

Accepted Manuscript

A Multi–objective Intelligent Water Drop Algorithm to Minimise Cost
Of Goods Sold and Time to Market in Logistics Networks

Luis A. Moncayo–Martı́nez, Ernesto Mastrocinque

PII: S0957-4174(16)30397-9
DOI: 10.1016/j.eswa.2016.08.003
Reference: ESWA 10795

To appear in: Expert Systems With Applications

Received date: 28 December 2015
Revised date: 25 May 2016
Accepted date: 1 August 2016

Please cite this article as: Luis A. Moncayo–Martı́nez, Ernesto Mastrocinque, A Multi–objective Intelli-
gent Water Drop Algorithm to Minimise Cost Of Goods Sold and Time to Market in Logistics Networks,
Expert Systems With Applications (2016), doi: 10.1016/j.eswa.2016.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.eswa.2016.08.003
http://dx.doi.org/10.1016/j.eswa.2016.08.003

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• This is the first attempt to solve the SC Design problem using IWD Metaheuristic.

• We modify the single-objective IWD Meta-heuristic to solve a bi-objective SC
Design problem.

• We compare our results to the ones computed by Ant Colony Optimisation
(ACO).

• We solve several instances to show the performance of our hybrid algorithm

• Our results outperform the ones computed by ACO.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Multi–objective Intelligent Water Drop Algorithm to

Minimise Cost Of Goods Sold and Time to Market in Logistics

Networks

Luis A. Moncayo–Mart́ıneza,∗, Ernesto Mastrocinqueb

aDepartment of Industrial Engineering and Operations,
Instituto Tecnológico Autónomo de México (ITAM),

Rio Hondo #1, Col. Progreso Tizapan, C.P. 01080, Mexico City, Mexico
bSchool of Management,

Royal Holloway, University of London,
Egham Hill, TW20 0EX, Egham, UK

Abstract

The Intelligent Water Drop (IWD) algorithm is inspired by the movement of natural
water drops (WD) in a river. A stream can find an optimum path considering the
conditions of its surroundings to reach its ultimate goal, which is often a sea. In the
process of reaching such destination, the WD and the environment interact with each
other as the WD moves through the river bed. Similarly, the supply chain problem
can be modelled as a flow of stages that must be completed and optimised to obtain
a finished product that is delivered to the end user. Every stage may have one or
more options to be satisfied such as suppliers, manufacturing or delivery options. Each
option is characterised by its time and cost. Within this context, multi–objective
optimisation approaches are particularly well suited to provide optimal solutions. This
problem has been classified as NP hard; thus, this paper proposes an approach aiming
to solve the logistics network problem using a modified multi–objective extension of
the IWD which returns a pareto set.

Artificial WD, flowing through the supply chain, will simultaneously minimise the
cost of goods sold and the lead time of every product involved by using the concept
of Pareto optimality. The proposed approach has been tested over instances widely
used in literature yielding promising results which are supported by the performance
measurements taken by comparison to the Ant Colony Meta-heuristic as well as the
true fronts obtained by exhaustive enumeration. The pareto set returned by IWD is
computed in 4 seconds and the Generational Distance, Spacing, and Hyper–area met-
rics are very close to those computed by exhaustive enumeration. Therefore, our main
contribution is the design of a new algorithm that overcome the algorithm proposed
by Moncayo-Mart́ınez and Zhang (2011).

This paper contributes to enhance the current body of knowledge of expert and

∗Corresponding author. Tel.: +52(55)5490 4618; fax: +52(55)5490 4611
Email addresses: luis.moncayo@itam.mx (Luis A. Moncayo–Mart́ınez),

Ernesto.Mastrocinque@rhul.ac.uk (Ernesto Mastrocinque)

Preprint submitted to Expert Systems With Applications August 5, 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

intelligent systems by providing a new, effective and efficient IWD-based optimisation
method for the design and configuration of supply chain and logistics networks taking
into account multiple objectives simultaneously.

Keywords: Logistics Networks, Bill of Materials, Water Drop Intelligence, Pareto
Optimality, Swarm Intelligence, Bi–objective Optimisation

1. Introduction

Increasing competition in today’s global market has forced enterprises to configure
and evaluate their supply chain (SC) and many logistics providers have recognised that
an optimal SC Design (SCD) is a paramount part for any business strategy. When the
SC is designed, one of the most important objectives is to deliver products to customers
in due time at the lowest possible cost (Simchi-Levi et al., 2008). This is important
because an optimal SCD results in cost reduction by 10% and decrements in service
time by 40% (Harrison, 2001).

The design process is not easy due to several factors, e.g. market expansion, wide
range of suppliers, customers’ waiting time, and competitors. Although those factors
are important, the Cost of Goods Sold (CoGS) and the Lead Time (LT) (or time to
market) have been recognised as the most important objectives to optimise (Aslam
and Ng, 2010; Ho et al., 2010).

Traditionally, the SC is modelled as a network in which the nodes represent facilities
such as suppliers, manufacturing plants, warehouses, retailers, and customers. The
SCD problem has been limited to select the number of facilities and determine the
amount of units to flow among them. Moreover, it is assumed that the suppliers, plants,
warehouses, and retailers have been selected. This severely reduces the opportunity to
optimise the overall SC cost because the selected option may increase both CoGS and
LT, see Chandra and Grabis (2007); Shapiro (2007); Goetschalckx (2011) to check a
comprehensive list of these models.

On the other hand, the SC can be represented as a Bill of Materials (BOM) in
which each node represents a supplying, a manufacturing, or a delivery stage. Each
stage could be performed by one or more options, e.g. a component, represented by a
supplying stage, could be supplied by one or more suppliers; a sub or final assembly,
represented by a manufacturing stage, could be assembled in one or more manufacturing
plants or production lines; and a customer, represented by a delivery stage, could be
the transportation mode used to deliver the product. Therefore, the problem is to
determine: from which supplier should each component be obtained?; where will each
product be assembled?; and how should each product be delivered to the customer?
The complexity of the problem increases by the fact that the selected options must
minimise both the CoGS and the LT for a family of products.

Those objectives are conflicting with each other since a reduction in time increases
the cost, e.g. suppose two options which can perform a stage, if the cost of option one
is greater than the cost of option two, then the time of the option one is less than the

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

time of the second option (Cheshmehgaz et al., 2013).

When the SCD problem is modelled as a BOM, the resulting problem is a combi-
natorial optimisation problem (COP) in which the solution is not based on a sequence
but on the selection of variables that “best” perform the objective functions, i.e. the
solution of this problem is to select the subset of options (or variables) that minimise
the CoGS and LT. This kind of COP has been categorised as NP-hard, thus to find
exact solutions in polynomial time is difficult (Garey and Johnson, 1979).

Exhaustive enumerations could be used to find the exact solutions but to compute
all the possible combinations is not practical. More efficient methods should be used
to find the “best” combination.

Metaheuristics have been widely used to find near–optimal solutions for hard COP
in short periods of time (Talbi, 2009). Graves and Willems (2005), Huang et al. (2005),
and Wang and Shu (2007) solved the problem minimising only the CoGS using Dynamic
Programming, Genetic Algorithm, and Fuzzy Sets, respectively. Moncayo-Mart́ınez
and Zhang (2011) minimised CoGS and LT, simultaneously, and Moncayo-Mart́ınez
and Zhang (2013) minimised the cost of safety stock using Ant Colony Optimisation
(ACO), nevertheless their results are not compared to any other optimisation method
to prove the efficiency of the ACO-based algorithm and solved only one instance .
Hence, a metaheuristic called Intelligent Water Drop (IWD) that is inspired by the
flow of rivers is proposed to solve the CoGS and LT in assembly SC.

This natural behaviour has been applied successfully to a number of theoretical
problems such as the travelling salesman problem and multiple-knapsack problem
(Shah-Hosseini, 2007, 2008, 2009; Alijla et al., 2014). Industrial applications include
job-shop scheduling (Niu et al., 2012), vehicle routing problem (Kamkar et al., 2010;
Booyavi et al., 2014), trajectory planning in aerial vehicles (Duan et al., 2009), design
of irrigation systems (Hendrawan and Murase, 2011), real-life wast collection problem
(Islam and Rahman, 2013), economical load dispatch (Rayapudi, 2011), parallel pro-
cessor scheduling Mokhtari (2015), and capacitated vehicle routing problem which is
solved by a novel IWD and Cuckoo Search Algorithm (Teymourian et al., 2016).

The proposed IWD-based algorithm minimises two objectives and the pareto op-
timality criterion is used to evaluate them. Computing a pareto set to compare the
performance of two algorithms is a standard method in multi-objective optimisation
(Coello et al., 2006; Helbig and Engelbrecht, 2013).

This paper contributes in two aspects: a) as nowadays the focus in research is
problem-oriented rather than promoting certain algorithm (Blum et al., 2011; Blum
and Roli, 2003), an IWD-based algorithm is proposed to solve the bi-objective SCD
problem which outperforms the multi-objective metrics reported when ACO is used;
and b) the original IWD algorithm is modified to solve a bi-objective problem.

In the last decade researchers have contributed to the body of knowledge of ex-
pert and intelligent systems by focusing on developing and applying meta-heuristics
and swarm-based algorithms for complex supply chain configuration and logistics prob-
lems. In such a context, our paper provides an efficient methodology based on the IWD
algorithm for the complex multi-objective optimisation of logistics networks, making

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

an analogy between the methodology and the particular application.

This paper is organised as follows. Relevant literature is reviewed in section 2.
Theory of the IWD is provided in section 3, as well as the problem representation
and the proposed solution algorithm. Seven instances are solved in Section 4 and the
results are reported in section 5. Finally, conclusions are drawn in section 6.

2. Literature Review

The scope of SCD problem has been limited to minimise both the cost of opening a
number of facilities (e.g. suppliers, manufacturing plants, and warehouses) and the cost
of transporting the number of components, sub and final assemblies that flow among
the facilities (Mula et al., 2010; Melo et al., 2009). One important drawback is that it is
assumed that the suppliers, manufacturing plants and warehouses have been selected,
i.e. there is only one option to perform the operations of supplying, manufacturing,
and delivery.

Some examples of those models are proposed by Amiri (2006), Tsiakis and Papa-
georgiou (2008), and Ko and Evans (2007). Examples of multi-objective optimization
models include: Guillen et al. (2005) maximised the net present value, minimised de-
mand dissatisfaction, and the financial risk; Franca et al. (2010) evaluated the tradeoff
between profit and quality; Cardona-Valdes et al. (2011) minimised the total cost and
service levels; Yeh and Chuang (2011) optimised the transport cost, lead time, quality
and green factor when supplier are selected; and Che and Chiang (2010) considered
three evaluation criteria. The above approaches developed a mixed-integer program-
ming (MIP) model and computed a pareto set which includes a set of solutions or SCDs.

Recently, the SC has been modelled as a BOM. Every element of BOM, represents
a stage that can be performed by one or more options. Graves and Willems S. (2001);
Graves and Willems (2005) modelled the SC as a BOM to minimise the total SC cost
which includes the CoGS and the on-hand and in-transit inventory. They developed
a dynamic programming (DP) algorithm to solve the single-objective MIP model and
solve a widely used notebook SC.

To cope with the disadvantage of high computational effort of DP, Huang et al.
(2005) proposed a genetic algorithm (GA) to minimise the total SC cost. The results
equal the ones returned by DP when the notebook SC is solved. Li and Womer (2008)
added resource constraints, i.e. the possible options which can perform a stage have
limited resources (e.g. suppliers have limited capacity). They implemented an approach
based on constraint programming (CP).

Wang and Shu (2007) included uncertainty in the options cost and time using fuzzy
sets (FS). Their model was solved by a GA. You and Grossmann (2010) focused on
safety placement under demand uncertainty in the chemical industry, Lagrangean re-
laxation and piecewise linear approximation are proposed to solve the problems. Huang
Zhang (2005) focused on the effect of quantity discounts and demand variability when
a generic BOM is used. Huang et al. (2011) studied the effect of coordinating the price
and order quantity when the SC is modelled as a BOM. All these approaches solved

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the notebook SC proposed in Graves and Willems (2005)

The described approaches minimised the total SC cost by selecting one option per
stage that “best” performs the objective. However, the lead time is as important as
the costs of both CoGS and inventory when the SC is designed (see section 1).

Nepal et al. (2011) added a second objective (compatibility firm) to the single-
objective model proposed by Graves and Willems (2005). The compatibility firm mea-
sures the SC alliance, i.e. the compatibility of the players (selected options) in the SC.
Therefore, an option to perform a stage is selected not only based on the cost related
objectives but also on its compatibility index which encompasses: structural factors.
e.g. cultural alignment, information sharing, and cooperation; managerial factors. e.g.
compatibility in strategic goals and conflict management technique; and financial fac-
tors, e.g. profit margin and return on assets. Each option selected to perform a stage
has a compatibility index which is computed by fuzzy logic. The total compatibility
index is computed as the sum of the individuals indexes. The bi-objective model is
reduced to a single-objective one by weighted sum method and the model is solved by
standard GA.

Although, weighted sum method is straightforward implemented, it has difficulty
in finding solutions uniformly distributed over the solution space (Konak et al., 2006).
Moreover, the model does not account for time to market metrics, i.e. the proposed
solution could minimise both cost and compatibility firm but there could be a solution
that minimises the lead time as well.

Moncayo-Mart́ınez and Zhang (2011) minimised both CoGS and LT using ACO but
they solved one instance and their results were not compared with any other approach.
They tuned the ACO parameters to generate a pareto set with solutions with low CoGS
and short LT. Yuce et al. (2014) solved the same bi-objective problem by means of the
Bees Algorithm and its modified version, obtaining better performance compared to
the ACO. However they solved only one instance.

Moncayo-Mart́ınez et al. (2015) used the IWD algorithm to optimise inventory
levels in an assembly supply chain showing promising results compared to the ACO al-
gorithm although the authors tested the IWD algorithm using only one case study. Our
approach does not attempt to minimise inventory cost but CoGs Moreover, they use
a hybrid approach based on dynamic programming and IWD to solve the bi–objective
problems. Thus, medium size instances could be solved. In order to confirm and ex-
tend the results, in this paper we propose a multi-objective IWD-based algorithm to
optimise a SCD problem when the SC is modelled as a BOM, using seven case studies
and comparing the results to those returned by ACO and exhaustive enumeration..

On the other hand, there is no published attempt to solve the bi-objective SCD
problem by means of IWD as shown in recent surveys specialised in SC design problem
and published by Chandra and Grabis (2007); van der Vaart and van Donk (2008);
Mula et al. (2010).

In relation to the multi-objective optimisation using IWD in theoretical or practical
problems, Niu et al. (2013) solved the job shop problem minimising the makespan,
tardiness, and mean flow time of the schedules. The objective of their research is to find

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the best pareto non-dominated set. Moreover, Booyavi et al. (2014) and Teymourian
et al. (2016) have applied the IWD algorithm and proposed an enhanced version with
the cuckoo search algorithm for solving the vehicle routing problem. However they
performed a single-objective optimisation.

3. Intelligent Water Drop and Pareto Criterion

[INSERT NOMENCLATURE HERE]

The IWD metaheuristic is a novel swarm-based algorithm which imitates the nat-
ural process between the water drops and the river bed. This metaheuristic was first
proposed to solve the Travelling Salesman Problem with promising results since it con-
verges quickly to optimal solutions (Shah-Hosseini, 2007). The basic idea embedded in
IWD metaheuristic is that water drops follow an ideal straight line from their origin to
their destination (e.g. lake, a sea, or a bigger river) because of the gravitational force.
In reality, this is not possible since there are obstacles and barriers that force drops to
look for an unblocked path.

In the IWD algorithm: a) every water drop has two properties: velocity and soil
that change during its trip to the destination; b) the environment or river is represented
by a set of paths that are full of soil; and c) a water drop is supposed to flow in discrete
steps, i.e. the problem is represented by a graph G = {V,E} where V is the set of
vertices and E is the set of edges, thus the water drop travels from vertex to vertex
until it has found the destination.

While a water drop travels from a vertex to another, its velocity is increased by
an amount that is non–linear proportional to the inverse of the soil over the edge that
links the two vertices. Additionally, an amount of soil from the edge (path), joining
the two vertices, is removed and the water drop gathers the removed soil. The amount
of soil is non-linearly proportional to the inverse of the time needed for the water drop
to pass from a vertex to another. The time is proportional to the velocity of the water
drop and inversely proportional to the distance between the two vertices.

A water drop chooses the following vertex to go based on a probability decision
rule. This rule states that the probability of a water drop to select a vertex is inversely
proportional to the soil of the edge that links two vertices, thus edges with lower soil
have higher chances to be selected by the water drop.

Once a water drop has selected the next vertex, the soil over the vertex and the
soil from the water drop are updated using an updating parameter which is a small
positive number less than one. The water drop stops until it reaches the termination
condition.

In this way, a water drop builds a sequence of vertices that returns the total objec-
tive value (e.g. cost, distance, etc.). Using the objective value of all the water drops,
the iteration-best solution is found and the soil from the edges that form the solution
is updated by a global updating parameter which is chosen between [0, 1].

[INSERT ALGORITHM 1 HERE]

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 outlines the IWD Meta–heuristic. Basically, it is divided into two
parts: a) solution construction in which every water drop visits all the vertices and
its velocity and soil are updated by the local updating parameter, then some amount
of soil is removed from the edges as well (lines 6–15); and b) total best solution in
which the solutions generated by all the water drops are compared to find the iteration
best solution. If it is “better” than the total best solution, then it is replaced by the
iteration best solution. Some amount of soil from the edges in the total best solution
is updated using the global updating parameter (lines 16–19).

As our proposed algorithm minimises two objectives, CoGS and LT, the concept of
Pareto Optimality Criterion is applied to determine which solutions are “better” than
others. Those solutions build the solution set and are called non–dominated solutions.
A solution of this kind is one in which any improvement in one objective can only take
place if at least one of the other objectives worsens. Hence, a solution s = {s1, . . . , sk}
(in our case s1 = CoGS and s2 = LT) dominates another solution s′ = {s′1, . . . , s′k},
represented by s � s′, if and only if ∀ l ∈ {1, . . . , k}, sl ≤ s′l ∧∃ l ∈ {1, . . . , k} : sl < s′l.
The non-dominated solutions form the solution set represented by SS := {s ∈ Ω |
¬∃ s′ ∈ Ω s′ � s}, where Ω is the feasible solution space.

3.1. Mathematical representation

In order to mathematically represent the bi-objective optimisation problem, we
add a second objective function to the single-objective model proposed by Graves and
Willems S. (2001); Graves and Willems (2005). They represented the SC as a graph
G = {V,E} where the set of vertices represents the supplying, manufacturing, and
delivery stages (i), thus V = {1, . . . , i, . . . , I} and I is the total number of stages. The
set of edges represents the relationships between two stages. These relationships could
be between: a supplying and a manufacturing stage, two manufacturing stages, or a
manufacturing and a delivery stage, thus E = {(1, 2), (1, i), . . . , (i, i′)}. The subset of
delivery stages is defined as DS ⊆ V . This is important since the products’ demand is
generated in those stages.

Every stage i has different options j = {1, . . . , Ji} which can perform the stage.
The cost and time of those options are cij and tij, respectively. In order to select an
option to perform a stage, a binary variable is used. This variable is defined as yij = 1,
if the option j performs stage i. Otherwise, yij = 0.

The CoGS is modelled by Eq. 1. Graves and Willems S. (2001); Graves and
Willems (2005) defined it as the value of goods sold during the company’s interval
time of interest ξ.

CoGS = ξ
I∑

i=1

µiCi (1)

µi =
∑

i′:(i,i′)∈E
µi′ is the demand at stage i, and Ci is the cost of the selected option

at stage i.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The lead time at stage i (LTi) is defined as the time of the selected option to perform
the stage (Ti) plus the maximum lead time of its preceding stages i′. Formally, the lead
time is defined as follows LTi = Ti + max

i′:(i′,i)∈E
{LTi′}. The lead time at the delivering

stages is known as the time to market, see Eq. 2. We add it to the single objective
model.

LT = max
i∈DS
{LTi} (2)

We minimise Eq. 1 and Eq. 2 subject to Eq. 3 to 7. We use the common formula-
tion used in literature when the SC is represented as a BOM.

The SC is designed when Eq. 3, 4 and 6 are solved, i.e. when the values of all
the binary variables (yij) are known as well as when the time (Ti) and cost (Ci) of the
stages are set. Eq. 5 computes the lead time for all the stages and Eq. 7 warranties
yij can only take the values of 0 or 1 .

Ji∑

j=1

cijyij − Ci = 0, for i = 1, ..., I (3)

Ji∑

j=1

tijyij − Ti = 0, for i = 1, ..., I (4)

Ti + max
i′:(i′,i)∈E

{LTi′} − LTi = 0, for i = 1, ..., I (5)

Ji∑

j=1

yij = 1, for i = 1, ..., I (6)

yij = {0, 1} , for i = 1, ..., I, j = 1, ..., Ji (7)

3.2. Proposed IWD-based algorithm

In order to solve the SCD problem, the IWD algorithm creates R rivers (rep-
resenting the number of iterations), r = {1, . . . , R}, each one with D water drops,
d = {1, . . . , D}. A water drop solution is a subset Sd of options which perform
the stages. sd = (LT,CoGS) stands for the value of Eq. 1 and 2 generated by
subset of options selected by the water drop d. In every iteration (one per river),
each river r creates a solution set SSr = {s1, . . . , sd, . . .} which contains all the non-
dominated solutions. It is said that sd = (LT,CoGS) dominates s′d = (LT ′, CoGS ′), if
(LT ≤ LT ′)∧ (CoGS ≤ CoGS ′) and (LT < LT ′)∨ (CoGS < CoGS ′). In order to add
sd to the SSr, the last condition, called pareto optimality criterion, must be proved
for every sd generated by river r. The final output of the algorithm is the last solution
set SS = SSR. Table 1 is an analogy between the elements of the IWD algorithm and
those of the SCD problem.

[INSERT TABLE 1 HERE]

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In the first part of the proposed algorithm, every water drop creates a sd. To do so,
d is placed in a stage i and then the probability that d selects j : j ∈ i is computed by
Eq. 8, where θ is a very small constant to avoid zero division. The value of pij depends
on the amount of soil of j (φij), thus the larger the value of φij, the less the chance j
is selected.

pij =

1
θ+gij∑

j′:j′∈i

1

θ + gij′

; where gij =

φij, if min

j∈i
{φij} ≥ 0

φij −min
j∈i
{φij} , otherwise

(8)

The value of φij could be equal or greater than zero. On the other hand, when
φij < 0, we compute φij − min

j∈i
{φij} to get all the values of φij > 0. Once every

pij has been computed, the selection of the option j to perform stage i is based on a
probabilistic decision rule. This rule is used to allow water drops to look for new paths
(or trying new options) and avoid stagnation as well as explore more options. Thus,
the option j with the highest probability pij is not always selected. As general rule,
the larger the value of pij is, the greater the chance to select j to perform i while the
options with lower pij still have possibilities to be selected and explore new solutions.

The value of the binary variable yij of the selected option j is set to 1 and it is
stored in the selected options list Sd = {j . . .}. After that, the water drop velocity is
updated using Eq. 9; the increments of the option soil are updated by Eq. 10; the soil
from the option j (φij) is updated as well as the water drop soil φd by Eq. 11 where
ρn is the local updating parameter.

vd = vd +
av

bv + cv(φij)2
(9)

∆φij =
as

bs + cs(τij)2
, where τij =

e1/tij + e1/cij

vd
(10)

φij = (1− ρn)φij − ρn∆φij, and φd = φd + ∆φij (11)

Notice that the time, a water drop spends in option j, is τij = HV
vd

(Eq. 10),

HV = e1/tij + e1/cij to weigh the time and cost of the option.
When a water drop d visits all the stages i, the values of Eq. 1 and 2 are computed

based on selected options Sd, i.e. sd = (LT,CoGS) is known.

In the second part of the algorithm, the river r creates a solution set SSr applying
the pareto optimality criterion to all sd = (LT,CoGS), thus the non-dominated sd are
added to the SSr = {sd, sd′ , . . .}. Finally, the soil of the options j that belong to a
non-dominated sd is updated using a global updating parameter (ρw), Eq. 12.

φij = (1− ρw)φij − ρw
(

1

I − 1

)
φd, j ∈ sd, sd ∈ SSr (12)

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eq. 8–12 are the common equation used by IWD, e.g. Shah-Hosseini (2009), Niu
et al. (2012), and Islam and Rahman (2013).

Algorithm 2 is a summary of the proposed IWD algorithm. The first part, in
which every water drop selects an option per stage, is carried out by lines 6–25, thus
Sd = {j, . . .} is created. So as to create a solution every drop d visits every stage i to
select an option j. While the drop d is on a stage i, d computes pij for every j (lines
10–12). Before going to the next stage the probabilistic decision rule is applied to select
j to perform i, i.e. the variable yij is set to 1; the increments of soil and velocity are
computed and updated (lines 13–16); as well as the selected option j is stored in drop’s
solution Sd (lines 17–18). Once the drop has selected an option to every stage, the cost
(Ci) and time (Ti) per stage is computed; then the lead time (LTi) can be computed
as well (lines 20–23). Finally, the drop’s solution can be calculated sd = LT,CoGS.

Once, each water drop has computed sd = (LT,CoGS), the solution set of the river
r (SSr) is built by the non-dominated sd, this is carried out by lines 26–31. The output
of the algorithm is the solution set generated by the last river (line 33).

[INSERT ALGORITHM 2 HERE]

4. Experimental Applications

To test the algorithm, seven instances are solved, shown in Fig. 1. Instances 1,
2, and 4 are taken from Graves and Willems (2005). They represent a notebook SC
in which two notebooks are sent to two different markets. The notebooks share the
main assembly (called notebook assembly) which is assembled using a circuit board
assembly and several components. The only difference between the two computers is
the cover colour that could be either gray or blue. The blue notebook, instance 1, is
sold at the US market. The gray notebook, instance 2, is sent to the US and Export
markets. In instance 4, the two notebooks are represented.

[INSERT FIGURE 1 HERE]

Instance 3 appears in Graves and Willems (2000). It describes a digital capture
device (the final assembly) which mainly consists of a charger coupled device, a cir-
cuit board assembly, and local accessories. The final assembly is sent to a Central
Distribution centre and then supplied to US and export demand.

A bulldozer SC is depicted in instance 5 (Graves and Willems, 2003). The main
assembly encompasses: a) a common subassembly in which the transmission, drivetrain
and the brake system are assembled; b) a chassis; and c) the dressed-out engine. The
final assembly is assembled by the main assembly, the track roller frame, and the
suspension group. This instance has no delivery stages and the stages have two options
that could perform it.

Instances 6 and 7 represent a tractor SC with three products Wheel Loader (WHL),
Track Loader (TRL), and Track-Type Tractor (TTT). The three products share the

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

main assembly which consists of a transmission, an engine and a chassis. When a shovel
and a suspension with wheels are attached to the main assembly, WHL is produced.
when a blade, a track roller frame, and the suspension is attached to the main assembly
a TTT is produced. The TRL is similar to the TTT but instead of a blade a shovel is
attached to the main assembly.

The reader is encouraged to check the references in Fig. 1 to know the values of
the time (tij) and cost (cij) for all the options in every stage. We provide a summary
of the characteristics of the instances in Table 2.

The values of the static parameters are tuned through different combinations and
are based on theoretical studies and similar reported studies like Shah-Hosseini (2009,
2008). A multi–objective approach to solve a job–shop problem set the values of
(av, bv, cv) = (as, bs, cs) = (1, 0.01, 1), ρn = 0.1, ρw = 0.9 to obtain optimum solution
(Niu et al., 2013).

The variable parameters are user selected and they should be tuned experimentally
(Shah-Hosseini, 2009, 2008). In our case, we set to φij = 10, 000, φd = 10, 000, and
vd = 4 according to the value of the CoGsS and LT in each instance. The heuristic
parameter HV is adjust according to the value of time and cost in each stage. There-
fore, the values of these parameters are adjust according to the value of CoGS and LT
of the instance.

[INSERT TABLE 2 HERE]

The algorithm runs using 10 rivers (R = 10) with 450 water drops (D = 450) each
one. R = 30 and D = 450 are set to compare the outputs to the results generated by
the ACO-based algorithm, proposed by Moncayo-Mart́ınez and Zhang (2011), in which
30 ant colonies are created.

The algorithm was programmed using Java and a Lenovo T530 computer with a
Core i7 processor at 2.90GHz and 4GB of RAM memory.

5. Results and Discussions

5.1. Results

Every instance is solved running the algorithm thirty times using R = 10 and
D = 450, then it is run again thirty times setting R = 30 and D = 450. The average
CPU time is computed as well as the average value of five multi-objective optimisation
metrics (Coello et al., 2006).

a) Spacing (S). It measures the distribution of solutions throughout the non-dominated
solutions, i.e. it measures how well the solutions in the solution set are spread. A value
of zero means all the solutions within the solution set are equidistantly spaced.

b) Generational Difference (GD). This is a way to test the distance (i.e. how far)
the true pareto set is from the solution set SS. It is clear that the smaller the GD
value, the closer the SS is from true Pareto Set.

c) Hyperarea (H). It relates the covered area by the SS to area covered by the true
Pareto Set. In our bi-objective problem, H is the summation of all the rectangle areas
bounded by the reference point (LT,CoGS) = (0, 0).

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

d) Hyperarea Ratio (HR). It measures the ration of the area of coverage of SS to
the true Pareto Set (tPS) objective space, thus the optimum value of HR is one.

[INSERT TABLE 3 and 4 HERE]

The average value of those metrics is shown in Table 3 when the IWD is used and in
Table 4 when ACO is run. The objective is to prove that IWD algorithm outperforms
the ACO algorithm.

Firstly, the values of the metrics have been compared, when Exhaustive Enumer-
ation (EE) is used to compute the tPS for instances 1, 2, 3, and 4, to these values
generated by our proposed algorithm. As shown in Table 3, the largest CPU time is
obtained when EE computes the pareto sets. The CPU time when R = 30 is larger than
the time when R = 10. However, the values of the metrics are better using R = 30:
the value of the GD is smaller and the values of S are closer to those computed by
EE. The values of H, when we set R = 10 and R = 30, are very similar to the values
computed by EE. The values of HR are very close to 1 using either R = 10 or R = 30,
it means that the area covered by the solutions sets is similar to the area covered by
the tPS.

The same analysis can be carried out when ACO solves the same instance (see
Table 4). The CPU time is longer when P = 30 than the time when P = 10. In
relation to the S, the outputs are mixed, the values of S when P = 10 are closer to
those generated by EE for instances 2 and 3. On the other hand, the values of H are
similar to the ones computed by EE for R = 10 and R = 30.

Secondly, for instances 5, 6, and 7, the values of S and H have been compared
when R = 10 and R = 30 (see Table 3). The values of S are very similar. On the
contrary, the values of H are smaller when R = 30 than those when R = 10, i.e. when
setting R = 30, the area covered by the solution set is smaller. This is good since our
reference point is (0,0) to compute H. The values of those metrics when ACO is used
(see Table 4) are mixed. The values of S for P = 30 are better for instances 5 and 6
and the values of H are smaller in instances 5 and 7.

Finally, the results of IWD and ACO algorithm have been compared when R = 30
and P = 30, respectively. For instances 1, 2, 3, and 4, the solutions set generated by
our algorithm are closer to the tPS, according to GD (see Table 3 and 4) and Fig.
2(a), 2(b), 2(c), and 2(d).

For instance 5, the values of S and H are smaller using ACO, thus it looks like
ACO outperforms IWD. Nevertheless, the number of solutions in the SS using ACO is
smaller than the number of solutions using IWD, 9 and 15 respectively, see Fig. 2(e).
Moreover, the LT of solutions computed by ACO is between 9 and 12 days, while the
LT of solutions in IWD is between 16 and 52, thus the solutions in SS are spread
across the solution space. Hence, the IWD generates a SS which covers most of the
solution space.

[INSERT FIGURE 2 HERE]

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The analysis carried out for instances 6 and 7 is similar to the one performed
for instance 5. Notice that for instances 5, 6, and 7 the solutions of SS using ACO
algorithm are not spread evenly on the solution space, as shown in Fig. 2(e), 2(f), and
2(g). Therefore, the IWD algorithm generates SS which covers a larger area of the
solution space that the sets generated by ACO.

[INSERT FIGURE 3 HERE]

So as to define the variability of our algorithm, box plots are drawn using the results
of the thirty runs (Talbi, 2009). As shown in Fig. 3(a), our proposed algorithm solves
the seven instances in less time (40% average) than time spend by the ACO algorithm.

The box plots of the GD are plotted in Fig. 3(b). As shown in it, 100% of the 30
results are below the box plot generated using ACO algorithm for the instances 1,2,3,
and 4. (notice that for the instances in which the true PS is computed, the GD can
be computed). As shown in Fig. 2, the IWD algorithm finds more solutions or SCs
than ACO algorithm; thus the decision maker can choose one among more available
solutions. The values of spacing are plotted in Fig. 3(c) and the ones of hyperarea are
plotted in Fig. 3(d).

Based on the values of the CPU time, GD, and S in Table 3 and 4 for instance 1,2,3,
and 4, our IWD-based algorithm solves those instances faster than the ACO approach
proposed by Moncayo-Mart́ınez and Zhang (2011). Moreover, the SS returned by our
approach are closer to the tPS and the solution are more evenly spaced (see Fig. 3).

In case of instance 5, 6, and 7, our approach returns SS evenly spaced (see Fig. 2);
thus, the values of S are bigger than those of ACO (see Table 3 and 4).

According to the descriptive analysis in Fig. 3 and the values of the metrics com-
puted in Table 3 and 4, it seams that the ACO approach by Moncayo-Mart́ınez and
Zhang (2011) returns similar results for instance 1, 2, 3, and 4 but for bigger instances
(5, 6, and 7) the IWD–based algorithm returns solutions in SS that are evenly spread
over the feasible region; thus, the hyperarea is greater. This suggests that our IWD
algorithm overcome the ACO–based algorithm.

5.2. Discussion

The original IWD algorithm is successfully customised to solve the bi–objective
SCD problems when the CoGS and LT are minimised simultaneously. Our modified
algorithm overcome the ACO algorithm proposed by Moncayo-Mart́ınez and Zhang
(2011) according to results in Fig. 2 and 3.

Our problem is different from Moncayo-Mart́ınez et al. (2015) and Moncayo-Mart́ınez
and Zhang (2013) in that we do not include the safety stock cost which is computed
by Dynamic Programming; thus, mid–size instances could be solved. Although they
minimised the safety stock and lead time, our approach minimises by IWD–based Bi–
objective Algorithm the CoGS and time to market. This work can inspired further
application of IWD algorithm to the Logistics Network problems by adding the safety

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

stock cost, capacity constrains, or sustainability issues such as environmental and social
impacts..

On the other hand, we modified the original IWD algorithm to compute a pareto
set; thus, our algorithm returns a set of Logistics Networks and the decision maker
could select the best that suits s/he.

The proposed methodology has proven to be flexible by providing excellent results
on seven different supply chain configuration instances, characterised by different num-
ber of stages and options. Moreover, not only the algorithm has proven to give solutions
equal or very close to the true Pareto fronts for less complex instances, but it has also
shown to be capable of finding many more Pareto solutions covering a larger area of
the solution space on the more complex instances, compared to the sets generated by
ACO. Therefore the proposed method shows all its potential especially when applied
for solving complex multi-objective supply chain and logistics optimisation problems.

6. Conclusions

This paper presents a modified multi-objective optimisation model for minimising
the CoGS and LT in a manufacturing supply chain, simultaneously. The model en-
hances SC efficiency by jointly considering the cost and time during the selection of an
option to perform a stage.

We modified the original IWD algorithm to return a pareto set that overcome the
pareto sets generated by Moncayo-Mart́ınez and Zhang (2011) when the second objec-
tive is to minimise the CoG instead of the the safety stock.

The proposed multi-objective IWD algorithm is applied to seven instances widely
used in literature and the results were compared to an ACO-based algorithm as well
as exhaustive enumeration when it is possible to compute the true Pareto Set.

According to the results, we conclude that our proposed algorithm outperforms the
performance of the ACO algorithm. When the values of S and H are computed for the
true Pareto Set, those values are very close to those ones computed by our algorithms.
The values of the HR are very close for both algorithms. According to Tables 3 and
4, our algorithm returns more spaced solutions sets, i.e. our algorithm covers a wider
area of the solution space.

The solution sets are plotted to show that our algorithm generates solutions with
lower cost and shorter lead time than those computed by ACO.

Future search directions may on one hand, compare the proposed approach with
other metaheuristic algorithms and, on the other hand, propose enhanced or hybrid
versions of the IWD algorithm. Furthermore, the proposed IWD algorithm might be
used to solve more complex supply chain design problems taking into account safety
stock or sustainability issues.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgements

The authors would like to acknowledge the many valuable suggestions made by
anonymous reviewers.

The completion of this article was supported by the Asociación Mexicana de Cul-
tura A.C. and the Mexico’s National Council of Science and Technology (CONACyT).

References

Alijla, B., Wong, L., Lim, C., Khader, A., Al-Betar, M., 2014. A modified Intelligent Water Drops
algorithm and its application to optimization problems. Expert Systems with Applications 41 (15),
6555–6569.

Amiri, A., 2006. Designing a distribution network in a supply chain system: Formulation and efficient
solution procedure. European Journal of Operational Research 171 (2), 567–576.

Aslam, T., Ng, A. H. C., 2010. Multi-objective optimization for supply chain management: a literature
review and new development. In: 2010 International Conference on Supply Chain Management and
Information Systems. IEEE, pp. 1–8.

Blum, C., Puchinger, J., Raidl, G. R., Roli, A., 2011. Hybrid metaheuristics in combinatorial opti-
mization: A survey. Applied Soft Computing 11 (6), 4135–4151.

Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35 (3), 268–308.

Booyavi, Z., Teymourian, E., Komaki, G., Sheikh, S., 2014. An improved optimization method based
on the intelligent water drops algorithm for the vehicle routing problem. In: 2014 IEEE Symposium
on Computational Intelligence in Production and Logistics Systems (CIPLS). pp. 59–66.

Cardona-Valdes, Y., Alvarez, A., Ozdemir, D., 2011. A bi-objective supply chain design problem with
uncertainty. Transportation Research Part C: Emerging Technologies 19 (5), 821–832.

Chandra, C., Grabis, J., 2007. Supply chain configuration. Concepts, solutions and applications.
Springer.

Che, Z., Chiang, C., 2010. A modified Pareto genetic algorithm for multi-objective build-to-order
supply chain planning with product assembly. Advances in Engineering Software 41 (7-8), 1011–
1022.

Cheshmehgaz, H. R., Desa, M. I., Wibowo, A., 2013. A flexible three-level logistic network design con-
sidering cost and time criteria with a multi-objective evolutionary algorithm. Journal of Intelligent
Manufacturing 24 (2), 277–293.

Coello, C. A. C., Lamont, G. B., Veldhuizen, D. A. V., 2006. Evolutionary Algorithms for Solving
Multi-Objective Problems (Genetic and Evolutionary Computation), 2nd Edition. Springer-Verlag
New York, Inc.

Duan, H., Liu, S., Wu, J., 2009. Novel intelligent water drops optimization approach to single UCAV
smooth trajectory planning. Aerospace Science and Technology 13 (8), 442–449.

Franca, R. B., Jones, E. C., Richards, C. N., Carlson, J. P., 2010. Multi-objective stochastic supply
chain modeling to evaluate tradeoffs between profit and quality. International Journal of Production
Economics 127 (2), 292–299.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Garey, M., Johnson, D., 1979. Computers and intractability: A guide to the theory of NP-
completeness. W. H. Freeman & Co.

Goetschalckx, M., 2011. Supply Chain Engineering. Springer.

Graves, S., Willems, S., 2000. Optimizing the supply-chain configuration for new products. In: Pro-
ceedings of the 2000 MSOM Conference.

Graves, S., Willems, S., 2005. Optimizing the supply chain configuration for new products. Manage-
ment Science 51 (8), 1165–1180.

Graves, S., Willems S., 2001. Optimizing the Supply Chain Configuration for New Products. MIT
working paper, 1–36.

Graves, S. C., Willems, S. P., 2003. Supply chain design: safety stock placement and supply chain
configuration. In: de Kok, A. G., Graves, S. C. (Eds.), Handbooks in Operations Research and
Management Science. Vol. 11. Elsevier, pp. 95–132.

Guillen, G., Mele, F., Bagajewicz, M., Espuna, A., Puigjaner, L., 2005. Multiobjective supply chain
design under uncertainty. Chemical Engineering Science 60 (6), 1535–1553.

Harrison, T., 2001. Global supply chain design. Information Systems Frontiers 3 (4), 413–416.

Helbig, M., Engelbrecht, A. P., 2013. Performance measures for dynamic multi-objective optimisation
algorithms. Information Sciences 250, 61–81.

Hendrawan, Y., Murase, H., 2011. Neural-Intelligent Water Drops algorithm to select relevant textural
features for developing precision irrigation system using machine vision. Computers and Electronics
in Agriculture 77 (2), 214–228.

Ho, W., Xu, X., Dey, P. K., 2010. Multi-criteria decision making approaches for supplier evaluation
and selection: A literature review. European Journal of Operational Research 202 (1), 16–24.

Huang, G., Zhang, X., Liang, L., 2005. Towards integrated optimal configuration of platform products,
manufacturing processes, and supply chains. Journal of Operations Management 23 (3-4), 267–290.

Huang, Y., Huang, G. Q., Newman, S. T., 2011. Coordinating pricing and inventory decisions in a
multi-level supply chain: A game-theoretic approach. Transportation Research Part E: Logistics
and Transportation Review 47 (2), 115–129.

Huang Zhang, L., 2005. Optimal supply chain configuration for platform products: impacts of com-
monality, demand variability and quantity discount. International Journal of Mass Customisation
1 (1), 107–133.

Islam, M., Rahman, M., 2013. An Improved Intelligent Water Drop Algorithm for a Real-Life Waste
Collection Problem. In: Tan, Y., Shi, Y., Mo, H. (Eds.), Advances in Swarm Intelligence. Vol. 7929.
Springer Berlin Heidelberg, pp. 472–479.

Kamkar, I., Akbarzadeh-T, M. R., Yaghoobi, M., 2010. Intelligent water drops a new optimization
algorithm for solving the Vehicle Routing Problem. In: 2010 IEEE International Conference on
Systems Man and Cybernetics. pp. 4142–4146.

Ko, H. J., Evans, G. W., 2007. A genetic algorithm-based heuristic for the dynamic integrated for-
ward/reverse logistics network for 3PLs. Computers & Operations Research 34 (2), 346–366.

Konak, A., Coit, D. W., Smith, A. E., 2006. Multi-objective optimization using genetic algorithms:
A tutorial. Reliability Engineering & System Safety 91 (9), 992–1007.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Li, H., Womer, K., 2008. Modeling the supply chain configuration problem with resource constraints.
International Journal of Project Management 26 (6), 646–654.

Melo, M. T., Nickel, S., Saldanha-da Gama, F., 2009. Facility location and supply chain management
- A review. European Journal of Operational Research 196 (2), 401–412.

Mokhtari, H., 2015. A nature inspired intelligent water drops evolutionary algorithm for parallel
processor scheduling with rejection. Applied Soft Computing 26, 166–179.

Moncayo-Mart́ınez, L. A., Ramı́rez-López, A., Recio, G., 2015. Managing inventory levels and time
to market in assembly supply chains by swarm intelligence algorithms. The International Journal
of Advanced Manufacturing Technology 82 (1-4), 419–433.

Moncayo-Mart́ınez, L. A., Zhang, D. Z., 2011. Multi-objective ant colony optimisation: A meta-
heuristic approach to supply chain design. International Journal of Production Economics 131 (1),
407–420.

Moncayo-Mart́ınez, L. A., Zhang, D. Z., 2013. Optimising safety stock placement and lead time
in an assembly supply chain using bi-objective MAX–MIN ant system. International Journal of
Production Economics 145 (1), 18–28.

Mula, J., Peidro, D., Dı́az-Madroñero, M., Vicens, E., aug 2010. Mathematical programming models
for supply chain production and transport planning. European Journal of Operational Research
204 (3), 377–390.

Nepal, B., Monplaisir, L., Famuyiwa, O., 2011. A multi-objective supply chain configuration model
for new products. International Journal of Production Research 49 (23), 7107–7134.

Niu, S. H., Ong, S. K., Nee, A. Y. C., 2012. An improved Intelligent Water Drops algorithm for achiev-
ing optimal job-shop scheduling solutions. International Journal of Production Research 50 (15),
4192–4205.

Niu, S. H., Ong, S. K., Nee, A. Y. C., 2013. An improved intelligent water drops algorithm for solving
multi-objective job shop scheduling. Engineering Applications of Artificial Intelligence.

Rayapudi, S. R., 2011. An Intelligent Water Drop Algorithm for Solving Economic Load Dispatch
Problem. International Journal of Electrical and Electronics Engineering 5 (1), 43–49.

Shah-Hosseini, H., 2007. Problem solving by intelligent water drops. In: IEEE Congress on Evolu-
tionary Computation. pp. 3226–3231.

Shah-Hosseini, H., 2008. Intelligent water drops algorithm: A new optimization method for solving
the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics
1 (2), 193–212.

Shah-Hosseini, H., 2009. The intelligent water drops algorithm: a nature-inspired swarm-based opti-
mization algorithm. Int. J. Bio-Inspired Comput. 1 (1/2), 71–79.

Shapiro, J. F., 2007. Modeling the supply chain, 2nd Edition. Duxbury.

Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E., 2008. Designing and managing the supply chain:
concepts, strategies, and case studies, 3rd Edition. McGraw Hill Professional.

Talbi, E. G., 2009. Metaheuristics: from design to implementation. Wiley Series on Parallel and
Distributed Computing. John Wiley & Sons.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Teymourian, E., Kayvanfar, V., Komaki, G., Zandieh, M., 2016. Enhanced intelligent water drops and
cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences
334-335, 354–378.

Tsiakis, P., Papageorgiou, L., 2008. Optimal production allocation and distribution supply chain
networks. International Journal of Production Economics 111 (2), 468–483.

van der Vaart, T., van Donk, D., 2008. A critical review of survey-based research in supply chain
integration. International Journal of Production Economics 111 (1), 42–55.

Wang, J., Shu, Y., 2007. A possibilistic decision model for new product supply chain design. European
Journal of Operational Research 177 (2), 1044–1061.

Yeh, W.-C., Chuang, M.-C., apr 2011. Using multi-objective genetic algorithm for partner selection
in green supply chain problems. Expert Systems with Applications 38 (4), 4244–4253.

You, F., Grossmann, I. E., 2010. Integrated multi-echelon supply chain design with inventories under
uncertainty: MINLP models, computational strategies. AIChE Journal 56 (2), 419–440.

Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S., Pham, D. T., oct 2014. A multi-
objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood
search and site abandonment strategy. Swarm and Evolutionary Computation 18, 71–82.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Nomenclature
i a stage r river
I total number of stages d water drop
j an option R total number of rivers
Ji total number of options j than can per-

form stage i
D total number of water drops

V set of stages i Sd subset of options j selected by d, Sd =
{j, j′, . . .}

E set of edges representing the stages re-
lationship (i, i′)

sd a solutions created by d using Sd, sd =
(LT,CoGS)

DS ⊆ V subset of delivering stages SSr solution set computed by r, SSr =
{sa, . . . , sd . . .}

CoGS cost of goods sold pij probability of choosing j to perform i
LT lead time or time to market φij amount of soil of j ∈ i
cij, tij cost and time of the option j to perform

stage i
φd amount of soil of d

Ci, Ti cost and time of the selected option to
perform stage i

vd velocity of d

yij binary variable equals 1 if j performs i.
Otherwise, it equals 0

θ small constant to avoid zero division

ξ company’s interval time of interest ∆φij change of soil in j
µi demand at stage i ρn local updating factor
av, bv, cv velocity updating parameters ρw global updating factor
as, bs, cs soil updating parameters ρw global updating factor
HV heuristic value τij time spent by a water drop to cross op-

tion j

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data: a graph G = {V,E}
Result: total best solution

1 initialisation of static parameters : # of water drops, total best solution, # of
iterations, local and global updating parameter;

2 initialisation of dynamic parameters : initial soil from edges and water drop as
well as their initial velocity, list of visited vertices;

3 spread water drop randomly on the vertices;
4 update the list of visited vertices;
5 while iteration 6 # of iterations do
6 for every water drop do
7 while there are unvisited vertices do
8 select the next vertex based on the probability decision rule;
9 update the list of visited vertices;

10 update the water drop velocity;
11 compute the amount of soil gathered by the water drop;
12 update the soil of the edge which links the selected vertex;
13 update the soil of the water drop;

14 end

15 end
16 find the iteration best solution;
17 update the soil on the edges that form the iteration best solution;
18 update the total best solution by the iteration best solution;
19 iteration = iteration + 1;

20 end
21 The algorithm stops here with the total best solution

Algorithm 1: single-objective IWD metaheuristic

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Element IWD SCD
(i, j) an edge that connects vertex i to vertex

j.
i is a stage and j is an option which can
perform the stage (j ∈ i).

Number of Rivers R = 1 R > 1

Water Drop (d) d visits all vertices and has to decide
which vertex j to go while d has just vis-
ited vertex i.

d visits all stages and selects the option
j to perform stage i.

Soil – φij amount of soil of the edge (i, j), thus soil
is deposited in edges.

amount of soil of the option j which can
perform the stage i.

Soil – φd amount of soil of the water drop d.

Velocity – vd velocity of the water drop d.

Neighbourhood set of nodes i that have not been visited
yet.

set of options j which can perform stage
i, (j ∈ i).

Water Drop Solution (Sd) a sequence of visited node Sd = {i, . . .}. a set of selected options to perform the
stages Sd = {j, . . .}.

Algorithm Solution (SS) total best solution built by all the water
drops of the river.

a solution set (pareto front) built by ev-
ery the rivers.

Probability (pij) probability that d goes to the vertex j if
it is in vertex i.

probability of selecting option j to per-
form stage i.

Probabilistic Decision Rule The larger the value of pij , the greater the chances to select j.

Heuristic Value (HVij) customised according to the problem. we proposed e1/tij + e1/cij .

Table 1: Analogy between elements of IWD and SCD

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data: V = {1, . . . , i, . . . , I}; j = {1, . . . , Ji} ∀ i; E = {(1, i), . . . , (i, i′) . . .}
Result: Solution set SS

1 initialise static parameters: D, R, ρn, ρw, av, bv, cv, as, bs, cs;
2 initialise variable parameters: φij ∀ i, j, vd;
3 set r = 1;
4 while r 6 R do
5 set SSr = {};
6 for d = 1 to d = D do
7 set Sd = {};
8 while V 6= {} do
9 select an stage i from V ;

10 for j = 1 to j = Ji do
11 compute pij (Eq. 8)
12 end
13 select j to perform i based on the probabilistic decision rule, i.e. set yij = 1 (Eq.

6 is solved);
14 update vd (Eq. 9);
15 compute soil increments ∆φij (Eq. 10);
16 update the soil of φij and φd (Eq. 11);
17 store the selected option, Sd ← j;
18 delete i from V ;

19 end
20 for i = 1 to i = I do
21 compute Ci and Ti using Sd (Eq. 3 and 4);
22 compute LTi (Eq. 5);

23 end
24 set sd = (LT,CoGS) (Eq. 1 and 2);

25 end
26 foreach sd do
27 verify sd is dominated by other s′d, i.e. s′d � sd;
28 if ¬∃ s′d | s′d � sd then
29 SSr ← sd
30 end

31 end
32 if r = R then
33 stop SS = SSR;
34 else
35 update every option j | j ∈ sd and sd ∈ SSr (Eq. 12);
36 r = r + 1;

37 end

38 end

Algorithm 2: Proposed algorithm to solve the SCD problem

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

stages i (V) options edges demand
instance products] sup man del[(j) (E) solutions§ ξ product customer† µ

1 1 9 3 1 26 12 3,072 250 1 1 125
2 1 9 3 2 28 13 6,144 250 1 1 200

1 2 75
3 1 8 7 2 32 16 12,288 250 1 1 15

1 2 4
4 2 10 4 3 33 16 24,576 250 1 1 200

1 2 75
2 1 125

5 1 14 8 0 44 21 4,194,304 250 1 0 5
6 3 18 11 9 76 37 2.74× 1011 250 1 1 20

1 3 12
1 4 23
2 2 10
2 4 32
3 1 21
3 2 9
3 3 17
3 4 6

7 3 18 11 9 105 37 1.28× 1016 250 the same as 6
] the products represent the final assembly, i.e. a manufacturing stage
[the subset of delivery stages is represented by D ⊂ V
§ solutions =

∏
i Ji, where Ji is the number of options which can perform the stage i

† this are the delivering stages, a customer could ask for more than one product

Table 2: Summary of the seven instances

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

T
ab

le
3:

R
es

u
lt

s
of

th
e

IW
D

-b
as

ed
al

go
ri

th
m

an
d

E
x
h

au
st

iv
e

E
n
u

m
er

at
io

n

IW
D

-b
as

ed
al

go
ri

th
m

E
x
h
au

st
iv

e
E

n
u
m

er
at

io
n
†

R
=

10
D

=
45

0
R

=
30

D
=

45
0

In
st

an
ce

C
P

U
T

im
e

(m
s)

S
H

(×
10

6
)

C
P

U
ti

m
e

G
D
]

S
H

(×
10

6
)

H
R
[

C
P

U
ti

m
e

G
D
]

S
H

(×
10

6
)

H
R
[

1
1,

10
5

12
5,

32
8

4,
56

1
85

11
,0

67
11

1,
48

4
4,

55
6

0.
99

87
45

8
10

,2
98

11
7,

59
4

4,
56

3
1.

02
08

2
1,

23
6

24
7,

61
3

11
,2

77
98

44
,1

17
30

7,
66

6
11

,2
90

1.
00

12
73

3
30

,7
47

26
6,

07
4

11
,2

90
1.

00
83

3
4,

45
6

14
2,

29
8

2,
31

7
13

8
3,

92
2

14
2,

85
2

2,
31

8
1.

00
06

1,
53

2
4,

70
8

14
2,

52
6

2,
31

8
1.

00
10

4
15

,3
27

37
9,

38
0

16
,3

80
14

3
20

3,
91

9
67

1,
61

9
16

,4
64

1.
00

51
2,

52
2

15
9,

34
7

39
1,

20
3

16
,4

43
1.

00
39

5
–

–
–

29
6

–
70

,4
00

4,
75

4
–

2,
68

0
–

70
,4

49
13

,2
72

–
6

–
–

–
1,

04
5

–
16

3,
81

1
6,

96
2

–
4,

45
6

–
16

3,
81

1
6,

96
2

–
7

–
–

–
2,

23
0

–
18

5,
34

5
8,

40
4

–
4,

51
6

–
18

5,
34

5
6,

96
6

–
†T

h
e

tr
u
e

P
ar

et
o

S
et

w
as

ab
le

to
co

m
p
u
te

u
si

n
g

ex
h
au

st
iv

e
en

u
m

er
at

io
n

fo
r

in
st

an
ce

1,
2,

3,
an

d
4

]
T

h
e

G
en

er
at

io
n
al

D
iff

er
en

ce
is

co
m

p
u
te

d
u
si

n
g

th
e

tr
u
e

P
ar

et
o

S
et

an
d

th
e

so
lu

ti
on

se
t
S
S

ge
n
er

at
ed

b
y

IW
D

-b
as

ed
al

go
ri

th
m

[
T

h
is

ra
ti

o
is

co
m

p
u
te

d
d
iv

id
in

g
H

of
th

e
IW

D
al

go
ri

th
m

b
y
H

of
th

e
tr

u
e

P
ar

et
o

S
et

T
ab

le
4:

R
es

u
lt

s
of

th
e

A
C

O
-b

a
se

d
al

go
ri

th
m

an
d

E
x
h

au
st

iv
e

E
n
u

m
er

at
io

n

A
C

O
-b

as
ed

al
go

ri
th

m
E

x
h
au

st
iv

e
E

n
u
m

er
at

io
n
†

P
=

10
Q

=
45

0
P

=
30

Q
=

45
0

In
st

an
ce

C
P

U
T

im
e(

m
s)

S
H

(×
10

6
)

C
P

U
ti

m
e

G
D
]

S
H

(×
10

6
)

H
R
[

C
P

U
ti

m
e

G
D
]

S
H

(×
10

6
)

H
R
[

1
1,

10
5

12
5,

32
8

4,
56

1
66

5
61

,0
31

13
8,

90
9

4,
58

0
1.

00
41

1,
58

5
61

,0
40

14
1,

82
5

4,
57

8
1.

00
41

2
1,

23
6

24
7,

61
3

11
,2

77
85

3
12

1,
12

6
29

4,
56

4
11

,3
18

1.
00

36
2,

03
0

11
2,

79
0

25
9,

13
1

11
,2

98
1.

00
19

3
4,

45
6

14
2,

29
8

2,
31

7
1,

98
2

8,
30

7
15

0,
38

3
2,

19
8

0.
94

87
2,

40
0

8,
14

8
14

8,
70

3
2,

26
1

0.
97

58
4

15
,3

27
37

9,
38

0
16

,3
80

1,
20

8
21

3,
55

4
38

1,
61

5
16

,4
49

1.
00

42
3,

74
0

22
0,

94
3

39
8,

75
0

16
,4

29
1.

00
30

5
–

–
–

52
7

–
6,

25
2

2,
53

6
–

6,
20

5
–

3,
12

6
1,

98
7

–
6

–
–

–
6,

88
6

–
90

,6
74

5,
81

9
–

20
,1

41
–

84
,8

28
5,

82
4

–
7

–
–

–
6,

82
0

–
96

,6
40

5,
83

4
–

21
,5

65
–

11
0,

95
7

5,
77

8
–

†T
h
e

tr
u
e

P
ar

et
o

S
et

w
as

ab
le

to
co

m
p
u
te

u
si

n
g

ex
h
au

st
iv

e
en

u
m

er
at

io
n

fo
r

in
st

an
ce

1,
2,

3,
an

d
4

]
T

h
e

G
en

er
at

io
n
al

D
iff

er
en

ce
is

co
m

p
u
te

d
u
si

n
g

th
e

tr
u
e

P
ar

et
o

S
et

an
d

th
e

so
lu

ti
on

se
t
S
S

ge
n
er

at
ed

b
y

A
C

O
-b

as
ed

al
go

ri
th

m
[

T
h
is

ra
ti

o
is

co
m

p
u
te

d
d
iv

id
in

g
H

of
th

e
A

C
O

al
go

ri
th

m
b
y
H

of
th

e
tr

u
e

P
ar

et
o

S
et

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Instances

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

40 50 60 70 80

C
oG

S
($

)
(×

10
6
)

LT(days)

true Pareto Set◦
◦

◦ ◦ ◦

◦
◦

◦
◦

◦

◦
IWD (R=10)

+

+
+ +

+

+

+
+

+

+

+
IWD (R=30)

×
×

× × ×

×
×

×
×

×

×
ACO (C=10)

••
• •

•

•
••

•
•

•
ACO (C=30)

4
4 4

4
4

4 44

4

4

(a) Instance 1

119

120

121

122

123

124

125

126

127

40 50 60 70 80 90

C
oG

S
($

)
(×

1
0
6
)

LT (days)

true Pareto Set◦
◦
◦ ◦ ◦ ◦

◦
◦
◦

◦
◦ ◦

◦
IWD (R=10)

+

+
+ +

+
+

+

+
+

+
+

+

+
IWD (R=30)

×
×
× × × × ×

×

× × ×
×
×× ×

×
ACO (C=10)

•
•
• • • •

••
•
•

• •

•
ACO (C=30)

4
4 4 44

4
4

4
4
4 4

4

(b) Instance 2

17.8

17.9

18.0

18.1

18.2

18.3

18.4

18.5

18.6

18.7

60 70 80 90 100 110 120

C
oG

S
($

)
(×

10
6
)

LT(days)

true Pareto Set◦

◦
◦ ◦

◦
◦ ◦

◦ ◦ ◦

◦
IWD (C=10)+

+
+ + +

+
+

+
+ + +

+
IWD (C=30)

×

×
× ×

××
××

× × ×

×
ACO (C=10)

•

•
• •

•
• •

• • •

•
ACO (C=30)

4

4
4 4

4
44

4 4 4

4

(c) Instance 3

174

176

178

180

182

184

40 50 60 70 80 90

C
oG

S
($

)
(×

10
6
)

LT(days)

true Pareto Set
◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦ ◦ ◦

◦ ◦ ◦

◦
IWD (R=10)

+

+
+ + + +

+
+

+
+

+ +

+
IWD (R=30)

×
×× × × ×

×

× × ×
× ×

×

×
ACO (C=10)

•
•
• • •

•

•
• •

• •

•
ACO (C=30)

4 44 4
4 4

4
4
4 4

4
4

4

(d) Instance 4

90.8

91.0

91.2

91.4

91.6

91.8

92.0

92.2

92.4

10 15 20 25 30 35 40 45 50

C
oG

S
($

)
(×

10
6
)

LT(days)

IWD (R=10)
+

+

++
+

++

++ +

+ +

+
+

+
IWD (R=30)×

×
×

×
×

×
×
× × × × ×

× ×
×

×
ACO (C=10)

•
•
•

•
•
•
•
•

•

•
ACO (C=30)

4
4
4

4
4
4
4

4
4

4

(e) Instance 5

105.0

105.5

106.0

106.5

107.0

107.5

35 40 45 50 55 60 65

C
oG

S
($

)
(×

10
6
)

LT(days)

IWD (R=10)

+

+
+

++
++

+

+

+

+

+
IWD (R=30)× ××

×

× ×
×

× ×
×
×

×

×
ACO (C=10)

• • •
•
• •

•
•

•
ACO (C=30)

4 44 44

4
4 44

4

4

(f) Instance 6

105.0

105.5

106.0

106.5

107.0

107.5

30 40 50 60 70 80

C
oG

S
($

)
(×

10
6
)

LT(days)

IWD (R=10)

+

+
+ ++

++
+ +

+
++

+

+
IWD (R=30)

×
× ×

× ×
×

×
×
× × ×

× × × ×

×
ACO (C=10)

•

•

•

•
ACO (C=30)

44
4
4

4

(g) Instance 7

Figure 2: Solution Sets (SS) and true Pareto Sets

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

5000

10000

15000

20000

1 2 3 4 5 6 7

C
P

U
ti

m
e

(m
s)

instance

Quartiles
IWD
ACO

(a) CPU Time

0

50000

100000

150000

200000

250000

1-IWD 1-ACO 2-IWD 2-ACO 3-IWD 3-ACO 4-IWD 4-ACO

G
oa

l
D

iff
er

en
ce

(G
D

)

instance-algorithm

(b) Goal Difference (GD)

0

100000

200000

300000

400000

500000

1-W 1-A 2-W 2-A 3-W 3-A 4-W 4-A 5-W 5-A 6-W 6-A 7-W 7-A

S
p

a
ci

n
g

(S
)

instance-algorithm

W = IWD, A = ACO
tPS value

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗

(c) Spacing (S)

2

4

6

8

10

12

14

16

1-W 1-A 2-W 2-A 3-W 3-A 4-W 4-A 5-W 5-A 6-W 6-A 7-W 7-A

H
y
p

er
vo

lu
m

e
(×

10
9
)

instance-algorithm

W = IWD, A = ACO
tPS value

∗ ∗

∗ ∗

∗ ∗

∗ ∗
∗

(d) Hypervolume (H)

Figure 3: Box plots of metrics

28

