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Abstract

No group-strategyproof and ex-post Pareto optimal randommatch-

ing mechanism treats equals equally. Every mechanism that arises out

of the randomization over a set of non-bossy and strategyproof mech-

anisms is non-bossy. Random serial dictatorship, which arises out of

the randomization over deterministic serial dictatorships is non-bossy

but not group-strategyproof.
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1 Introduction

An ideal mechanism would be impossible to manipulate, efficient and fair.

For house matching problems, where a finite set of agents with linear prefer-

ences over houses needs to be matched to these houses, there exists no group-

strategyproof and ex-post Pareto optimal random matching mechanism that

treats equals equally. So group-strategyproofness, one of the strongest non-

manipulability requirements, clashes with some of the weakest efficiency- and
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fairness-criteria: ex-post Pareto optimality and equal treatment of equals. A

mechanism that maps every profile of preferences to a lottery over Pareto

optima is ex-post Pareto optimal. The mechanism treats equals equally, if

any two agents who submit the same preference face the same lottery over

houses. It is group-strategyproof if no group can improve their outcomes

by lying about their true preferences. Group-strategyproofness strengthens

strategyproofness which only requires that no agent is ever harmed by truth-

fully revealing his preference.

My result complements Bogomolnaia and Moulin’s [1] theorem that no

strategyproof and ordinally efficient matching mechanism treats equals equally.

While Bogomolnaia and Moulin and I use the same weak criterion of fair-

ness, our efficiency and non-manipulability requirements differ: where I only

impose ex-post Pareto optimality, Bogomolnaia and Moulin require ordi-

nal efficiency; where they only impose strategyproofness, I require group-

strategyproofness.

Papai has given a very useful characterization of group-strategyproofness:

a deterministic matching mechanism is group-strategyproof if and only if

it is strategyproof and non-bossy, in the sense that no agent can change

another agent’s outcome without also changing his own. While, Barbera,

Berga, and Moreno [2] shows that this equivalence extends far beyond house-

matching problems, Thompson [9] provides an overview on where the equiv-

alence holds (and where it fails). I apply Theorem 1 to the question whether

this equivalence carries over to random matching mechanisms. Random se-

rial dictatorship, which arises out of a uniform randomization over the order

of agents as dictators in serial dictatorship, is ex-post Pareto optimal and

treats equals equally. By Theorem 1, random serial dictatorship is not group-

strategyproof. To show that Papai’s equivalence result does not extend to

the random matching context it only remains to show that random serial

dictatorship, which is known to be strategyproof, is non-bossy. To this end,

I show in Theorem 2 that any randomization over a set of non-bossy and

strategyproof mechanisms yields a non-bossy random matching mechanism.

Since any serial dictatorship is non-bossy and strategyproof, random serial

dictatorship is non-bossy.

The results presented here cover matching problems with and without
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outside options. In fact, only minor changes are necessary to extend the

proofs from one case to the other. In contrast the presence or absence of out-

side options plays a crucial role in parts of the matching literature: Svensson’s

[8] characterization of serial dictatorship does not extend to the case with

outside options. Kesten and Kurino [4] shows that while deferred acceptance

is an optimal mechanism when considering the full domain of preferences

with outside options, improvements upon deferred acceptance are possible

if (at least some) agents have no outside options. Erdil [3] constructs a

random matching mechanism that ex-ante Pareto dominates random serial

dictatorship when agents have outside options.

2 Definitions

There is a set N = {1, . . . , n} of agents and a set of houses H. The option to

stay homeless (∅) is always available ∅ ∈ H. Generic elements of H (including

∅) are denoted h. A matching is a set of agent-house pairs denoted as a vector

x ∈ Hn where xi = xj and i 6= j imply xi = ∅. Under x agent i is unmatched

if xi = ∅, otherwise house xi is agent i’s is match. The set of all matchings

is X. Agent i’s preference on H is a linear order %i. So %i is complete,

transitive and h ∼ h′ implies h = h′. A profile of all agents’ preferences

(%i)i∈N is denoted %, where %G and %−G are the preferences of all agents

in some group G ⊂ N and outside that group, so %= (%G,%−G). The set Ω

is the set of all profiles of linear orders on H. Agents are selfish in the sense

that they only consider their own houses when ranking different matchings.

The grand set of matching problems, described by Ω and X allows for

outside options: matchings may leave some agents and houses unmatched

and agents may prefer homelessness to some houses (∅ �i h holds for some

%∈ Ω, i ∈ N and h ∈ H). Throughout the text ∅ 6= Ω̃ ⊂ Ω stands for an

arbitrary, non-empty, domain of linear orders, with (%′G,%−G) ∈ Ω̃ for any

%,%′∈ Ω̃ and G ⊂ N . The domain for which all agents rank homelessness ∅
as their worst option is denoted Ω̂. The subset X̂ ⊂ X of matchings without

outside options, is such that the number of unmatched agents under any

x ∈ X̂ is minimal. Together Ω̂ and X̂ describe the set of matching problems

without outside options.
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A mechanism φ maps Ω̃ to the set of matchings X and agent i obtains

φi(%) under φ at the profile %. A random mechanism ρ maps Ω̃ to ∆X,

where the set of all lotteries on some finite S is denoted ∆S. Under ρ agent

i faces the lottery ρi(%) ∈ ∆H at % where ρi(%)(h) : = ρ(%)({x | xi = h})
is the probability that i is matched to h under ρ(%).

The mechanism ρ : Ω̃ → ∆X is (ordinally) group-strategyproof

if any group-deviation that changes the outcomes for this group, renders

some group-member ordinally worse off, in the sense that his probability to

receive a house better than h′ weakly decreases for all h′ and strictly de-

creases for some h∗. So ρ is group-strategyproof if for all (%,%′G, G) with

ρi(%) 6= ρi(%′G,%−G) for some i ∈ G, there exists some i∗ ∈ G and h∗ ∈ H
such that

∑
h%i∗h∗

ρi∗(%)(h) >
∑

h%i∗h∗
ρi∗(%′G,%−G)(h) and

∑
h%i∗h′

ρi∗(%
)(h) ≥

∑
h%i∗h′

ρi∗(%′G,%−G)(h) for all h′ ∈ H. Restricting attention to

singleton groups G, (ordinal) group-strategyproofness reduces to (ordinal)

strategyproofness and ρ is ordinally strategyproof if
∑

h%ih′
ρi(%)(h) ≥∑

h%ih′
ρi(%′i,%−i)(h) holds for all (%, i,%′i) and h′ ∈ H. The mechanism

ρ : Ω̃ → ∆X satisfies equal treatment of equals if any two agents who

announce the same preferences face the same distribution, so ρi(%) = ρj(%) if

%i=%j. A mechanism ρ is ex-post Pareto optimal if ρ(%)(x) > 0 implies

that x is Pareto optimal at %.

3 Group-Strategyproofness

Group-strategyproofness clashes with even the mildest criteria of fairness and

efficiency.

Theorem 1 If there are at least three agents and three houses, then no ex-

post Pareto optimal, group-strategyproof mechanism ρ : Ω → ∆X treats

equals equally.

Proof Suppose the ex-post Pareto optimal and group-strategyproof mech-

anism ρ : Ω→ ∆X did treat equals equally. Let {a, b, c} ⊂ H \ {∅}. Say the

preferences %i, %′1, and %◦2 all rank a, b, and c above any other house. The

three preferences agree on all houses other than a, b, and c (so %i, %′1, and
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%◦2 coincide on H \ {a, b, c}). Their different rankings of a, b, and c are given

by the following table

%i a b c

%′1 b a c

%◦2 a c b

Let % be such that each agent has the preference %i. At %, (%′1,%−1),
and (%◦2,%−2) all n ≥ 3 agents prefer a, b and c to all other houses (and to

homelessness) and a, b and c must, by the ex-post Pareto optimality of ρ,

be matched with probability 1 under ρ(%), ρ(%′1,%−1), and ρ(%◦2,%−2). By

equal treatment of equals each agent obtains a, b, c with probability 1
n

under

ρ(%). Since ρ is ex-post Pareto optimal, agent 1 may never get a under ρ(%′1
,%−1). Equal treatment of equals then implies that each agent i 6= 1 receives

a with probability 1
n−1 under ρ(%′1,%−1). Since ρ is strategyproof, agent 2

must obtain a with probability 1
n

under ρ(%◦2,%−2). By equal treatment of

equals all other agents must equally share the remaining probability mass
n−1
n

, implying ρi(%◦2,%−2)(a) = 1
n

for all i ∈ N . Since ρ is ex-post Pareto

optimal agent 2 may never get b under ρ(%◦2,%−2). Equal treatment of

equals then implies that each agent i 6= 2 obtains b with probability 1
n−1

under ρ(%◦2,%−2).
Finally consider ρ(%′1,%

◦
2,%−{1,2}). Since %′1 and %1 both rank a and b

at the top agent 1 must, by strategy-proofness, get a or b under ρ(%′1,%
◦
2

,%−{1,2}) with the same probability as under ρ(%◦2,%−2). Since %◦2 and %2

both rank a at the top agent 2 must, by strategy-proofness, get a under

ρ(%′1,%
◦
2,%−{1,2}) with the same probability as under ρ(%′1,%−1). In sum we

obtain

ρ1(%′1,%
◦
2,%−{1,2})(a) + ρ1(%′1,%

◦
2,%−{1,2})(b) = 1

n
+ 1

n−1

and ρ2(%′1,%
◦
2,%−{1,2})(a) = 1

n−1 .

So when agents 1 and 2 declare %′1 and %◦2 at % agent 1’s probability to

receive one of his two most preferred houses and agent 2’s probability to

receive his most preferred house respectively increase from 2
n

to 1
n

+ 1
n−1 and

from 1
n

to 1
n−1 . Consequently, ρ is not group-strategyproof. �
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The proof goes through unchanged if we only consider matching problems

without outside options (Ω̂, X̂). For x ∈ X to be Pareto optimal at some

%∈ Ω̂, x must match as many agents as possible. So if ρ : Ω̂ → ∆X is ex-

post Pareto optimal, then any x in the support of some ρ(%) is a matching

without outside options (x ∈ X̂) and we obtain the following corollary.

Corollary 1 If there are at least three agents and three houses, then no

ex-post Pareto optimal, group-strategyproof mechanism ρ : Ω̂ → ∆X̂ for

matching problems without outside options treats equals equally.

Theorem 1 and Corollary 1 stand in the tradition of impossibility results

on fair, efficient, and non-manipulable mechanisms for matching problems.

As already discussed in the introduction, Bogomolnaia and Moulin’s [1] im-

possibility result imposes a weaker notion of non-manipulability (strategy-

proofness), a stronger notion of efficiency (ordinal efficiency), and the same

criterion of fairness (equal treatment of equals). Nesterov [5] combines the

weaker notions of non-manipulability and efficiency discussed here with a

stronger criterion of fairness to show that no envy-free mechanism is ex-post

Pareto optimal and strategyproof.

4 Non-Bossiness under Randomization

Following Satterthwaite and Sonnenschein [7] ρ : Ω̃ → ∆X is non-bossy

if ρi(%) = ρi(%′i,%−i) ⇒ ρ(%) = ρ(%′i,%−i) holds for all triples (i,%,%′i).
Let there be a set of mechanisms M = {ρ1, ρ2, · · · ρK} with ρk : Ω̃ → ∆X

for all 1 ≤ k ≤ K. Then the mechanism ρ∗ : Ω̃ → ∆X arises out of a

randomization over the set M if there exists a lottery π on {1, · · · , K}
with π(k) > 0 for all 1 ≤ k ≤ K and

ρ∗(%)(x) =
K∑
1=k

π(k)ρk(%)(x) for all x ∈ X.

If π is the uniform distribution on set M , then ρ∗ arises out of uniform

randomization over M .
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Theorem 2 Let ρ∗ : Ω̃→ ∆X arise out of a randomization over {ρ1, · · · , ρK}
where each ρk : Ω̃ → ∆X is strategyproof and non-bossy. Then ρ∗ is non-

bossy.

Proof Fix (i,%,%′i) such that ρ∗i (%) = ρ∗i (%
′
i,%−i). Suppose ρk

∗
i (%) 6=

ρk
∗

i (%′i,%−i) held for some 1 ≤ k∗ ≤ K. For h∗ the %i-best house where

the two lotteries differ, we have
∑

h%ih∗
ρk
∗

i (%)(h) 6=
∑

h%ih∗
ρk
∗

i (%′i,%−i)(h).

Since all ρk are strategyproof,
∑

h%ih∗
ρki (%)(h) ≥

∑
h%ih∗

ρki (%′i,%−i)(h)

holds for all 1 ≤ k ≤ K. In combination with π(k∗) > 0 (as required by

ρ∗ arising out of a randomization over {ρ1, · · · , ρK}) we obtain∑
h%ih∗

ρk
∗

i (%)(h) >
∑
h%ih∗

ρk
∗

i (%′i,%−i)(h)⇒

K∑
1=k

π(k)
∑
h%ih∗

ρki (%)(h) >
K∑
1=k

π(k)
∑
h%ih∗

ρki (%′i,%−i)(h)⇒

∑
h%ih∗

ρ∗i (%)(h) >
∑
h%ih∗

ρ∗i (%
′
i,%−i)(h),

a contradiction to the assumption that ρ∗i (%) = ρ∗i (%
′
i,%−i). So ρki (%) =

ρki (%′i,%−i) holds for all 1 ≤ k ≤ K. Since every ρk is non-bossy, ρk(%) =

ρk(%′i,%−i) holds for all 1 ≤ k ≤ K, implying ρ∗(%) = ρ∗(%′i,%−i). In sum,

ρ∗ is non-bossy. �

Since Theorem 2 holds for the arbitrary domain Ω̃, it holds in particular

for Ω and Ω̂, housing problems with and without outside options. Theorem

2 also applies if we replace the set of all matchings X with any other discrete

space of allocations Y . To see that strategy-proofness cannot be dropped

from Theorem 2 consider a matching problem with n = 3 and H = {a, b, c}
and three (deterministic) mechanisms α, β and γ, defined by the following

table (where %∗1 is such that a �∗1 b �∗1 c):

α(%) β(%) γ(%)

%1=%∗1 (a, c, b) (b, c, a) (c, b, a)

%1 6=%∗1 (b, a, c) (c, a, b) (a, c, b).

Agent 1 alone determines the matching in these mechanisms; agent 1’s

match under α, β or γ changes if and only if the others’ matches change
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and α, β and γ are non-bossy. However the mechanism ρ◦ : Ω → ∆X that

arises out of the uniform randomization over α, β and γ is bossy. For any

%, agent 1 faces a uniform lottery over {a, b, c} under ρ◦(%). However,

the other agents’ lotteries over houses depend on agent 1’s announcement.

Agent 2, for example, never gets house a if agent 1 announces %∗1, but gets

a with probability 2
3

if agent 1 announces any other preference. In a similar

vein, non-bossy mechanisms might arise out of the randomization over bossy

mechanisms. Theorem 2 does not extend to a larger domain of preferences

that allows for indifferences. Examples to prove the latter two claims are

available on request.

5 Random Serial Dictatorship

Papai [6] showed that a deterministic mechanism is group-strategyproof if

and only if it is strategyproof and non-bossy. I use random serial dictatorship

as an example to show that this equivalence does not hold for random mech-

anisms. For any permutation p : N → N define the serial dictatorship sdp

as the deterministic mechanism that uses p to sequentially entitle agents to

choose houses. So sdpp(1)(%) is agent p(1)’s most preferred house according to

%p(1), sd
p
p(2)(%) is the %p(2)-preferred house among all remaining ones and so

forth. Random serial dictatorship rsd : Ω̂→ ∆X̂ arises out of a uniform ran-

domization over all serial dictatorships {sdp | p : N → N a permutation }.
Any sdp is strategyproof, non-bossy, and Pareto optimal. Random serial

dictatorship treats equals equally. Theorems 1 and 2 therefore imply that

random serial dictatorship is non-bossy but not group-strategyproof.
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