vertices in
X(u) is at most |Y (u)|. Hence the completion is possible.
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Let u and v be vertices of G and let i and j be colors. Let e = ab be an
arbitrary non-artificial edge in H, with a ∈ Xi(u) and b ∈ Xj(v), where we
may have u = v and/or i = j. An e-walk is a PC FEV walk in G, starting at
u with an edge of color i, and ending at v with an edge of color j.

We will show the theorem in two parts. First, we will show that for any
perfect matching M ′ of H, if we add an e-walk to G for every non-artificial
edge e ∈ M ′, then the resulting multigraph G′ is PC Euler. Here, to add an
e-walk to G means to duplicate every edge along the walk, duplicating an edge
multiple times if it occurs in the walk multiple times. Second, we show that
for any PC Euler graph G′ = (V,E ∪W ), obtained by duplicating edges in
E, there exists a perfect matching M ′ of H such that W can be decomposed
into a set F of e-walks, where there is an e-walk in F if and only if e is a
non-artificial edge in M ′. This will settle the result.

We need an observation about the effect of adding an e-walk to a graph.

Claim 2. Let e ∈ H be a non-artificial edge. Adding an e-walk F to G has
the following effects.

1. For any vertex u, the parity of d(u) changes if and only if F is open and
u is either its first or last vertex.

2. If u ∈ V (G) is neither the first nor the last vertex of the walk, then for
every i ∈ [k], the value of d(u)− 2di(u) is non-decreasing in the process.

3. If F is closed, let u be its end-vertex, and let i (j, respectively) be the
colors of its first (last, respectively) edges. Then for any c ∈ [k], the value
of d(u)− 2dc(u) increases by at least 2 if c /∈ {i, j}; is non-increasing if
c ∈ {i, j} and i 6= j; and decreases by at most 2 if i = j = c.

4. If F is open, let u be an end-vertex of F , without loss of generality, the
first one. Let i be the color of the first edge. Then for any j ∈ [k], the
value of d(u) − 2dj(u) decreases by at most one if j = i, and increases
by at least one, otherwise.

Proof. The first item is easy. For the second item, we just observe that a
single transition through u increases d(u) by 2 and di(u) by at most 1. Since
the graph has no loops, the local effect on u of duplicating F decomposes into
transitions, hence the second item holds. By the same argument, if u is an
endpoint of F , then all visits to u except the first and/or last one decompose
into transitions. This leaves only the first and last edges of F , and their effects
on the end-vertices of F , to consider. The claims in items 3 and 4 follow by
considering all possibilities for these two edges.

We are now ready to show the first part of the theorem, as announced
above. Let M ′ be an arbitrary perfect matching in H, and let G′ be the result

8



of adding an arbitrary e-walk, which has the same weight as edge e, to G
for every non-artificial edge e ∈ M ′. We will show that G′ is PC Euler. By
Theorem 1, we need to show three conditions: G′ is connected, every vertex
in G′ is even, and every vertex in G′ is balanced. The first condition follows
since G is connected; the second condition follows from Claim 1(2–3) and
Claim 2(1). It remains to show that every vertex is balanced in G′, i.e., for
every u ∈ V (G) and every i ∈ [k], it holds in G′ that d(u) ≥ 2di(u). We break
this down into two cases.

Case 1: i is the dominant color for u in G. In this case, d(u)− 2di(u) < 0
in G, and we need to show that this value is nonnegative in G′. By Claim 1(1),
at least 2di(u)−d(u) vertices of X(u) are affected by M ′, and since Xi(u) = ∅,
Claim 2 gives that the value of d(u)− 2di(u) increases by at least 1 for every
such vertex, and never decreases. Thus d(u) ≥ 2di(u) in G′.

Case 2: i is not a dominant color for u in G. In this case, |Xi(u)| =
d(u) − 2di(u) ≥ 0, and we need to show that this value is nonnegative in
G′. By Claim 2, the value of d(u) − 2di(u) decreases by at most as much
as the number of vertices in Xi(u) affected by M ′, in the sense of the term
used in Claim 1. Since there are only d(u)− 2di(u) such vertices, we see that
d(u) ≥ 2di(u) also in G′.

Hence we conclude that d(u) ≥ 2di(u) in G′ for every u ∈ V (G) and every
i ∈ [k], hence every vertex is balanced. This concludes the proof that G′ has a
PC Euler trail. Clearly, the weight of this trail is equal to the total weight of
E(G) plus the sum of the weight of the added e-walks, where the latter part
is exactly the weight of M ′.

Now assume that CPP-ECG on G has a solution, a PC closed walk Q in
G, and let G′ be the graph obtained from G by replacing every edge e = xy
by qe parallel edges with vertices x and y, where qe is the number of times Q
traverses e. Let W = E(G′) \E(G), i.e., W are the edges that are added to G
in order to get the PC Euler multigraph G′. We will find a perfect matching
in H with total weight at most the sum of the weights of edges in W . This
will complete the proof.

We initially define a set W ′ of walks as the set of one-edge walks xey, where
e = xy ∈ W . We will merge walks in W ′ until we can map the remaining
walks W ′ to a matching M0 in H meeting the requirements of Claim 1, at
which point we will be done. Here to merge two walks is to replace the walks
u1e1u2 . . . e`−1u` and v1f1v2 . . . fh−1vh, where u` = v1 = u, with the walk
u1e1u2 . . . e`−1uf1v2 . . . fh−1vh. For u ∈ V (G) and i ∈ [k], let wi(u) denote the
number of times that u is an end-vertex of a walk in W ′ and that walk ends
in u with color i. Here we do not assume a fixed “first” and “last” vertex,
and thus the walks u1e1u2 . . . el−1ul and ulel−1ul−1 . . . e1u1 are the same. Note
that we will allow walks in W ′ to start and end in the same vertex, in which
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case one walk may contribute to wi(u) twice.
By Claim 1, we need to ensure that

1. wi(u) ≤ θi(u) = |Xi(u)| for every u ∈ V (G) and i ∈ [k] (so that W ′

corresponds to a matching);

2.
∑

j∈[k]\{i}wj(u) ≥ 2di(u)−d(u) for every vertex u with a dominant color
i in G; and

3. the parity condition is met for every vertex u.

Because G′ has a PC closed walk traversing all edges, and by Theorem 1,
we have that initially W ′ satisfies the following:

4.
∑

j∈[k]wj(u) + d(u) ≥ 2wi(u) + 2di(u) for every vertex u ∈ V (G) and

integer i (since G′ is balanced);

5.
∑

j∈[k]wj(u) is even if and only if d(u) is even i.e. the parity condition

is met (since G′ is even, and hence d(u) +
∑

j∈[k]wj(u) is even).

We note that Condition 4 implies Condition 2 and Condition 5 implies Con-
dition 3. As long as Condition 1 is not satisfied, we will modify W ′ by merging
walks in such a way that Condition 4 and Condition 5 are still satisfied. As
each merging reduces the number of walks in W ′, we must eventually stop
with a set of walks W ′ satisfying Condition 1, Condition 2 and Condition 3.

So now assume that Condition 1 is not satisfied and let u ∈ V (G) be a
vertex such that wi(u) > θi(u) for some i ∈ [k]. If wi(u) > d(u)− 2di(u), then
we must have that wc(u) > 0 for some c 6= i, as otherwise 2wi(u) + 2di(u) >
wi(u)+d(u) =

∑
j∈[k]wj(u)+d(u), a contradiction to Condition 4. Thus there

are at least two colors c with wc(u) > 0.
We will choose two colors h, j, with wh(u) > 0, wj(u) > 0, h 6= j (i is not

necessarily in {j, h}), and merge a walk ending at u with color h with a walk
ending at u with color j. (If this makes us merge both endvertices of the
same walk, we may simply remove the walk). It is clear that the new walk is
still PC, and this operation reduces the number of walks in W ′. As we have
reduced wh(u) and wj(u) by 1, and the other values are unaffected, it is clear
that Condition 5 is still satisfied. We now show how to choose h, j in such a
way that Condition 4 is still satisfied.

Let us call a color c at risk if
∑

j∈[k]wj(u) + d(u) ≤ 2wc(u) + 2dc(u) + 1
(informally, a color is “at risk” if removing two edges of other colors would
lead that color to dominate u). As

∑
j∈[k]wj(u) +d(u) is necessarily even and∑

j∈[k]wj(u) + d(u) ≥ 2wc(u) + 2dc(u) , we have that in fact
∑

j∈[k]wj(u) +
d(u) = 2wc(u) + 2dc(u) for any at risk color c. Furthermore, we note that

10



at most two colors in [k] can be at risk. Indeed, suppose that distinct colors
c1, c2, c3 ∈ [k] are at risk. Then 2wc1(u)+2dc1(u)+2wc2(u)+2dc2(u)+2wc3(u)+
2dc3(u) = 3(

∑
j∈[k]wj(u) + d(u)) > 2(

∑
j∈[k]wj(u) + d(u)) ≥ 2(wc1(u) +

wc2(u) + wc3(u) + dc1(u) + dc2(u) + dc3(u)), a contradiction.
Next, suppose for a contradiction that wc(u) = 0 for an at risk color

c. Then 2dc(u) = d(u) +
∑

j∈[k]wj(u) and so 2di(u) ≤ 2d(u) − 2dc(u) =
d(u) −

∑
j∈[k]wj(u). Then wi(u) > θi(u) ≥ d(u) − 2di(u) ≥ d(u) − d(u) +∑

k∈[k]wj(u) ≥ wi(u), a contradiction. Thus, wc(u) > 0 for any at risk color
c.

We now know that there at least two colors c with wc(u) > 0, there are at
most 2 at risk colors, and if color c is at risk then wc(u) > 0. We can therefore
select two distinct colors h, j with wh(u) > 0, wj(u) > 0, such that any at
risk color is contained in {h, j}. We now merge a walk ending with color h
at u and a walk ending with color j at u, as described above. This has the
effect of reducing each of wh(u) and wj(u) by 1, and leaving wc(u) unchanged
for c ∈ [k] \ {h, j}. We now show that we still have

∑
j∈[k]wj(u) + d(u) ≥

2wc(u)+2dc(u) for any c ∈ [k]. If c ∈ {h, j}, then both
∑

j∈[k]wj(u)+d(u) and
2wc(u)+2dc(u) are reduced by 2, so the condition still holds. If c /∈ {h, j}, then
as c was not at risk we originally had

∑
j∈[k]wj(u)+d(u) ≥ 2wc(u)+2dc(u)+2.

As
∑

j∈[k]wj(u)+d(u) is reduced by 2, we will still have
∑

j∈[k]wj(u)+d(u) ≥
2wc(u) + 2dc(u), as required.

We continue the above process until there is no u ∈ V (G), i ∈ [k] for which
Condition 1 fails. We therefore have that Conditions 1, 4 and 3 hold, which
in turn implies Conditions 2 and 3 hold. Convert W ′ to a matching M0 in H
by adding for every walk F an edge e to M0 such that F is an e-walk. This is
possible since wi(u) ≤ θi(u) = |Xi(u)| for every i ∈ [k], u ∈ V (G). The weight
of M0 is at most the weight of W , since every edge e added to M0 this way
has a weight corresponding to a minimum-weight e-walk where F is just one
possible e-walk. By Claim 1 we can complete M0 to a perfect matching M ′ by
adding artificial edges, which does not increase the weight. Hence H admits
a perfect matching whose weight is at most the weight of W .

So in all cases we can find a perfect matching in H with weight exactly
the weight of all the (non-closed) walks in W ′. As we have already shown
that a perfect matching in H gives rise to a solution to CPP-ECG on G where
duplicated edges add the same weight as the weight of the matching, we are
done.

4 Conclusion

We considered the Chinese Postman Problem on edge-colored graphs (CPP-
ECG). This problem generalizes the Chinese Postman Problem on undirected
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and directed graphs and the properly colored Euler trail problem on edge-
colored graphs, all of which can be solved in polynomial time. We proved that
CPP-ECG is still polynomial time solvable.

It is well-known that the number of Euler trails on digraphs can be cal-
culated in polynomial time using the so-called BEST theorem [23, 1], named
after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. However, the
problem is much harder on undirected graphs as it is #P-complete [24]. Our
simple transformation from directed walks to PC walks described in Section 1,
shows that the problem of counting PC Euler trails on 2-edge-colored graphs
generalizes that of counting the number of Euler trails on digraphs. Assigning
each edge of an undirected graph a distinct color, shows that the problem
of counting PC Euler trails on k-edge-colored graphs is #P-complete when
k is unbounded. So it would be interesting to determine the complexity of
the problem of counting PC Euler trails on a k-edge-colored graphs when k is
bounded, in particular when k = 2.
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