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ABSTRACT 

The objective of this investigation is to analyse the impact of 

differential mortality by birth order and age of the mother on the 

indirect estimates of child mortality. This indirect method was 

proposed by professor W. Brass and is based on reports about the 

number of children ever born and children surviving to women 

classified by age groups. The first step was to relax the 

constraints imposed on the method by the assumption that the risk 

of dying is invariant with birth order, mother's age and birth 

spacing patterns. To that effect, on the basis of the available 

evidence, a functional description of mortality by age of the 

child, which takes into account these differentials, was proposed. 

Then a beta-binomial probability distribution was used for 

describing fertility patterns by marriage duration and birth order, 

and a negative binomial distribution was adopted for describing 

nuptiality patterns. The models were tested using data from 

different countries and the results were satisfactory. All the 

necessary calculations to simulate proportions of children 

surviving (or dead) by age of the mother and number of children 

ever born were then executed on the basis of these three 

demographic models. 

Birth distributions by age of the mother and birth order were 

obtained by compounding the fertility model by marriage duration 

with the nuptiality model. Then, under certain assumptions, mean 
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time-exposures to the risk of dying were calculated for children by 

birth order, current age of the mother, and parity. These exposures 

were combined with the functional description of mortality 

mentioned above, to yield proportions of children surviving by age 

and parity of the mothers. Adjusting factors by mother's age groups 

were calculated by relating these results to those obtained when 

mortality is assumed to be a function of the child's age only. 

These factors make estimates of mortality levels, obtained from 

reports from the younger mothers, comparable to the overall 

mortality for all children. They were applied to data from Peru and 

the results appeared to be very reasonable. 

An important conclusion from the analysis of the average exposures 

to risk for children by mother's age and parity is that the 

exposures are fairly constant by family size, while the variation 

in the proportions of children surviving is significant. The 

practical implication of these findings is that variations in the 

proportions of children surviving are basically caused by 

differential mortality. The application of the technique was 

illustrated with two practical examples. Proportions of children 

surviving by family size and age of the mother from Bolivia, 1976 

Census, and from Guatemala, 1970 Census, were analysed. An 

enormous differential in mortality by family size was observed in 

both countries. The patterns of the relative risks by family size 

were very similar in both countries. 
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CHAPTER 1 
The Development of Indirect Techniques 

for Obtaining Demographic Estimates. 
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I. THE DEVELOPMENT OF INDIRECT TECHNIQUES FOR OBTAINING DEMOGRAPHIC 

ESTIMATES. 

1.1 Introduction 

During the late fifties and the sixties the perception of the rapid 

population growth in most areas outside the developed world stimulated 

a growing interest in the study of the dynamics of the population, and 

how it affects and is affected by the economic and social structures. 

An increasing number of scientists and scholars from different 

disciplines directed their efforts toward a better understanding of the 

demographic phenomena. However, the situation concerning data sources 

required that more basic problems had to be tackled first. A direct 

measurement of demographic variables is obtained by relating the number 

of occurrences of vital events during a certain period of time to the 

population exposed to the risk in the same period. The population at 

risk is usually provided by censuses carried out at regular time 

intervals and the occurrences of vital events are recorded through 

vital registration systems. By 1950 few countries in the developing 

world had regular population censuses and less had complete and 

reliable registration systems. During the last three decades a 

remarkable improvement in the quantity as well as the quality of 

censuses has been observed. Many deficiencies still remain, omissions 

and distortions often hamper the calculation of conventional 

demographic indices, although in most cases tools for adjusting or 

correcting the data are now available. The problems concerning 

registration systems are less tractable. Progress here has been much 

12 



slower and much remain to be done yet. The implementation of a 

registration system is a complex high-cost, long-term affair. In some 

developing countries the registration systems have reasonable 

completeness but cover only the urban or relatively more developed 

areas. 

Confronted with this situation demographers have had to modify existing 

techniques for the estimation of demographic indices in societies where 

statistical information is incomplete or unreliable, develop new 

techniques to apply to data available in non-traditional forms, or 

develop new techniques to collect data quickly and cheaply and to 

obtain reliable demographic estimates by unconventional methods. 

Remarkable achievements have been obtained. However, the present 

situation is still far from ideal and considerable attention and 

efforts are required yet. 

Some attempts to adapt procedures for obtaining direct demographic 

estimates are: i. introduction of additional questions in the 

population censuses in order to record the occurrence of vital events 

during a given reference period, stocks being provided by the same 

census; ii. execution of multi-round surveys that record number of 

vital events and time exposure to the risk in an area under observation 

through repeated enumerations; iii. dual record systems, where events 

are recorded by two systems, trying to maintain independence of both 

sources, and iv. retrospective surveys recording event histories like 

births histories and associated child deaths, marriage histories, and 

SO on. 
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K. Hill (1975) criticised the first three approaches mentioned above 

mainly from the point of their use for estimating adult mortality, but 

most of his criticisms actually concern more general problems affecting 

such approaches, and they still apply to their use for other purposes 

such as estimating child mortality or fertility. We will discuss 

briefly some of these problems and then concentrate on unconventional 

approaches used to obtain indirect demographic estimates. 

Under the assumption of independence in the probabilities of omission 

of the two sources, dual record systems provide a way for correcting 

the omisions after matching the events recorded by both systems. At 

the present dual record systems have lost the popularity that they 

enjoyed during the sixties. The prc%; edure is too expensive and complex 

and independence between the two systems was proved to be very 

difficult to maintain. 

The use of multi-round surveys for estimating fertility and mortality 

has also come under question since quicker results of good quality can 

be achieved from simpler and cheaper single round retrospective 

surveys. Nevertheless such an approach seems to be more useful for 

intensive studies, using small samples, related to a more specialised 

type of enquiry. 

Extra census questions have some limitations arising from the problems 

that dating of events and age reporting present in statistically under 

developed societies. Some techniques have been devised to overcome 

such limitations, notably the P/F ratio method (Brass at al., 1968) and 

the Gompertz relational ratio method (Brass, 1981, Zaba, 1981) for 
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estimating fertility, and a number of methods designed to deal with 

omission of reported deaths (Brass, 1975, Brass, 1979, Preston, 1978, 

Preston and Hi11,1979, Coale and Preston, 1980) for estimating adult 

mortality. These techniques can be used for correcting information 

obtained from census questions as well as from registration systems. 

In favourable circumstances they have been successfully applied to 

information from either of these data sources. 

The recording of event histories can provide rich data for the study of 

fertility and infant and child mortality. This type of demographic 

inquiry is very demanding in terms of organization and training of the 

interviewers. Lengthy and rather complex questionaires have to be 

carefully designed and executed. Those characteristics make this an 

expensive type of operation and impose some restrictions in the size of 

the samples to be used. For the purpose of estimating fertility and 

child mortality levels, trends and differentials, other types of 

enquiry, based on larger samples and few simple questions, can be used 

with advantage from a cost-efficiency point of view. The strength of 

event history type of enquiries lies in the possibility of using 

individuals rather than aggregates as the units of analysis and the 

advantages that come from the grouping of events in their natural 

succession. These characteristics open very rich avenues for 

demographic research by allowing the use of more complex and promising 

theoretical frameworks and more sophisticated methodologies of analysis. 

Another approach to get round the constraints imposed on the study of 

the population dynamics by data limitations has been the development of 
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indirect techniques for obtaining demographic estimates. Indirect 

approaches to the estimation of demographic indices are based upon the 

effect of past events on some particular features of the population, 

rather than the relation of numbers of events in a period of time to 

stocks. These procedures provide estimates for demographic parameters 

from information not directly related to their values. The base of the 

indirect techniques is the construction of simple demographic models 

that can be specified by a few observable parameters. Under certain 

assumptions these models should be able to describe adequately the 

prevailing patterns and relationships among the relevant demographic 

variables. If those parameters can be easily estimated from information 

obtained from a few simple questions included in censuses or surveys, 

and the assumptions are more or less met or the measures are robust to 

some deviations from those assumptions, the advantages of this approach 

would be obvious. Based upon the models, estimations of relevant 

demographic parameters could be derived from information obtained 

through cheap and simple procedures. The experience of more than a 

decade of using these techniques demostrates their value through the 

large number of applications with very successful results. A 

significant amount of the current demographic knowledge of developing 

countries comes from applications of these methods. Undoubtedly the 

most successful development on this line has been the technique devised 

by Brass (1964) to obtain conventional life table measures of mortality 

from the proportions of children who have died among the total children 

ever born to women in different groups of ages. 

16 



1.2 Indirect estimation of infant and child mortality. 

The proportion of children surviving among the total children ever born 

to women in a given age group obviously contains information on the 

level of mortality affecting those children. This kind of information 

was collected and the proportions used as an indicator of mortality for 

many years. However, those proportions are determined not only by the 

level of mortality but also depend on the length of time that the 

children have been exposed to the risk of dying. The mean time of 

exposure to the risk is equal to the difference between the mothers' 

current age and the mothers' age at birth of their children. Hence, the 

proportion of children dead will depend on the current age of the 

mother, the fertility distribution and the age pattern and level of 

mortality. W. Brass (1964) was the first to explore these relations 

systematically. He discovered that the relation between the proportion 

of children dead and the probability of dying before attaining certain 

exact childhood ages, q(x), is primarily influenced by the age pattern 

of fertility. It also depends on the age pattern of mortality, but not 

on the level of mortality. The dependence on the age pattern of 

mortality can be minimized by choosing the appropriate indicators q(x) 

to relate to each age group of respondents, leaving only the age 

pattern of fertility as the main factor influencing the relation. This 

relation was expressed as: 

ki= Di / q(x) (. 1.1) 

i= 1,2,3,4,5,6,7,8,9,10 

1,2,3,5,10,15,20,25,30,35 
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The successive values of the subscript i indicates the ten successive 

five years age groups from 15-19 to 60-64. For calculating the k 
i 

values, the age pattern of fertility was represented by Brass's 

polynomial fertility model (Brass, 1968), which has a fixed shape but 

variable age location. The model of mortality was generated by the 

logit system from the general standard (Brass, 1968), and the stable 

age distribution for the women assumes a growth rate of 2 per cent per 

annum. The procedure was based on the assumptions of constant fertility 

and mortality over time. Another important assumption was that the risk 

of dying of a child is a function only of the age of the child and not 

of other factors, such as mother's age or the child's birth order. 

Multipliers (k 
i) 

were calculated for a range of fertility distributions 

specified by the parity ratios P1/P2, were P1 represents the mean 

number of children ever born to women in age group 15-19 and P2 similar 

average for women aged 20-24. The mean age of the fertility 

distribution was also specified. The appropriate k value for a 

particular application is found by interpolating between two tabulated 

values. 

18 



1.3 Sources of errors and robustness of Brass' estimating procedure. 

An interesting framework for analysing the sources of errors and the 

robustness of the method has been provided by W. B. Arthur and M. A. Stoto 

(1983). For the subsequent analysis it is useful to make the following 

classification: 

Concepts Actual Model Survey 

population population population 

- Probability of dying between 

birth and exact age a: q(a) q*(a) q (a) 
S 

- Relative frequency distribution 

of children at age a, 

born to mothers aged X: c(a) c*(a) c (a) 
s 

The multiplying factors k, in relation 1.1, were obtained as 

k- q*(x) / Jc*(a) 
q*(a) da (1.2) 

where the age x and appropriate limits of the integral change according 

to the ages of the women. The value q(x) in the actual population is 

estimated by q(x) -kD, where D is the proportion of deceased 
yy 

children among those born to women aged y, measured through the survey 

results: D=rc (a) q (a) da. 
y�ss 

The q(x) estimate, written in terms of the survey and the model 

functions, is: 

Vx) q*(x) ic 
(a) q (a) da (1.3) 

Sc*(a) 
q*(a) da 
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A fundamental virtue of Brass's estimating procedure clearly appears in 

this expression: if the information from the survey is accurate and 

representative of the whole population, and the model functions 

correctly describe the fertility and mortality in the actual 

population, then both integrals cancel out in equation 1.3 and the 

estimate is exact. As the estimate depends on the relative 

distribution of children, it is affected only by the age distribution 

of fertility and not by the level of fertility. Furthermore, if 

mortality in the actual population differs from the model population by 

a constant scale factor, @ q*(x) - q(x), then the scale factor 

cancels out in k and the estimate is still exact. Hence, the model 

m'ortality does not have to represent the true mortality but only the 

age pattern. Arthur and Stoto analysed the effects caused on the 

estimate q(x) by errors in D, c* and q*. Errors in D, c*, and q* 
yy 

were represented as a differential or "small perturbation" from the 

true functions. Thus the differential of q(x) (4 q(x)) with respect 

to the pertinent function can be used as an approximate measure of the 

error in q(x) due to errors in D, c*, q* respectively. 
Y 

The relative error in the estimate due to errors in the sample results, 

n, is 
y 

q(x) (1.4) 
ta(x) D 

Y 

that is, the proportional error in the estimates equal the proportional 

error in the sampling results. 
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As for the model mortality function, the relative error caused in the 

mortatity estimate will be: 

4 q(x) +j q(x) 
J 

c(a) 
aq(a) da 

-_ -- (1.5) 
q(x) q(x) $ c(a) q(a) da 

It can be demonstrated that for a model mortality function with a 

different shape than the actual mortality, there is an age A for which 

the error is zero. Such age is equal to the average age of the 

children (currently alive or deceased) ever born to women aged y. If 

the age x to which the estimates refers is different from A, the 

translation is made along the model mortality pattern and will result 

in an error. Therefore the error caused by departure from the actual 

age pattern of mortality is minimized by choosing appropriates values 

x, for each age group of the women, that are close to the A values. 

Preston and Palloni (1977) showed that the closest x values to the A 

ones for some age groups differ in certain cases from the particular x 

values specified by Brass (although the difference is small), and the 

best choice is not independent of the "true" mortality pattern. In any 

case the relative errors will be more important for the very young 

ages, where the rate of change in the mortality function is higher. 

Violation of the assumption of constant mortality over time will cause 

errors in the estimates, the current level will be over-estimated when 

mortality has been decreasing. Procedures to circumvent' this problem 

will be discussed later. 
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Relative errors in the estimates caused by the wrong choice of the 

fertility model are measured through the following expression: 

,j 
Jc(a) 

q(a) da 

c(a) q(a) da 
(1.6) 

this type of error is not self cancelling. In order to fit the model 

accurately, the choice of the model fertility distribution is based on 

certain fertility indices observed in the survey population (i. e. P1/P2, 

P2 /P ). However, for very young women the rate of change in the 
3 

function c(a) is high and the denominator of the above error-expression 

is small, so estimates based on women under the age of 20 are sensitive 

to this type of error. Violation of the assumption of constant 

fertility will produce errors when the fertility model is specified by 

ratios between parities of different cohorts. If fertility has been 

decreasing the parity ratios will define a pattern of later fertility 

rather than the actual one. That implies a shorter exposure to the risk 

of dying than the one to which the children have been exposed, thus the 

level of mortality will be over-estimated. Some methods developed to 

deal with the problems introduced by fertility trends will be discussed 

later. 
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1.4 Early developments and applications of Brass' procedure. 

Other authors proposed different procedures to estimate the set of 

multipliers k, although the theoretical bases were the same as in 

Brass' original approach. Sullivan (1972) used regression techniques 

instead of the tabular solutions for the k values. The multipliers 
i 

were obtained by fitting estimating equations to data generated by a 

set of observed fertility schedules and the Coale-Demeny (1966) life 

tables. Trussell (1975) also used regression techniques and the Coale- 

Demeny life tables, but the fertility schedules were taken from the 

model fertility schedules developed by Coale and Trussell (1974). 

These different computational procedures do not provide substantially 

different results from those given by the original method. The use of 

Coale-Trussell fertility schedules improve on the polynomial fertility 

model, particularly for ages below 20, but other problems affecting the 

information from very young women make it of little use anyway. At the 

same time the introduction of the Coale-Demeny life table models 

provides more flexibility, but these potential advantage can only 

materialize when the age pattern of mortality in childhood is known, 

which is seldom the case in those countries where these techniques are 

most necessary. 

The development of Brass' technique revolutionised the study of 

mortality under circumstances of limitated or defective data. In any of 

the three variants described above the method was massively applied to 

data from censuses and surveys until around 1978, when new developments 

of this method started to appear in the demographic literature. In 
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those earlier approaches attention was focused on the information 

provided by women from 20 to 34 years of age. Estimates for q(2), q(3) 

and q(5) were obtained, then smoothed and combined to yield a unique 

consistent estimate of child mortality, usually expressed by q(2). In 

the light of later developments which relaxed the constraints imposed 

by some assumptions, this appears as a rather inefficient use of the 

information. However, at the time the method was created, the 

possibility of obtaining robust estimates of childhood mortality by 

very simple and cheap procedures opened a very fruitful avenue for 

research, stimulating and making possible numerous studies of child 

mortality at low cost in statistically under-developed countries. 

Indeed, a significant part of the present knowledge of the levels of 

chilhood mortality in those countries is the result of the application 

of these early approaches. A good example of successful exercise using 

these techniques is the I. M. I. A. L. programme (Behm et al 1975-1977). It 

consisted of a massive operation that covered most countries in Latin 

America, including a number of countries with satisfactory vital 

registration systems. For most of these countries the main contribution 

was that reliable estimates of child mortality were obtained for the 

first time. For other countries, with good registration systems, the 

inclusion of the necessary questions in the census were also largely 

justified; the results of the indirect estimates appeared in general to 

be in good agreement with the direct estimates, except in rural and 

relatively less developed areas within the countries. In such areas 

the registration systems were affected to some degree by omissions, and 

the indirect estimates helped to quantify these deficiencies. 
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Nonetheless, in the case of these countries with relative good data, 

the most important contribution came from the study of differentials in 

child mortality by a number of socio-economic and environmental 

categories related to characteristics of the mother, the father, the 

household or the communitty, information that is routinely collected in 

the censuses but is not recorded by the registration systems. 

The use of these procedures in Africa and other parts of the world was 

met with equal success. Since these earlier stages, when only estimates 

for q(2), q(3) and q(5) were considered in the analyses, parallel 

improvements in the design of the questions, trainnig of the personnel, 

organization of the field work and refinement of the techniques of 

estimation have made possible a more comprehensive and efficient use of 

the data. 

1.5 Recent developments of Brass-type estimation procedures. 

As the quality of the data improved, it became clear that reliable 

estimates could also be obtained from information from older women. 

With more accurate data the need to relax some of the restrictions 

imposed by the assumptions on constant fertility and mortality was 

felt, as conditions of stability did not represent reality any more in 

most populations. Some approaches for adapting the procedures to 

changing fertility will be discussed first and then we will concentrate 

on the studies that adapted the method for applications under 

conditions of changing mortality. 
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1.5.1 Child mortality estimates under conditions of changing fertility 

It was pointed out that changes in fertility may affect the estimates 

as the fertility model is fitted by using parity ratios based in two 

different age cohorts. One of the solutions suggested was to use the 

"true cohort" indices, when information on the number of children ever 

born is available from two censuses separated by intervals of five or 

ten years (K. Hill, H. Zlotnik and J. Trussell 1983). Coale-Trussell 

(1974) model fertility schedules and Coale-Demeny (1966) model life 

tables were used to generate data to which estimation equations were 

fitted by regression techniques, based on parity ratios for the true 

cohort. The main weakness of this approach lies on the assumption of 

comparable reporting in both data sources. 

A different approach was suggested by Preston and Palloni (1977). They 

proposed to devise the distribution over time of the births to each 

cohort of women by matching children to mothers on census household 

records and using a reverse surviving procedure. If the age reporting 

is reasonably accurate the procedure would allow us to estimate the 

distribution of births over time without using any fertility models, 

avoiding the errors resulting from the estimation of such distributions 

and the problems arising- from fertility changes. Like the "own 

children" method for fertility estimation (Cho, 1973), to which this 

approach is closely related, the disadvantages come from. the problems 

of completeness of enumeration, children not living in the same 

household as their mothers, and other problems affecting a proper link 
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between the children and their mothers. If these problems can be 

overcome the advantages of using the age distribution of surviving 

children to characterize the fertility history of each cohort are 

clear. In particular it would be most useful when: i. fertility trends 

are present in the population under investigation, ii. the fertility 

patterns in the population deviates markedly from normal patterns, and 

iii. in the analysis of differentials in child mortality levels among 

social classes or other permeable subgroups of the population for which 

parity ratios from different age cohorts do not describe the fertility 

history of a given cohort even under conditions of constant fertility 

over time. Among other calculation procedures, the following equation 

was suggested: 

q(x) - Di { Ai + Bi XS + Gi c(2)} (1.7) 

where Ai, Bi, and G are coefficients of the equation for the 

respondents' age group i, x is an appropriate age related to that 

cohort of respondents, X is the mean age at last birthday of surviving 
s 

children to women in cohort i, and c(2) is the proportion of surviving 

children aged 2 or less last birthday. The procedure was then 

developed further by Palloni (1980), presenting equations to compute 

the time location of the estimates for respondents aged 15-19 to 40-44: 

T-a+bX. Naturally this equation would be necessary only if 

mortality has been changing, otherwise a time reference would be 

irrelevant. Procedures to deal with changing mortality are considered 

in next section, we mention this here as it is the only one specific 

for the estimation procedure based on the surviving children's age 
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distribution. The following time location techniques concern approaches 

that use parity ratios as fertility distribution indices. 

1.5.2 Child Mortality Estimates under Conditions of Changing Mortality 

It is clear that the time reference for the estimates derived from 

older age groups of respondents are substantially different than those 

obtained from the younger ones. The question of time location became 

important as mortality started to decrease in most regions. Feeney 

(1976) was the first one to propose a solution to this problem. He 

showed that all consistent linear trends in period mortality tend to 

identify a unique level of infant mortality at a certain point in time 

prior to the census. Thus, under conditions of linear mortality 

changes, information on survivorship of children ever born to women in 

different age groups can be equated to mortality rates prevailing at 

different moments in time, the time location of the estimates being 

invariant with the rate of mortality change. An estimation procedure 

was later proposed (G. Feeney, 1980) to find tabular solutions for 

infant mortality rates and dates to which such estimates refer, from 

the proportions of children dead by age groups of the mothers. The 

fertility schedules were obtained by using Brass' polynomial fertility 

model and the mortality patterns were generated from Brass' general 

standard by using a one-parameter logit life table system. The use of 

infant mortality rates as a summary-index for childhood mortality 

levels presents some problems because of the sensitivity of such 

parameter to deviations from the underlying pattern of mortality in the 
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observed population. Other procedures which are less dependent on the 

age pattern of mortality have subsequently been proposed . 

Sullivan and Udofia (1979) demonstrated analytically that, under 

certain conditions, mortality estimates obtained from Brass-type 

procedures are equal to period mortality rates at some point in time, 

t* , which does not depends on the rate of mortality change but only on 
i 

the patterns of fertility and mortality. The t* values are obviously 

related to Feeney's empirical results. In this study the mortality 

function was represented by a standard age pattern of mortality, ds (a), 

multiplied by a level factor expressed as a function of the time, k(t). 

Assuming a constant annual rate of change in mortality: k(t)-k (1-rt), 
0 

t 
where r is the rate of change. Then: q (a) -k (1-rt) d (a). 

0s 

The pattern of fertility, although unknown, is highly correlated to 

observable fertility indices, namely P1 /P 
2, 

P2 /P 
3. 

For a given 

pattern of mortality d (a), the model to estimate t* was then 
si 

expressed as a function of the age group of the respondents and the 

ss 
fertility indices: t*i - fi(P1/P2); the function fi has to be specified 

for each age group i and for the particular pattern of mortality. 

An approach that considered time-period changes in mortality had been 

used by Coale and Trussell in 1977 (A. Coale and J. Trussell, 1977), when 

they first proposed a procedure for dating the Brass-type retrospective 

estimates. Coale and Trussell chained together the period levels in the 

Coale-Demeny life table models in order to derive cohort mortality for 

the children born to each age group of women. Brass (1983) has also 
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developed a procedure for estimating the time location t* , in this 

case the fertility distributions are derived from the Relational 

Gompertz Model. In Coale-Trussell and in Brass's time location 

procedures, the mortality, measured through a set of indicators q(x), 

still have to be expressed in terms of a unique parameter in order to 

make them comparable over time, so that mortality trends can be 

analysed. Dependence on the age pattern of mortality cannot be avoided 

but can be reduced by using a parameter other than infant mortality, 

for example q(5), as the level indicator for the whole series. The age 

pattern of mortality adopted for relating q(5) to mortality rates at 

other ages still will affect the results, but its effects would not be 

so strong as when infant mortality is used as the prime indicator of 

mortality level. 

A different definition for the mortality function was adopted by 

Palloni (1979 and 1981). He analysed the effects of changing 

mortality by assuming cohort-mortality changes rather than time-period 

mortality variations. In this approach the Brass-type mortality 

estimate for each cohort and the time location define together the 

mortality level that affected each birth cohort of children born in 

such dates. Similar to Sullivan and Udofia, Palloni also represents the 

mortality function as the product of two components: q(a, y)- fq (a); 
ys 

where f represents the changes of mortality in time, or from cohort 
y 

to cohort, y indicating the date of birth for each cohort in terms of 

number of years previous to the census date; q (a) represents the 
8 
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changes along the mortality function, according to a certain standard 

s, due to the effect of the child's age only. For y=a, fq (a) gives 
as 

the proportion of children who have died among those reaching exact age 

a at the census date. Hence, fq (a) would represent a "multicohort" 
as 

mortality function that would give the proportion of children dead born 

to a woman aged x when it is combined with the age distribution of the 

children, c (a), born to that woman: 
x 

Da 
oc 

(a) fq (a) da (1.8) 
xoxas 

of represents the earliest age at childbearing. 

Palloni then assumes: (a) a linear change in mortality and (b) a 

quadratic change in mortality, estimating under those assumptions the 

time locations ti(a) and ti(b), which are interpreted as the number of 

years prior to the census or the age of the birth cohort for which the 

"multicohort" mortality function intercepts the "consistent" cohort 

mortality function, under the conditions imposed by the fertility 

distribution and the (a) linear, or (b) quadratic trends in mortality. 

The application of the indirect techiques under conditions of changing 

mortality has increased the potentialities of the method enormously. 

These new developments have made it possible to study trends and 

differentials in mortality trends as well as levels. The main problem 

in these types of study does not lies in the reliability of the 

estimates, but in the relevance of the classifications adopted for 

analysing differentials, as Brass (1984) has pointed out. The 

robustness of the estimation technique has been confirmed by 
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comparisons with results from other sources when they were available as 

well as by theoretical analysis (W. Arthur and M. A. Stoto, 1983). The 

problem with the classifications arises from the fact that they are 

based on current characteristics of the women which might have changed 

since the death of the children and may not be relevant to the 

circumstances of those deaths. However, many of the characteristics of 

the women are already established by the time they enter adult life and 

change little during the period of their reproductive life. Hence, the 

problem of relevance of the classifications is not as accute here as it 

is in the case of indirect techniques for estimating adult mortality, 

for example, from information given by relatives. 

A significant advantage has been that the procedures for the time 

location of the estimates do not require any additional questions. 

Since the method was first presented in the early sixties many censuses 

and surveys have collected the necessary information. Data from two, 

sometimes more, successive censuses are now available in many 

countries. In these circumstances the retrospective series of child 

mortality estimates can overlap in time, providing a very powerful tool 

for evaluation and analysis. It is clear that a second survey providing 

estimates comparable in time reference as well as methodology gives 

much more information than the simple addition of the two sets of data. 

The possibility of cross-checking the results expands considerably the 

strength of two overlapping retrospective time series. This is 

illustrated in figure 2.1. Four data sources provide the necessary 

information for Peru at time intervals that make possible the 
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overlapping of the retrospective estimates. Consistent levels and 

trends of child mortality then emerge from different sources covering a 

period of about 20 years, leading also to the conclusion that the 1980 

census data are affected by an omission of children who have died. 

Appropriate classifications also facilitate the analysis of 

differentials in levels as well as trends from these data (see for 

example Moser, 1983). 

Another aspect that stands out in figure 2.1 is that estimates from the 

age group 15-19, and sometimes also 20-24, indicate higher mortality 

than the overall trend. This is related to the assumption that 

mortality is invariant with the age of the mother and the birth order. 

There is strong evidence that relative high fertility at very young 

ages of the women produce a combination of short intervals between 

births and young maternal ages that impair dramatically the children's 

chances of survival. Ewbank (1982) has considered the effect of birth 

order among other factors when he analyzed the sources of error in 

Brass's method, and produced improved estimates of child mortality in 

the case of Bangladesh. In that case he made corrections by ad-hoc 

procedures which were based on additional evidence from other sources. 

Apparently no attempt has been made yet to incorporate in the 

methodological basis of Brass-type estimation procedures the effects of 

mother's age and number of children attained on the risks of mortality 

in childhood. The possibility of dealing explicitly with such effects 

will be explored in this investigation. In the next section the main 

ideas will be outlined and the different aspects will then be developed 

in following chapters. 
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1.6 Proportions of surviving children considering differential 

mortality by mother's age and birth order. 

If mortality has been constant throughout the whole period during which 

the births occurred, and if there is no differential mortality by 

mother's age at birth, birth order, and total number of children 

attained by the women, then the proportion of children deceased among 

all children born to women aged i at a given census can be expressed, 

as it was seen before, as: 

Qi ýO(1-Lt) 
. 
ci (t) (1.9) 

where ci (t) is the proportion of children born during the t-th year 

prior to the census among all children born to women aged i at the 

census, and L is the proportion (of those children) surviving from 
t 

birth up to the census date. 

The information on the number of children ever born and the number of 

surviving children to women can be classified by age of the mother and 

total children ever born. Each age-parity group is characterized by a 

combination of a mother's age, a number of births of different orders 

and an implied average birth interval. With information broken down in 

this way it is possible to consider differential mortality by age of 

the mother at birth, birth order, and concentration of births, the 

latter being related to the number of children attained by women up to 

age i-, thus indirectly taking into account the length of intervals 

between births. The proportion of children deceased for women aged i 
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with total parity n is: 

Q(i, n) -E t0 {1 - Lt(j/i, n)} c(t; j/i, n) (1.10) 

where L (j/i, n) is the proportion of surviving children of order j 
t 

born to women aged i who have had n children in total; c(t; j/i, n) 

is the distribution of those births over time. Expression 1.10 

presents some complications, first it requires the specification of the 

mortality function taking into account all those differentials, then a 

fertility function by age and birth order is also required. These 

topics are developed in the following chapters, as indicated in the 

next section. 

1.7 Contents of the following chapters 

Chapter 2 deals with the problem of specifying the mortality function. 

The available evidence concerning the effects of mother's age, birth 

order and birth spacing on mortality during the early years of life is 

first analysed. On the basis of this evidence a functional description 

of mortality that takes into account those differentials is proposed. 

Chapter 3 deals with the fertility distribution by marriage duration 

and birth order. The viability of a discrete representation for the 

fertility distribution is tested using survey data from different 

countries. A nuptiality model is described in Chapter 4, ' and tested 

by fitting the model to data from several countries. Then the 

nuptiality model is compounded with the fertility model described in 
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Chapter 3, providing a distribution of births by order and age of the 

mother. The calculation process for obtaining proportions of children 

dead by age and parity of the mothers is the subject of Chapter 5. 

The process involve different stages; first the mean ages of the 

mothers at birth have to be obtained, then the mean time-exposures to 

the risk of dying are estimated, and finally, the mean exposures are 

combined with probabilities of survival to derive proportions of 

children alive. In Chapter 6 the "model" proportions of children dead 

(obtained under the assuption of differential mortality by birth order 

and age of the mother) are examined. The "model" proportions of 

children dead to women by age groups are then compared with the 

"expected" proportions (obtained assuming that the mortality for 

children ever born to women in any age group is the same, equal to the 

overall mortality for all children together), and the differentials by 

mother's current age are assessed. Adjusting factors to correct the 

retrospective estimates obtained from the younger age groups of 

respondents, in order to make them comparable to the mortality rates 

for all children, are obtained. Their application to real data is 

illustrated with an example, using data from Peru. Childhood mortality 

levels by mother's current age and parity are analysed in Chapter 7. 

First the average exposures to the risk of dying for children by family 

size (number of children ever born), within each age group of the 

mother, are examined. Then the possibility of studying differential 

mortality by family size from the retrospective information is 

discussed, and the analysis of empirical data is illustrated. with two 

applications using data from Bolivia and Guatemala. 
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CHAPTER 2 
Variation of Mortality with Age of 

the Mother 
, 

Parity and Birth Spacing . 
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II. VARIATION OF MORTALITY WITH AGE OF THE MOTHER, PARITY AND BIRTH 

SPACING 

2.1 Introduction 

In this chapter the studies that have dealt with the effects of age of 

the mother, her parity, and inter-birth intervals on the children's 

mortality risk, based on reliable data and big samples from 

statistically developed countries, are discussed first. The patterns 

of variation emerging from these studies are then compared with those 

observed in many other countries. This second group comprises those 

results from studies that, because of the smaller number of cases on 

which they are based, or for other reasons, appear less reliable than 

those from the first group. On the basis of this evidence an analytical 

representation for the effects of age of the mother, birth order and 

birth spacing (or birth concentration) is devised, in order to 

incorporate those differentials into a model life table. In other 

chapters this life table will be used for analysing the effects of such 

differentials on the Brass-type mortality estimates. The same mortality 

model will be used for developing a procedure to obtain indirect 

estimates of child mortality taking into account the total parity and 

the age of the mother. 

Before proceeding further it is convenient to distinguish between the 

term "parity order", which pertains to a woman and indicates the number 

of children she has born, and "birth order" which refers to a 

particular child and denotes the order the child occupies among all 
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those born to the mother. Both terms are interchangeable when the 

mother's and the child's characteristics are observed at birth, and 

such is the case throughout the analysis carried out in this chapter. 

Obviously, when another birth occurs the mother moves to a higher 

parity, while the order of the previous child remains the same. In 

next chapters we will refer to women who, at a given age, have attained 

a certain number of children (parity order) and will be necessary to 

differentiate her children one from another by their birth orders. 

2.2 The independent effects of age of the mother, parity and birth 

spacing on stillbirth, neonatal, and post -neonatal mortality 

Although many studies had dealt with this subject before, the first 

statistically meaningful analyses of the patterns of variation, of the 

stillbirth rate and neonatal death rate with parity and age of the 

mother, based on a big enough sample, were carried out by Yerushalmy 

(Yerushalmy, 1938, Yerushalmy et al, 1940, Yerushalmy, 1945). Several 

studies had been published before, but were based on small samples. 

Yerushalmy (1938) first analysed the neonatal deaths and stillbirths 

that occurred in the New York State exclusive of the New York City in 

1936. He found that neonatal death rates were high for first births, 

low for second and third births and then the rates gradually increased 

for higher births orders. As for age of the mothers, very young ages 

presented very high neonatal death rates, rates then decreased sharply 

to a minimum at about 27-28 years of age, and after that rose gradually 
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with age of mother. Since there is a close association between age of 

the mother and birth order (first births occurred among the youngest 

mothers), he explored the possibility that the correlation between high 

rates for younger mother's ages as well as for first births were caused 

by such association. The author concluded that both factors had 

independent effects on neonatal mortality rates, such effects being 

apparent in the variation of the rates with one variable even after 

controlling for changes in the other variable. 

The analysis of stillbirth rates showed broadly similar patterns, but 

the disadvantage of first births were stronger while high orders did 

not show as much disadvantage as in the case of neonatal mortality. 

With the exception of first births, birth order had little effect on 

stillbirths. Most of the variation appeared to be due to the age of the 

mother, where youth presented itself as a favorable factor for a live 

birth, as can be observed in figure 2.1. Some evidence of a birth 

spacing effect was also found, yet this factor was fully investigated 

by the author only later, using the births that occurred in the United 

States in the five year period 1937-1941 (Yerushalmy, 1945). 

Yerushalmy (1945) measured indirectly the effect of birth spacing by 

using a method of standardization known as "Westergaard's Method of 

Expected Deaths". The number of "expected" deaths, obtained under the 

assumption that the variation in the death rates is caused by the two 

factors (age and parity) operating independently, is compared to the 

observed number of deaths. The effect of birth spacing is then 

measured through the ratio of "expected" to observed deaths. 
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Yerushalmy concluded that short intervals, indirectly measured by high 

parities at young ages, increased the stillbirth rates. Very long 

birth intervals, implied in low parities at higher age groups, also 

impaired the chances of survival. Most probably high parity at young 

ages and other patterns of birth spacing are associated with certain 

socio-economic characteristics in the population. In order to explore 

the hypothesis that the observed pattern of variation in the mortality 

rates with changes in birth spacing could have been caused by such 

associations, Yerushalmy repeated the analyses for births occurring in 

the non white population only. Very similar patterns to those observed 

for the whole population were found. As the non white population was 

expected to be much more homogeneous in term of socio-economic 

conditions, Yerushalmy concluded that the differences in the numbers of 

observed and expected stillbirths were basically due to birth spacing 

and not to any structural effect caused by associations with external 

environmental factors. He argued that, if such associations had caused 

the observed pattern of variation in the rates, then they would have 

produced some different pattern in the non white population because it 

should be affected by the environmental factors in a different manner, 

as it was internally less differentiated in term of socio-economic 

characteristics than the population as a whole would be. 
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Another major study was carried out by the Social Medicine Research 

Unit (Medical Research Council) and the General Register office, based 

on one and a half million children born in England and Wales during 

1949 and 1950. The aims and methodology were described by J. N. Morris 

and J. A. Heady (1955). The variation of mortality rates with mother's 

age and parity was analysed separately for stillbirth, neonatal and 

post-neonatal death rates for about seven hundred thousand single, 

legitimate live births and stillbirths that occurred in England and 

Wales in 1949 (Heady et al, 1955a). Their results showed similar 

patterns for stillbirths and neonatal deaths as those described by 

Yerushalmy (figure 2.2): for any given parity stillbirth rates rose 

with age of the mother and for any age group rates increased with 

parity, except for first births, which presented a marked disadvantage 

in relation to second births; neonatal death rates increased regularly 

with parity for all age groups with the exception of first children 

born to mothers over 25 (which had higher rates than the second ones) . 

The pattern of variation of post-neonatal rates differed from the two 

previous rates (figure 2.2): first orders presented the lowest rates 

except at ages more than 40; for a given mother's age post-neonatal 

rates increased with order and the younger the mothers the steeper the 

rise in those rates. The most distinctive pattern presented by post- 

neonatal rates is the steady decrease with age for all parities up to 

age 35. After age 35 the rates for lower orders increase a litle, 

particularly for first orders. 
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Morrison et al (1959) analysed in detail the changes in those patterns 

for short periods (first week, 1-4 weeks, 4 weeks to 6 months, 6 months 

to 1 year, and 1-2 years). The main feature was the gradual increase 

in the effect of birth order from one period to the next up to 6 

months, with sharpest deterioration for younger mothers. This 

interaction of young ages with higher orders is related to the effect 

of short birth intervals, a variable not considered in the study. 

After the sixth month of age the effect of the mother's age practically 

disappeared, the main variation in the risks being connected with birth 

order. These patterns broadly agree with those observed in a study made 

by Vavra and Querec (1973) for the U. S. A., 1960. 

Other analyses (J. A. Heady et al 1955b) showed that the characteristic 

patterns of variation with mother's age and parity for stillbirth, 

neonatal and post-neonatal mortality, as described above, were present 

within each social class: the level of mortality varied from one social 

class to another, but the patterns which characterized the variation of 

the rates with each of the two biological factors (mother's age and 

parity) were always present, indicating that their effects were 

independent from the social class' effect. Those patterns also 

repeated themselves within different regions of the country for each 

type of rate, showing that age of the mother, her parity, and region, 

made their separate contributions to the variations in the mortality 

rates. The interaction age-parity was not analysed by the authors. 

However, its effects on the rates were evident, and particularly strong 

for young ages-high orders, revealing the detrimental impact of short 

birth intervals. 
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The data from the cohort of infants born in England and Wales during 

1949-1950 provided enough information to study the pattern of variation 

in mortality with the spacing of births on a sound statistical basis. 

Although there was no direct information on the length of birth 

intervals, Osborne (1972) devised an indirect measure, that is an index 

of "birth concentration", by combining together the information on the 

number of previous births and the age of the mother. Osborne was then 

able to estimate simultaneously the independent effects of birth 

spacing, age of the mother and her parity, on the stillbirth, neonatal 

and post-neonatal mortality rates. His analyses revealed that birth 

spacing had a significant effect on child survival even after 

controlling for age of the mother and parity. Higher concentration of 

births (shorter birth intervals) appeared to be correlated with much 

higher risks of neonatal death'and also higher risks of post-neonatal 

death, although in the latter the effect was less strong. 

Osborne reanalysed the data used by Yerushalmy (1945) as his method of 

product factor standardisation improved on Yerushalmy's methodology. 

His results agreed in general with Yerushalmy's conclusions: high birth 

concentration was associated with much higher risks of stillbirth; the 

risk was also strongly correlated to the age of the mother and her 

parity. In an attempt to examine possible associations between these 

three physio-biological factors with socio-economic characteristics and 

the way such associations might influence the high correlations 

previously described, Osborne analysed data on live births and 

stillbirths that occurred in Scotland in social class III (as 
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classified by the Registrar General for Scotland) during the period 

1960-1967, and compared the results with those obtained for the whole 

population of Scotland for 1960-1964. The independent effects of 

maternal age, birth order and birth concentration were apparent in 

both social class III as well as in the whole country. The results 

were not identical but the curves were almost parallel on a 

semilogarithmic scale, implying that the proportional changes were very 

similar for both sets of data. Thus the patterns of variation in 

stillbirth rates with age of the mother, parity, and birth 

concentration, in social class III were analogous to those observed for 

all social classes together. Such results were in accordance with 

Yerushalmy's (1945) conclusions and with the findings of Daly, Heady 

and Morris (1955), suggesting that social class acted independently of 

the three physio-biological factors in its effects on the rates, and 

endorsing the hypotheses that the effects of such factors are 

independent from external environmental, social or economic factors. 

All the studies above mentioned revealed closer similarities between 

the patterns of variation in stillbirth rates and neonatal mortality 

rates than between any of these two and post-neonatal mortality rates. 

However, neonatal mortality rates showed patterns of variation that can 

be considered as intermediate between the other two types of rates. 

These findings are hardly surprising, since during the first four weeks 

of life most of the infant deaths are still connected to the intra- 

uterine environment. During this period a high proportion of children 

die from causes that are congenital in character, and the problem of 
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premature. births ranks very high for neonatal mortality as well as for 

stillbirths. Some of the differences in the pattern of variation 

between periods seem to be related to the causes of death prevailing in 

the relevant period of life. For example, increases in the parity of 

the mother affect particularly the chances of survival of the infant 

during the post-neonatal period but have very little effect on the 

risks of dying during the first month of life. This seems to hinge on 

the fact that post-neonatal mortality is dominated by infectious 

diseases and the patterns of infant feeding, while such factors affect 

very little the risks in the neonatal period. The more children there 

are in the family the higher are the risks of catching infections as 

the opportunities for infection increase. At the same time, as the 

number of young children increases, they may start to compete with each 

other for the mother's attention and care, the family's resources, for 

food, and other needs. 

Papavangelou (1971) analysed the independent effects of maternal age, 

birth order and birth concentration on the risks of infant deaths from 

seven groups of causes of death using data from England and Wales for 

the cohort born during 1949-1950. Causes such as immaturity, birth 

injury, congenital malformation, and asphysia and atelectasia showed a 

U-shaped effect with age of the mother while causes as respiratory 

diseases, enteritis and diarrhoea, and accidents presented a reverse 

J-shaped effect, with considerably higher risks at younger ages of 

mother. The effect of birth order was remarkably strong in the risk of 

infant death from enteritis and diarrhoea, the risk increasing sharply 
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with birth order: birth orders higher than six showed risks more than 

five times those for second births. The risk of death from respiratory 

diseases also increased with birth order but after the sixth birth it 

remained at a level around three times higher than that observed for 

the second birth order. The risk of death from accidents did not show 

a regular pattern by birth order, but increased steadily with birth 

concentration. In general, Papavangelou's findings tend to support the 

hypothesis that the patterns of mortality variation with the three 

factors analysed here are linked to the structure of mortality by 

causes prevailing in the different periods of life. Hence the 

variation in such patterns along different periods of infancy seems to 

reflect the way these factors operate on the most severe causes of 

death within each period. The patterns of variation observed in the 

effects of maternal age, birth order, and concentration, for deaths by 

causes connected to biological factors resemble those patterns 

prevailing in the neonatal mortality rates, while for the group of 

causes linked to environmental factors they resemble the 

characteristics observed in the post-neonatal mortality rates. 

A very comprehensive review of the literature concerning the effects of 

parental age and birth order on pregnancy outcome and child development 

was done by Nortman (1974). Nortman used mainly secondary sources, 

considering those studies that would yield statistically meaningful 

results because of the experimental design and the sample size used in 

the investigations. On the assumption that relative risks by age 

remain much the same regardless of the absolute level of risks, age 

specific rates by birth order were converted into index numbers, based 

50 



on an average (age group 20-34, generally) for each birth order equal 

to 100. For each risk the median age-specific index number was 

calculated and least square second degree polynomials fitted. The 

analysis of the patterns was then based on the smooth curves fitted to 

the median index numbers obtained from all the studies considered. 

There was a very wide differential in the absolute level of mortality 

among the different countries and among different regions or social 

classes within the contries examined. In spite of that, very narrow 

bands covered in most cases all the observed index numbers around the 

least square parabola, indicating the presence of a very similar basic 

pattern. The author concluded that the observations "support the 

hypotheses that biological processes are the chief determinants of the 

age pattern of reproductive risk and that social, cultural, and 

economic factors largely determine the degree of risk, whatever the 

mother's age". 

The age-birth order patterns of mortality that emerged from Nortman's 

analyses agree with the results from those studies previously 

discussed. Indeed, such studies were included among the data analysed 

by Nortman. The J-shaped relationship between maternal age and still 

birth appeared very clear. For infant mortality, all births, the 

pattern with mother's age appeared as J-shaped; the break-down by age- 

birth order showed how the pattern shifted from a J-shape to a reverse 

J-shape as birth order increased. For higher birth orders the minimum 

risk emerged at older ages, bearing the typical effect of birth 

spacing, as Yerushalmy (1938) had pointed out. 
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2.3 Evidence on the patterns of mortality by mother's age, parity and 

birth spacing from developing countries' data. 

The problems affecting vital registration systems in less developed 

countries have been discussed in the previous chapter. Because of those 

problems most of the available data for such countries have been 

obtained from surveys. Chile is an exception, there the registration 

system provides reliable information on birth order and other 

demographic and socio-economic characteristics for the infant and the. 

infant's parents. A study of infant mortality was carried out by 

Taucher (1979), based on data for the cohort born during 1972. In spite 

of the enormous differential in the levels, the relationship between 

infant mortality rates and mother's age and parity described by Taucher 

resemble those patterns described in other studies for the United 

States, Germany, El Salvador and Colombia (figure 2.3). They are also 

similar to those discussed in the previous section, which is consistent 

with the hypotheses that the basic patterns are determined 

predominantly by biological factors, while the overall level depends on 

social, cultural and economic factors. In the case of Chile, Taucher's 

analyses also confirmed that the effect of the mother's age is stronger 

in the neonatal period, while the effect of her parity is particularly 

strong in the post-neonatal period. Birth spacing was not specifically 

analysed, although it was discernible that the increase in the rates 

with birth order was much stronger within the mothers' younger age 

groups and that the age of minimal risk increased with birth order, 
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Figure 2.3; Variation in Infant Mortality Rates with Age 

of the Mothers and Parity in Different Countries. 
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which are the typical variations produced by the birth spacing effects. 

Such effects become apparent in the patterns which all curves in figure 

2.3 show, shifting from a J-shaped to a reverse J-shaped relationship 

with age as birth order increases. 

For a long time demographers studying mortality in the developing world 

have dedicated considerable attention to the analysis of the effect of 

birth spacing on mortality rates. Laurie, Brass and Trant (1954) found 

evidence of higher mortality when birth concentration increased in East 

Africa. Cantrelle and Leridon (1971) found evidence in Senegal 

indicating that one of the mechanisms through which shorter birth 

intervals are linked to higher mortality is the earlier weaning caused 

by a new pregnancy, which heightened the risks of death during the year 

after weaning by 50 to 150 per cent. Sweemer's finding for the Punjab 

(Sweemer, 1984) and Cleland and Sathar (1984) for Pakistan also support 

this hypothesis. In Guayaquil, Ecuador, Wolfers and Scrimsaw (1975) 

observed a very strong correlation between post-neonatal mortality and 

length of preceding interval, after controlling for outcome of previous 

pregnancy, with lowest rates for lengths between 3 and 4 years. A 

similar pattern, although less marked, was observed for neonatal 

mortality rates. The hypothesis that the correlation between spacing 

patterns and mortality is produced by some common factors (family 

characteristics), which determine the care the family gives to both 

conceiving and raising their children, was explored. Such hypothesis 

implies that the effects are produced by some "between families 

54 



differences", so they should not be present when those patterns are 

examined "within" families. Wolfers and Scrimsaw detected evidence of 

an effect within families (for which contrasting types of interval- 

survivorship were observed) in the case of post-neonatal mortality 

rates. Cleland and Sathar (1984) also concluded that "the relationship 

between length of preceding interval and survival of the index child is 

unlikely to be the spurious result of a common cause", according to 

their results for Pakistan. Analysing data from the Punjab, Sweemer 

(1984) did not reject the hypothesis of some influence of common 

factors affecting both child spacing and child survival. The studies 

for Guayaquil as well as for the Punjab revealed that short intervals 

not only affected survival of the following child, but also mortality 

rates for the previous child were heightened for the relevant period, 

when the child was followed by another birth after a short interval. 

During the last few years many studies about the effects of maternal 

age, parity and birth spacing on the risks of mortality have been 

carried out. Most of them were based on data collected through the 

World Fertility Survey Programme, which provided abundant information 

for this type of study. Somoza (1980) presented an analysis of such 

data from the Colombian Fertility Survey. Although the sample size 

posed some restrictions, the pattern of variation with mother's age and 

parity order became apparent and was consistent with such patterns 

observed elsewhere (see figure 2.3). Thapa and Retherford (1982) 

observed in Nepal that infant mortality rates consistently increased 
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with birth order when mother's age was controlled, whereas infant 

mortality decreased with age (controlling for birth order) up to age 

35; older ages were not included because of small numbers and 

truncation. The effect of birth spacing was also analysed and the usual 

pattern of decreasing risks with longer intervals was encountered. 

Rutstein (1983) analysed information on infant and child mortality from 

29 countries covered by the W. F. S. programme. In an univariate 

analysis the U-shaped relationship between age of the mother and 

mortality rates was strongly evident for infant mortality but less 

strong for toddler (IqI) and child mortality (3q 
2). 

As for birth 

order, toddler and child mortality increased steadily with order; for 

infant mortality rates the pattern was less clear, but predominantly 

the risks increased monotonically with birth order, although in some 

cases first births presented higher mortality rates than second births. 

The analysis of inter-birth intervals revealed that "children born less 

than two years after the birth of their next oldest sibling are much 

more likely to die, even at ages over one year". 

The effects of the birth spacing patterns on the risks of mortality 

were analysed from a multivariate approach by Hobcraft, McDonald and 

Rutstein (1983), using W. F. S. data from 26 countries. Infant mortality 

risks rose dramatically when a birth had been preceded by any previous 

birth in an interval of less than 2 years. The occurrence of births in 

both periods 0-2 years and 2-6 years previous to the index birth 
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heightened considerably not only the risks of infant but also toddler 

mortality and it showed some deleterious effect in child survival as 

well. For toddler and child mortality rates the authors analysed the 

effects of births in the 0-17 and 0-30 months following the birth of 

the index child. Toddler mortality rose dramatically when the index 

child was succeeded by another birth within 18 months. Child mortality 

risks also increased almost universally with a birth following in less 

than 30 months. Patterns of short inter-birth periods either because 

of preceding or succeeding sibling were always detrimental for the 

survival of the index child in any of the periods of life analysed, and 

a succession of short intervals heightened the risks substantially. 

Control by mother's education was introduced, but not by age of the 

mother or birth order. Although mother's age and birth order would most 

probably account for some of the differences, the authors concluded 

that there is little doubt that the pattern of birth spacing affects 

the chances of survival of children born at both ends of the interval. 

In their analysis for Pakistan, Cleland and Sathar (1984) observed that 

the effect of birth spacing remained after controlling by age of the 

mother and her parity. However, their analysis raised doubts on the 

assertion that there is any cumulative effect of successive short 

intervals over the childbearing career of a woman, a hypothesis 

suggested by other results (Puffer and Serrano, 1975), and supported by 

the finding of Hobcraft et al. In the case of Pakistan the length 

of the immediate preceding birth interval appeared as the crucial 

factor. It should be pointed out, however, that Cleland and Sathar 
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used a different approach in their analyses: length of the two 

immediate preceding intervals and average length of all previous 

intervals, while Hobcraft et al. considered counts of births in two- 

years-time segments. 

Trussell and Hammerslough (1983) analysed W. F. S. 's data from Sri Lanka 

using hazard models. The same method of analysis was applied by Martin 

et al. (1983) to data from Philippines, Pakistan and Indonesia, 

arriving at similar conclusions with regard to mortality patterns by 

age of the mother, birth order and birth spacing. The main effect 

shown by the models was the typical U-shaped pattern of mortality with 

mother's age; control by socio-economic variables increased the 

negative impact of mother's young ages. Considering birth order, first 

births and births 2-3 had the lowest risks; the univariate analysis in 

some cases indicated higher mortality for first births than for second 

and third births, but when control by maternal age was introduced first 

births always appeared with the lowest mortality. When length of 

previous interval was combined with birth order, controlling for 

mother's age, it was clear that the risk for a given birth order 

increased as the length of the birth interval decreased. The highest 

risks were observed for higher orders preceded by short intervals. 
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2.4 Summary 

The deleterious effect on child survival of young ages of the mother at 

birth appeared clearly in all studies. Ages above 35 have also a 

negative impact on child survival. The results are not so conclusive 

in relation to the independent effects of birth order. There is little 

doubt that as birth order increases from second, and particularly third 

orders, mortality risks increase. Some evidence suggests that these 

effects extend beyond the first year of life. Considering first 

births, there is an interaction with age of the mother; as age of the 

mother increases, mortality risk for first births increases more than 

the average risk for all other orders does. For young maternal ages 

(under 25), first births have lower relative infant mortality than 

higher orders, although the latter frequently appears influenced by the 

effect of short birth intervals. Most of the attempts to separate out 

the effects of birth interval from birth order and maternal age have 

excluded first births from the analyses because of the methodological 

problem posed by the lack of a previous interval. Besides, higher birth 

orders at young ages are necessarily related to short birth intervals. 

In some multivariate approaches a category of birth spacing that would 

comprise all cases of first births and exclude almost all other cases 

was defined (i. e. no births in the last six years, in Hobcraft et 

al., 1983), but the sample size made it difficult to introduce 

simultaneous controls by birth order and maternal age. When such 

controls were introduced, first orders appeared always with the lowest 
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risks, although not very different from second and third orders, and 

clearly with better survival chances than higher orders. 

Concerning birth intervals, although the adverse effect of very short 

intervals may appear in some cases overstated because of over- 

representation of premature births (with much higher mortality risks) 

in this category, there is no doubt that births preceded by short 

intervals face higher mortality risks during the first year of life. 

There are also indications that the harmful effect of short birth 

intervals extends beyond the first year of life. Some evidence, 

although not conclusive, suggest that a very long birth interval also 

impairs the child's chances of survival. Some studies provided 

evidence contrary to the hypothesis of a cumulative deleterious effect 

on survival for children born after a succession of short birth 

intervals. More research into this topic would be necessary before 

accepting these results as conclusive. 

Another feature observed in these studies was that the effect of 

maternal age weakened as child's age increased, with very little impact 

after the first year of life. Birth spacing and parity order still 

affect the child's chances of survival after the first year (probably 

through the "competition" factor and through increased opportunities 

for infections). 
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2.5 A basic pattern of infant mortality by age of the mother, birth 

order, and birth spacing. 

As was discussed in the previous chapter, indirect estimation of 

mortality taking into account parity order and age of the mother would 

require the specification of mortality risks by maternal age, parity, 

and birth spacing. The kind of data used for these estimation 

procedures do not allow a measure of birth interval as such. Birth 

spacing patterns have to be incorporated through some index of birth 

concentration, by combining age and birth order. 

On the bases of the evidence analysed in previous sections, and the 

work done by Nortman and Osborne, the probabilities of survival (or 

death) by age of the child, mother's age, birth order, and birth 

concentration are obtained forages under one year on the assumption 

that they can be approximately described by the product of a factor 

representing the overall level of mortality (K), a function 

representing the pattern of variation by age (x) of the child (which 

can be characterized by a standard life table, 1sd(x)), and three 

factors representing the patterns of variation by age of the mother 

(A(q)), birth order (P(r)), and birth concentration (C(c)), 

respectively: 

xq0 
-K{ 1-[lad(x)]} A(y) P(r) C(c) 0<x<1 (2.1) 

Maternal age ceases to have any relevant effect for ages over one year. 
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The effect of parity order and birth concentration on 1q 
is assumed to 

x 
decrease linearly, disappearing after age four: 

=K* {1-[1 (x+1)/1 (x)]} * {1+(1-x/4) [P(r)-1]} 
lax sd sd 

* {1+(1-x/4) [C(c)-1] }; x-1,2,3 (2.2) 

x-4 
q4-K{ 1-[1 

sd 
(x)/1 

sd 
(4)] } x>4 (2.3) 

The standard 1sd(x) can be represented by any appropriate model, in 

this case Brass's general standard will be used. Categories of birth 

concentration were formed by combining five year age groups and parity 

order of the mother. An arbitrary category of birth concentration was 

defined for the first birth order. The values for A(y), P(r) and C(c) 

are given by third degree polynomials. These functions were obtained 

by fitting the polynomials to a set of multipliers which, when applied 

to the overall rates, allowed us to reproduce (closely enough for the 

purposes of this study) the different sets of infant mortality rates by 

mother's age and birth order, available from different studies. 

Starting from the patterns described by Osborne, the multipliers were 

subsequently adjusted to give an average pattern which approximately 

resemble the variations observed in several countries. The multipliers 

were then standardized so that, when the specific mortality rates are 

applied to a particular birth distribution, they would reproduce the 

overall mortality level represented in the standard. The distribution 

of births used for standardizing the multipliers was obtained from a 

model of fertility by age and birth order, which is described in 
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Chapter 4. It represents a situation where the mean age at first 

marriage is about 20 and the total fertility rate about 5, which seems 

to be the average case for countries where the procedures developed in 

this study might be applied. Given a different birth distribution, the 

relative frequencies of births in categories of higher or lower risk 

would produce an overall mortality somehow higher or lower than the 

standard. Such variations will not affect the validity of the results 

obtained in Chapter 6, as they are accounted for in the calculation 

procedure. (The calculation procedure is described in detail in 

Chapter 5). 

Equations 2.4,2.5, and 2.6 express the functional dependence of 

child mortality on maternal age (y), birth order (r), and birth 

concentration (c). Age is measured as age last birthday (completed 

years) rather than exact age. In equation 2.4 the age scale is measured 

in units of 5 years, with origin at 12. Thus, complete years of age 

17,22,27, etc, are indicated by values of y equal to 1,2,3, etc. 

23 
A(y) - 1.96 - 0.8109 y+0.1725 y-0.00944 y (2.4) 

23 
P(r) - 1.247 - 0.312 r+0.0817 r-0.0045 r (2.5) 

23 
C(c) - 1.18 - 0.31636 c+0.07967 c-0.003973 c (2.6) 

Table 2.1 presents the categories of birth concentration corresponding 

to each combination of birth order and age of the mother at birth. 
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Table 2.1: Categories of birth concentration defined by combining 

birth order with mother's age at birth. 

---------------------------------------------------------------------- 
Age of 

Birth order 
mother --------------------------------------------------------- 

123456789 10 

15-19 3 6 8 9 10 10 

20-24 3 5 6 7 9 10 10 10 
25-29 2 3 4 5 6 7 8 9 10 10 

30-34 1 2 3 4 5 5 6 7 8 9 

35-39 1 2 3 3 4 4 4 5 5 5 

40-44 1 2 2 2 3 3 3 3 3 3 

45-49 1 2 2 2 3 3 3 3 3 3 

An explanation of table 2.1 would be in order, since the interpretation 

of these categories is not quite stright forward. The categories in 

this table were obtained by adapting Osborne's ideas to the 

requirements of the present study. Working with vital statistic data, 

Osborne first defined an indirect measure of the inverse of birth 

interval for all births excluding first orders: 

-If women experiencing their first births are excluded, the number of 

birth intervals a mother has experienced is one less than the order 

of the last recorded birth (or the women's parity order). Let B 
ij 

be the number of births occurring in maternal age group i and birth 

order J. Then the mean number of birth intervals experienced by 
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a mother in age i, m, is: 
i 

mi { Bij * (j-1)} /{C Bid } (2.7) 

-A measure of birth concentration (c ) was then derived by 
ij 

calculating the ratio of the number of intervals experienced by 

a mother in a particular age group, i, to the average number of 

intervals for mothers of that age: 

ýiý }/{Z (j-1) *B} (2.8) 
3 

Bii 
ii 

For a given birth order, birth concentration decreases as maternal age 

increases. Contours of constant birth concentration follow paths 

involving simultaneous increases in both maternal age and birth order. 

Osborne then broke the range of birth concentration values into several 

intervals, so each maternal age-birth order subclasses could be 

allocated to a birth concentration group. For the purposes of this 

study, an arbitrary category of birth concentration was allocated to 

first births. Aiming to representing (with reasonable approximation) 

the paths followed by observed mortality rates for first orders by age 

of the mother, the "effect" of this arbitrary category was assigned by 

trial and error. 

The functional representation of mortality defined in this chapter is 

consistent with the hypothesis that there is a basic pattern of 

mortality in the early ages, determined by biological factors such as 
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age of the child, age of the mother at birth, birth order, and length 

of birth interval, while the degree of risk (overall level of 

mortality) is determined by environmental, social, cultural, and 

economic factors. 

The patterns of infant mortality by mother's age, birth order, and 

age-birth order, defined by this model, are illustrated in figure 2.4. 

Figure 2.5 shows the patterns of variation in the factors A(y), P(r), 

and C(c), as determined by the polynomials. 
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Figure 2.4: Infant mortality pattern by mother's age and birth 
order, according to the model representation. 
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Figure 2.5: Effects of age of the mother, A(y), birth 

order, P(r), and birth concentration, C(c) 

on the mortality function. 
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CHAPTER 3 
The Model of Fertility by Marriage 

Duration and Birth Order . 
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III. THE MODEL OF FERTILITY BY MARRIAGE DURATION AND BIRTH ORDER 

3.1 Introduction 

Farahani (1981) quotes a paper by Powys (1905) as one of the earliest 

works on modelling distributions of births by order and marriage 

duration, in this case, by using Pearson type functions. Since then 

many scientists have worked on modelling human fertility from a 

biological or from a demographic approach. An exhaustive and in depth 

review of the work done in this field is not the concern of this 

investigation. However, because of the amount of research or the 

advances in theory that followed from them, the work by Henry (1953, 

1957,1961,1972) and by Davis and Blake (1956) should be mentioned as 

some of the most significant contributions. 

For the particular purposes of this investigation, we are loking for a 

simple mathematical model that would describe approximately the 

distribution of births by order and marriage duration in a given 

population. The main ideas of a very simple model which has sought to 

represent adequately such distributions were presented in a paper by 

Brass (1970). The model was then developed further by Farahani (1981). 

In the second section of this chapter the characteristics of this 

fertility model are discussed. The analytical formulation of the model 

is presented in the third section, and in following sections the model 

is fitted to observed distributions of births by order and marriage 

duration and the results discussed. 
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3.2 The basis of the fertility model 

Only a brief description of the model, with some comments concerning 

its use for our particular purpose, are presented here. The 

characteristics of the model are discussed in more detail by Brass 

(1970) and Farahani (1981). 

Even in a population where no family planning is practised, 

fecundability varies between women and for each woman it changes with 

age. In a drastic simplification we can assume that fecundability is 

constant among women and remains invariant over their whole 

reproductive life. The restriction on constant fecundability among 

women will be relaxed later. Constancy with age is not a serious 

limitation for the purpose of this study. It is clear that 

fecundability starts to decline before a woman become permanently 

sterile. However, declines in fecundability with age only become 

relevant over certain ages after which the relative impact of fertility 

on the kind of analysis performed here is very small. As for 

adolescent sub-fecundity it would be equivalent, in its effect, to a 

lower proportion of married women at such ages, and it can be dealt 

with through the nuptiality function, which will be analysed later. 

Under these circumstances the assumption that fecundability is constant 

over the whole reproductive life is not consequential on our results. 

The time interval from one pregnancy to the next is determined mainly 

by the pregnancy duration, the non-susceptible post-partum period, and 
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the level of fecundity. The first component is invariant; in natural 

fertility the second component is also largely invariant for a given 

society, as it is strongly determined by physiological factors and 

social control (mainly expresed through norms concerning breastfeeding 

and post- partum sexual abstinence). Once a woman enters the 

susceptible period, the next pregnancy will follow a period of delay 

with length depending on the fecundability (probablity of a conception 

in a menstrual period), the frequency of sexual intercourse and a 

chance component. As stated above, fecundability can safely be assumed 

constant for the range of ages that cover the most relevant period, for 

our purposes. For this period the frequency of sexual intercourse is 

not expected either to introduce much variation in the delay to next 

pregnancy. As for the chance factor, it is expected to produce a 

random variation with most cases concentrating around the average delay 

period, the length of the birth interval being then largely determined 

by predominantly invariant components. 

Under those conditions it is possible to determine an appropriate 

length of time-interval such that it would be impossible that two 

births occur in the same period, and that the occurrence of a birth in 

an interval is independent on whether of not a birth has happened in 

the previous one. Foetal deaths and reduced non-susceptible post- 

partum periods due to neonatal deaths obviously disturb this picture, 

violating the assumptions on which the model is constructed, with 

regard to an individual woman. However Farahani's analysis showed, by 

comparing the model results to computer simulated distributions which 
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included such sources of variations, that these variations effectively 

average out in the whole population. In the next section, where a model 

is fitted to real data, we can see that the results do not appear to be 

seriously distorted by the simplifying assumptions. 

The assumptions on which the model is based can then be itemised as 

follows (Brass, 1982. b): 

1) Marriage duration can be divided into interval-units of an 

appropriate length such that within each interval only one 

birth can occur, and the probability of a birth in an interval 

is independent of when other births occur. 

2) The proportion of women at risk, that is those who are able 

and willing to have r or more births, depends only on r, and 

is described by a stopping rule function, S(r). 

3) Each woman at risk has a probability "p" of having a birth in 

an interval, whatever the marriage duration or birth order. 

4) The probabilities "p" are distributed over the women according 

to a Beta distribution with parameters a and b. 

The model, as defined above, implies that the pace at which women at 

risk move to higher parity orders is given by the average of the 

probabilities p over all women, and is constant for all orders. It 

means that distributions of birth intervals from the previous birth (or 

from marriage, given an appropriate starting point), are the same 

whatever the birth order. 
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Considering whole populations rather than individual couples, the 

restrictions imposed by the assumptions enumerated in the previous 

paragraph do not seem to be as strong as they might appear at first 

sight. Indeed, in most societies the lengths of birth intervals are 

fairly constant with birth order, except for the last intervals which 

are a little longer. Such variation for higher orders is connected to 

the decline in fecundability (and perhaps coital frequency), and 

appears consequential in the family building proccess only at later 

ages or at very long marriage durations. Furthermore, some studies 

(i. e. in Hobcraft and McDonald, 1984) have revealed a surprising 

uniformity in the pattern of birth intervals in a substantial number of 

countries which are very different in most other respects. 

As for the constraints of unchanging birth interval distributions, 

different authors have stressed the remarkable similarities of such 

distributions, found in different populations (Farahani, 1981, 

Brass, 1982. b, Pellizi, 1982, Penhale, 1984, Ford, 1981), which implies 

that this feature is not far removed from reality. 

3.3 The fertility model by marriage duration and birth order 

Under the assumptions described in the previous section, natural 

fertility can be represented by independent births in time, with 

probability "p" that a birth will happen in a given time interval from 

marriage. It appears that this can be made approximately true by 

choosing the appropriate length of the time interval, so that the 
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probability of a birth in an interval is independent on whether or not 

a birth has happened in the previous one. From Farahani's work the 

appropriate length seems to be between 18 and 24 months, however at 

this stage we do not need to adopt a fixed length and the point will be 

considered later. Thus, marriage duration can be divided in successive 

intervals each having the same probability of a birth "p": 

ppp """ p 
0123n n+1 

ns number of completed intervals units from marriage. 

Set b (r) as the probability of a woman having r births in n intervals 
n 

and B (r) that of having r or more in n intervals. Then, 
n 

b (r) -B (r) -B (r+1). We can impose now a restriction due to family 
nnn 

planning or sterility, and denote by S(r) the proportion of women who 

will be able and willing to have r births or more. This is independent 

of n (number of intervals from marriage) and will depend only on the 

number of births already attained. Thus, %% (r) -B (r) S(r) 
nn 

is the probability of r or more births in n intervals, and 

D (r) - 77' (r) - 
77 (r+1) is the probability of r births in n 

nnn 
intervals under the conditions imposed by the "stopping rule" S(r). 

Under conditions of equal probabilities of occurrence in each interval 

and independence of the events, the probability of r births in n 

intervals follows a simple binomial probability distribution: 

nr n-r 
b (r) -()pq; where q-1-p; r-0,1,..., n (3.1) 

nr 
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For a particular woman, "p" (probability of her having a birth in one 

interval) will depend on her fecundability. If we consider that in any 

population fecundability varies between women, in the model 

representation we can allow for this by considering that p varies over 

women according to a probability function, say "beta", in the whole 

population: 

a-1 b-1 

B(P) -IP (i-P) ]/ B(a, b) (3.2) 

where 0<p<1; a and b are positive constants; and 

B(a, b) -J1x 
a-1 (1-x) 

b-1 
dx (3.3) 

The Beta distribution was chosen after analysing empirical data by 

using computer simulations (Brass, 1970). Then, allowing for 

heterogeneity in the population, the joint frequency distribution of r 

and p for a fixed number of intervals n is given by b*(r): 
n 

b* (r) - 
I1 

f 
B(p) 

(=) pr qn-r dp (3.4) 

that is, the probability of a woman having r births in n intervals from 

marriage, with fertility parameter equal to p, multiplied by the 

probability that p will assume a certain value in the population where 

fecundability varies between women according to a density function 

f (p). Hence, b*(r) represents the probability of r births in n 
bn 

intervals in a population where fecundability varies among women. 

Integration over p gives: 

b*(r) - (n) B(r+a, n-r+b) / B(a, b) (3.5) 
nr 
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where B(a, b) represents a Beta function (in this case with parameters a 

and b) and so does B(r+a, n-r+b), with their respective parameters 

indicated within the brackets. Hence, in terms of the gamma functions, 

b* (r) can be written as: 
n 

b*(r)=(n){/` (a+r) /t (b+n-r) % (a+b)} / {/' (a+b+n) % (a) /7 (b)} (3.6) 
nr 

We need to estimate the number of births of r-th order occurring during 

the (n+1)th interval in a population under the stopping rule S(r). 

Women susceptible to having an r-th birth in interval (n+1) are those 

who have attained r-1 children in the n previous intervals: bn (r-1); 

and, according to the stopping rule, only a proportion S(r) of these 

women are exposed to such risk. Then, the proportion exposed multiplied 

by the probability of a birth, p, gives the probability of an r-th 

birth occurring in interval n+1: 

D 
n+1 

{r/(r-1)} - S(r) bn (r-1) p (3.7) 

or, allowing for variation in fecundability among women: 

Dn+l{r/(r-1)} S(r)f1 fB(p) bn(r-1) p dp (3.8) 

integrating over p, 

D* {r/(r-1)} - S(r) (n ) B(a+r, n+b-r+l) / B(a, b) (3.9) 
n+1 r-1 

Putting aside for the moment the stopping rule, calculations are very 

easy after simplifying the gamma functions in the following relations: 

1) The ratio of the probabilities for the same birth order in two 
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successive intervals: 

D 
n+l 

{r/(r-1)} /Dn {r/(r-1)} -n (b+n-r) / [(n-r+l) (a+b+n)] (3.10) 

That is, the probability of an r-th birth in the (n+l)th interval is 

equal to the probability of r births during the n preceding intervals 

multiplied by a factor which depends on the number of intervals and the 

parameters a and b. 

2) D 
r+1 

[(r+l)/r] /Dr [r/(r-1)] = (a+r) / (a+b+r) (3.11) 

the probability of an (r+1)th birth in the (r+l)th interval is equal to 

the probability of r births during the preceding r intervals multiplied 

by (a+r)/(a+b+r), where a and b are known because they are the 

parameters of the distribution and r is the number of intervals. 

3) The probability of a birth in one interval (average of the 

parameters "p" for each woman-in the whole population) is a/(a+b). 

Then, D1(1/0) - a/(a+b) (3.12) 

From equations 3.12 and 3.11 it is possible to calculate the upper 

diagonal of a worksheet which presents the distribution of births by 

duration of marriage and birth order. The rest of the table is obtained 

by using equation 3.10. Table 3.1 illustrates auch calculations. 

In order to test the flexibility of the model for describing different 

situations, it has been fitted to W. F. S. data from different countries. 

The main purpose of this exercise is not to obtain the best fitting of 

such data, but to evaluate how reliable this model can be for 

representing a wide range of variations in the pace of family 
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formation. So far the model have been used for studing some European 

data (Brass, 1982, Pellizi, 1982, Penhale, 1984). Although the model 

should be most useful for evaluating and analysing data from countries 

with high fertility, lack of suitable data have prevented a wider use 

of the model, and it has not been tested in such situations yet. 

Table 3.1: Probabilities of a woman having a r-th birth in the 

n-th interval from marriage (Parameters a-3.5, b=3.5) 

Bi rthOrder Interval ------------------- - ------------------------------------- 
n123456 

------------------------------------------ --------- - 

0-1 0.500 

1-2 0.2188 0.2813 

2-3 0.1094 0.2188 0.1719 

3-4 0.0602 0.1477 0.1805 0.1117 

4-5 0.0355 0.0985 0.1477 0.1422 0.0762 

5-6 0.0222 0.0667 0.1128 0.1333 0.1111 0.0540 

6-7 0.0145 0.0462 0.0846 0.1128 0.1154 0.0872 

7-8 0.0099 0.0327 0.0635 0.0916 0.1058 0.0981 

8-9 0.0069 0.0237 0.0479 0.0733 0.0917 0.0960 

9-10 0.0050 0.0175 0.0366 0.0584 0.0774 0.0877. 
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3.4 Applications of the fertility model to describing some fertility 

patterns observed in developing countries. 

Following the work of other authors, the pace of fertility, given by 

the mean value of the women's fecundability (p - a/a+b), is determined 

by only one parameter, as the value a+b is assumed to be equal to 7. 

This is a very convenient simplification for practical purposes 

because, after fixing the variability of the distribution, only one 

parameter is left to be estimated. It does not greatly affect the 

results as the distribution is not very sensitive to changes in the 

variance (1/a+b), the dominant factor being the ratio a/(a+b). 

This can be confirmed by observing figure 3.1, where the results from 

four models are compared; three of them have the same value 3=0.57, but 

greatly differing variabilities as a+b is 7,21, and 42 respectively. 

The fourth model has a x'0.50 and a+b=7. The first three models, with 

very different variances in the women's probabilities of having a birth 

in an interval (p) have cumulative distributions which are much closer 

than the fourth model is to the first one, which have the same 

variance, and not a big discrepancy in Jr. 
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Figure 3.1 

Cumulative per-cent distributions of births by order and 

duration of marriage from four models with different 

a and b parameters 
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The most efficient method for estimating the parameters of the beta 

distribution is the maximun likelihood method, derived by Griffiths 

(1973). For demographic applications of the same kind as those 

performed here Farahani (1981) and Brass (1982) have proposed 

simplified procedures. One of the estimation procedures proposed by 

Farahani is based on the use of the ratios of the number of births of 

two successive orders occurring in the same interval duration from 

marriage: 

Q(n+1, r) - D* {(r+1)/r} / D* {r/(r-1)} _ 
n+l n+l 

- {[S(r+l)/S(r)] [(a+r)/r]} {(n-r+1)(b+n-r)} (3.13) 

For a fixed r and varing n this can be written as: 

Q(n+1, r) w(r) [(n-r+1)/(b+n-r)]; (3.14) 

where w(r) - [S(r+1)/S(r))[(a+r)/r); 

S(r+1)/S(r) can be approximately obtained from the ratio of total 

births of consecutive orders at a sufficiently long marriage duration. 

Expression (n-r+1)/(b+n-r) follows a fixed pattern which only depends 

on the value of the parameter b, as can be seen in table 3.2. 
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Table 3.2: Patterns of variation in expression (n-r+1)/(b+n-r), by 

birth order (r) and interval-duration (n). 

Birth order (r) 
Intervals 

(n) 1 2 3 45 

1 1/b 

2 2/(b+l) 1/b 
3 3/(b+2) 2/(b+l) 1/b 
4 4/(b+3) 3/(b+2) 2/(b+1) 1/b 

5 5/(b+4) 4/(b+3) 3/(b+2) 2/(b+l) 1/b 

6 
.. 

6/(b+5) 5/(b+4) 4/(b+3) 3/(b+2) 2/(b+1) 

On this basis, writing C-b-1 and K-n-r+l, for any fixed r, Q(n+1, r) 

can be re-written as: 

Q(K, r)- w(r) K/(C+K) (3.15) 

Expression (3.15) can be linearized as 

Q(K, r) - w(r) -C Q(K, r) /K; K=1,2, ... (3.16) 

w(r) and C in equation (3.16) can be estimated by mean squares, as the 
2 

parameters which minimize the expression Z- (Q-Q*) . Writing y 
2 

for Q(K, r) and x for"Q(K, r)/K, Z- {yK - w(r) +Cx}, which after 
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differentiation with respect to w(r) and C gives the normal equations: 

c {m ý xy - Ex Ey} / {(Ex)2 -m Ex } (3.17) 
KKKKK 

w(r)={ 
Zy+C Ex} 
KK 

(3.18) 

where m indicates the number of cases. This procedure can be useful 

when random variations are the main source of errors affecting these 

ratios. Very often in demographic analysis systematic errors can be 

more important that chance variations in causing departures from 

expected patterns. In the case of these Q ratios systematic errors can 

be very important. On these grounds Brass suggests the use of more 

rigid procedures to estimate the parameters of the distributions, 

obtaining a set of estimates for these parameters and selecting the 

most appropriate one on the basis of a demographic rather than a 

statistical criteria. With a+b fixed to the value of 7, only one 

parameter has to be estimated. An estimation for the pace of 

childbearing can be obtained from one of the four following ratios: 

1) - D2{1/0} R / D*{1/0} -b/ (a+b+1) 
1 1 

2) - D3{1/0} R / D2{1/0} - (b+1) / (a+b+2) 
2 

3) = D3{2/1} R / D*{2/1} - 2b / (a+b+2) 
3 

4) R D*{2/1} / D3{2/1} i 3b / 2(a+b+3) 
4 

The first and the third ratios can be affected by variations in 

premaritally conceived births. As the pace estimate has to be used for 

all births order§, the movement from the first to the second birth 
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appears to be a better basis for determining such pace since it is more 

central than the movement from marriage to first birth. On the basis 

of these considerations, Brass favours the fourth expression. However, 

the best choice can be dependent on the demographic characteristics of 

the population under study and the particular type of errors that may 

affect the data. 

Figure 3.2 presents observed and fitted model distributions of births 

by order and duration of marriage for some countries. For each country 

three marriage-duration-cohorts are analysed. Clear structures by 

birth order and marriage duration appear, and the patterns underlying 

these structures are closely described by the model. The agreement 

between the observed and the fitted model distributions is very good. 

The observed data do not show any systematic departure from the model 

distributions. This picture reinforces the conclusions drawn by Brass, 

Farahani, Pellizi and Penhale in previous analyses, that there is an 

underlying common structure to distributions by birth order and 

duration of marriage, and the model can be used to characterize such 

structure in terms of a few parameters. 
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Figure 3.2: Observed and model iistr_but_cns of births by order 

and marriage duration for some selected countries. 
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Fiore 3.2 (Continuation) 
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In Hobcraft and McDonald's (1984) analyses, countries like Colombia and 

Costa Rica appear with considerably short intervals, associated with 

very short breastfeeding. At the same time Lesotho is singled out as 

one of the countries with longest intervals, "reflecting lengthy 

periods of post-partum abstinence in conjunction with separations 

resulting from many males working in the Republic of South Africa". 

These situations are illustrated in figures 3.3 and 3.4. 

In figure 3.3 observed and fitted distributions for marriage duration 

intervals of one and half years are presented for Costa Rica and 

Colombia. Since the "pace" parameter is related to the interval-unit, 

as the interval unit shortens, the pace parameter is somewhat lower but 

the description is equally good. The advantage of working with shorter 

interval units in these cases is that some of the births, which are 

ruled out because of too high concentration for units of two years, 

would be included in the analyses where the interval unit is one and a 

half years. 

As for Lesotho, in figure 3.4 part A, it is clear that models based on 

intervals of 2 years give a too high proportion of births occurring in 

the earliest possible intervals from marriage, for all orders after the 

first one, in comparison with the observed distributions. 
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Figure 3.3: Observed and model distributions of births by 1- years 

intervals from : carriage for Costa a--ca and Colombia. 
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Figure 3.4: Observed and -i--del distributions 3f births by 2 

and 2- years -interval s--narria e duration for 

Lesotho. 
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As this interval unit (24 months) is too short (for the particular 

case of Lesotho) the probability of a birth in an interval is not 

entirely independent on whether a birth has occurred in the previous 

one. The result is too few births happening at the shortest periods, 

i. e. second births in the second interval from marriage, third births 

in the third interval, etc, so the model based on two-years-interval- 

units does not provide the best description for that situation. When 

the distribution of observed births is taken over interval units of two 

and a half years, the agreement between the observed and fitted 

distributions is much better (figure 3.4, part B). The comments made 

about the patterns showed in figure 3.4 for Lesotho apply also to the 

results presented in figure 3.5, which illustrates the distributions by 

order and marriage duration observed in the Republic of Korea, 

according to WFS data. 

overall the results of these analyses are encouraging. No systematic 

deviance appears to be introduced by the symplifying assumptions and 

the model seems to provide an adequate description of the breakdown of 

fertility by birth order and marriage duration. For countries with 

very short or very long intervals between births the two years interval 

unit may not be ideal. However, the important question here is whether 

or not the representation is still good enough for the aims of the 

present study. Such questions can be answered after analysing the 

results presented in table 3.3 and table 3.4. 
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Figure 3.5; Observed and mode! distributions of births by two and 

two and a half years -intervall ---a=_e _e . _: ire lý cn for 

the Re-: ublio of Korea 
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The mean time-exposure to the risk of dying, for children born to women 

in the different cohorts, are the basis of all the calculations 

necessary for this study. Therefore, such measures provide a sensible 

indicator for evaluating the importance of the biases that may arise if 

a unique lenght of two years for the interval-unit is applied when 

describing fertility patterns for all countries. 

The average time-exposures obtained from the distributions observed in 

Lesotho (WFS data, marriage cohorts 15-19 years duration and 20-24 

years duration) are compared with the exposures calculated from the 

fitted distributions. These two cohorts were selected for the 

analyses because, as it can be seen in figure 3.4, they are the cases 

in which the two-years-interval-unit-model gave the poorest 

description. In any other case the bias would be smaller. The way the 

average exposures were obtained is explained in Chapter 5. 

The results presented in table 3.3 indicate that the bias introduced by 

the imperfect description is not serious. For each birth order and 

marriage duration the average time-exposures obtained from the model 

distribution (1) are compared with those obtained from the observed 

distribution (2). The biggest differences appear in the case of fourth 

births, for durations of between 11 and 13 years, reaching half a year. 

These differences are minimized still further, as the duration model is 

later combined with a nuptiality model to obtain distributions by age 

of the mother, and these are the results relevant to the calculation 

procedure which interests us, as will be seen in later chapters. The 
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effects on the estimated average exposures by age of the mother and 

birth order are presented in table 3.4. The same nuptiality 

distribution (a model with mean at age 19.7 and variance equal to 11, 

which describes closely the nuptiality patterns in Lesotho, as will be 

seen in Chapter 4) was applied to the observed and the fitted 

distributions by order and duration. There is no doubt that, for the 

purposes of this study, the approximation is quite good. The biggest 

difference is 0.3 years, and that for the cohort and country where the 

model showed the poorest performance. Further refinements, considering 

different interval-unit lenghts, do not seem to be justified at this 

stage in the light of the considerable additional calculations that it 

would demand, and taking into account that all we need is a reasonable 

approximation. Furthermore, several other simplifications will have to 

be introduced later in the calculation process anyway. 

As was pointed out above, in order to obtain distributions of births by 

order and age of the mother, a nuptiality model is required for 

describing the distribution of age at marriage. The fertility 

distribution by age of the mother and birth order is subsequently found 

by combining the distribution of ages at marriage with the fertility 

model by duration of marriage. In the next chapter the nuptiality 

model is discussed and then the fertility model by birth order and age 

of the women is introduced. 
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CHAPTER 4 
The Nuptiality Model and the Model 

of Fertility by Age and Birth Order. 
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IV. THE NUPTIALITY MODEL AND THE MODEL OF FERTILITY BY AGE AND BIRTH 

ORDER. 

4.1 Introduction 

Among the demographic models for describing distributions of age at 

first marriage, the one proposed by Coale (1971) has probably been the 

one most widely used. Coale's nuptiality model is based on the 

empirical observation that, even for widely differing types of 

societies, the distributions of age at marriage for ever married women 

have the same basic form. Indeed the agreement in such distributions 

is remarkable once they have been standardized by linear 

transformations in the age scale and the final proportion of women 

eventually marrying in each cohort. Coale represented the standard 

form on the basis of period data from Sweden in the last century (1865- 

1869). The model was developed further by Coale and McNeil (1972), 

replacing the standard empirical schedule by a mathematical expression. 

Hence, the distribution of ages at first marriage, g(a), is described 

as : 

g(a) -C0.19465/K exp{[-0.174(a-aÖ 6.06K)/K] - 

exp[-0.2881(a-a0 -6.06K)/K]} (4.1) 

where a0 represents an age at which a significant number of first 

marriages occur; K is a scale parameter representing the pace of 
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nuptiality in the cohort, determined by the ratio between the number of 

years in the time span during which the first marriages occur in the 

observed population and that number in the standard population; C is 

the proportion of ever married women in the cohort. Rodriguez and 

Trussell (1980) reformulated the model in terms of the mean and the 

standard deviation of the distribution and provided a maximum 

likelihood estimation procedure to fit the model to survey data. 

Coale's model was used to represent the nuptiality component in the 

Coale and Trussell (1974) model fertility schedules, and in many other 

procedures where an expression for the distribution of ages at first 

marriage was required. The model is based in a continuous function and 

for some type of calculations it is not easy to handle. Considering 

the requirements of the present study, the model introduced by Farahani 

(1981), which consists on a negative binomial distribution, was 

preferred. 

Although the negative binomial model has been used in demographic 

applications as early as 1957 (Brass, 1957), it has not became very 

popular among demographers. Previous demographic applications of the 

negative binomial distribution have been mainly for describing 

distributions of women by completed family size (Brass 1958. a, Brass 

1958. b). For more details about the negative binomial distribution 

see, for example, Moran (1968). 
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4.2 The negative binomial distribution as a nuptiality model 

Following some ideas from Feeney (as quoted by Farahani) "that the 

marriage curve may be composed of a random age of entry followed by a 

random delay", Farahani represented the distribution of entry into the 

marriage market as a negative binomial, and the distribution of delay 

as a simple geometric with the same ratio parameters. On such 

assumptions he found that the age interval at first marriage follows a 

negative binomial distribution: 

M(x) - [(h+x-1)! / h! (x-1)! j 9 
h+l 

(1-g)X-1 ;x-1,2, ... 
(4.2) 

where x represents the age intervals from an arbitrary starting point 

of the nuptiality process. To refer to a specific population, another 

parameter, representing the age at the start of nuptiality (equivalent 

to a0 in Coale's model), is necessary. 

-g and h are parameters which characterize the negative binomial 

distribution; 0<g<1, while the only restriction for h is that it must 

be positive. 

The mean and the variance of this distribution are: 

=I+ (h+l) (1-g) /g 

_ (h+1) (1-g) /9 
2 

(4.3) 

(4.4) 

For a given value of h, the higher the value of g, the more 

concentrated the distribution will be on the first intervals. Thus, 

when g is higher (closer to 1) the mean will be lower, and so will be 
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the variance. On the other hand, for a fixed g value, the distribution 

of nuptiality will have a larger spread and the mean will be higher as 

h increases. If both parameters are modified the final effect on the 

distribution depends on the combined effect. It may concentrate or 

spread the distribution, increase or decrease the mean, according to 

the degree of change in each of the two parameters. 

Evaluation of expression 4.2 is very easy taking into account that: 

h+l 
M(1) g 

M(x+1) s (h+x)/x (1-g) M(x) 

(4.5) 

(4.6) 

Since h and g are known parameters of the distribution, M(1) can be 

calculated and the probabilities for all the following intervals can be 

obtained from equation 4.6 

The negative binomial representation has the advantage of being a 

simple, closed form frequency function. For our purposes here, it 

provides a neat and easy way to handle discrete representation, which 

can be combined with the beta binomial distribution, analysed in the 

previous chapter, to obtain a distribution of births by order and age 

of the mother. As indicated above, the distribution of interval-ages 

at first marriage is given from an arbitrary origin at which the women 

begin to enter the marriage market. To express such a distribution in 

terms of completed years of age in a given population, this origin has 

to be specified. It is also necessary to take into account that the 

parameter values from equations 4.3 and 4.4 correspond to a function 
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of discrete variable. The mean, as determined by 4.3, would imply that 

the marriages occur at the end of each interval. This value should be 

adjusted if it is assumed that marriages occur at the begining or at 

mid point of the interval. In order to get the feeling of the model 

and of the effects on the shape of the distribution caused by 

variations in the values of its parameters, in the next section the 

model is fitted to real data, obtained from W. F. S. surveys. At the 

same time the exercise provides a test of the flexibility of the model 

for describing different nuptiality patterns. 

4.3 Fitting the negative binomial distribution to'survey data. 

For methods of fitting the negative binomial distribution Fisher 

(1941), Anscombe (1950), and Williamson and Bretherton (1963), can be 

consulted. As we are not concerned in this particular study with the 

best fitting, a reasonable approximation will be sufficient for our 

purposes. Hence, the parameters h and g are obtained by equating the 

sample estimates for the mean and the variance to the population 

parameters in equations (4.3) and (4.4), and solving the system for h 

and g. This is not the most efficient method of fitting the negative 

binomial, but it is very simple and provides good enough results for 

our purposes. 
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The model was fitted to marriage histories from fertility surveys 

conducted within the W. F. S. programme in the following countries: 

Colombia, Costa Rica, Lesotho, Mexico, Peru, and the-Republic of Korea. 

For each country information from four age-cohorts of women was 

analysed. In all cases the marriage distributions were truncated at 

the age of 35; as very few marriages were recorded after that age, this 

has little effect on the model parameters. 

The results are presented graphically in figure 4.1. The model fits 

the data very well. There is no doubt that, for the simplified 

representation which is needed in this study, the negative binomial 

gives and exceedingly good description of the nuptiality processes that 

are observed in most countries. The model describes satisfactorily 

experiences that range from that of Sweden 1865-1869 (Coale's standard) 

where marriages occur through a time span of about 40 years (fitted in 

Farahani, 1981, page 165), with a SMAM value of about 11 years from the 

onset of nuptiality and a variance of 34, to that of Korean women (WFS 

data), age cohort 45-49 years, where all women married within a time 

span of fourteen years with the mean of the distribution at about 5 

years from the origin, and a variance of 5. 

Although this is not within the concerns of this investigation, it is 

interesting to note that changes in nuptiality in a given country, such 

as those which took place in the Republic of Korea from one age 

cohort to another, are well described by the model, and that this model 
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distribution can provide a useful and manageable tool for analysing the 

characteristics of such changes. In Korea a massive change took place 

between the cohort aged 45-49, and the cohort aged 30-34 at the survey, 

which resulted in later ages at first marriage and a more widely spread 

distribution in the younger cohort. Such changes are brougt out when 

the four cohorts are super-imposed in the same graph, as in figure 4.2. 

Although not on such a big scale as those in the Republic of Korea, 

changes in Colombia are also significant, and in an unexpected 

direction: cohort 30-34 presents a mean age at first marriage one year 

younger than cohort 45-49. In Latin-American countries, where 

cohabitation frequently begins some time before the formal marriage 

ceremony, a tendency in older women to report the date of the formal 

marriage as the start of the union, perhaps together with some changes 

in social practices (formalizing unions earlier), may produce such 

apparent changes in the marriage distribution without any significant 

change in the time exposure to fertility. 
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Figure 4.1 (Conclusion) 
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FIGURE 4.2: Per-cent Distribution of First marriages by Ages in 

Four Cohorts:. Republic of Korea and Colombia 
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4.4 The model of fertility by age of the women and birth order 

With appropriate models of nuptiality and of fertility by marriage 

duration and birth order, the derivation of a model of fertility by 

birth order and age of the women is straight forward. 

Let assume that a particular age-cohort of women, designated by a, is 

followed. M (a) is written for the probability that a woman of this 
i 

cohort will marry in the i-th interval from entering the marriage 

market. 

D {r/(r-1), a} is the probability that a woman belonging to cohort a 

will have her r-th birth (having had r-1 in the preceeding intervals) 

in the i-th marriage duration interval (see equations 3.8 and 3.9). 

Thus, 

F1(r, a) -M (a) D1{r/(r-1), a} (4.7) 

will be the probability of a r-th birth in the first interval (we 

assume that the marriage occurs at the beginning of the interval). 

There are two ways in which a woman can achieve her r-th child in the 

second interval from entering the marriage market: 

- i. by marrying in the first interval and then having her r-th child in 
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the second interval from marriage; and 

-ii. by marrying in the second interval from entering the marriage 

market and having her r-th child in the first interval from 

marriage; that is: 

F2 (r, a) =M1 (a) D2 {r/(r-1), a} +M2 (a) D1 {r/(r-1), a} (4.8) 

Accordingly, 

** 
F3(r, a) - M1(a) D3{r/(r-1), a} + M2(a) D2+ 

+M (a) D {r/(r-1), a} (4.9) 
31 

in general, the r-th birth in the N-th interval: 

FN (r, a) -M1 (a) DN {r/(r-1), a} +M2 (a) D 
N-1 

{r/(r-1), a} + 

+M 
3(a) 

D {r/(r-1), a} + ... + 
N-2 

o es + MN-1 (a) D2{r/(r-1), a} + MN(a) D1{r/(r-1), a} (4.10) 

More compact: 

FN(r, a) -1Mi(a) DN-i+l{r/(r-1), a} (4.11) 

which defines the fertility model by birth order and age of the women 

as the convolution of the nuptiality function (given by the negative 
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binomial) and the fertility model by duration of marriage (given by the 

beta binomial distribution). 

On the basis of this model the average time exposure to the risk of 

dying for children by birth order and age of the mothers can be 

calculated. Such average exposures are the base for an indirect method 

of estimating child mortality from census (or survey) reports on the 

number of children ever born and children surviving to women, by age of 

the women and total children ever born, at the time of the interview. 

At the same time, by combining this fertility model with the model of 

mortality described in Chapter 2, correction factors to adjust the 

retrospective estimates of mortality for the effects of mother's age, 

birth order and birth spacing, can be obtained. Under certain 

circumstances such adjusting factors can facilitate the analyses of 

mortality trends. The next chapter describes the steps in the 

calculation process and the theoretical assumptions on which the 

procedure rests. 
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CHAPTER 5 
Estimating Proportions of Children Surviving 

by Age and Parity of the Mother Using 

Models of Fertility and Mortality . 
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V. ESTIMATING PROPORTIONS OF CHILDREN DEAD BY AGE AND PARITY OF 

THE MOTHER USING MODELS OF FERTILITY AND MORTALITY 

5.1 The calculation process. 

In order to describe the calculation process it is convenient to 

disaggregate it, somehow arbitrarily, into successive stages. Such 

stages will be delineated briefly here, and a detailed explanation will 

be given in the following sections. The computer program written to 

execute the calculations is presented in Appendix 1. The necessary 

input data are: 

1. The stopping rule (S(r)), expressed in term of the 

proportions of women willing and able to have r or 

more children. 

2. The parameters a and b which characterize the 

fertility model by duration (Beta-binomial). 

3. The parameters g and h which define the marriage 

distribution (negative-binomial), and a0, which is 

the age at which women start to enter the marriage 

market. 

The first step in the calculations is to obtain the average time 

exposure to the risk of dying for children of a given order, by current 

age (single years) of the mother. This is performed from line 53 to 

line 151 in the computer program, and explained in section 5.2. 
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The second step is the calculation of the age of the mother at birth. 

Given the children's average exposure to risk and the current age of 

the mother it should be possible, in principle, to obtain the mother's 

age at birth by subtraction. However, some adjustments are necessary 

in order to take into account the differences between women who, at the 

same age, have different numbers of children ever born. Such 

adjustments and the assumptions on which the calculations rest are 

explained in section 5.3. The execution of this step is performed from 

line 152 to line 261 in the computer program. The time exposures 

to risk are then estimated by subtracting the adjusted "ages at birth" 

from the "current ages" of the women, both measured from the same 

origin (performed from line 226 to line 273 in the program). 

The last step consists in attaching the appropriate probabilities of 

surviving (according to pertinent life tables) to the average time 

exposures, in order to obtain proportions of children surviving. 

Average exposures by birth order, current age of the mother, and number 

of children ever born, have been obtained previously. With that 

information it is possible to calculate the proportion of children 

surviving classified by birth orders and total number of children ever 

born to their mothers, taking into account differential mortality by 

birth order, age of the mother at birth, and birth spacing, using the 

functional description of mortality introduced in Chapter 2. The 

computer program executes this step following instructions. from line 

283 to line 428. A more detailed description of this step of the 

calculation process is given in section 5.4. 
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5.2 Time-exposure to the risk of dying for children by birth order, 

age, and parity of the mothers. 

The average time-exposure for children of a given birth order 

classified by mother's age and parity were obtained according to the 

following steps: 

1) The fertility model by duration of marriage was calculated first. 

Interval length was taken as two years. The distributions of births by 

duration, for each order, were truncated at the 20th interval. The 

stopping rule was not included at this stage. An implicit assumption 

in the distribution of births obtained in this way is that all women 

would have attained their r-th birth after a sufficiently prolonged 

period, and will continue to have children indefinitely. 

2) The distribution of births by order and duration of marriage 

(using an interval of two years) was transformed into a distribution by 

single years of marriage duration, by interpolating in the cumulated 

distribution using a third-degree polynomial function. 

3) The calculation of the nuptiality model was done using a time 

interval unit equal to one year. Thus, time interval units for the 

distribution of marriage intervals coincide with those units for the 

marriage duration obtained in point 2. 
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4) The fertility model by age of the mother was then obtained by 

multiplying the model by duration by the nuptiality model, as 

described in Chapter 4, according to equation 4.11: 

N 
F (r, a)= M (a) D {r/(r-1), a} 

N i= i N-i+1 

From now on, if no confusion is likely to arise from the notation, the 

index a indicating the particular birth cohort of women will be omitted 

for simplicity, writing only FN (r). 

5) Having the distributions of birth by birth order and age interval 

at birth, it is possible to calculate average time-exposures to the 

risk of dying for children by birth order and age of the mothers. 

Taking age from an arbitrary origin at the onset, of the nuptiality 

process: 

123... N (intervals) 

0123 x-1 x (age) 

The average time-exposure to the risk of dying for children of order r 

born to women aged x can be obtained as: 

Ex(r) - [A(x-N+0.5) FN 
N= 

(r)l /C AFN (r)l (5.1) 

assuming that, on average, children have been exposed for half a year 

during the interval in which the births occurred. 
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Similar calculations can be done for the distribution of births by 

duration of marriage and birth order, using the distribution obtained 

in Chapter 3, formula 3.9: 

ET (r) -{ (T-n+0.5) D [r/(r-1)J} /{D [r/(r-1)] (5.2) 
n- n n-1 n 

where T is the marriage duration. 

If the same fertility parameters (a and b in the beta-binomial) are 

used, the differences between E (r) and ET (r) can be attributed, 
x 

under certain assumptions, to the spread of ages at marriage introduced 

in FN(r) by the nuptiality function, as it is the only differing 

factor. 

According to the assumptions on which these calculations were made 

(described in point 1), these exposures to the risk of dying correspond 

to children born to women who have reached at least parity r by that 

age (or marriage duration), since each of these births may have been 

followed by another one (or others). Therefore, the mean time- 

exposures obtained from equation 5.1 correspond to all children of a 

given order r, born to women aged x, who have had at least r children; 

they are not related uniquely to a fixed mother's parity. Some 

adjustments are necessary to adapt these estimates to resemble the type 

of cross-sectional data obtained from retrospective surveys. 
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Before proceeding further, it is convenient to specify some relations. 

Under the assumption that all women would eventually attain an r-th 

birth after a sufficiently prolonged duration of marriage, formula 4.11 

can be used to estimate the number of women who, by age x, will have 

attained r or more births: 

; NB (r+) a It F (r); F (r) -0 if NO 
x N-1 NN 

(5.3) 

obviously the probability of a woman having an r-th birth in age- 

interval N is zero for ages below a certain limit indicated by @ 

In the same way, NB [(r+l)+] gives the number of women who have 
x 

had r+l or more children by age x. Thus, 

NB (r) NB (r+) - NB [(r+l)+] (5.4) 
xxx 

is the number of women with exactly r children at age x. Hence, in 

absence of a stopping rule, NB (r) indicates the number of women in 
x 

the birth cohort a who, at age x, have had r children and are waiting 

for the r+1 birth, which they will achieve after a certain time. 

In a retrospective survey the reproductive experiences of different age 

cohorts of women are interrupted by the survey at their current ages, 

and the number of children achieved up to that age are recorded. For 

some women, with reported parity r at age x, the r-th child is only a 
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stage since they subsequently will proceed to an (r+1)th child and 

eventually more. For other women parity r may be the final stage in 

the family building process either because at age x they might have 

became permanently sterile or because they have reached their desired 

family size and voluntarily stopped childbearing. In any case, the 

ages at which women have achieved (or may achieve) the r-th birth are 

spread over a certain range of ages. Part of such dispersion is caused 

by the spread of ages at marriage, and part is due to the different 

levels of fecundability among the women, and to chance factors. Women 

with higher parities at a given age will be those who have married 

earlier and/or progressed more quickly to bigger family sizes because 

of higher fecundability. 

It is possible to calculate the average exposure to the risk of dying 

for r-th children born to women married over a range of ages (from 

formula 5.1) as well as for children born to women married all at the 

same age (formula 5.2). From these values, the "shifting back" to 

earlier ages at marriage for women who, by the same ages, have 

progressed to higher parity orders than the r-th one can be estimated 

indirectly. This is an important element in the estimation procedure 

to obtain the mother's age at birth of the r-th child, for women who 

have attained n children at the census date. This estimation procedure 

is developed in the next section. 
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5.3 Age at birth of the r-th child for women who have borne 

n children. 

The age of the mother at birth of the first, and then subsequent 

children, can be obtained through the following steps: 

1) Supposing that all women marry at the same age (the fertility 

model by duration), the mean age at birth of the r-th child can be 

calculated as the -age of the women at the survey minus the mean 

exposure to the risk of dying for children of r-th order. Let us write: 

T for the age at the time of the survey (for practical purposes it 

will be measured from marriage), and 

A(r) for the mean age at birth of the r-th child, for women aged T at 
T 

the survey: A(r) -T-E (r) 

T 
E (r) 

0 A(r) T 

Of course, under the assumptions of these models, A(r) is the mean age 
T 

at birth of the r-th child, for women who have borne r or more. E (r) 

represents an average exposure for r-th children, independent of 

whether or not they have been followed by another birth. Most likely, 

those children which have been followed by an (r+1)th, then by an 

(r+2)th, etc, were born earlier. 
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2) Let us consider now a situation in which the ages at marriage 

vary according to a nuptiality model (the fertility model by ages). 

Mean exposures to the risk of dying, E (r), can be calculated from 
x 

equation 5.1. There will be a certain duration T in the model by 

T 
duration (with similar fertility parameters) for which E (r) will be 

equal to E (r). The difference x-T accounts for the spread of ages 
x 

at marriage, the timing of nuptiality being the only differing factor 

in those calculations. This situation is illustrated in the following 

diagram (the meaning of u and A*(r), which appear in the diagram, 
0 

will be explained in the following paragraphs). 

Figure 5.1: Diagram describing the relation between equivalent 

time-exposures in the fertility model by ages and 

by marriage duration. 

........ -1 0 A(r) T(duration) 

u A* (r) 
ý----º 

E 
W=ET(r) 

0x 
x (age) 

average starting point 
of reproduction 

delay due to 
s )read of ages 
at marriage 
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3) As it was pointed out before, an r-th child might have been 

followed by one or more children. If we take an arbitrary age, say x, 

for which the mean exposure for order r is E (r), we can pick up in 
x 

T 
the model by duration the corresponding duration T, so that E (r)=E (r) 

x 
(in practice this will require interpolations between two appropriate 

durations). Under this condition (equal exposures for r-th children), 

the differences in the mean exposures for the higher orders between 

both models (for age x and duration T respectively), that is: 

E (r+l) - ET (r+1), E (r+2) - ET (r+2), E (r+3) - ET (r+3), .. o 
xxx 

show how far the starting point of reproduction shifts backwards to 

younger ages for those women who have progressed to higher parities, as 

a result of the spread of ages at marriage. 

In general, 

rT 
d (n, x) -E (n) -E (n) (5.5) 

x 

T 
under condition E (r)-E (r); where n- (r+l), (r+2), (r+3), ... , 

x 

r 
The values d (n, x) estimate the additional time-exposure to the risk 

of dying for r-th children born to women who have reached family sizes 

of more than r children. These additional exposures come as a result 

of the extension-back in the starting point of reproduction for women 

with higher parities than r at age x. 
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The age of the women at birth of the r-th child can then be obtained 

under certain assumptions. Assuming that all women begin to have 

children at the same age, if age is measured from a convenient origin 

(u ), which coincides with the average starting point of reproduction 
0 

minus one year (see figure 5.1), then women aged A (r) at birth of the 

r-th child would have been A (r)/r at birth of the first child, on the 

assumption that the intervals between births are equal. The origin 

from which A (r) is measured, u -x-(T+1), makes the assumption of 
0 

constant intervals between births closer to reality, as it allows for 

a period equivalent to the post-partum delay for first births. 

Now the restriction of invariant starting point of reproduction for all 

women can be relaxed. Expresion 5.5 can be used for estimating the 

variations in that starting point, according to the family size (total 

number of children) attained by the women at a given age. Let denote 

the mean age of the mothers at birth of their r-th children, for women 

r 
currently aged x who have attained at least n children, by MA {n+, x}. 

This value can be estimated as: 

r*r 
MA {n+, x} -r [A (n)/nj -d (n, x) (5.6) 

4) Now it is necessary to obtain the mean age of the mothers at birth 

of their r-th children for women with exactly n children at a given 

time, say at the census date. The mean ages for women with n or more 

children and also for those with n+1 or more can be obtained from 

equation 5.6. The proportions of women who have attained n or more 

129 



(NB (n+)) and n+1 or more children (NB [(n+1)+]) at age x, are given by 
xx 

expression 5.3. Equation 5.4 provides the proportion of women who have 

exactly n children (NB (n)). From these values, the mean age at birth 
x 

r 
of the r-th child for women with only n children at age x, MA (n*, x), 

can be obtained as a weighted average: 

rrr 
4A (n*, x)={MA (n+, x) NB (n+) - MA [(n+1)+, x] NB [(n+1)+]}/NB (n) (5.7) 

xxx 

S) As the stopping rule was not included in the calculation process 

leading to formulas 5.6 and 5.7, the values obtained from equations 5.6 

and 5.7 only apply to women who will continue to have children. They 

take no account of women who cease to have children because of 

sterility, broken marriage or deliberate decision. Also according to 

the assumptions of these models, the stage at which women stop their 

family building process is independent of the age, as the stopping 

rule, S(r), depends only on the number of children attained. In a 

survey, the women reported as having n children at current age x are a 

mixture of those who are waiting for the next child and those who, at 

that order, have reached their final family size and stopped 

childbearing altogether. The mean age at birth of the r-th child for 

r 
women who have had n or more, MA {n+, x}, provides and estimate for the 

age at birth of the r-th child for women who, at the census, have 

already reached their final family size, say n. In the surveyed 

population, women who stopped at n were in a position to'progress to 

higher orders (proportion NB (n+) in the model) on the basis of their 
x 

fertility timing but, whatever the reasons, stayed at no Those 
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couples who were willing and able to have more than n children either 

have already moved to higher parity orders (proportion NB [(n+1)+] in 
x 

the model) or, at woman's age x, are still waiting for the birth of 

their next child (proportion NB (n) in the model). For those women 
x 

r 
still waiting for the birth of the (n+1)th child, MA (n*, x) would be a 

reasonable estimate for the mean age at birth of the r-th child. Hence, 

rr 
a weighted average of the values MA (n*, x) and MA (n+, x), obtained from 

the model, can be taken as an estimate for the mean ages at birth in 

the surveyed population. The appropriate weighting factors are given 

by the stopping rule S(n) which describes the proportions of women 

willing and able to have n or more children. The ratio S(n+1)/S(n) 

indicates the proportion of women who, having achieved an n-th birth, 

will eventualy have another one, and 1- S(n+1)/S(n) is the proportion 

of those women staying at n. Therefore, the pertinent weighted average 

would be: 

rrr 
MA (n, x)-[S(n+1)/S(n)] MA (n*, x) + {1-[S(n+1)/S(n)]} MA (n+, x) (5.8) 

Then, MA 
r (n, x), is the estimate for the mean age at birth of the r-th 

child for women who have born n children by current age x. In the 

model, age x is measured from the point at which women begin to enter 

the marriage market, hence, conventional ages from birth can be 

obtained by fixing that origin. On the other hand, the ages at birth 

are also measured from an arbitrary origin, which is the adjusted 

average starting point of reproduction (with allowance for an 
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equivalent to post-partum delay for first births). Thus, the time- 

exposure to the risk for each order by parity and age of the mother is 

the span of time from that arbitrary origin to the "present" moment 

(corresponding to current ages of the women), minus the age of the 

women at the birth of their children (which is measured from the same 

origin). This can be seen more clearly by referring to the diagram 

r 
presented in figure 5.1. The MA (n, x) value obtained from equation 5.8 

corresponds, in figure 5.1, to A*(n) after been adjusted for the 

variations in the total number of children achieved by the women. 

The age at which women begin to enter the marriage market (a 
0) 

is 

represented in figure 5.1 by the arbitrary origin zero. For a given 

population, where such age is a0, the age scale can be transformed to 

refer to ages from birth, by just adding a0. The adjusted starting 

point of reproduction, represented by u, is calculated as x-(T+1). 
0 

Therefore, the current age, x, as well as the the mean age at birth, 

r 
MA (n, x), can be expressed in terms of ages from birth as: 

- current age -x+a 
0 

r 
- age at birth - a0 + uo + MA (n, x) 

and, the time-exposure to risk - (current age) - (age at birth) 

From these values the proportions of children surviving to women by age 

and number of children ever born can be obtained as described in the 

next section. 
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5.4 Proportions of children surviving by current age and parity of 

the mothers. 

The information on number of children ever born and number of children 

still alive, collected in so many censuses and surveys around the world 

can be tabulated by age and parity order of the women. Proportions of 

children surviving, or its complement, can then be obtained by age and 

parity of the mothers. 

The models used in this research can facilitate the analysis of 

mortality by age and parity of the mothers from those proportions. 

Under the assumption of constant fertility and mortality, the number of 

children of a given order born t years ago to women currently aged x, 

and the proportions surviving after n years from birth, are the same as 

those for children born t-m years ago to women currently aged x-m 

(n<t-m), the only adjustment needed being that of the growth rate 

effect, in order to take account of the changes in population size. 

Proportions of children dead can be obtained from. the mean exposures 

to the risk by birth order, age, and parity of the women, calculated in 

the previous section, by combining the mean exposures with appropriate 

life tables. The following paragraphs explain the steps required for 

these calculations. 
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1) The proportion of children surviving from birth up to exact age t 

is given by the life table function 1(t), with radix equal to one. 
i, n 

Let us write t for the mean time-exposure to the risk of dying for 
x 

i-th children born to women aged x who have borne n children. From the 

previous section, this value is obtained by subtracting age at birth 

from current age- 

i, n i t-x- MA (n, x) 
x 

(5.9) 

The proportion of children surviving, according to a life table with 

n 
the characteristics described in Chapter 2 will be l(t 

i, n ). 
x 

2) Since each woman with parity n would have borne a child for each 

birth order up to n (multiple births are treated as single births), the 

average (over all orders) proportion of children surviving to those 

women at age x is: 

P(n, x) 1(ti, 
n)} /n (5.10) 

x 

3) Proportions of children surviving by five-years-age groups and 

parity of the mothers can be calculated as a weighted average: 

SPX(n) s{i e-0.02 
j 

P(n, x+j)} /( 
jk e-0.02 

where 0.02 is the rate of population growth, which was kept constant at 
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two per cent per year in all the calculations, and x is the lower limit 

of the five year age interval. 

4) If we write 
5D 

(n) for the proportion of children who have died 
x 

among the children ever born to women with parity n in the age 

group x, x+4, then: 

D (n) =1-P (n) 
5x5x 

(5.12) 

5) In order to obtain the average proportion (over all parity orders) 

of children surviving to women at a given age x, it is necessary to 

take into account the proportions of women reaching parity order n by 

single years of age, as the proportions P(n, x) have to be weighted by 

the number of children borne to each woman. 

Let NB 
* 

(n) denote the proportion of women who have borne n children 
x 

at age x, under the stopping rule S(r). Equation 5.3 gives the 

proportion of women having n or more children at age x (NB (n+)), 
x 

assuming that all women would achieve an n-th child after a suficiently 

prolonged marriage duration, and will continue to have children. Then, 

taking into account the stopping rule: 

t 
NB (r) -{ S(n) . NB (n+)} -{ S(n+1) . NB [(n+l)+]} (5.13) 

xxx 

and the average proportion (over all orders) of children surviving to 

women aged x: 

P-{En. NB (n) . P(n, x)}/ { AL n. NBt(n)} (5.14) 
x n-1 n-1 
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The highest number of children ever born to women aged x is indicated 

by 
T 

in equation 5.14. 

6) The average proportion of children surviving by five year age 

groups of the women is then calculated by averaging the proportions 

P(x) in a similar way as was done in relation 5.11: 

4 -0.02 j -0.02 j 
P={ae P(x+j)} /{e} (5.15) 

5x j=0 j=o 

The analysis of the proportions obtained from equation 5.15 is the 

subject of Chapter 6. Under the assumption that the level of child 

mortality is invariant by the mother's age, "expected" proportions of 

children surviving are calculated. The expected proportions are then 

compared with the "model" proportions, which consider differential 

mortality by mother's age, birth order, and birth spacing. In this way 

the differential mortality which affects children born to younger 

mothers is evaluated, so the retrospective estimates can be adjusted. 

The proportions obtained from equation 5.11 are studied in Chapter 7. 

Particular attention is given to the variation in the average time 

exposure by parity within each age group of the mothers. The 

conclusions drawn from these analyses indicate that retrospective 

information on the number of children ever born and children surviving 

by age group of the mothers can be safely used for studying the 

differentials in child mortality by family size. The study of such 

differentials is illustrated with two applications using census data 

from Bolivia and Guatemala. 
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CHAPTER 6 
The Impact of Differential Mortality by 

Mother's Age and Birth Order on the 

Retrospective Estimates from Indirect Methods. 
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VI. THE IMPACT OF DIFFERENTIAL MORTALITY BY MOTHER'S AGE AND BIRTH 

ORDER ON THE RETROSPECTIVE ESTIMATES FROM INDIRECT METHODS 

6.1 Introduction 

Throughout this chapter the term "simulated" proportion is used to 

denote those results in which the mortality risk is a function not only 

of the child's age but also depends on the birth order and mother's 

age, as determined by the functional description of mortality, defined 

in Chapter 2 (equations 2.1,2.2,2.3). "Standard" proportion indicates 

results where the mortality function varies with age of the child only, 

following the Brass' General Standard pattern. For a given age group 

and parity, both measures (simulated and standard) refer to the same 

time-exposure, therefore their logits can be related through the linear 

equation in the logit life table system. "Expected" proportions of 

surviving children can be calculated under the assumption that the 

overall mortality level is the same as that implied in the simulated 

proportions, but the risks are invariant with birth order and mother's 

age, depending only on the child's age (following the standard 

pattern). In this way the difference between the simulated and the 

expected proportions would indicates the effects of the differential 

mortality associated with the reproductive patterns. 

In relation to these reproductive patterns, three main factors have 

been explicitly included in the calculations, hence their effects can 

be controlled and analysed independently: the stopping rule, the 
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patterns of nuptiality, and the pace of marital fertility. 

The stopping rule determines the absolute level of fertility and the 

patterns of family formation. A minute analysis of the effects of such 

patterns on infant and child mortality is not within the aims of this 

study. For our purposes the variations in the proportions of children 

surviving, resulting from changes in the stopping rule, have to be 

interpreted as the quantitative effects on the proportions surviving, 

associated with the fertility structure by family size. In other 

words, those changes describe how the simulated proportions of 

children surviving vary when the number of births by order changes for 

a given pattern of mortality, nuptiality, and marital fertility pace. 

The nuptiality pattern plays an important role. Very early nuptiality 

implies that a significant number of births may occur at young ages, 

where the risks are high. In societies where little or no family 

planning is practised this effectively means that large family sizes 

may be attained at relative young ages, a situation which heightens the 

risks considerably. 

In the context of these analyses the effects of the pace of marital 

fertility can be observed by fixing the stopping rule and the 

nuptiality pattern, while changing the marital fertility distribution. 

To illustrate how changes in the fertility pace may affect the 

distribution of births we can point out that, for a slow fertility pace 

(parameter p around 0.5 for interval units of two years), it is 
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expected that about 80-85 per cent of the first births would occur 

within four years from marriage, around 20-25 per cent of third births 

within six years, and about 11-15 per cent of sixth births during the 

first twelve years. For a fast pace (p at about 0.75), around 90 per- 

cent or slightly more of the first births would occur within the first 

four years of marriage, 45-50 per cent of third births within six 

years, and about 25-30 per cent of sixth births during the first twelve 

years of marriage. Faster fertility pace means that a higher proportion 

of high order births is reached at a given age. Thus more births will 

be happening in high concentration categories, affected by higher 

mortality. It is convenient to remember that under the assumptions of 

these models either litle or no birth control occurs, or birth control 

operates by stopping after a given family size has been attained, but 

not through birth spacing. 

6.2 Differences in the levels of mortality from retrospective 

estimates associated with the age group of the respondents. 

In order to analyse the variations in the level of mortality associated 

with the age group of respondents, it is necessary to adopt a base with 

which the different estimates can be compared. Such base must represent 

a fair mixture of the mother's ages at birth and birth orders that 

occurred in the population. The proportion of children surviving to 

women aged 40-44 was taken as the base for these comparisons. This 

group was preferred, rather than the age group 45-49, because the 
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assumptions on which the models are based become less realistic as the 

extremes of the reproductive interval are appoached, therefore near 

those boundaries the results are less reliable. On the other hand, the 

relatively few births to women older than 45 which are ruled out, as 

group 40-44 is adopted, are unlikely to modify the "overall" level of 

mortality significantly. Since the scale factor K, in equations. 2.1, 

2.2, and 2.3, was given the value one in all simulations, the overall 

level of mortality in the simulated proportions should be close to that 

from the standard. However, as the distribution of births differs from 

the one used for specifying the functions A(y), P(r), and C(c) 

(equations 2.4,2.5,2.6, in section 2.5, Chapter 2), changes in the 

number of births occurring in the different subclasses would introduce 

some variations in the overall mortality level. The next paragraph 

explains how these variations are accounted for in the calculation 

procedure. 

From the simulated and standard proportions of children surviving to 

women aged 40-44 the, alpha value in the one parameter logit life table 

system is calculated: 

cC logit 
s6m 

- logit (P6d) 

where logit(P) - 0.5 In{(1-P)/P}, 

P6 is the simulated proportion, and 

sd P6 is the standard proportion for age group 40-44, 

(6.1) 
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this alpha represents the overall level of mortality in the simulated 

population. 

With the parameter alpha and the standard proportions for each age 

group (P sd ), "expected" proportions can be obtained (P*): 
ii 

Pi = 1/{1+ exp 2[c< 
sid (6.2) 

where i=1,2, ... indicates age groups 15-19,20-24, ... 

These "expected" values represent the proportions of children that 

would survive to mothers by groups of ages, if mortality is constat by 

age of the mother, birth order, and concentration, and the overall 

mortality level is equal to that. from the simulated proportions. 

Finally, ratios from the expected to the simulated proportions of 

children dead are calculated: 

sm 
C (1-P* 

i 
)/(1-P 

i) i 
(6.3) 

Three patterns of marital fertility, corresponding to p equal to 0.857, 

0.643 and 0.429, (p-a/(a+b), equation 3.12) were combined with three 

patterns of nuptiality and four stopping rules, to produce a number of 

simulated proportions of children surviving from which the values Ci, 

presented in table 6.1, were obtained. 
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The nuptiality patterns were defined by the following parameters: 

negative binomial marriage distribution 

g h mean age variance 

0.54 6.0 17.4 11.00 

0.48 6.5 19.6 16.93 
0.46 7.7 22.7 22.20 

g and h are the parameters of the negative binomial distribution, and 

the mean and variance were obtained from equations 4.3, and 4.4, with 

age at onset of nuptiality (a 
0) equal to 11 and 12, and marriages 

assumed to happen at the mid point of the marriage duration interval. 

The four patterns of fertility by birth order, corresponding to total 

fertility rates at about 7.0,6.0,5.0, and 4.0 respectively, are 

defined by the following stopping rules, S(r): 

r 
TFR 

1 2 3 4 5 6 7 8 9 10 11 12 13 

7.00 . 94 . 90 . 87 . 82 . 74 . 66 . 56 . 47 . 38 . 28 . 18 . 11 . 05 
6.00 . 92 . 88 . 82 . 75 . 68 . 59 . 48 . 35 . 22 . 13 . 07 . 05 . 03 
5.00 . 90 . 86 . 79 . 70 . 56 . 43 . 30 . 21 . 12 . 06 . 03 . 02 . 01 
4.00 . 89 . 79 . 66 . 53 . 42 . 28 . 18 . 13 . 06 . 03 . 015 . 008 . 004 

These patterns were derived from observed distributions of women by 

completed family sizes. 
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The main patterns of variation in C, as each one of these three 

factors change, can be observed in table 6.1. 

Table 6.1: Factors Ci by age group for different fertility and 

nuptiality patterns. 

Fertility 
C 
i Level Pace 

(TFR) (p) 15-19 20-14 25-29 30-34 35-39 

2 
I. Nuptiality distribution: x- 17.4 T. 11.0 

7.00 0.857 0.883 0.953 0.983 0.970 0.971 

0.643 0.871 0.961 1.003 1.020 1.007 

0.429 0.852 0.960 1.023 1.048 1.026 

6.00 0.857 0.826 0.898 0.933 0.939 0.973 

0.643 0.821 0.912 0.958 0.986 0.990 

0.429 0.815 0.922 0.987 1.018 1.014 

5.00 0.857 0.765 0.838 0.884 0.925 0.971 

0.643 0.768 0.855 0.914 0.960 0.980 

0.429 0.769 0.875 0.947 0.994 1.004 

(Continue) 
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Table 6.1 (continuation) 

Fertility 
C 
i 

Level Pace 

(TFR) (p) 15-19 20-14 25-29 30-34 35-39 

Nuptiality distribution: x- 19.6 
2 

T = 16.9 

6.00 0.857 0.802 0.923 1.048 1.044 1.001 

0.643 0.801 0.925 0.998 1.030 1.012 

0.429 0.795 0.933 1.018 1.052 1.030 

5.00 0.857 0.745 0.858 0.981 0.997 0.985 

0.643 0.754 0.875 0.954 0.999 1.003 

0.429 0.753 0.886 0.976 1.020 1.019 

4.00 0.857 0.713 0.833 0.954 0.981 0.985 
0.643 0.725 0.851 0.956 0.989 1.001 
0.429 0.727 0.863 0.957 1.009 1.016 

2 
Nuptiality distribution: x 22.7 Ta 22.2 

6.00 0.857 0.793 0.951 1.138 1.172 1.070 

0.643 0.785 0.946 1.075 1.111 1.050 
0.429 0.774 0.950 1.058 1.089 1.058 

5.00 0.857 0.751 0.903 1.074 1.122 1.055 
0.643 0.746 0.902 1.026 1.071 1.038 
0.429 0.739 0.909 1.016 1.059 1.043 

4.00 0.857 0.725 0.878 1.040 1.094 1.043 

0.643 0.722 0.881 0.998 1.055 1.033 

0.429 0.718 0.890 0.994 1.048 1.037 
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The features which clearly stand out in table 6.1 are, in first place, 

that children born to women under 20 suffer heavier than overall 

mortality. Secondly, the proportion of children dead to women 20-24 

reflects also a level of mortality higher than that for all children. 

Children born to women in this group when they were younger (under 20), 

probably have a significant impact on this average, even when 

numerically they are a minority. For older groups the situation varies 

according to the nuptiality and fertility characteristics, but the C 

coefficients are generally close to one. 

With respect to variations with nuptiality and fertility, the response 

to changes in such patterns are not simple. It is clear that the most 

important changes take place when moving from one nuptiality pattern to 

another. The level of fertility determined by the proportions having r 

or more children, according to the stopping rule, also produce 

significant changes in the Ci ratios. However, the variations in C 

due to changes in different factors are not uniform by age groups. 

For a given level of fertility and a nuptiality pattern, as the pace of 

fertility became slower, the relative excess of mortality affecting 

children born to women under 20 increases, while the change in Ci for 

age groups over 20 generally moves in the opposite direction, sometimes 

with very little change. Since in the early reproductive ages the 

situation can vary very little (independently of the average fertility 

pace all births will be affected by the adverse impact of mother's age 

while there would be little time for moving on to higher orders in 
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spite of a faster pace), such variation seems more likely to reflect 

the effect of the fertility pace on the overall mortality, with which 

the group 15-19 is compared, rather than changes within the group 15-19 

itself. The simulated proportions of children dead reflect a level of 

mortality between 10 and 25 per cent higher than the level expected 

under the assumption of constant mortality by mother's age and birth 

order. When a higher proportion of women progress to high parities 

(stopping rule for TFR=7), the adjusting factor to make mortality in 

this group comparable to that for all births is closer to one: the 

advantage of lower risks associated with ages older than 20 is somehow 

counteracted in part by more births in higher concentration groups and 

higher orders. 

The results in table 6.1 show Ci values consistently lower than one for 

the age group 20-24. For a given nuptiality pattern Ci becomes lower 

(bigger correction) when the level of fertility is lower. Similar to 

the case of age group 15-19, it seems likely that this is more the 

result of variations in the overall level rather than in 'group 20-24 

itself. A faster pace in marital fertility increases the relative 

mortality level for this group. However, such variation is only 

moderate, reaching a maximum of about three per cent. 

For ages above 25 the Ci values fluctuate around one, and in most cases 

denote only a small correction. The only case in which the adjusting 

factor for age group 25-29 indicates a correction of the order of ten 

per cent is in that of very early nuptiality, very fast pace and a TFR 

equal to five. 
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6.3 An example using data from Peru 

The same data used in figure 1.1 to illustrate the analysis of trends 

in childhood mortality from indirect estimates will be used here. 

Table 6.2 presents the proportions of children dead, the coefficients 

C and the estimated q(x) and alpha (o< ) values adjusted and 
i 

unadjusted. The derivation of q(x) from the proportions of children 

dead is explained in several papers quoted already in Chapter 1. Only 

the adjustment of the retrospective estimates to account for 

differential mortality by age group of respondents is considered here. 

The Ci values for 1972 were selected from the panel in table 6.1 with 

mean age at marriage at 19.6, a TFR of 6.00, and a fast pace (p=0.857). 

For 1976 and 1977 the Ci correspond to the same nuptiality and pace 

parameters as for 1972, but an average of the values for TFR-6.00 and 

TFR-5.00 was taken, following the decline that occurred in fertility. 

Figure 6.1 shows the adjusted and unadjusted trends. Except for the 

group 15-19 from the 1976 survey, the adjusted values fit very well 

into the overall trend indicated by all the points from the three data 

sources together. The upward turn which appears in the unadjusted 

estimates from age groups 15-19 and 20-24 are the result of the higher 

risks experienced by the children born to these women. The analysis of 

the data from the 1976 survey by sex (Instituto National de Estadistica 

-INE-, 1978) reveals that the very high mortality for children born to 

women under 20 reflect an anomalously high proportion of female 
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children reported dead. Such a sex differential is not consistent with 

the sex differential observed in the reports from other age goups and 

other data sources. The cause of this anomaly is not clear. However, 

if the overall sex differential is maintained and the level of 

mortality from reports on male children is accepted, the estimate would 

be consistent with all the rest of the points. 

An attempt to adjust estimates from the younger age groups may not be 

as successful in other cases as it was in this example. Women who 

marry and have children very early represent a highly selective group 

in some societies. If that selectivity is associated with mortality, 

then the children born to these women will be affected by a different 

level of mortality, not only because of the reproductive pattern, but 

also because of other factors which determine a level of mortality not 

comparable with that for the whole population. 
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Table 6.2: Indirect Estimates of Childhood Mortality Levels (cc) from 

Proportions of Children Dead, Adjusted for Differential 

Mortality by Age Group of Respondents, PERU. 

Age of 

respondent 

Proportion 

dead 

C 
Unadjusted 

q(x) cc 

Adjusted 

q(x) Oc 

1972 Census 

15-19 0.1475 0.802 0.1377 -0.050 0.1104 -0.176 
20-24 0.1755 0.923 0.1731 -0.067 0.1597 -0.115 
25-29 0.1873 1.048 0.1835 -0.091 0.1923 -0.062 
30-34 0.2042 1.044 0.2021 -0.850 0.2110 -0.058 
35-39 0.2312 1.001 0.2307 -0.052 0.2309 -0.052 
40-44 0.2562 0.2493 -0.038 0.2492 -0.038 
45-49 0.2905 0.2821 -0.012 0.2820 -0.012 

P /P - 0.530 
23 

1976 Survey 

15-19 0.1517 0.774 0.1777 0.101 0.1374 -0.052 
20-24 0.1333 0.891 0.1463 -0.167 0.1303 -0.234 
25-29 0.1435 1.015 0.1493 -0.215 0.1515 -0.206 
30-24 0.1589 1.021 0.1646 -0.211 0.1680 -0.198 
35-39 0.1922 0.993 0.2008 -0.141 0.1994 -0.145 
40-44 0.2215 0.2273 -0.099 0.2273 -0.099 
45-49 0.2240 0.2301 -0.149 0.2301 -0.149 

P /P - 0.395 
23 

1977 Survey 

15-19 0.1090 0.774 0.1256 -0.103 0.0971 -0.248 
20-24 0.1246 0.891 0.1359 -0.210 0.1211 -0.276 
25-29 0.1431 1.015 0.1484 -0.218 0.1505 -0.211 
30-34 0.1563 1.021 0.1616 -0.222 0.1649 -0.210 
35-39 0.1932 0.993 0.2014 -0.139 0.2000 -0.143 
40-44 0.2141 0.2192 -0.122 0.2192 -0.122 

45-49 0.2510 0.2571 -0.075 0.2571 -0.075 

P /P - 0.407 
23 
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6.4 Conclusions 

It seems, at this stage, that table 6.1 contains enough information for 

most cases in which an adjustment of the proportions of children dead 

would be needed. When information on children ever born and surviving 

is available, usually some knowledge about the pattern of nuptiality 

and the level of fertility (enough to locate the situation about some 

panel in table 6.1) is also available. A precise knowledge of 

nuptiality and fertility is not necessary. Information on the pace of 

fertility may be more scanty in some cases, but the results are not 

very sensitive in relation to this parameter. In any case, in absence 

of any information, using the medium pace (p. 0.643). would be 

reasonable, considering that the margin of error which this may produce 

is in most cases within two per cent. This margin seems quite 

acceptable taking into account the approximations and the simplifying 

assumptions inherent in the calculation of C. 

Considering that these results are only approximate, in most cases an 

attempt to adjust retrospective estimates for age groups above 30 (or 

even 25-29 in some cases) would not be justified. Children born to 

these women are already a fair mixture of orders and ages at birth. 

Several other factors may produce differences as important as the 

differentials by reproductive patterns associated with the selection 

which, at later stages of the reproductive period, still may remain. 

The biases in age groups 15-19 and 20-24 are in most cases very 

important and' the correction would be of an order of magnitude far 

152 



bigger than the margin of error which may arise from simplifying 

assumptions and 'from imperfect approximations in the parameters used 

for selecting the multipliers Ci. 

The assertion made above, that estimates from age groups 15-19 and 

20-24 are biased, implicitly assumes that these values are used for 

estimating the level of mortality affecting all children in the 

population, which indeed is the purpose of such statistics in most 

cases. However, strictly speaking, these are in themselves estimates 

which measure the mortality of children born to women under 20 and 25 

years of age respectively, and for some particular purposes it may be 

of interest to know the level of mortality for these specific groups. 

Obviously, in such cases the estimates have to be used at face value, 

any adjustments (except to transform the proportions of children dead 

into conventional life table functions) are pointless and incorrect. 

Finally it should be mentioned that if women having children at very 

young ages are a selected group, such selection may be associated with 

an altogether different level of child mortality and the correction 

proposed here would not solve the problem of comparability with the 

mortality level for the whole population. 
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CHAPTER 7 
Analysis of the Proportions of Children 

Surviving by Age of the Mother and Parity. 
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VII. ANALYSIS OF THE PROPORTIONS OF CHILDREN SURVIVING BY AGE OF THE 

MOTHER AND PARITY. 

7.1 Introduction 

As explained in Chapter 5, proportions of children surviving have been 

calculated by birth order, by family size (parity), and mother's single 

years of age. The analysis carried out in Chapter 6 required 

aggregation of birth orders and family sizes, thus the results 

depended on the stopping rule which weighted the family sizes on the 

averaging. 

In this chapter the proportions bf children surviving are analysed by 

family size and age of the mother. In relation to those of the 

previous chapter, this type of analysis has the advantage of being 

independent from the stopping rule, as each family size is taken 

separately. In first place attention will be given to the variations 

in the average time-exposures by family size. The mean exposures 

obtained from model distributions are compared with exposures obtained 

from observed birth distributions. Then the simulated and standard 

proportions of surviving children will be compared, and the practical 

implications of the findings will be discussed. 
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7.2 Mean time-exposure to risk by family size and mother's age. 

Table 7.1 presents the average time exposure to risk by age and 

parity, and the simulated and standard proportions of children 

surviving, for three different situations of nuptiality and fertility. 

Results analogous to these, but for a wider range of nuptiality and 

fertility patterns, are shown in Appendix 2. 

The effects of birth concentration, birth order and age of the mother 

are ostensible. An idea of the magnitude of such effects is provided 

by the difference between the simulated and the standard proportions in 

each age-parity group. The simulated proportions decrease 

dramatically at very high parities, and are lower than the standard 

ones at ages under 20 for any family size. A more detailed discussion 

of these variations is carried out in the next section. 

A remarkable feature is the stability of the mean time exposure by 

parity for any given age group, according to the results from these 

models. At first sight this stability looks rather surprising. One 

may expect that bigger families have been attained by starting 

childbearing earlier and this, in turn, would be associated with longer 

average exposures at higher parities. Information from birth-histories 

can be used to obtain analogous statistics, allowing us to compare 

these results with those from real data. 
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Table 7.1: Mean time-exposure to risk, standard, and simulated 
proportions of children surviving by age of the mother 
and family size, for three different patterns of 

nuptiality and fertility. 

AeGrou 
Family gp 

size 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

A. Fertility p-0.5; nuptiality: g-0.56, h"5.5, x-16.6, T2 =9.1 

Mean time-exposures 

1 1.84 3.51 5.73 8.50 11.73 15.24 19.13 2 1.90 3.39 5.37 7.88 10.88 14.61 17.92 3 2.02 3.25 5.08 7.67 10.91 14.82 17.99 4 2.47 3.16 4.89 7.42 10.87 14.95 18.08 5 0.0 3.46 4.75 7.32 10.96 15.20 18.33 6 0.0 3.72 4.64 7.25 11.07 15.43 18.56 7 0.0 0.0 4.76 7.16 11.22 15.69 18.82 8 0.0 0.0 5.08 6.99 11.29 15.88 19.02 9 0.0 0.0 0.0 6.76 11.03 15.76 18.98 10 0.0 0.0 0.0 7.23 10.71 15.65 18.94 

Simulated proportions of children surviving 

1 0.772 0.786 0.793 0.793 0.790 0.781 0.763 2 0.727 0.756 0.777 0.798 0.794 0.783 0.767 3 0.688 0.724 0.761 0.780 0.789 0.780 0.763 4 0.661 0.685 0.735 0.766 0.770 0.771 0.757 5 0.0 0.658 0.702 0.736 0.751 0.748 0.741 6 0.0 0.628 0.659 0.708 0.726 0.731 0.721 7 0.0 0.0 0.629 0.671 0.696 0.706 0.702 8 0.0 0.0 0.601 0.629 0.665 0.679 0.680 9 0.0 0.0 0.0 0.597 0.629 0.653 0.660 10 0.0 0.0 0.0 0.571 0.597 0.632 0.643 

Standard proportions of children surviving 

1 0.814 0.782 0.766 0.755 0.746 0.735 0.718 2 0.811 0.783 0.767 0.757 0.748 0.738 0.724 
3 0.807 0.785 0.769 0.758 0.748 0.737 0.724 4 0.798 0.786 0.770 0.759 0.748 0.736 0.724 
5 0.0 0.782 0.771 0.759 0.748 0.736 0.722 
6 0.0 0.779 0.772 0.759 0.748 0.735 0.721 7 0.0 0.0 0.771 0.760 0.747 0.734 0.720 
8 0.0 0.0 0.769 0.760 0.747 0.733 0.719 9 0.0 0.0 0.0 0.761 0.748 0.734 0.719 

10 0.0 0.0 0.0 0.759 0.748 0.734 0.719 

(continue) 
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Table 7.1 (Continuation) 

AeGroup 
Family 

g 

size 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

B. Fertility p-0.5 ; nuptiality: g-0.6, h-8.0, s-18.5,6 -10. 

Mean time-exposures 

1 1.49 2.82 4.75 7.31 10.31 13.78 17.51 
2 1.65 2.80 4.46 6.82 9.37 12.95 16.52 
3 1.89 2.78 4.32 6.54 9.34 13.14 16.68 
4 0.00 2.91 4.19 6.38 9.31 13.46 16.94 
5 0.00 3.34 4.05 6.23 9.20 13.53 17.09 
6 0.00 0.00 4.22 6.11 9.22 13.71 17.30 
7 0.00 0.00 4.54 5.87 9.02 13.55 17.22 
8 0.00 0.00 0.00 5.84 9.02 13.73 17.41 
9 0.00 0.00 0.00 6.29 8.81 13.65 17.39 

10 0.00 0.00 0.00 6.81 8.77 13.72 17.90 

Simulated proportions of children survin 

1 0.790 0.801 0.804 0.802 0.796 0.787 0.771 
2 0.748 0.774 0.793 0.806 0.800 0.790 0.773 
3 0.711 0.740 0.778 0.792 0.799 0.787 0.769 
4 0.0 0.715 0.753 0.779 0.782 0.781 0.763 
5 0.0 0.687 0.718 0.754 0.764 0.759 0.753 
6 0.0 0.0 0.687 0.727 0.742 0.742 0.731 
7 0.0 0.0 0.654 0.691 0.720 0.723 0.714 
8 0.0 0.0 0.0 0.652 0.685 0.700 0.697 
9 0.0 0.0 0.0 0.626 0.652 0.678 0.678 

10 0.0 0.0 0.0 0.597 0.620 0.652 0.659 

Standard proportions of children surviving 

1 0.829 0.791 0.771 0.759 0.749 0.740 0.726 
2 0.822 0.791 0.773 0.761 0.752 0.743 0.731 
3 0.812 0.792 0.774 0.762 0.752 0.742 0.730 
4 0.0 0.789 0.775 0.763 0.752 0.741 0.729 
5 0.0 0.784 0.776 0.763 0.753 0.741 0.728 
6 0.0 0.0 0.775 0.764 0.753 0.740 0.727 
7 0.0 0.0 0.772 0.765 0.753 0.741 0.728 
8 0.0 0.0 0.0 0.765 0.753 0.740 0.727 
9 0.0 0.0 0.0 0.763 0.754 0.741 0.727 

10 0.0 0.0 0.0 0.761 . 0.754 0.740 0.726 

(continue) 
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Table 7.1 (Continuation) 

AeGrou 
Family gp 

size 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

C. Fertility p=0.857 ; nuptiality: g=0.4, h=4.0, x=22.0, =18.8 

Mean time-exposures 

1 0.98 1.65 2.39 4.15 8.66 13.79 18.77 
2 1.39 2.02 2.87 3.87 6.22 10.72 15.92 
3 0.00 2.32 3.24 4.32 5.98 8.97 14.15 4 0.00 2.87 3.53 4.82 6.57 8.94 13.13 
5 0.00 0.00 0.00 5.16 7.13 9.57 13.28 6 0.00 0.00 0.00 . 6.05 7.57 10.36 14.07 
7 0.00 0.00 0.00 0.00 7.87 11.13 14.81 
8 0.00 0.00 0.00 0.00 8.46 11.28 15.01 
9 0.00 0.00 0.00 0.00 9.59 12.22 16.08 LO 0.00 0.00 0.00 0.00 0.00 12.77 16.26 

Simulated proportions of children surviving 

1 0.820 0.837 0.842 0.824 0.802 0.787 0.765 
2 0.776 0.797 0.823 0.831 0.812 0.790 0.774 
3 0.0 0.761 0.801 0.824 0.817 0.797 0.779 
4 0.0 0.750 0.770 0.801 0.806 0.796 0.780 
5 0.0 0.0 0.0 0.771 0.784 0.782 0.769 
6 0.0 0.0 0.0 0.749 0.762 0.763 0.754 
7 0.0 0.0 0.0 0.0 0.734 0.742 0.735 
8 0.0 0.0 0.0 0.0 0.711 0.720 0.718 
9 0.0 0.0 0.0 0.0 0.682 0.690 0.695 

10 0.0 0.0 0.0 0.0 0.0 0.672 0.676 

Standard proportions of children surviving 

1 0.851 0.822 0.799 0.775 0.754 0.740 0.720 
2 0.833 0.807 0.790 0.778 0.763 0.748 0.733 
3 0.0 0.801 0.785 0.774 0.764 0.753 0.739 
4 0.0 0.790 0.782 0.770 0.762 0.753 0.742 
5 0.0 0.0 0.0 0.768 0.760 0.751 0.742 
6 0.0 0.0 0.0 0.764 0.758 0.749 0.739 
7 0.0 0.0 0.0 0.0 0.757 0.747 0.736 
8 0.0 0.0 0.0 0.0 0.755 0.747 0.736 
9 0.0 0.0 0.0 0.0 0.751 "0.745 0.732 

10 0.0 0.0 0.0 0.0 0.0 0.743 0.732 
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Mean time-exposures were calculated from birth histories collected in 

three fertility surveys conducted within the WFS programme. They are 

presented in table 7.2 (number of cases and standard deviation for each 

cell are presented in Appendix 3). Panel D of this table shows the 

average exposures obtained from models which resemble patterns of 

nuptiality and fertility by order and marriage duration prevailing in 

Latin American countries. These models were selected on the basis of 

the results obtained in Chapter 3 and Chapter 4. The stability in the 

mean exposures by family size within each age group is also remarkable 

in these three countries. The the broad patterns of variation in the 

time-exposures observed in these three countries are followed closely 

by the exposures obtained from the models. Although this is not proof 

that the results obtained from the models are free of errors or biases, 

it does show that they are very plausible and provide a reasonable 

basis for analysing the variations in the time exposures by age and 

parity. 

In a closer analysis, comparing the model values with the observed 

ones, it is apparent that some systematic differences appear in the 

younger age groups. The observed exposures are shorter than the 

expected (according to the model), for the smaller family sizes. After 

a given family size (2 children, sometimes 3), the observed exposures 

change very little, and that happens in the model as well. This 

difference can be explained, at least partially, in terms of auptiality 

changes. There is evidence that cohorts under the age of 30 at the time 

of the surveys experienced a delay in ages at first marriage, in 
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Table 7.2 Average Exposure to Risk by Mother's Age and Parity 

Calculated from the National Fertility Surveys (WFS) from 

Mexico, Peru and Colombia, and from Models. 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

A. Mexican Fertility Survey 

1 1.05 1.77 2.97 6.07 8.59 14.51 20.45 

2 1.72 2.32 3.73 6.28 9.99 15.08 19.11 

3 2.16 3.10 4.67 6.84 9.71 15.98 17.80 

4 2.64 3.78 5.30 7.69 11.05 15.84 19.16 

5 4.52 5.72 7.58 10.62 14.73 19.77 

6 4.46 5.96 7.98 10.37 14.08 19.64 

7 5.41 6.52 8.22 10.91 14.35 18.52 
8 6.90 8.45 10.88 14.57 18.06 
9 6.86 8.81 11.36 14.30 17.43 

10 8.59 11.20 13.77 18.01 

B. Peru National Fertility Survey 

1 1.02 1.63 2.85 7.29 9.49 15.70 15.99 

2 1.74 2.45 3.81 6.35 10.50 15.91 20.58 

3 2.43 3.22 4.82 6.57 10.08 14.45 19.77 

4 2.92 3.99 5.21 7.14 10.21 14.22 18.87 

5 4.30 5.44 7.19 10.59 14.05 18.22 

6 4.78 6.12 8.11 10.54 14.31 18.26 

7 6.15 6.59 8.12 10.36 14.47 18.23 

8 5.31 6.45 8.30 10.53 14.01 17.38 

9 7.40 8.74 10.63 13.47 18.58 

10 10.38 11.01 1.3.96 18.27 

(continue) 
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Table 7.2 (Continuation) 

AeGrou 
Parity 

gp 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

C. Colombian Fertility Survey 

1 1.05 1.88 3.56 6.34 9.00 15.20 20.49 
2 1.52 2.66 4.42 6.90 10.00 13.73 20.65 
3 2.43 3.31 5.31 7.37 10.86 15.92 19.71 
4 2.43 4.03 5.69 8.19 11.47 14.05 18.71 
5 4.28 5.93 8.53 12.21 13.88 18.57 
6 4.50 6.24 8.21 11.56 15.53 18.93 
7 6.34 8.43 11.48 15.37 16.60 
8 9.31 10.96 13.94 17.18 
9 8.84 12.18 14.22 17.63 

10 10.76 13.54 18.29 

D. Model Distribution: p=0.786, x-19, 
es15 

1 1.55 2.59 4.39 8.49 13.64 18.63 23.51 
2 1.79 2.83 4.20 6.63 10.75 16.10 20.86 
3 2.07 2.95 4.46 6.62 9.56 14.33 19.17 
4 3.13 4.49 6.61 9.38 13.52 17.71 
5 3.64 4.66 7.15 10.37 14.56 18.24 
6 4.73 7.05 10.42 14.68 18.21 
7 5.09 6.57 9.76 14.11 17.60 
8 7.26 10.93 15.49 18.90 
9 7.53 10.39 15.11 18.54 

10 10.02 14.90 18.40 
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comparison with older cohorts. In the model presented in table 7.2 the 

nuptiality pattern corresponds to the experience of those older 

cohorts, whose distributions were fitted in Chapter 4. Younger women 

have been marrying at later ages, and indeed the observed pattern of 

exposures, increasing with family size at young ages, is compatible 

with the patterns obtained from models with later and more spread 

nuptiality and fast fertility pace. Obviously, in a situation of 

changing nuptiality a unique set of models would not be able to 

describe appropriately the average exposures for all age groups, and a 

pattern of later nuptiality than the one used in this model is more 

appropriate for cohorts 15-19,20-24 and perhaps 25-29. However, it 

is likely that this inconsistency is not entirely the cause of 

nuptiality changes. Such pattern again appear in data from Lesotho, 

where the evidence about nuptiality changes is not so convincing, as we 

will see later. 

Another aspect in which the observed exposures in table 7.2 differ from 

the results obtained from the model concerns the average exposure for 

one child families at older ages. Particularly in the age groups 40-44 

and 45-49, the observed exposures are in some cases significantly 

different from the model ones. There is a tendency in the model to give 

longer exposures for children born to women who at older ages have 

attained only one or two children. This is particularly marked in 

regimes which combine very early and concentrated nuptiality with fast 

fertility pace (as can be observed in Appendix 2, where results from a 

series of models are presented). It appears also where there is early 
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and concentrated nuptiality and moderate fertility pace, and in 

intermediate nuptiality and very fast fertility pace. This pattern 

does not appear so clear in the data from the three countries presented 

in table 7.1, and is not very strong either in the model presented in 

panel D of that table. 

Within the logic imposed by the model description, in the context of 

populations with early and concentrated nuptiality and fast fertility 

pace, even women who marry very late (within such context) would have 

been married already by their early twenties, and had their first child 

within a few years from marriage, at most. Therefore, when the women 

had reached their forties, first children must have been exposed to the 

risk of dying for twenty years or more. Frequently in this type of 

population women who have only one child are a selected group and do 

not adjust to the general patterns which characterize the population as 

a whole. If this group marry substantially later than the rest (that 

is, their behaviour is not properly described by the nuptiality model), 

then the results from the models would exagerate the time-exposure to 

risk for children born to these women. That may be the case in 

Latin American countries. 

In the case of Lesotho the picture in relation to older ages is 

different. Table 7.3 presents the mean time-exposures for Lesotho, as 

calculated from birth histories (WFS data). The pattern of longer 

exposures for one (and to a lesser extent two) child families for 

older women is very marked (number of cases per cell and standard 
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Table 7.3: Mean time-exposures to risk calculated from data from the 
Lesotho Fertility Survey (WFS), and from models. 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

A. Lesotho Fertility Survey 

1 1.11 1.81 4.19 8.03 15.89 19.43 26.83 

2 1.90 2.57 4.28 7.78 12.77 17.04 21.42 

3 3.32 4.47 7.42 11.46 16.05 21.39 

4 4.60 5.11 6.77 9.50 13.34 19.26 

5 4.86 6.02 7.41 9.83 14.01 18.04 

6 7.45 7.76 10.06 13.53 17.49 

7 5.35 8.52 9.94 12.80 17.21 

8 9.39 10.29 12.91 16.98 

9 10.39 10.78 13.06 17.67 

10 10.00 14.69 16.63 

B. Model: p=0.642, g-0.58, h-5.5, x-17.0, 
e=8.1 

1 1.81 3.38 5.90 9.96 15.11 20.08 25.05 

2 1.91 3.38 5.38 8.13 11.80 16.15 20.05 

3 2.05 3.31 5.22 7.91 11.40 15.49 18.75 

4 3.26 5.16 7.91 11.70 15.76 18.86 

5 3.54 4.98 7.85 11.91 16.05 19.07 

6 3.79 4.82 7.76 12.00 16.22 19.24 

7 4.89 7.57 11.98 16.31" 19.36 

8 5.19 7.18 11.61 16.12 19.21 

9 7.04 11.77 16.38 19.51 

10 7.49 11.37 16.24 19.43 
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deviations are showed in Appendix 3). A similar picture appears in the 

time exposures presented in panel B, which have been simulated by 

models representing a pattern of early and concentrated nuptiality and 

moderate fertility pace. 

The pattern of shorter exposures for smaller family sizes at young 

ages, observed in the three countries in table 7.2, appears in Lesotho 

as well. Although younger women did report later ages at first marriage 

in the Lesotho Fertility Survey, Timaeus and Balasubramanian (1984) 

dismissed the possibility of changes in the age at first marriage, 

explaining the difference in terms of misdating of first marriages: 

older women apparently declared earlier dates at first marriages than 

the actual ones. Numerically the differences between observed and 

model exposures may not be very big in some cases, but they are 

relevant because of the high rate of change in the mortality function 

at these young ages. The assumption that births occur at the mid-point 

of the year-interval introduces a small bias, as they would be 

concentrated towards the end of the interval in the first stages of the 

fertility distribution, but that would not explain all the difference. 

The tendency to give longer exposures than those generally observed, 

for first children at young ages of the mother, may indicate some lack 

of flexibility in the methodology to cope with the fast changes which 

take place at early stages of childbearing. Adolescent subfecundity, 

which is not incorporated into the models, would produce patterns of 
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differences similar to those which appear between the observed and the 

model results. This point will be discussed again in the next section. 

In practical terms neither the differences at the beginning of the 

reproductive period nor the cases of one child families at ages above 

40 represent a very serious problem. Such cases comprise a small 

proportion of the children born in societies where these techniques may 

be applied. The group of women having only one child at the end of 

their reproductive lives would be highly selective in many respects, 

and both the level of mortality and reproductive patterns would be most 

likely associated with other factors, which would set them quite apart 

from the average population. On the other side, the fast rate of 

change of the birth distribution at a very early stage of the 

reproductive period is very dificult to describe with a simple model. 

Therefore, with the necessarily simplified methodology that had to be 

used in this type of analysis, it is unlikely that attempts to improve 

the model representation in this respect would have met with any 

reasonable success. 
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7.3 Practical implications of these findings 

The break-down of the proportions of children surviving by age of the 

mother and number of children ever born, obtained from census or survey 

data, frequently shows a substantial decrease in the proportion of 

children surviving as the total family size increases. Attempts to 

interpret these variations have been hampered by the fact that they 

could be connected either with higher risks for higher orders and birth 

concentrations or with longer exposures associated with higher 

parities, or a combination of both. The results analysed in the 

previous section indicate that differences in time-exposure play a 

small part in those variations. This is particularly true for age 

groups above 25, where the average exposures are fairly stable, and at 

the same time the rate of change with age of the child in the mortality 

function is low. For these age'groups of the mothers it is quite safe 

to interpret the variation in the proportions of children surviving, 

from one family size to another, as the result of differential 

mortality, assuming constant time exposures. As the figures in table 

7.1 show, the proportions surviving are almost constant by family size 

for a given age group when mortality is a function of the child's age 

only (standard proportions). 

As for the younger age groups, on the assumption that the data from the 

four countries observed here is accurate, a more precise description of 

the observed patterns of variation in the time-exposures by family size 

(in tables 7.2 and 7.3), would require a more spread and later 

168 



nuptiality distribution than that for the older age groups. The 

differences between the observed and the model time-exposures in these 

age groups may be connected to changes in nuptiality, but that pattern 

may also respond to the effects of adolescent subfecundity, which are 

not incorporated into the fertility model. 

The model representation can be adjusted to take account of the factors 

mentioned above by using age-parity specific indices to relate the 

simulated time-exposures from the models to the observed data. A more 

spread and perhaps a little later nuptiality pattern would be able to 

resemble the variations on the fertility distribution by ages 

(therefore on the exposures to risk) caused by adolescent subfecundity. 

This adjustment, and that required for a situation where nuptiality 

changes from one cohort to another, would be implicit in the 

calculation procedure if the 'age-parity specific time-exposures, 

estimated from models, are fitted to the observed data by using age- 

parity specific fertility indices. The time exposure by mother's age 

and parity depends on the shape of the birth distribution by order and 

age. The true birth distribution is not known, but observed age-parity 

specific indices can be used as indicators for the shape of that 

distribution in the same way as P1 /P 
2 

and P2 /P 
3 

have been used in 

the original method. However, at this stage it seems that such efforts 

would not be justified. On the one hand it is unreasonable to expect 

that the models would describe the real situation with regards to the 

average exposures to the risk with a precision of one tenth of a year 
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or two. On the other hand the data itself would probably be affected 

by a bigger margin of error than that. 

In any case, the inspection of the simulated proportions of children 

surviving, presented in table 7.1, leads us to the conclusion that the 

effects of differential mortality are far bigger than the differences 

which may arise from variations in the exposures, even in the case of 

age groups 15-19 or 20-24, where the rate of change in mortality with 

age of the child is higher, and the relative error in the time 

exposures more important. Notwithstanding, limiting the analysis only 

to children born to women aged 25 or more is not very restrictive. 

Such analyses would cover a substantial proportion of the children ever 

born to the surveyed women, since the number of children born to women 

under 20, or even under 25, do not represent an important proportion of 

the total children a woman would have in countries of high fertility, 

and the number of children in one child families for women over 40 is 

very small. The proportions of children dead by age of the mother from 

Bolivia, 1976 Census, and from Guatemala, 1970 Census, are analysed in 

the next section. 
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7.4 Estimating differential mortality by family size from retrospective 

information on number of children ever born and children surviving. 

In the light of the discussions in the previous section, it seems that 

the most sensible way to use this information is first to estimate the 

overall level of mortality in the traditional way, from information 

referring to all children, and then to use ratios between parity- 

specific proportions of children dead to estimate relative risks by 

family size. 

Part A of table 7.4 presents the results of such analysis using data 

from Bolivia, 1976 Census. Part B shows the results from Guatemala, 

1970 census. The probabilities of dying before reaching exact ages x 

were derived from the proportions of children dead by using Brass's 

multipliers. These values were then expressed in terms of the alpha 

parameter ( oC) in the one-parameter-logit system, to make them 

comparable. The time location was also calculated (T). These results 

are showed in the first panel, of part A, and of part B, for the 

respective contries. The proportions of children dead by family size 

are presented in the second panel. 

Relative risks by family size were calculated taking the risks for all 

children as the base. The relative risks by family size, that is, the 

ratios from the proportions of children who have died, by family size, 

to that proportion for all children for the same age group of mothers, 

are presented in the third panel for the respective country, table 7.4. 
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Table 7.4: Indirect estimates of child mortality and relative risks 
by family size. Bolivia, 1976 and Guatemala, 1970. 

Age Gro up 

15-19 20-24 25-29 34-34 35-39 40-44 45-49 

A. Bolivia, 1976 Census 
Total 

Di 0.1587 0.2024 0.2301 0.2532 0.2772 0.3036 0.3315 

q(x) 0.1604 0.2080 0.2309 0.2556 0.2824 0.3025 0.3298 

d 0.039 0.047 0.054 0.067 0.084 0.095 0.101 
T 1.17 2.63 4.51 6.71 9.10 11.79 15.06 

Family 
size Proportions of children dead 

1 0.0946 0.0765 0.0778 0.0787 0.0730 0.0815 0.1129 
2 0.1925 0.1431 0.1222 0.1066 0.1258 0.1566 0.1517 
3 0.3056 0.2153 0.1648 0.1490 0.1546 0.1926 0.2121 
4 0.3889 0.2977 0.2322 0.1869 0.1802 0.1874 0.2277 
5 0.3714 0.3230 0.2793 0.2354 0.2364 0.2235 0.2482 
6 0.3507 0.3286 0.2820 0.2499 0.2710 0.2967 
7 0.3617 0.3254 0.2879 0.2736 0.2840 0.2920 
8 0.3896 0.3422 0.3191 0.3047 0.3255 

9 0.4514 0.3592 0.3355 0.3384 0.3441 
10 0.3906 0.3684 0.3523 0.3588 

Relative risk 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.60 0.38 0.34 0.31 0.26 0.27 0.34 

2 1.21 0.71 0.53 0.42 0.45 0.52 0.46 

3 1.93 1.06 0.72 0.59 0.56 0.63 0.64 

4 2.45 1.47 1.01 0.74 0.65 0.62 0.69 

5 2.34 1.60 1.21 0.93 0.85 0.74 0.75 

6 1.73 1.43 1.11 0.90 0.89 0.90 

7 1.79 1.41 1.14 0.99 0.94 0.88 

8 1.69 1.35 1.15 1.00 0.98 

9 1.96 1.42 1.21 1.11 1.04 

10 1.54 1.33 1.16 1.08 
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Table 7.4 (continuation) 

Age Gro up 

15-19 20-24 25-29 34-34 35-39 40-44 45-49 

B. Guatemala 1970 Census 
Total 

Di 0.1016 0.1389 0.1683 0.1843 0.2123 0.2382 0.2608 

q(x) 0.0947 0.1369 0.1648 0.1823 0.2117 0.2317 0.2531 

oc -0.262 -0.206 -0.156 -0.149 -0.108 -0.086 -0.086 
T 1.67 3.03 4.99 7.25 9.69 12.49 15.91 

Family 
size Proportions of children dead 

1 0.0518 0.0419 0.0400 0.0364 0.0642 0.0612 0.0646 
2 0.1310 0.0954 0.0801 0.0746 0.0826 0.1015 0.1274 
3 0.2011 0.1409 0.1082 0.0895 0.1009 0.1171 0.1242 
4 0.2391 0.1955 0.1583 0.1281 0.1240 0.1401 0.1648 
5 0.3600 0.2468 0.1865 0.1465 0.1578 0.1564 0.1812 
6 0.3319 0.2261 0.2003 0.1768 0.1828 0.2031 

7 0.2457 0.2682 0.2126 0.1928 0.2040 0.2467 

8 0.3275 0.2562 0.2331 0.2543 0.2449 
9 0.4505 0.2793 0.2494 0.2468 0.2667 

10 0.3895 0.2865 0.2968 0.2872 0.2884 

Relative risk 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.51 0.30 0.24 0.20 0.30 0.26 0.25 

2 1.29 0.69 0.48 0.40 0.39 0.43 0.49 

3 1.98 1.01 0.64 0.49 0.48 0.49 0.48 

4 2.35 1.41 0.94 0.70 0.58 0.59 0.63 

5 3.54 1.78 1.11 0.79 0.74 0.66 0.69 

6 2.39 1.34 1.09 0.83 0.77 0.78 

7 1.77 1.59 1.15 0.91 0.86 0.95 

8 1.95 1.39 1.10 1-. 07 0.94 

9 2.68 1.52 1.17 1.04 1.02 

10 2.31 1.55 1.40 1.21 1.11 
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The differentials are dramatic. The risks for small families are in some 

cases a fourth or a fifth of the overall risk for all children, while 

on the other hand the biggest family sizes present sometimes a rate of 

mortality which is twice or three times the overall rate. The pattern 

is that of a monotonic increase in the level of mortality with family 

size. Since the average time-exposures are similar, the time location 

of the estimates by family size must be roughly comparable, so these 

ratios would not be seriously distorted by trends in mortality. 

The level of mortality in Guatemala is lower than that in Bolivia. 

However, the pattern of variation by family size is strikingly similar. 

The differences in the relative risks by family size between the two 

countries are minimal for any family size by age groups. 

The enormous differentials by family size observed in the two countries 

cannot be attributed entirely to the effects of birth order and 

concentration. Higher parities are strongly correlated with variables 

such as education and place of residence and the effects of the 

reproductive patterns cannot be assessed without controlling for those 

factors. However, there is little doubt that some positive correlation 

between the level of child mortality and the family size would remain 

after controlling for other factors. 

In the case of these two countries respiratory diseases and enteritis 

and diarrhoea are very important causes of infant death, and the effect 

of birth order on the mortality rates from these causes surely play an 
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important role in those differentials. As Papavangelou's analysis 

showed (Papavangelou, 1971), the mortality risks for a child born after 

a succession of births to relatively young mothers can be heightened 

not only because of factors directly linked to short birth intervals, 

like early weaning and maternal depletion, but other factors also play 

an important role. In Papavangelou's results the risk of infant death 

from enteritis and diarrhoea, for birth orders higher than six, was 

five times that observed for second births. Respiratory diseases had a 

much more severe impact on mortality rates for higher that for lower 

birth orders. The risk of deaths from accidents increased steadily 

with birth concentration. As commented in Chapter 2, these patterns 

appear to be related to increased oportunities for catching infections 

in an environment of poor sanitation as the family size increases, and 

diminished quality of maternal care when the mother has to give 

attention to several young children in the family. 

Whatever the reasons, the observed differentials in child mortality by 

family size in these two countries are too dramatic by any standards. 

The rate for higher orders reaches in some cases a level which is 

between eight and ten fold that experienced for the lower birth orders 

in the same age group of mothers. 
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7.5 Conclusions 

The results from models representing a range of nuptiality and 

fertility patterns have shown that the time-exposure to risk varies 

very little with family size for any age group of women. Data from 

four countries were analysed and similar patterns were encountered, 

corroborating the conclusions drawn from the model simulated results. 

The pattern of constant exposures by family size is less clear in the 

case of mothers aged 15-19 and 20-24, and in one child families for 

women over forty. In the case of one child families the evidence 

suggests that the time-exposure may be longer than that for bigger 

families. If that is the case, the differential in mortality would be 

obscured since a lower risk would be offset by a longer exposure. In 

the data from the two countries analysed in the previous section there 

is no evidence that this might have happened. Mortality risks 

increased monotonically with family size for any age group of the 

mothers. 

The mortality differential by family size may appear exagerated when a 

constant exposure is assumed for the age group of mothers 15-19 and 

20-24. Comparing the "standard" with the "simulated" proportions 

obtained from the models, it is clear that the dominant factor, even 

in the case of younger mothers, is the differential mortality 

associated with the reproductive patterns. This is an important 
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conclusion as it implies that the assumption of constant time-exposure 

by family size is quite safe and would not introduce a serious bias in 

the analysis of mortality by family size. Refinements in the 

methodology in order to allow for variable time exposures by family 

size within a given age group of mothers are possible, but they do not 

seem justified. It is unlikely that such efforts would lead to any 

rewarding conclusion: the cases in which variations in the time 

exposure may be relevant cover only a small proportion of births, and 

data errors may be as important as those arising from the simplifying 

assumptions. 

The analyses of the data from Bolivia and Guatemala showed alarmingly 

strong mortality differentials by family size. As this is a univariate 

analysis, no definite conclusion can be drawn, but there is litle doubt 

that, in an environment of poor sanitation, factors associated to the 

number of children in the household increase the risk of mortality from 

respiratory diseases and from enteritis and diarrhoea, which are the 

most important causes of infant death in these countries, and that may 

explain part of that enormous differential. 
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APENDIX1 

Computer program to estimate mean time-exposures. "standard" and 
"simulated" proportions of surviving children. 

The program also provides some adictional estimates of fertility to 

help in the analysis, and a table of coefficients Ci to adjust estimates 

of mortality from age groups 15-19 and 20-24, basically. 

1 PROGRAM FINAL 
2 C 
3 C 
4 C 2 DIMENSION ARRAYS : (I, J) 
5 C 3 DIMENSION ARRAYS : (J, I, L) 
6 C J= BIRTH ORDER 
7 C I= MARRIAGE DURATION OR AGE OF THE WOMEN 
8 C L= NUMBER OF CHILDREN ATTAINED AT AGE (I) 
9 C *(PARITY)* 

10 C 
11 C 
12 DIMENSION PROB(20,15), SUM(40,15), SUMDIS(40,15), XNUPCI(40), 
13 1FECAGE(40,15), AGACUM(40,15), RISK(40,15), RISKEX(40,15), CONT(15), 
14 2DURINP(40,15), EQRISK(15,40,15), EXT(15,40,15), AGEBIR(15,40,15), 
15 3ANONLY(14,39,14), AGEADJ(14,39,14), FINRIS(14,39,14), STAND(0: 40), 
16 4 AVPROP(39,14), SDPROP(39,14), SDLXSI(14,39,14), PROP(14,39,14), 
17 * SIZWEG(39,14), AVSZ1(39), SURV(8), WEIGHT(0: 4), AGACAA(40,15), 
18 * AVSDPR(39), ALPHA5(7), SDSRV(8), TABLE(14,49), S(14), 
19 * AVPR5(8,10), SDPR5(8,10), TIME5(8,10), 
20 * PARACU (39) , PARITY (8) , YSD (7) , ADSURV (7) , XK: ADJ (7 ) 
21 C 
22 EQUIVALENCE(EQRISK, ANONLY, SDLXSI) 
23 EQUIVALENCE(EXT, AGEADJ, PROP) 
24 EQUIVALENCE(AGEBIR, FINRIS) 
25 C 
26 C 
27 DATA WEIGHT/1.0,0.98020,0.96079,0.94176,0.92312/ 
28 DATA STAND/ 1.0,. 8499,. 8070,. 7876,. 7762,. 7691,. 7642,. 7601, 
29 *. 7564,. 7532,. 7502,. 7477,. 7452,. 7425,. 7396,. 7362,. 7328,. 7287,. 7241, 
30 *. 7188,. 7130,. 7069,. 7005,. 6943,. 6884,. 6826,. 6764,. 6703,. 6643,. 6584, 
31 *. 6525,. 6466,. 6405,. 6345,. 6284,. 6223,. 6160,. 6097,. 6032,. 5966,. 5898/ 
32 C 
33 ALAT=O 
34 BLAT-0 
35 GLAT-0 
36 HLAT-0 
37 READ(5,4) CONT 
38 4 FORMAT(15F5.3) 
39 C 
40 2 CONTINUE- 
41 C 
42 DO 700 LL=1,49 
43 C 
44 5 READ(5910, END=777) A, B, G, H, X1, Z 
45 C 
46 C IF FERTILITY EQUAL PREVIOUS. RUN, JUMP TO CALCULATE NUPTIALITY 
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C 
1U FORMAT(6F1O. 3 ) 

IF(A. EQ. ALAT. AND. S. EQ. BLAT) GO TO 111 
DO 25 J=1,15 
DO 21) I=1,20 
IF(I. EQ. 1. AND. J. EQ. 1) THEN 
PROB(I, J)=A/(A+H) 
ELSE IF (I. LT. J) THEN 
PROH(I, J)=. 0 
ELSE IF (I. NE. I. AND. I. EQ. J) THEN 
PROB(I, J)=(A+(J-1)) / (A+S+(J-1))*PROB(I-1, J-1) 
ELSE 
PROB(I, J)=PROB(I-1, J)*((B+(I-1-J))*(I-1))/((I-J)*(A+B+(I-1))) 
END IF 

20 CONTINUE 
25 CONTINUE 

C 
C PROBABILITIES ARE ACCUMULATED 
C 

DO 40 J=1,15 
DO 30 I=2,20 

30 PROB(I, J)=PROB(I-19J)+PROB(I, J) 
40 CONTINUE 

C 
C CONVERTING THE LENGTH OF INTERVAL INTO YEAR'S UNITS 
C 

DO 45 J-1,15 
DO 41 1=1,21 

41 SUM(I, J)=. O 
DO 42 I=2,40,2 

42 IF(I. GE. 2*J) SUM(I, J)=FROB(I/2, J) 
C 
C CALCULATING ODD YEARS BY INTERPOLATION 
C 

DO 43 I=5,37,2 
43 IF(I. GT. 2*(J+1))SUM(I, J)=SUM(I-1, J)+. 5*(SUM(I+I, J)-SUM(I-i, J))- 

i . 0625*(SUM(I+3, J)-SUM(I+1, J)-SUM(I-1, J)+SUM(I-3, J)) 
C 

C 

C 

SUM(2*J+1, J)=SUM(2*J, J)+. 5*(SUM(2*J+2, J)-SUM(2*J, J))-. 0625* 
1 (SUM(2*J+4, J)-SUM(2*J+2, J)-SUM(2*J, J)) 

SUM(2*J-1, J)=SUM(2*J, J)-SUM(2*J+2, J)/4. +. 125* 
1 (SUM(2*J+2, J)-2. *SUM(2*J, J)) 

45 SUM(39, J)=SUM(38, J)+(SUM(40, J)-SUM(36, J))/4. +. 125* 
1 (SUM(44, J)-2. *SUM(38, J)+SUM(36, J)) 

C 
C SUBTRACTING TO CALCULATE PROBABILITIES BY YEARS 
C 

DO 55 J-1,15 
DO 50 1-40921-1- 

50 SUMDIS(I, J)-SUM(I, J)-SUM(I-i, J) 
55 SUMDIS(1, J)=SUM(1, J) 

C 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
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101 C IF FERTILITY AND NUPT. EQUAL PREVIOUS RUN, JUMP TO MORTALITY 
102 C 
103 111 IF(A. EQ. ALAT. AND. B. EQ. BLAT. AND. G. EQ. GLAT. AND. H. EQ. HLAT) GO TO 222 
104 C 
105 C CALCULATING THE NUPTIALITY MODEL 
106 C 
107 Q=1. -G 
108 XNUPCI(1)=G**(H+1. ) 
109 DO 60 1=2,40 
110 60 XNUPCI(I)=XNUPCI(I-1)*Q*(H+(I-1))/(FLOAT(I-1)) 
111 C 
112 C MULTIPLYING THE DURATION MODEL BY THE MODEL OF NUPTIALITY 
113 C 
114 DO 75 J=1,15 
115 DO 70 I=1,40 
116 SUPROV =. ü 
117 DO 65 K=1 ,I 
118 PROVK: K =XNUPCI (F:: ) *SUMDIS (I+1-K, J) 
119 65 SUPROV =SUPROV+PROVKK: 
120 70 FECAGE(I, J)=SUPROV 
121 75 CONTINUE 
122 DO 85 J=1,15 
123 AGACUM(1, J)=FECAGE(1, J) 
124 DO 80 I=2,40 
125 80 AGACUM(I, J)=AGACUM(I-1, J)+FECAGE(I, J) 
126 85 CONTINUE 
127 C 
128 C CALCULATING THE EXPOSURE TO THE RISK BY DURATION 
129 C 
130 DO 100 J=1,15 
131 DO 95 I=1,4() 
132 RISK(I, J)=. 0 
133 SUMAGE=. O 
134 DO 90 K=1 ,I 
135 90 SUMAGE=SUMAGE+ (I -K+ . 5) *SUMD IS (K. ,J) 
136 95 IF(SUM(I, J). GT.. C)) RISK(I, J)=SUMAGE/SUM(I, J) 
137 100 CONTINUE 
138 C 
139 C CALCULATING THE EXPOSURE TO THE RISK BY AGE OF THE MOTHERS 
140 C 
141 DO 115 J=1,15 
142 DO 110 I=1,40 
143 RISKEX(I, J)=. 0 
144 SUMAGE=. O 
145 DO 105 K; =1 ,I 
146 105 SUMAGE=SUMAGE+ (I -h::: + . 5) *FECAGE (k:: ,J) 
147 110 IF(AGACUM(I, J). GT.. O, RISKEX(I, J)=SUMAGE/AGACUM(I, J) 
148 115 CONTINUE 
149 C 
150 C ** CALCULATING CONDITIONAL EXPOSURES FOR A GIVEN PARITY BY BIRTH ORDER 
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151 C 
152 C =T0 LOCATE THE (N) DURATION EQUIVALENT IN EXPOSURE TO AGE (I) 
15::, C 
154 DO 145 J=1,15 
155 DO 140 I=1,40 
156 IF(I. EQ. I. AND. J. EQ. 1)THEN 
157 N=1 
158 GO TO 122 
159 END IF 
160 N=0 
161 DO 120 K=1 , 39 
162 IF(RISKEX(I, J). GT. 0. AND. RISK: (K:, J). LE. RISK: EX(I, J). AND. 
163 1 RISK(fc: +1, J). GT. RISKEX(I, J)) THEN 
164 N=K. 
165 GO TO 122 
166 END IF 
167 120 CONTINUE 
168 122 CONTINUE 
169 C 
170 C =INTERPOLATION TO GET EQUIVALENT RISKS IN ALL THE FOLLOWING ORDERS 
171 C 
172 IF(N. NE. O) THEN 
173 DURINP(I, J)=FLOAT(N)+(RISK. EX(I, J)-RISK(N, J))/(RISK(N+1, J) - 
174 1 RISK. (N, J))+1.0 
175 ELSE 
176 DURINP(I, J)=. 0 
177 END IF 
178 DO 125 L-1,15 
179 IF(L. LT. J. OR. N. EQ. O) THEN 
180 EQRISK(J, I, L)=. 0 
181 ELSE 
182 EQRISK: (J, I, L)=FISK(N, L)+(RISK: (N+1, L)-RISK: (N, L))/(RISK(N+1, J)- 
183 1 RISK(N, J))*(RISKEX(I, J)-RISK(N, J)) 
184 END IF 
185 125 CONTINUE 
186 C 
187 C =CALCULATE THE EXTENSION-BACK FOR HIGHER BIRTH ORDERS 
188 C 
189 DO 130 L=1,15 
190 IF(I. GT. 2*(L-1). AND. L. GE. J) THEN 
191 EXT(J, I, L)=RISKEX(I, L)-EQRISK(J, I, L) 
192 ELSE 
193 EXT(J, I, L)=. 0 
194 END IF 
195 130 CONTINUE 
196 C 
197 C =AGE AT BIRTH OF J-TH CHILD FOR WOMEN OF PARITY "L" 
198 C 
199 DO 135 L=1,15 
200 IF(L. EQ. 1) THEN 
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201 IF(J. EQ. 1) THEN 
202 AGEBIR(J, I, L)=((DURINP(I, J)-EQRISK(J, I, L))*(FLOAT(J)/FLOAT (L))) 
203 - EXT (J, I , L) 
204 ELSE 
205 AGEBIR(J, I, L)=. O 
206 END IF 
207 ELSE IF(I. GT. 2*(L-1). AND. L. GE. J. AND. EXT(J, I, L). GE. EXT(J, I, L-1)) 
208 1 THEN 
209 AGEBIR(J, IIL)-((DURINP(I, J)-EQRISK(J, I, L))*(FLOAT(J)/FLOAT (L))) 
210 *- EXT(J, I, L) 
211 ELSE 
212 AGEPIR(J, I, L)=. U 
213 END IF 
214 135 CONTINUE 
215 140 CONTINUE 
216 145 CONTINUE 
217 C 
218 C =ADJUSTING FOR WOMEN WITH EXACTLY (N) CHILDREN AT AGE (I) 
219 C 
220 DO 148 J=1,14 
221 DO 147 I=1,39 
222 DO 146 L=1,14 
223 IF (I . GT. 2* (L-1) . AND. L. GE. J) THEN 
224 IF(AGEBIR(J, I, L+1). GT.. O) THEN 
225 ANONLY(J, I, L)=(AGEBIR(J, I, L)*AGACUM(I, L)-AGEBIR(J, I, L+1)*AGACUM 
226 1 (I, L+1))/(AGACUM(I9L)-AGACUM(I, L+1)) 
227 ELSE 
228 ANONLY(J, I, L)-AGEBIR(J, I, L) 
229 END IF 
230 ELSE 
231 ANONLY (J ,I, L) =. 4 
232 END IF 
233 146 CONTINUE 
234 147 CONTINUE 
235 148 CONTINUE 
236 C 
237 DO 150 L=1,14 
238 DO 149 J=1, L 
239 KK=2*J+1 
240 DO 149 I =KK , 39 
241 149 IF(ANONLY(J, I, L). LT. ANONLY(J, I-1, L))ANONLY(J, I, L)=ANONLY(J, I-1, L) 
242 150 CONTINUE 
243 C 
244 C =ADJUSTING TO TAKE INTO ACCOUNT THE STOPPING RULE 
245 C 
246 DO 165 J=1,14 
247 DO 160 I=1,39 
248 DO 155 L=1,14 
249 IF(I. GT. 2*(L-1). AND. L. GE. J) THEN 
250 AGEADJ(J, I, L)=CONT(L+1)/CONT(L)*ANONLY(J, 1, L)+(1. (. )-CONT(L+1)/ 
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251 1 CONT(L))*AGEBIR(J, I, L) 
252 ELSE 
253 AGEADJ(J, I, L)=. 0 
254 END IF 
255 155 CONTINUE 
256 160 CONTINUE 
257 165 CONTINUE 
258 C 
259 DO 180 J=1,14 
260 DO 175 I=1,39 
261 DO 170 L=1,14 
262 IF(AGEADJ(J, I, L). GT.. 0) THEN 
263 FINRIS(J, I, L)=DURINP(I, J)-AGEADJ(J, I, L) 
264 ELSE 
265 FINRIS(J, I, L)=. 0 
266 END IF 
267 170 CONTINUE 
268 175 CONTINUE 
269 180 CONTINUE 
270 C 
271 C 
272 DO 193 L=3,14 
273 K=2*L-2 
274 DO 192 I=K, 39 
275 DO 191 J=2, L 
276 191 IF(FINRIS(J-1, I, L). LT. FINRIS(J, I, L))FINRIS(J, I, L)=0.0 
277 192 CONTINUE 
278 193 CONTINUE 
279 C 
280 C STAND. PROP. OF SURV. CHILDREN ACCORDING TO AVERAGE TIME EXPOSURE 
281 C 
282 DO 220 J=1,14 
283 DO 215 I=1,39 
284 DO 21.0 L=1914 
285 T=FINRIS(J, I, L) 
286 IF (T. GT.. O) THEN 
287 IF(T. LT. (1. /12. )) THEN 
288 SDLXS1(J, I, L)=(1. -. 07*T*12. ) 
289 ELSE IF(T. GE. (1. /12. ). AND. T. LT.. 25) THEN 
290 SDLXSI(J, I, L)=0.93-0.02*6. *(T-(1. /12. )) 
291 ELSE IF(T. GE.. 25. AND. T. LT.. 5) THEN 
292 SDLXSI(J, I, L)=0.91-0.024*(T-. 25)*4. 
293 ELSE IF(T. GE.. 5. AND. T. LT. 1. ) THEN 
294 SDLXS1(J, I, L)=0.886-. 0361*(T-. 5)*2. 
295 ELSE 
296 DO 202 K=10 I 
297 IF (T. GE. K-1. AND. T. LT. K) SDLXS1(J, I, L)= 
298 * STAND(K-1)+(STAND(K)-STAND(K-1))*(T-(k: -1)) 
299 202 CONTINUE 

300 END IF 
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I 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 

323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 

ELSE 
SDLXSI(J, I, L)=. 0 

END IF 
210 CONTINUE 
215 CONTINUE 
220 CONTINUE 

C 
222 CONTINUE 

C 
C OBTAINING THE EFFECTS BY ORDER, CONCENTRATION, AND MOTHER'S AGE 
C 

DO 320 J=1,14 
XJ=J 

IF (J. LE. 10) THEN 
AEA=1.247-0.312*XJ+0.0817*XJ**2-O. 0045*XJ**3 

ELSE 
AB=1.90 

END IF 
C 

DO 315 I=1,39 
ED=X1+(I-1) 

DO 310 L=1,14 
T=FINRIS(J, I, L) 
AG=ED-T 

IF(AG. LT. 20) THEN 
IF(J. EQ. 1) K=3 
IF(J. EQ. 2) K=6 
IF(J. EQ. 3) K-8 
IF(J. EQ. 4) K=9 
IF (J. GE. 5) K=10 

ELSE IF (AG. GE. 20. AND. AG. LT. 25) 
IF (J. EQ. 1) K=3 
IF (J. EQ. 2) K=5 
IF (J. EQ. 3) K=6 
IF (J. EQ. 4) K=7 
IF (J. EQ. 5) K=9 
IF (J. GT. 5) K=10 

ELSE IF (AG. GE. 25. AND. AG. LT. 30) 
IF (J. LT. 9) K=J+1 
IF ( J. GE. 9) K=10 

ELSE IF (AG. GE. 30. AND. AG. LT. 35) 
IF (J. LE. 5) K=J 
IF (J. GT. 5) K=J-1 

ELSE IF (AS. GE. 3 5. AND. AG. LT. 40) 
IF (J. LE. 3) K-J 
IF (J. GE. 4. AND. J. LE. 5) K=J-1 
IF (J. GE. 6. AND. J. LE. 7) K=4 
IF (J. GE. B. AND. J. LE. 1Ö) K: =5 
IF(J. GE. 11) K=f, 

ELSE 

THEN 

THEN 

THEN 

THEN 
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351 IF (J. EQ. 1) K-1 
352 IF (J. GE. 2. AND. J. LT. 5) K-2 
353 IF (J. GE. 5. AND. J. LE. 10) K=3 
354 IF (J. GT. 10) K=5 
355 END IF 
356 C 
357 XAGE=(AG-12.0)/5.0 
358 X K=K 
359 AA=1.96-0.8109*XAGE+0.1725*XAGE**2-0.00944*XAGE**'3 
360 IF (K. LE. 10) THEN 
361 AC=1.18-0.31636*XK+0.07967*XK**2-0.003973*XK**3 
362 ELSE 
363 AC=2.1 
364 END IF 
365 C 
366 +C "SIMULATED" PROPORTIONS OF SURVIVING CHILDREN 
367 C 
368 IF(T. GT. O)THEN 
369 E=AA*AB*AC 
370 IF(T. GE. 4)THEN 
371 E1=(1. +. 75*(AB-1. ))*(1. +. 75*(AC-1. )) 
372 E2=(1. +. 50*(AP-1. ))*(1. +. 50*(AC-1. )) 
373 E3=(1. +. 25*(AB-1. ))*(1. +. 25*(AC-1. )) 
374 Q0=. 1501*E 
375 Q1=. 0505*E1 
376 Q2=. 0240*E2 
377 Q3=. 0145*E3 
378 FR=(1. -Q0)*'(1. -Q1)*(1. Q2)*(1. -Q3)*SDLXSI(J, I, L)/. 7762 
379 ELSE IF(T. GE. 3. AND. T. LT. 4)THEN 
380 E1=(1. +. 75*(AB-1. ))*(1. +. 75*(AC-1. )) 
381 E2=(1. +. 50*(AB-1. ))*(1. +. 50*(AC-1. )) 
382 E3=(1. +. 25*(AB-1. ))*(1. +. 25*(AC-1. )) 
383 Q0=. 1501*E 
384 Q1=. 0505*E1 
385 Q2=. 0240*E2 
386 Q3=. 0145*E3 
387 F'R=(1. -QO)*(1. -Q1)*(1. -Q2)ß(1. -Q3*(T-3. )) 
388 ELSE IF(T. GE. 2.5. AND. T. LT. 3)THEN 
389 E1=(1. +. 75*(AB-1. ))*(1. +. 75*(AC-1. )) 
390 E2=(1. +. 50*(AB-1. ))*(1. +. 50*(AC-1. )) 
391 Q0=. 1501*E 
392 Q1=. 0505*E1 
393 F'R=(1. -QO)*(1. -Q1)*(1. -. 0132*E2)*(1. -(T-2.5)*2. *. 011*E2) 
394 ELSE IF(T. GE. 2. AND. T. LT. 2.5)THEN 
395 E1=(1. +. 75*(AF-1. ))*(1. +. 75*(AC-1. )) 
396 E2= (1 . +. 50*(AH-1 . )) * (1 .+. 50* (AC-1 .)) 
397 00=. 1501*E 
398 Q1=. 0505*E1 
399 PR=(1. -Q0)*(1. -Q1)*(1. -. 01=2*(T-2. )x'2. *E2) 
400 ELSE IF(T. GE. 1.5. AND. T. LT. 2)THEN 
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401 E1=(1. +. 75*(ABi-1. ))*(1. +. 75*(AC-1. )) 
402 Q0=. 1501*E 
403 PR=(1. -QO)*(1. -. 0324*EI)*(1. -(T-1.5)*2. *. 0187*E1) 
404 ELSE IF(T. GE. I. AND. T. LT. 1.5)THEN 
405 E1=(1. +. 75*(AB-1. ))*(1. +. 75*(AC-1. )) 
406 Q0=. 1501*E 
407 PR=(i. -QO)*(1. -. 0324*(T-1. )*2. *E1) 
408 ELSE IF(T. GE.. 5. AND. T. LT. 1)THEN 
409 PR=(1. -. 114*E)*(1. -. 0407*(T-. 5)*2. *E) 
417 ELSE IF (T. GE.. 25. AND. T. LT.. 5) THEN 
411 PR= (1. -. 09*E) * (1. -. 0264* (T-. 25) *4. *E ) 
412 ELSE IF(T. GE. (1. /12. ). AND. T. LT.. 25)THEN 
413 PR=(i. -. 07*E)*(1. -(T-(1. /12. ))*6. *. 0215*E) 
414 ELSE 
415 PR=1. -. 07*T*12*E 
416 END IF 
417 C 
418 ELSE 
419 PR=. O 
420 END IF 
421 PROP(3, I, L)=PR 
422 310 CONTINUE 
423 315 CONTINUE 
424 320 CONTINUE 
425 C 
426 C 
427 DO 340 L-1,14 
428 SIZ=L 
429 DO 335 I=1,39 
430 AVPROP(I, L)=. 0 
431 SDPROP(I, L)=. 0 
432 DO 330 J=1, L 
433 SDPROP(I, L)=SDPROP(I, L)+SDLXSI(J, I, L) 
434 330 AVPROP(I, L)=AVPROP(I, L)+PROP(J, I, L) 
435 SDPROP(I, L)=SDPROP(I, L)/SIZ 
436 AVPROP(I, L)=AVPROP(I, L)/SIZ 
437 335 CONTINUE 
438 340 CONTINUE 
439 C 
440 C 
441 DO 360 J=1,15 
442 W=CONT (J) /AGACUM (4(), J) 
443 DO 350 I=1,40 
444 350 AGACAA(I, J)=AGACUM(I, J)*W 
445 360 CONTINUE 
446 C 
447 C 
448 DO 370 I=1,39 
449 PARACU(I)=. 0 
450 DO 365 J=1,14 
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451 IF(AVPROP(I, J). GT. O)THEN 
452 PARACU(I)=PARACU(I)+AGACAA(I, J) 
453 IF(AVPROP(I, J+1). GT. O)THEN 
454 SIZWEG(I, J)=AGACAA(I, J)-AGACAA(I, J+1) 
455 ELSE 
456 SIZWEG(I, J)=AGACAA(I, J) 
457 END IF 
458 ELSE 
459 SIZWEG(I, J)=0.0 
460 END IF 
461 365 CONTINUE 
462 370 CONTINUE 
463 C 
464 C 
465 DO 380 I=1,39 
466 SUMS=. 0 
467 DENOM=. 0 
468 SUMB2=. 0 
469 DO 375 J=1,14 
470 WW=J*SIZWEG(I, J) 
471 SUMS=SUMS+AVPROP(I, J)*WW 
472 SUMB2-SUMB2+SDPROP(I, J)*WW 
473 375 DENOM-QENOM+WW 
474 AVSZ1(I)=SUMB/DENOM 
475 AVSDPR(I)=SUMB2/DENOM 
476 380 CONTINUE 
477 C 
478 C 
479 MIN=16-X1 
480 IF(MIN. LT. 1)THEN 
481 M=1 
482 ELSE 
483 M=MIN 
484 END IF 
485 DO 390 I=1,8 
486 PARITY(I)=. 0 
487 SDSRV(I)=. 0 
488 390 SURV(I)=0.0 
489 IN=MIN+5 
490 IF (MIN. LT. 1) THEN 
491 IK=1-MIN 
492 ELSE 
493 I K=O 
494 END IF 
495 SNUM=u. 0 
496 SDNU=. O 
497 PARNUM=. 0 
498 SDIV=O. 0 
499 r: =1 
500 DO 450 I=M, 39 
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501 IF(I. LT. IN) THEN 
502 SDIV=SDIV+WEIGHT(IK) 
503 PARNUM-PARNUM+PARACU(I)*WEIOHT(IK) 
504 SDNU-SDNU+AVSDPR(I)*WEIOHT(IK) 
505 SNUM-SNUM+AVSZI(I)*WEIGHT(IK) 
506 IK-IK+1 
507 IF(I. EQ. 39) THEN 
508 SURV(K)-SNUM/SDIV 
509 SDSRV(K)-SDNU/SDIV 
510 PARITY(K)-PARNUM/SDIV 
511 END IF 
512 ELSE 
513 IF(SDIV. NE.. O) THEN 
514 PARITY(K)=PARNUM/SDIV 
515 SURV(K)=SNUM/SDIV 
516 SDSRV(K)=SDNU/SDIV 
517 END IF 
518 IN=IN+5.0 
519 PARNUM=PARACU(I) 
520 SDNU=AVSDPR(I) 
521 SNUM=AVSZ1(I) 
522 IK=1 
523 IF(AVSZI(I). GT.. O) THEN 
524 SDIV=1.0 
525 ELSE 
526 SDIV=0.0 
527 END IF 
528 K=K+1 
529 END IF 
530 450 CONTINUE 
531 C 
532 WRITE(6,452) 
533 452 FORMAT( 1H1 /// 15X, '*** PARAMETERS OF FERTILITY ***' // 
534 IX, 'STOPPING RULE =' ) 
535 WRITE(6,455) CONT, A, B, G, H, X1 
536 455 FORMAT(1X, 8F7.3 / 1X, 7F7.3 // 1X, 'A=', F5.3,5X, 'B=', F5.3,5X, 
537 * 'G=', F5.3,5X, 'H=', F5.2,5X, 'X1=', F5.2 
538 C 
539 DO 480 I=1,7 
540 YSD(I)=0.5*(ALOG((1.0-SDSRV(I))/SDSRV(I))) 
541 ALPHA5(I)=0.5*(ALOG((1. -SURV(I))/SURV(I)))-YSD(I) 
542 480 CONTINUE 
543 C 
544 DO 490 I=1,7 
545 ADSURV(I)=1. O/(1. O+EXP(2. O*(ALPHAS(6)+YSD(I)))) 
546 XKADJ(I)=(1.0-ADSURV(I))/(1.0-SURV(I)) 
547 490 CONTINUE 
548 C 
549 PARAT=PARITY(1)/PARITY(2) 
550 PARA2=PARITY(2)/PARITY(3) 
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Y ,. ý 

551 C 
552 TFR-CONT(1) 
553 DO 540 I-2,15 
554 540 TFR-TFR+CONT(I) 
555 XMEAN-((H+1. )*(1.0-G))16 
556 VAR-XMEAN/G 
557 XXMEAN-0.5+XMEAN 
558 C 
559 MIN=16-X1 
560 IF(MIN. LT. 1)THEN 
561 M-1 
562 ELSE 
563 M=MIN 
564 END IF 
565 DO 580 J=1,10 
566 DO 560 I=1,8 
567 SDPR5(I, J)=. 0 
568 560 AVPR5(I, J)=U. 0 
569 IN=MIN+5 
570 IF (MIN. LT. 1) THEN 
571 IK=1-MIN 
572 ELSE 
573 IK=0 
574 END IF 
575 SNUM=0.0 
576 SNUMI .0 
577 SDIV=0.0 
578 K=1 
579 DO 570 I-M, 39 
580 IF(I. LT. IN) THEN 
581 IF(SDPROP(I, J). GT.. 0) THEN 
582 SDIV=SDIV+WEIGHT(IK) 
583 SNUM=SNUM+SDPROP(I, J)*WEIGHT(IK) 
584 SNUM1=SNUMI+AVPROP(I, J)*WEIGHT(IK) 
585 IK=IK+1 
586 ELSE 
587 IK=IK+1 
588 END IF 
589 IF(I. EQ. 39) SDPR5(K, J)=SNUM/SDIV 
590 IF(I. EQ. 39) AVPR5(K, J)=SNUM1/SDIV 
591 ELSE 
592 IF(SDIV. NE.. 0) SDPR5(K, J)=SNUM/SDIV 
593 IF(SDIV. NE.. 0) AVF'R5(K, J)=SNUM1/SDIV 
594 IN=IN+5.0 
595 SNUM=SDPROP(I, J) 
596 SNUM1=AVPROP(I, J) 
597 IK=1 
598 IF(SDPROP(I, J). GT.. O) THEN 
599 SDIV=1.0 
600 ELSE 
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601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 

SDI V-0.0 
END IF 
K-K+1 
END IF 

570 CONTINUE 
580 CONTINUE 

C 
C 

DO 600 J=1,10 
DO 590 I=1,8 
P-SDPR5(I, J) 
IF (P. GT.. 0) THEN 
IF(P. GE.. 93)THEN 

TIMES(I, J)=(1. -P)/. 07/12. 
ELSE IF(P. LT.. 93. AND. P. GE.. 91) THEN 

TIME5(I, J)=(i. /12. )+(. 93-P)/. 02/6. 
ELSE IF(P. LT.. 91. AND. P. GE.. 886) THEN 

TIME5(I, J)=0.25+(. 91-P)/. 024/4. 
ELSE IF(P. LT.. 886. AND. P. GE.. 8499) THEN 

TIME5(I, J)=0.5+(. 886-P)/. 0361/2. 
ELSE 

DO 585 K=1,35 
585 IF(P. LE. STAND(K). AND. P. GT. STAND(K+1)) 

TIME5(I, J)-K+(STAND(K)-P)/(STAND(K)-STAND(K+1)) 
END IF 
ELSE 

TIMES(I, J)=0.0 
END IF 

590 CONTINUE 
600 CONTINUE 

C 
WRITE (61640) 

640 FORMAT(/// 1X, 'TIME EXPOSURE TO THE RISK OF DYING' // 
* lx, 'ORDER'93X, 'i5-19'93X, '24-24'93X, '25-29'93X, '30-34', 3X, 
* '35-39'53X, '40-44', 3X, '45-49' /) 

WRITE(6,620)(J, (TIME5(I, J), I=1,7), J=1,14) 
C 
C 

WRITE (6,630) 
630 FORMAT(/// 1X, 'STANDARD PROPORTIONS OF SURVIVING CHILDREN' 

* 1X, 'ORDER', 3X, '15-19', 3X, '20-24', 3X, '25-29', 3X, '30-34', 3X, 
* '35-39', 3X, '40-44', 3X, '45-49' /) 

WRITE(6,620) (J, (SDRR5(I, J), I=1,7), J=1,10) 
C 

WRITE(6,610) 
610 FORMAT(///, 1X, 'SIMULATED PROPORTIONS OF SURVIVING CHILDREN' 

* 1X, 'ORDER', 3X, '15-19', 3X, '20-24', 3X, '25-29', 3X, '30-34', 3X, 
'35-39', 3X, '40-44', 3X, '45-49' /) 

WRITEC6,620)(J, (AVRR5(I, J),, I=197), J=1,10) 
620 FORMAT(2X, I2,2X, 7F6.3) 
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651 
652 
653 
654 
655 

656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 

C 
C 

TABLE(1, LL)=FARA1 
TABLE(2, LL)=F'ARA2 
TABLE(3, LL)=XXMEAN 
TABLE(4, LL)=XXMEAN+X1 
TABLE(5, LL)=VAR 
TABLE(6, LL)=TFR 
TABLE(14, LL)=A/(A+B) 
DO 650 K=1,7 
TABLE(K+6, LL)=XKADJ(K) 

650 CONTINUE 
C 

ALAT=A 
BLAT=B 
GLAT=G 
HLAT=H 

700 CONTINUE 
C 

777 CONTINUE 
C 
C ORGANIZING THE OUTPUT TABLES 
C 
C 

DO 750 L=2,49 
DO 740 K=1 , L-1 
IF(TABLE(1, L). GT. TASLE(1, K)) THEN 

DO 720 I=1,14 
720 S(I)=TABLE(I, L) 

DO 730 M=L-1, K, -1 
DO 725 I=1,14 

725 TABLE(I, M+1)=TABLE(I, M) 
730 CONTINUE 

DO 735 I=1,14 
735 TABLE(I, K)=S(I) 

GO TO 750 
END IF 

740 CONTINUE 
750 CONTINUE 

C 
C 

PRINT 770 
770 FORMAT(1H1 // 30X, '*** TABLE OF PARAMETERS AND MULTIPLIERS ***' 

* 34X, ýtýt********ýr** / 
* 1H0, ' PARI PAR2 XXMEAN AGE VAR TFR 15-19 20-24 
*25-29 30-34 35-39 40-44 45-49 P' ) 

WRITE(6,780) TABLE 
780 FORMAT(1X, 2X, F5.3,2X, F5.3,2X, F5.2,2X, F5.2,2X, F5.2,2X, F5.2, 

2X, F5.3,2X, F5.3,2X, F5.3,2X, F5.3,2X, F5.3,2X, F5.2,2X, F5.3,3X, F4.3 
C 

IF(Z. EQ. 0) GO TO 2- 
C 

STOP 
END 
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APPENDIX 2 

Model Time-Exposures and Proportions 

Surviving for Different Patterns of 

Nupti ality and Fertility 
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*** PARAMETERS OF FERTILITY ### 

STOPPING RULE _ 
0.900 0.860 0.790 0.700 0.560 0.430 0.300 0.210 
0.120 0.060 0.030 0.020 0.010 0.006 0.004 

A=5.500 13=1.500 G=0.530 H= 7.00 X1=11.00 

TIME EXPOSURE TO THE RISK OF DYING 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 1.46 2.32 3.94 7.79 12.92 17.96 22.79 
2 1.76 2.68 3.82 5.94 9.91 15.33 20.20 
3 2.02 2.83 4.07 5.91 B. 67 13.33 18.40 
4 0.0 3.09 4.41 6.47 9.19 13.27 17.51 
5 0.0 3.55 4.41 6.59 9.41 13.49 17.30 
6 0.0 0.0 4.80 6.76 9.88 14.15 17.72 
7 0.0 0.0 0.0 6.55 9.76 14.13 17.64 
9 0.0 0.0 0.0 7.27 10.25 14.81 18.2-7 
9 0.0 0.0 0.0 7.79 10.23 14.97 18.44 

10 0.0 0.0 0.0 0.0 9.89 14.76 18.29 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 
20-24 25-29 30-34 35-39 40-44 45-49 

1 0.830 0.801 0.778 0.757 0.743 0.724 0.696 
2 0.817 0.794 0.778 0.764 0.750 0.735 0.712 
3 0.807 0.791 0.776 0.765 0.754 0.742 0.722 
4 0.0 0.737 0.773 0.762 0.753 0.742 0.726 
5 0.0 0.781 0.773 0.762 0.752 0.741 0.727 
6 0.0 0.0 0.771 0.761 0.751 0.739 0.725 
7 0.0 0.0 0.0 0.762 0.751 0.739 0.726 
13 0.0 0.0 0.0 0.759 0.750 0.737 0.723 
9 0.0 0.0 0.0 0.757 0.750 0.736 0.722 

10 0.0 0.0 0.0 0.0 0.751 0.737 0.723 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.790 0.815 0.815 0.798 0.783 0.763 0.733 
2 0.738 0.778 0.803 0.815 0.802 0.786 0.761 
3 0.699 0. ? 37 0.783 0.801 0.805 0.791 0.770 
4 0.0 0.703 0.749 0.780 0.788 0.784 0.767 
5 0.0 0.6£10 0.713 0.755 0.764 0.766 0.754 
6 0.0 0.0 0.689 0.720 0.739 0.741 0.735 
7 0.0 0.0 0.0 0.683 0.717 0.724 0.715 
8 0.0 0.0 0.0 0.653 0.677 0.691 0.695 
9 0.0 0.0 0.0 0.626 0.642 0.665 0.669 

10 0.0 0.0 0.0 0.0 0.613 0.645 0.654 
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*** PARAMETERS OF FERTILITY *#* 

STOPPING RULE = 
0.900 0.860 0.790 0.700 0. ' 560 0.430 0.300 0.210 
0 120 0.060 0.030 0.020 0.010 0.006 0.004 

A=4.500 8=2.500 0=0.530 H= 7.00 X 1=1 1 . 00 

TIME EXPOSURE TO THE RISK OF DYING 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 1.57 2.67 4.22 6.96 11.46 16.55 21.42 
: _' 1.78 2.35 4.27 6.43 9.10 13.15 17.46 
3 1.94 2.90 4.39 6.47 9.12 12.83 16.73 
11 0.0 3.10 4.52 6.78 9.73 13.82 17.35 
5 0.0 3.555 4.43 6.75 9.85 14.12 17.57 
6 0.0 0.0 4.53 6.77 10.10 14.52 17.98 

0.0 0.0 4.34 6.49 9.86 14.41 17.89 
3 0.0 0.0 0.0 6.78 10.12 14.83 18.30 
3 0.0 0.0 0.0 7.24 9.98 14.86 18.37 

10 0.0 0.0 0.0 0.0 9.65 14.61 18.21 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.825 0.794 0.775 0.760 0.747 0.731 0.704 
2 0.817 0.791 0.774 0.762 0.753 0.742 0.727 
3 0.810 0.790 0.773 0.762 0.753 0.743 0.730 
1 0.0 0.736 0.772 0.761 0.751 0.740 0.727 
5 0.0 0.731 0.773 " 0.761 0.751 0.739 0.726 
6 0.0 0.0 0.772 0.761 0.750 0.738 0.724 
7 0.0 0.0 0.770 0.762 0.751 0.738 0.725 
8 0.0 0.0 0.0 0.761 0.750 0.737 0.723 
9 0.0 0.0 0.0 0.759 0.750 0.737 0.722 

10 0.0 0.0 00 0.0 0.751 0.738 0.723 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.786 0.806 0.810 0.804 0.791 0.775 0.747 
0.737 0.773 0.795 0.310 0.903 0.791 0.773 

3 0.696 0.735 ý0.778 0.796 0.801 0.789 0.771 
4 0.0 0.703 0.746 0.774 0.782 0.731 0.764 
5 0.0 0.630 0 713 0.75 1 0.761 0.759 0.752 
6 0.0 0.0 0.677 0.719 0.738 0.738 0.729 
7 0.0 0.0 0.648 0.684 0.717 0.721 0.712 
E3 0.0 0,0 0.0 0.648 0.679 0.691 0.693 
9 0.0 0.0 0,0 0.620 0.642 0.666 0.671 

10 0.0 0.0 0.0 0.0 0.614 0.644 0.654 
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*** PARAMETERS OF FERTILITY *** 
STOPPING RULE = 

0.900 0.860 0.790 0.700 0.560 0.430 0.300 0.210 
0.120 0.060 0.030 0.020 0.010 0.006 0.004 

A=4.000 B=3.000 G=0.530 H= 7.00 X1=11.00 

TIME EXPOSURE TO THE RISK OF DYING 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 1.61 2.7 9 4. 46 6.9 2 10.33 14.89 19.85 

1.78 2.90 4. 45 6.68 9.22 12.88 16.67 
3 1.94 2.92 4. 49 6.65 9.38 13.14 16.77 
4 0.0 2.97 4. 55 6.86 9.88 14.04 17.45 5 0.0 3.42 4. 43 6.77 9.93 14.25 17.67 
6 0.0 0.0 4. 57 6.75 10.10 14.57 18.00 
7 0.0 0.0 4. 82 6.46 9.84 14.42 17.91 a 0.0 0.0 0. 0 6.43 10.03 14.76 18.24 
9 0.0 0.0 0. 0 6.85 9.88 14.76 18.29 10 0.0 0.0 -0. 0 0.0 9.55 14.52 18.14 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-21 25-29 30-34 35-39 40-44 45-49 
1 0.824 0.792 0. 773 0.760 0.749 0.737 0.714 
2 0.816 0.789 0. 773 0.761 0.753 0.743 0.730 
3 0.810 0.789 0. 773 0.762 0.752 0.742 0.730 4 0.0 0.738 0. 772 0.761 0.751 0.739 0.727 r- 00 0.733 0. 773 0.761 0.750 0.739 0.726 
4 0.0 0.0 0. 772 0.761 0.750 0.738 0.724 

0.0 0.0 0. 770 0.762 0.751 0.738 0.725 
8 0.0 0.0 0. 0 0.762 0.750 0.737 0.723 0.0 0.0 0 0 0.761 0.751 0.737 0.723 

10 0.0 0.0 0. 0 0.0 0.752 0.738 0.723 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.781 0.802 0.807 0.804 0.796 0.783 0.759 
2 0.737 0.7b8 0.793 0.803 0.302 0.791 0.774 

0.69ýi 0 734 0.777 0.791 0.800 0.788 0.770 
n 0.0 0.697 0.746 0.77 3 0.779 0.790 0.763 
71 00 0.670 0.713 0.749 0.760 0.756 0.751 
b 0.0 0.0 0.677 0.719 0.736 0.739 0.727 
7 0.0 0.0 0.649 0.684 0.715 0.719 0.711 
3 0.0 0.0 0.0 0.64 3 0.679 0.690 0.693 
9 0.0 0.0 0.0 0.615 0.642 0.667 0.672 

10 0.0 0.0 0.0 0.0 0.614 0.646 0.655 
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*** PARAMETERS OF FERTILITY *** 
51OPPING RULE 

0.900 0.860 0.790 0.700 0.560 0.430 0.300 0.210 
0.120 0.060 0.030 0.020 0.010 0.006 0.004 

A=5.000 13=2.000 G=0.520 H= 6.00 X1=11.00 

TIME EXPOSURE TO THE RISK OF DYINC 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 1.59 2.67 4.37 8.07 13.21 18.22 23.07 2 1.81 2.89 4.30 6.61 9.90 15.13 19.95 3 1.96 2.95 4.47 6.57 9.36 13.52 17.71 
4 0.0 3.04 4.67 6.98 9.97 14.15 17.79 Z 0.0 3.51 4.59 6.99 10.17 14.42 17.89 6 O. 0 0.0 4.74 7.07 10.58 14.90 18.29 
7 1-1.0 0.0 4.97 6.79 10.35 14.82 18.20 8 0.0 0.0 0.0 6.79 10.74 15.34 18.68 9 0.0 0.0 0.0 7.25 10.64 41 15 18.79 10 0.0 0. Cl 00 7.65 10.20 . 15.16 18.61 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.824 0.794 0.774 0.756 0.742 0.723 0.694 2 0.815 0.790 0.774 0.762 0.750 0.736 0.713 3 0.1309 0.799 0.773 0.762 0.752 0.741 0.725 4 0.0 0.707 0.771 U. 760 0.750 0.739 0.725 
5 0.0 0.732 0.772 0.760 0.750 0.738 0.725 
6 0.0 cc. 0 0.771 0.760 0.749 0.737 0.723 
7 0.0 0.0 0.769 0.761 0.749 0.737 0.723 
8 0.0 0.0 0.0 0.761 0.748 0.735 0.720 
9 0.0 0.0 0.0 0.759 0.749 0.735 0.720 

10 0.0 0.0 0.0 0.758 0.750 0.736 0.721 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

i 0.78z1 0.806 0.808 0.796 0.781 0.761 0.731 
Z 0.7 34 0. ? 0.795 0.809 0.800 0.785 0.761 
3 0.693 0.733 0.777 0.795 0.801 0.788 0.770 
4 0.0 0.69.? 0.744 0.772 0.779 0.779 0.763 
5 0.0 0.6,66 0.707 0.748 0.760 0.757 0.750 
6 0.0 0.0 0.670 0.715 0.734 0.736 0.727 
7 0.0 0.0 0.645 0.681 0.707 0.718 0.710 
8 0.0 0.0 0.0 0.639 0.669 0.686 0.689 
9 0.0 0.0 0.0 0.611 0.637 0.657 0.666 

10 0.0 0.0 0.0 0.579 0.607 0.640 0.651 
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*** PARAMETERS OF FERTILITY #** 
STOPPING RULE = 0.900 0.860 0.790 0.700 0.560 0.430 0.300 0.210 

0.120 0.060 0.030 0.020 0.010 0.006 0.004 
A=4.500 13=2.500 G=0.560 H= 5.50 X l=11.00 

TIME EXPOSURE TO THE RISK OF DYING 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 1.77 3.24 5. 58 9. 42 14.52 19.50 24.43 2 1.88 3.27 5. 13 7. 80 11.25 15.61 19.61 3 2.02 3.22 5. 01 7. 61 10.91 15.00 18.40 4 2.48 3.22 5. 10 7. 84 11.53 15.61 18.79 0.0 3.51 4. 91 7. 70 1 1.60 15.78 18.88 6 0.0 3.76 4. 78 7. 67 11.82 16.09 19.16 7 0.0 0.0 4. 99 7. 32 11.49 15.93 19.03 8 0.0 0.0 5. 43 7. 23 11.74 16.26 19.38 9 0.0 0.0 0. 0 7. 31 11.57 24 16 19.41 10 0.0 0.0 0. 0 7. 73 11.04 . 15.98 19.22 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.817 0.785 0.766 0.752 0.738 0.716 0.686 2 0.812 0.785 0.763 0.757 0.747 0.734 0 715 3 0.807 0.785 0.769 0.758 0.748 0.736 . 722 0 4 0.798 0.785 0.769 0.757 0.746 0.734 . 720 0 0.0 0.782 0.770 0.758 0.746 0.734 . 0.719 6 0O 0.779 0.771 0: 756 0.746 0.732 718 0 7 0.0 0.0 0.769 0.759 0.746 0.733 . 0.719 8 0.0 0.0 0.767 0.759 0.746 0.732 0.717 9 0.0 0.0 0.0 0.759 0.746 0.732 0.716 

10 0.0 0.0 0.0 0.757 0.748 0.733 0.718 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.775 0.791 0.794 0.786 0.771 0.749 0.717 
2 0.723 0.759 0 730 0.300 0.793 0.781 0.761 
3 0.639 0.725 G 762 0.782 0.790 0.731 0.763 
4 0.660 0.684 17.733 0.761 0.770 0.767 0.756 
5 0.0 0.655 0.700 0.73-4 0.747 0.747 0.735 
6 0.0 0.625 0 657 0.70ý> 0.723 0.727 0.718 
7 0.0 0 0 0.632 663 0 696 0 706 0 707 0 
3 0.0 . 0.0 0.600 . 0.62 8 . 0.661 . 0.676 . 0.678 
9 0.0 0.0 0.0 0.596 0.628 0.645 0.656 

10 0.0 0.0 0.0 0.571 0.596 0.627 0.636 
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*** PARAMETERS OF FERTILITY *+ý* 
STOPPING RULE = 

0.900 0.860 0.790 0.700 0.960 0.430 0.300 0.210 
0.120 0.060 0.030 0.020 0.010 0.006 0.004 

A=4.000 B=3.000 G=0.560 H= 5.50 x1=11.00 

TIME EXPOSURE TO THE RISK OF DYING 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 1.81 3.39 5.63 8.75 12.84 67 17 22.51 2 1.89 3.35 5.29 7.87 11.01 . 14.91 18.39 
3 2.02 3.25 5.11 7.72 11.03 14.99 18.22 
4 2.48 3.22 5.11 7.87 11.62 15.66 18.75 
5 0.0 3.50 4.90 7.69 11.63 15.81 13.87 6 0.0 3.75 4.76 7.63 11.78 16.06 19.11 7 0.0 0.0 4.79 7.28 11.43 15.88 18.99 8 0.0 0.0 5.40 7.15 11.62 16.16 19.28 9 0.0 0.0 0.0 7.24 11.42 16.13 19.30 10 0.0 0.0 00 7 66 10.91 15.86 19.12 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.815 0.783 0.766 0.754 0.743 0.726 0.697 2 0.812 0.784 0.768 0.757 0.748 0.737 0.722 
3 0.807 0.785 0.769 0.757 0.748 0.736 0.723 4 0.793 0.735 0.769 0.757 0.746 0.734 0.720 5 0.0 0.782 0.770 0: 758 0.746 0.733 0.719 
6 0.0 0.779 0.771 0.758 0.746 0.733 0.718 7 0,0 0.0 0.771 0.759 0.747 0.733 0.719 8 0.0 0.0 0.767 0.760 0.746 0.732 0.717 9 0.0 0.0 0.0 0.759 0.747 0.732 0.717 

10 0.0 0.0 0.0 0.758 0.748 0.733 0.718 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.773 0.789 0.794 0.791 0.783 0.766 0.736 
2 0.728 0.757 0.778 0.799 0.794 0.783 0.766 
3 0.683 0.724 0.761 0.780 0.783 0.780 0.763 
4 0.660 0.684 0.733 0.760 0.769 0.766 0.755 
5 0.0 0.655 0.700 0.733 0.747 0.746 0.734 
6 0.0 0.625 0.658 0.706 0.724 0.726 0.718 
7 0.0 0.0 0.629 0.671 0.695 0.705 0.702 
3 0.0 0.0 0.600 0.623 0.661 0.677 0.678 
9 0.0 0.0 0.0 0.599 0.628 0.647 0.656 

10 0.0 0.0 0.0 0.572 0.596 0.627 0.639 
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*** PARAMETERS OF FERTILITY *** 

STOPPING RULE = 
0.900 0.860 0.790 0.700 0.560 0.430 0.300 0.210 0.120 0.060 0.030 0.020 0.010 0.006 0.004 

A=-3.500 13=3.500 G=0.600 H= 5.50 XI=11.00 

TIME EXPOSURE TO THE RISK OF DYING 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 1.93 3.80 6. 37 9.18 12.48 16.10 19.96 
2 1.94 3.60 5. 82 8.45 11.76 15.45 18.56 
3 2.08 3.43 5. 51 8.28 1 1.86 15.73 18.66 4 2.53 3.33 5. 42 8.32 12.35 16.26 19.18 5 0.0 3.40 5. 10 8.06 12.30 16.34 19.26 
6 0.0 3.82 4. 89 7.94 1 2.36 16.50 19.44 
7 00 0.0 4. 99 7.57 12.01 16.32 19.31 
3 0.0 0.0 5. 26 7.41 12.12 16.53 19.56 
9 0.0 0.0 0. 0 7.10 11.90 16.48 19.56 10 0.0 0.0 0. 0 7.52 11.38 16.23 19.38 

STANDARD PROPORTIONS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

1 0.810 0.778 0.763 0.753 0.744 0.732 0.713 2 0.810 0.781 0.765 0.755 0.746 0.735 0.721 3 0.806 0.783 0.767 0.755 0.746 0.734 0.721 
4 0.797 0.784 0.767 0.755 0.744 0.732 0.718 
5 0.0 0.783 0.769 0.756 0.744 0.731 0.717 
6 0.0 0.779 0.770 0.757 0.744 0.731 0.716 
7 0.0 0.0 0.770 0.758 0.745 0.731 0.717 
8 0.0 0.0 0.768 0.759 0.745 0.731 0.716 9 0.0 0.0 0.0 0.760 0.745 0.731 0.716 

10 0.0 0.0 0.0 0.758 0.747 0.732 0.717 

OBSERVED PROPORTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.767 0.730 0.787 0.788 0.785 0.777 0.758 
2 0.724 0 751 0 772 0.790 0.790 0.780 0.764 
3 0.685 0.720 0.753 0.775 0.781 0.776 0.759 
4 0.657 0.681 0.728 0.754 0.764 0.758 0.751 
5 0.0 0.649 0.693 0.728 0.740 0.742 0.729 
6 0.0 0.621 0.652 0.700 0.717 0.720 0.715 
7 0.0 0.0 0.623 0.661 0.690 0.700 0.695 
8 0.0 0.0 0.592 0.623 0.656 0.671 0.675 
9 0.0 0.0 0.0 0.585 0.619 0.641 0.651 

10 0.0 0.0 00 0.564 0.588 0.622 0.633 
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*** PARAMETERS OF FERTILITY *** 

STOPPIMC RULE = 
0.920 C. A2 1.327 0.750 ^. 6E3 0.59C 0.4E0 0.350 
0.? 2^ C. 13C 0. ^70 C. 05C 0.03J C. 020 0.010 

A=3.5C' 3=3.500 MAY H= 5.50 X1=11. OC 

TIME EYPOSUCE TO THE F: SK OF DYING 

0 FDEP 15-1? 2C-24 25-29 =C-34 35-39 40-44 45-49 

1 1. FFS ?. 66 5.97 2.85 12.13 15.69 19.55 
2 . 021 3.49 5.57 8.14 11.28 14.98 18.21 
3 2.055 3. "2 5.25 7.89 11.2ý 15.16 18.24 
4 2.: J 3. c1 4.99 7.62 11.24 15.27 18.32 
5 C. C? 3.57 4.84 7.51 11.32 15.51 18.55 
6 ^. C '. 75 4.71 7.43 11.42 15.73 18.78 
7 C. C G. C 4.22 7.33 11.55 15.98 19. L3 

O. C. C. C 5.17 7.15 11.61 16.13 19.21 
9 c. C. C 0. C 6. Z9 11.34 16. C3 19.17 

10 C. C C. C 0. G 7.37 11.00 1:. 92 19.13 

STANDARD P? CPCaTIC'1 CF SUPVIVIN CHILDREN 

0R Ep 15-19 2C-24 25-29 3C-34 35-39 40-44 45-49 

1 0.812 1.7f0 0.764 0.754 0.745 0.734 0.716 
2 0.811 0.782 0.766 0.756 0.747 0.736 0.723 
3 0±. 106 0.7P4 3.760 0.7: 7 0.747 0.736 0.723 
4 0.797 fl. 7ý°5 1.769 0.753 7.747 0.735 0.722 
5 0.0 0.7F2 0.770 0.755 0.747 0.734 0.721 
6 0.0 0.779 

0 O 
0.771 

770 7 
0.759 
0759 

0.747 
0746 

0.734 
73 

0.7'c0 
719 0 7 0.1 . . . . Q. . 3 1. ^ 3.7CR 0 . 760 . 746 0 0.73 3.718 

9 ýi. f1 0.0 7.0 0.761 0.747 0.733 0.718 
10 0. 7.7 3.3 0.75 0.748 0.733 0.718 

CBSERVSD PPCPCPTIC"iS 0P SIQVIVI' 5C ILDFEN 

OFDE° 15-11 7C-24 25-2'' ? C-34 35-39 4C-44 45-49 

1 3.76? 3.7P7 0.7E9 '. 750 3.788 0.779 3.761 
. ? 754 0.775 3.796 0.792 0.782 0.765 3 

3 h 6 

9 
0.722 0.756 7.778 

7 1 
0.787 

9 7 0 
0.778 

767 0 
0.755 
0 4 1.55 ß. 5F4 0.733 3. 6 6 . . . 5 1.0 3.655 3.7C^ 0.734 0.746 

0 
0.747 

2 
0.738 

719 0 6 1-0 . 626 0.655 3.706 724 . 6 0.7 . 7 0 .0 0 7.627 0.669 . 694 0 0.704 0.699 
8 0.0 0.0 0.595 1.627 0.663 0.675 0.679 
9 2.0 3.0 O. C. 0.595 0.626 0.650 0.657 

10 0.0 3.0 0.0 0.56? 0.593 0.630 0.633 
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*** PARAMETERS OF FERTILITY *** 

STOPPING RULE = 
0.900 0.71C 0.660 0.530 0.420 0.230 0.180 0.130 
0.0fO O. 03C 0.015 0.038 0.004 C. 002 0.001 

4=3. SC'l 3=3.51CI? 5=0.560 H= 5.50 X1=11. CC 

TIME EXPOSURE TC TWE RISK OF DYING 

ODDER 15-1Q ? C-24 25-21 30-34 35-39 4C-44 45-49 
1 1.87 3.67 6.06 9.00 12.38 16.07 19.99 
2 1 . 91 3.51 5.6g 8.33 11.65 15.33 18.59 
3 2. C3 3.36 5.43 8.22 11.78 15.72 18.76 
4 2.48 3.23 5.14 7.91 11.71 15.73 18.77 
5 C. C 3.! 2 

7 
5. C3 

7? 
8.00 

73 7 
12.19 
11 98 

16.30 
1 22 

19.31 
5 0. C 3. 5 4. . . 6. 19.26 
7 C. C C. 0 4.76 7.17 11.25 15.72 18. E4 
8 C. 0 0.0 5.15 7.26 11.86 16.37 19.47 
9 C. 0 0.0 C. C 6.84 11.29 16.03 19.19 

10 C. 0 0. C 0.0 7.25 10.80 15.75 19 . 03 

STANDARD PRCPORTICWS OF SURVIVING CHILDREN 

OPDEQ 15-19 2C-24 25-29 30-34 35-39 40-44 45-49 
1 o. R12 0.7P0 0.764 0.753 0.744 0.732 0.713 
2 0.811 0.722 0.765 0.755 0.746 0.735 0.721 
3 0.306 0.7E3 0.767 0.756 0.746 0.734 0.720 
4 0.79; 0.7'5 0.763 0.757 0.746 0.734 0.720 
5 0.0 0.7P2 0.769 0.756 0.745 0.732 0.717 
6 0 3 0.779 3.771 0.757 0.745 0.732 0.717 
7 . 0.2 0.771 0.759 0.747 0.734 0.720 
3 0.1 0.0 0.763 0.759 0.746 0.731 0.716 
9 0.0 0.0 0.0 0.761 0.747 0.733 0.718 

10 0.0 0.0 0.0 0.759 0.748 0.734 0.719 

OPSEQVED rR0? ORTICWS CF SURVIVING CHILDFEN 

0PDER 15-10 20-24 25-21 3C-34 35-39 40-44 45-49 

1 0.770 0.783 0.7Ev 0.7E9 0.716 0.777 0.758 
2 0.726 1.754 0774 . 0.791 0.791 0.7¬1 0.765 
3 0.687 1.722 . 755 0 0.777 0.783 0.777 0.761 
4 
5 

0.660 
0 0 

0.04 
6 3 

0.732 
^ 

7.759 
7 0 

0.768 
742 0 

0.763 
74 0 

0.754 
729 0 . 0 0 . 55 1 . 69 3 0. . 72 . 4 

72 . 0 718 6 . . 625 0.655 0.705 1 0. 4 0. . 7 0.0 0.0 - 0.629 0.671 0.696 0.726 0.72" 
8 0.0 0.0 0.595 0.627 0.659 0.674 0.676 
9 0.0 0.596 0.628 6 0 641 

10 X1.0 0.1 3. 
ý 

32 . 3. 
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*** PARAMETERS OF FERTILITY *** 
STOPPING RULE = 0.920 0.880 0.820 0.750 0.680 0.590 0.480 0.350 0.220 0.130 0.070 C. 050 0.030 0.020 0.010 
ß=6.000 B=1.000 G=0.470 H= 7.00 X1=12.00 

TIME EXPOSURE TC THE RISK OF DYIVC 

OPDER 15-10 20-24 25-29 30-34 35-39 4G-44 45-49 
1 1.13 1.72 2.50 4.52 9.19 14.34 19.31 2 1.57 2.13 2.81ý 3.87 6.45 11.21 16.37 
3 1.91 2.49 3.25 4.19 5.84 9.10 14.46 
4 0.0 2.84 3.64 4.55 5.95 8.30 12.79 5 C. 0 C. C 0.0 4.95 6.59 8.77 12.50 
6 C. C C. C. C. C 5.94 7.23 9.68 13.35 7 0. C 0.0 C. C C. C 7.89 10.93 14.59 8 0.0 0.0 C. C C. 0 9.02 12.02 15.67 9 0.0 0.0 C. C 0.0 9.87 12.36 16.05 10 0.0 O. C C. C 0.0 0.0 13.69 16.35 

STANDARD PQDPOPTIONS CF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.442 0.319 0.797 0.772 0.753 0.738 0.717 2 '11 . 926 7.805 0.790 0.778 0.762 0.747 0.731 3 . 0.311 0.793 0.785 7.775 0.765 0.753 0.738 4 J. 0 0.791 0.7ß0 0.772 0.764 0.755 0.743 
5 0.0 0.0 0.0 0.769 0.762 0.754 0.744 6 0.0 0.0 0.0 0.764 0.759 0.751 0.741 7 0.0 0.0 0.0 0.3 0.757 0.748 0.738 8 0.7 0.0 0.0 0.0 0.753 0.745 0.734 
9 0.0 0.0 0.0 0.0 0.751 0.744 0.733 

10 1.0 3.0 0.0 07.3 0.0 0.742 0.731 

OBSERVED PRCPCRTIONS OF SURVIVING CHILDREN 

ORDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 11.3C7 0.934 0.340 0.321 0.3C0 0.785 0.762 7.754 3.793 3.23 331 0.315 0.793 0.7b1 3 719 0 753 0 8CO r 325 0.517 0.798 0.779 4 " 774 0.303 0.308 0.797 0.7E0 5 ^ p " 0.0 0. 0.773 0.789 0.763 0.770 
6 
7 

1, "0 0.0 
0.0 
0.0 

''. 0 
3.0 

0.740 
7.0 

0.764 
0.734 

0.766 
0.743 

0.755 
0.736 

3 0.0 0.0 0.0 0.0 0.702 0.715 0.716 
9 0.0 '? "^ 

ý. p 1.0 0.6F0 0.669 0.654 
10 0.0 0.0 0. C 3.0 .. 0 0.667 0.675 
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*** PARAMETERS CF FERTILITY *** 
STOPPING RULE 

0.920 C. F. 80 0.120 C. 75C '. 680 0. 590 0.480 0.35c 
0.22') 0.13C 0.070 C. 05C 0.030 C. 02C 0.010 

A=5.5C0 3=1. 500 G=0.5 00 4= E. 00 X1=12.00 

TIME EXPOSURE TO THE RISK OF DYING 

ORDER 15-19 2C-24 25-29 30-34 35-39 4C-44 45-49 
1 1.2 0 1.85 ". 7? 4.52 F. 86 14.01 18.93 
2 1.56 2.200 3.10 4.22 6.54 1080 . 16.13 
3 1.80 2.49 3.41 4.56 6.33 9 .0 14.03 
4 0.0 2.90 3. `7 4.81 6.52 8.92 12.94 
5 0.0 0.0 4.1? 5. üe 7.01 9.57 13.47 
6 0.0 C. C 0.0 5.73 7.51 10.46 14.36 
7 0.0 0.0 C. C 6.41 7.95 11.48 15.32 
8 C. C 0.0 C. C C. C 2.60 12.25 16.12 
9 0.0 0.0 0.0ý C. C. 9.34 12.39 16.30 

10 C. 0 C. 0 D. C C. 0 C. C 12.50 16.47 

STAP; DAgC PPCPOPTIC`IS CF SUQVIV: N; CHILDREN 

OPDEP 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.341 0.313 0.793 0.773 0.754 0.740 0.719 
2 0.926 0.3C3 0.786 0.775 0.762 0.743 0.732 
3 0.312 0.707 0.723 0.772 0.763 0.753 0.739 
4 0.0 0.790 0.7y1 0.770 0.762 0.753 0.743 
5 3.0 0.0 

0 3 
0. '775 

0 0 
0. E9 

7 3 6 
0.760 

7 0 
0.751 0.741 

6 0.0 . . 6 . . 58 0.749 0.738 
7 0.0 0.0 2.0 0.763 0.757 0.746 0.735 
8 0.0 0.0 0.0 0.0 0.754 0.745 0.732 
9 0.0 0.0 0.0 0.0 0.752 0.744 0.732 

10 0.0 0.0 0.0 0.0 0.0 0.744 0.731 

OBSERVED PRCPCRTIONS OF SURVIVING CHILDREN 

ORDER 15-19 2C-24 25-2'1 30-34 35-39 4C-44 45-49 

1 0.305 0.329 1.835 O. 821 0.301 0.766 0.714 
2 0.755 0.791 3.? 18 0.327 0.314 0.793 0.7.1 
3 0.727 0.753 0.798 0.313 0.315 0.801 0.782 
4 0. ^ 0.734 'x. 769 0.798 0.805 0.795 0.777 
5 0.0 0.0 0.762 9.772 0.763 0.780 0.767 
6 00 

3. 0 
0.0 0.0 0.749 0.760 0.762 

1) 
0.751 

7 0 7 0.0 0 00. 0.718 0.732 0.73 . 32 . r j 699 0.712 0.713 
9 0 0 0. 70 68 675 0 

1 . 0 0.0 0.0 3.0 0.6 . 
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*** PARAMETERS GF FERTILITY *** 
STOPPING PULE = 

0.920 0.8 C 1.820 C. 75C 0.580 0.590 0.4 0 0.350 
n. 220 C. 13C 0.070 C. 05C 3.030 0. C2C 0.010 

4=5.000 30.0C3 1=0.500 H= 8. C3 X1=12.3C 

TIME EYPOSUPE TC THE RISK OF DYING 

ORDER 15-11? 20-24 _5-29 30-34 35-39 4C-44 4; -49 
1 1.27 1.95 2.93 4. t1 E. 26 13.35 18.33 
2 1.56 2.2Q 3.33 1 .. 72 9.9? 15.1b 
3 1.90 2. `1 3. `4 4. E4 6.75 9.36 13.42 
4 C. (' 2.90 -. E2 4.99 E. 54 9.52 13.43 
5 C. C C. C 4. C' S. z 7.33 10.20 14.17 
5 0 C. 0 G. C. 5.55 7.68 11.00 14.52 
7 C. C .C ý' G 11 c . 7.99 11.7Q 15.72 

C. C 0 C 0. C O .C 20 12.35 16.30 
C. Q C .C ^. C G. G x. 22 1ý. 3') 1E. -9 

1^ 0. C L. C C. C 0.0 9.56 1c. 4C 16.49 

STAW. ) AQC PRCPC RTICONS Cc SUR VIV IF; G Ch ILDF EN 

OPDER 15-1° 20-24 25-29 3C-34 35-39 4C-44 450-49 
1 0.940 0.909 0.7E9 0.772 0.756 0.741 0.722 
2 0.826 0. RC1 ^. 7fi4 0.772 0.761 0.750 0.736 
3 0.911 0.757 0.781 0.770 0.761 0.752 0.741 
4 0.11 1.7E Q 0.781 0.761) 0.760 0.752 0.741 5 0.0 0.0 0.7775 0.76Q 0.759 0.750 0.739 ') '' 0.765 0.758 0.743 0.736 
7 0 ý. 0.0 0.0 0.74,4 0.756 0.746 0.7'4 
3 .0 0.0 ^. 0 0.0 0.756 0.744 -. 1.712 
9 0.0 3.0 0.7 0.0 0.753 0.744 0.731 

10 n. 0 0.0 O.: i 0 .0 0.752 0.744 0.731 

OBSERVED PQCPC RT IONS CF SURVIVING CH ILDFEN 

ORDEQ 15-19 Z0-24 25-29 30-34 35-39 4C-44 45-49 
1 O. RC4 0.924 D. 330 0.327 0.3C3 0.763 0.767 

0.755 `1.7c9 ^. 31: 0.34 ;;.: 313 ^. 753 0.7x1 
0.720 0.752 796 p. 315 0 . 812 0.793 0.7¬1 
0.0 0.734 ). 76? ^. 796 0.3G2 0.793 0.775 

5 0 7.7`4 0.769 C. 7F1 0.777 -7.765 6 .0 0.0 0.0 7.744 0.759 0.753 0.749 
7 0"'1 0.0 0.0 0.714 0.732 0.737 0.730 8 0.0 0.0 0.0 0.0 0.697 0.711 0.710 
9 1.0 0.0 0.0 0.0 0.679 0.691 0.691 

10 ^"0 Q"0 C. 0 '? .0 0.660 0 . 608 0.675 
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*. ** PARAMETERS OF FERTILITY *** 

STOPPING RULE _ 
0.92r) C. F3C 0.320 C. 75C 0.680 0.59C 0.4E7 0.350 
0.220 0.130 0.070 C. 05C 0.030 0.02E 0.010 

A=4 . 5C0 0=2.5C0 G=0.470 H= 7.7n X1 =1 2.00 

TIME EXPOSURE TO THE RISK OF DYINL 

ORDER 15-19 2C-24 25-29 30-34 3: -39 40-44 45-49 
1 1.23 1.97 2.97 4.39 6.82 11.03 16.18 
2 1.55 2.29 3.37 4.63 F. 54 8.93 12.79 
3 1.29 2.50 3.53 4.85 6.74 9.14 12.64 
4 0.0 2. F3 3.60 4.97 6.92 9.45 13.19 
5 0.0 C. C 4.16 5.12 7.22 10.06 14. C2 
6 C. (` 0.0 C. C 5.63 7.51 10.73 14.70 
7 0. C 0. C C. 0 6.15 7.75 11.37 15.37 
8 C. 0 C. 0 0.0 0. C 8.20 11.83 15.90 
9 0.0 C. ^ C. 0 0.0 E. 83 11.84 15.99 

1G C. (' 0. C C. C G. 0 C. 0 11.83 16.05 

STAbDAPD PRCPCRTIO"JS CF SURVIVING CHILDREN 

OPDER 15-19 20-24 25-29 30-34 35-39 40-44 45-49 
1 0.340 0.3C3 0.783 0.773 0.761 0.748 0.732 
2 0.826 0.801 0.70 0.772 0.762 0.753 0.743 
3 0.812 1.797 0.732 0.773 0.761 0.753 0.743 
4 0.0 790 0 0.7E1 0.769 0.760 0.752 0.742 
5 . 

. 775 0.769 0.759 0.750 0.740 
6 3.0 0.0 0.0 0.766 0.753 0.748 0.737 
7 0.0 3.0 0.0 0.7ö4 0.757 0.747 0.735 
g 0.0 0.0 3.0 0.3 0.756 0.746 0.733 
9 0.0 3.0 0.0 0.0 0.754 0.746 0.733 

10 0.0 0.0 0.0 0.0 0.0 0.746 0.733 

02SERVED PRC? CRTICNS CF SURVIVING CHILDREN 

CEDE? 15-19 20-24 25-29 30-34 35-31 40-44 45-49 

1 0.904 0.823 0.829 0.622 0.797 0.775 0.759 
2 0.7., 5 7.78' 1814 . 0.823 0.313 0.796 0.774 
3 0.721 0. '53 0 . 796 0.815 0.312 0.798 0.781 
4 0.0 0.735 3.76' 0.756 3.302 1.793 0.775 
5 0.0 0.0 0.763 0.770 0.731 0.778 0.765 

.0 0.751 . 7.760 0.760 0749 . 7 0.0 
00 

1; 0 
0 

0.0 3 0.720 0734 . 0.738 
714 0 

0 . 730 
711 0 8 . .0 0.0 0 . 705 . . 9 0.0 0.0 3.0 0.0 0.681 0.693 0.693 

10 0.0 0.0 ^" .0 0.0 0.0 C. 671 0.676 
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*** PARAMETERS CF FERTILITY *** 

STOPPING RULE = 
0.920 C. P3C 7. ß20 0.75C 0.580 0.590 0.420 C. 35C 
0.220 0.130 0.070 C . 05C 0.030 O. C 2C 0.010 

A=5.5C0 3=1.5C0 C=0.540 H= 6. C3 x1=11. OC 

TIME EXPOSUPE TO THE RISK OF DYING 

ORDER 15-19 20-24 25-2? 30-34 35-3v 40-44 45-49 

1 1.57 2. E2 4.73 9.47 14.63 19.61 24.56 
2 1. £1 2.83 4.20 6.99 11.64 17.08 21.75 
3 1.97 2.03 4.33 6.43 9.66 14.91 19.69 
4 0.0 3.00 4.33 6.33 9.15 13.59 17.91 
5 0.0 3.51 4.45 6.57 9.43 13.72 17.52 
6 0.0 C. 0 4.67 6.77 9.86 14.23 17.77 
7 0. C 0.0 5.0v 6.90 10.44 14. E 5 18.26 
8 0.0 0.0 C. 0 6.91 1C. 86 15.38 18.70 
9 C. C 0.0 C. C 7.36 10.74 15.40 18.74 

10 C. 0 C, .ß C. 0 7.90 10.55 15.41 18.79 

STAND APC PROPORTIONS OF SUR VIV IkS CH ILDFEN 

ORDER 15-19 20-24 25-29 3C-34 35-39 4C-44 45-49 

1 0.825 0.795 0.771 0.752 0.737 0.715 0.625 
2 0.315 0.791 0.775 1.760 0.746 0.728 0.7C2 
3 0.80! 3.7v' 0.774 0.762 0.751 0.737 0.715 
4 0.0 0.788 1.77.3 1.763 0.753 0.741 0.725 
5 0.0 0.722 i. 7i3 0.762 0.752 0.740 0.726 
6 0.0 0.0 3.771 1.761 0.751 0.739 0.725 
7 0.0 0.0 1.769 0.761 0.749 

7 
0.737 

5 
0.7 23 

7 8 0.0 0.0 0.0 1.760 43 0. 0.73 2 . 9 0.7 0.0 7. ^ 0.759 0.748 0.735 0.720 
in 0.0 3.0 r%^ 1 . 757 0.749 0.735 0.720 

7BSERVEC PROPCRTIOMS OF SURVIV 3 CHILDREN 

ORDEP 15-19 20-24 25-20 30-34 35-39 4C-44 45-49 

1 0.785 0.307 0.803 3.7E5 0.771 0.747 0.716 
2 ^. 734 3.774 3.757 1.603 0.794 0.776 0.748 
3 0.602 7.733 3.779 0.797 0.301 0.785 0.762 
4 0.0 

0 
3.595 0.751 3.779 0.787 

4 7 
0.783 

762 0 
0.764 

753 0 5 .0 65 3.711 3.752 6 0. . . 6 
3.6 

3.670 7.713 0.740 0.740 0.731 
7 C. 0 0.0 0.642 0.677 0.7C7 0.719 0.710 
8 D. 0 3.0 0.0 3.635 0.669 0.666 0.689 
9 0.0 0.0 ;. 0 7.606 0.636 0.657 0.666 

10 0.0 00.0 0.0 0.576 0.604 0.631 0.648 
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*** PARAMETERS OF FERTILITY *** 

STOPPING RULE = 
1.920 0.280 0. x20 0.750 0.680 0.590 0.480 0.350 
0.22' 0.130 0.070 C. 050 0.030 0.02C 0.010 

A=5.000 9=2.000 G=0.500 H= 5.50 xl=11.00 

TIME EXPOSURE TC THE PISK OF DYING 

ORDER 15-11 ? C-24 25-21 3C-34 35-39 

1 1. E1 3.43 6.75 11.76 16. E4 
2 1.91 3.36 5.45 8.63 13.43 
3 2. C7 3.30 5.14 7.97 11.67 
4 2.53 3.24 4.93 7.60 11.27 
5 0.0 3.55 4.90 7.59 11.43 
6 C. C 3 P2 4 ý1 7.63 11.71 
7 G. C . C. C . 4.94 7.64 12.05 
3 C. 0 0. C 5.33 7.51 12.25 
9 C. 0 C. 0 C. G 7.10 12. C1 

10 C. C C. C C. C 7.65 11.63 

STANDABC PROPCRTICMC 

ORDER 15-19 20-24 

CF SURVIVING CHILDREN 

25-29 30-34 35-39 

1 0.315 0.782 
2 0.8111 0.783 
3 '1.806 0.784 
4 o. 7c7 0.785 
5 0.0 0.791 
6 0.0 0.778 
7 0 r n 

.0 
; 

C. 0 0.0 
10 0.0 0.0 

085ERV! C PRCP0RTIONS 

0RDEP 15-19 2C-24 

1 0.773 0.7£7 
2 3 

0.726 
3.695 

0.757 
0.723 

4 0.6! 7 3.683 
5 0.0 !3 6 
6 0.0 0. 21 
7 0.3 ^. 0 
ß J. 0 0.0 
0 0.0 0.0 

10 0.3 .3 0 

0.761 0.746 0.729 
Q. 767 ^. 754 0.741 
'). 763 0.757 0.746 
0.769 0.753 0.747 
3.770 0.758 0.747 
0.777 0.753 0.746 
0.770 3.758 0.745 
0.767 0.758 0.745 
0.0 0.759 0.745 
0.0 0.758 0.746 

Cc SUR VIV ING CHILDREN 
It5-29 3C-34 35-3a 

ý781 . 0.766 0.749 
n 777 ". 790 0.754 
1.761 '1.780 0.787 
0.734 3.765 0.770 
0.599 0.734 0.747 
0.653 0.765 0.722 
0.622 0.662 0.691 
^. 591 0.622 0.657 
0.0 0.584 0.621 
0.0 0.560 3.5E4 

4C-44 

21 .70 1E. 49 
16.14 
15.49 
15.67 
15.99 
16.35 
16.63 
16.54 
16.45 

40-44 
0.702 
0.72 2 
0.732 
0.735 
0.734 
0.733 
0.730 

0.731 
0.7311 

4C-44 

0.722 
^. 763 0.776 
0.766 
0.747 
0.726 
0.703 
0.670 
0.642 
0.619 

45-49 

26.69 
22.95 
19.77 
1¬. 8Q 
18.79 
19 . C3 
19.38 
19.68 
19. c4 
19 . b1 

45-49 
0.672 
0.695 
0.714 
0.720 
0.720 
0.719 
0.717 
0.715 
0.715 
0.715 

4.5 -49 

0.691 
0.735 
0.7; 7 
0.755 
0.735 
0.719 
0.697 
0.673 
0.650 
0.633 
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}** PARAMETERS CF FERTILITY +** 

STOPPIº`'G RULE = 
0.0C0 0.790 0.660 C. 53C 0.420 0.230 0.1E0 0.130 
0.060 0.030 7.015 C. 00Z 0.0C4 0.002 0. OCI 

A=6.000 S=1.700 G=0.530 H= 7. CJ x1=12.0C 

TIME EXPOSUFE TC THE RISK OF DYING 

ORDER 15-19 2C-24 25-29 30-34 35-39 

1 1.32 2. CP 3.73 7. EO 12.53 
2 1.62 2-. 47 3.64 5.81 1C. 19 
3 1 . 96 2.69 3.8 5.75 E . 79 
4 C. C 2.97 ;,. 57 5.79 E. 31 
5 C. C C. C 4.22 6.42 9.22 
6 6.33 9.33 
7 O. C G. C C. C 6.22 F. 72 
ß C. C C. C C. C 7.34 9.84 
9 C. C C. C C. C C. 0 9.45 

10 C. C C. C C. C 0. G 10.10 

STA1DPRC PRCPCRTIO"JS CF 

OPDER 15-19 20-24 

1 0 . 836 0.805 
2 J. 323 O. 79ß 
i 1. ßC9 0.794 
4 0 0.7F8 
5 0.0 0.7 
6 0.0 
7 00.0 
ß ^.!? 0.0 

0.0 3.3 
10 3.0 0.0 

OESEPV_C PRCPORTICrJS 

0 FDER 15-19 2C-24 

1 x. '58 3.320 
2 D. 753 3.785 
3 0.711. 3.743 
4 3. Q x. 72! 1 
5 
6 0.0 0.0 
7 0.!? 0. J 

3.1111 7. 

1C ']. 0 0.0 

SURVIVING CHILDREN 

25-2' 3C-34 35-39 

0.779 0.757 0.743 
3.7E3 3.765 0.750 
iß. 777 3.765 0.754 
0.777 1.765 0.755 
0.775 0.762 0.753 
0.773 0.763 0.752 

7 9 7 1 0 0.0 
. 1. 

5 . 5 
0.0 7.0 0.752 
0.0 0. 'J 0.750 

CF SURVIVING CHILDREN 

2 5-2? ? C-34 35-39 

"?. ?17 1.7c 0.783 
3.311 0.317 0.3C2 
x, 787 0.366 0.8(7 
0.760 0.780 0.798 
0.717 0.757 0.769 
0.711 0.729 0.748 

64 C 0.0 0.6 .63 
0.0 0.0 0.651 
0.0 0.0 0.629 

40-44 

17.96 
15.47 
14.04 
12.52 
13.28 
1 3.37 12.65 
1445 
14 ,. 10 
13.94 

40-44 

0.724 
0.735 
0.73? 
0.744 

00.741 
0.743 
0.733 
0.739 
0.740 

4C-44 

0.763 
0.75 
0.79$ 
0.786 
0.769 
0.749 
0.733 
0.697 
0.675 
0 . 6: 5 

45 -49 
22.79 
20.37 
19.10 
17 . 72 
17. t; 0 
17.32 
16.52 
1b. 13 
17.75 
17.61 

45-49 
0.696 
x. 711 
0.719 
0.725 
0.726 
0.717 
0.731 
0.723 
0.725 
0.726 

45-49 
0.7! 3 

768 » 0.77 
0.767 
0.755 
0.7=9 
0: 717 
0.655 
0.6¬4 
0.663 
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*** PARAMETERS OF FERTILITY *** 
STOPPING RULE 

0.900 0.78C 0.660 0.530 0.420 0.280 0.110 C. 13C 0.060 0.030 0.015 0.006 0.004 0.002 0.001 
A=4, nCn 9=3. OC0 G=0.600 H= .. C3 X1-12. OC 

TIME EXPOSUPS TO THE RISK OF DYING 

ORDER 15-19 20-24 25-27 30-34 35-34 40-44 45-49 
1 1. F0 2.86 4.91 7. t4 11.66 16.29 21.16 2 1.66 2. R6 4.67 7.23 10.13 14.09 17.73 
3 1.90 2. p4 4.58 7. CS 10.17 14.23 17.73 
4 C. 0 2. ^4 4.3? 6.61 10.00 14.26 17.70 
5 C. 0 3.43 4., ý4 6.93 10.49 14.91 18.33 6 C. C C. C 4.33 6.66 10.25 14. E4 18.30 
7 
8 

C. C 
C C 

00.0 
C C 

4.61 
C C 

6.15 
23 

9.58 14.2,9 17.94 
. . . 6. 10.09 15.01 18.55 9 0. C 0.0 C. 0 6.52 9.56 14.6: ) 18.25 10 0.0 0.0 C. 0 6.91 9.17 14.31 18.06 

STANDA? C F? CPORTICNS C= SU VIVIN CHILDREN 

ORDER 15-19 20-24 25-2Q 30-34 35-39 40-44 45-49 
I X3.828 0.790 0.770 0.757 0.746 0.732 0.7C6 
2 0.322 0.790 0.771 0.75Q 0.750 0.739 0.725 3 0 ='11 791 Ü. 772 0.760 0.750 0.739 0.725 
4 0.9 0 7Fý 0.773 0.761 0.7 0 0.739 0.725 
5 0.0 0.7E3 ^. 774 0.760 0.7 9 0.737 0.722 
6 0.0 0.0 0.774 0.761 0.750 0.737 0.723 
7 .0 0.0 0.772 0.764 0.751 0.739 0.745 
8 .0 0.0 0.0 0.763 0.750 0.736 0.721 
9 0.0 7.0 O. 1 7.71,2 0.752 0.733 0.723 

10 0.0 11.0 0.0 0.760 0.753 0.739 0.724 

OBSERVED PROPCRTICNS OF SURVIVING CHILDREN 
ORDER 15-19 20-24 25-2 30-34 35-39 4C-44 45-49 

1 0.74 0'? C0 C. 3C2 0.798 0.790 0.776 0.749 
7 0.770 0.7E7 '1.804 0.798 0.7&7 0.771 3 x. 711 1.733 0.776 0.769 0.797 0.7E5 0.767 

4 0.0 ^. 714 0.75 2 0.773 0.778 0.779 0.762 
5 0.0 0.6E5 0.715 0.7501 0.759 0.752 0.744 
6 (1"3 3.1 0.565 3.720 0.736 0.737 0.726 
7 Cß. 0 0.0 0.653 0.6E9 0.719 0.722 0. 12 8 1.0 0.0 0. '3 0.645 0.679 0.690 

7 
0.90 

9 0.0 3.0 0.0 0.624 0.644 0.668 0.673 
10 0.0 0.0 0.11 3.596 0.617 0.650 0.656 
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*** PARAMETERS CF FERTILITY *** 
STOPPING RULE = 0.900 C. 730 0.660 G. 53C 0.420 0.280 0.1E0 C. 130 0.060 0.030 0.015 C. 008 0.004 0.002 0.001 
A=5.50^ 0=2.500 G=0.400 H= 4. C0 X1=14.00 

TIME EYFOSUFE TO TNF PISK OF DYING 

ORDER 15-19 2C-24 25-2' 30-34 35-39 40-44 45-49 
1 1.03 1.99 3.25 4.90 8.00 12.94 17.95 2 1. L0 2.25 3.53 4.99 7.14 9.92 14.57 3 1.75 2.37 3.67 5.35 7.53 10.15 13.97 4 0.0 2.83 3.63 5.39 7.67 10.53 14.27 5 0.0 0.0 3.95 5.64 8.31 11.91 15.68 6 0.0 0.0 4.22 5.45 8.23 12.11 15.97 7 C. C 0.0 0.0 5.81 7.75 11.54 15.52 8 C. 0 0.0 C. C 0.0 8.19 12.69 16.71 9 0.0 0.0 0.0 C. 0 8.53 12.24 16.43 10 C. 0 C. C 0.0 C. 0 9.00 11.92 16.23 

STAP, D P PDCDCRTIONS CF SURVIVING CHILDREN 

ORDER 15-19 ? C-24 25-22 30-34 35-39 40-44 45-49 
1 3.345 0.807 0.785 0.770 0.756 0.743 0.724 2 0.333 0.832 0.782 0.769 0.760 0.750 0.738 3 0.31? 0.800 0.780 0.767 0.758 0.750 0.740 4 0.0 0.790 0.780 0.767 0.758 0.749 0.739 5 0.0 0.0 0.777 3.766 0.755 0.745 0.734 6 0.0 0.0 0.775 0.707 0.756 0.745 0.733 7 
8 

0.0 
0.0 

0.0 
0.3 

0.0 
0.0 

0.765 
3.0 

0.757 
0.756 

0.746 
0.743 

0.734 
0.730 9 0.0 0.0 0.0 0.0 0.755 0.745 0.731 10 0 .C 0.0 0.0 "?. 0 3.753 0.745 0.732 

OE? SERVýD P''CPCP. TICNS OF SURVIVING CHILDREN 
0 PDER 15-19 2C-24 25-2e 3C-34 35-39 4C-44 45-49 

1 x, 216 0,322 :. 325 7,318 0.8G4 0.789 3.770 2 
3 

0.776 
3.741 

C. 7°1 
0.759 

�12 
3.791 

3.321 
3.308 

0.812 
0810 . 

0.793 
0 797 

0.774 
781 0 4 0.0 3.7'9 7.767 ]. 792 Iss 0 . 

. 0.792 . 0.775 5 0.0 7.0 3.750 0.766 0.774 0.773 762 3 6 
7 

0.0 
3 3 

0.0 
0 0 

0.724 0.740 0.756 0.755 . 0.745 
8 . 

.3 
. 5 0.7 0.727 0.734 0.738 0.730 

9 "n 0"- "^ 0"C 
0.0 
^. 0 

0.0 
0.0 

0.699 
0.681 

0.710 
0.691 

0.7C8 
0.691 10 0.0 0.0 ^. C ý. 0 0.6e3 0.671 0.676 
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APPENDIX 3 

Number of Cases and Standard Deviations 

for Observed Time-Exposures 
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Table A. 7.1 1RXICOs Duaber of cases and standard deviation 

for the average exposure to risk by Rother's 

age and parity. (Q.?. 8. ) 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

Number of cases and standard deviations 

1 194 329 142 68 48 28 35 
0.95 1.40 2.77 4.46 6.42 7.12 7.94 

2 109 303 215 114 55 54 27 
0.75 1.02 2.03 3.72 5.26 5.97 6.50 

3 24 227 241 127 87 47 43 
0.71 1.16 1.92 2.81 4.18 5.59 6.24 

4 4 97 202 155 96 56 53 
0.71 0.99 1.67 2.57 4.42 4.73 5.05 

5 38 176 148 89 67 50 
1.00 1.58 2.17 3.37 4.58 4.16 

6 8 103 134 126 78 52 
0.68 1.40 2.07 2.70 3.12 3.99 

7 4 46 117 132 74 65 
0.58 1.35 1.91 2.57 3.40 4.29 

8 16 86 109 82 52 
1.04 1.66 2.31 2.89 3.79 

9 6 44 87 74 78 
0.37 1.26 2.29 2.52 3.22 

10 27 73 54 53 
1.27 2.08 2.65 3.03 
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Table A. 7.2 PUD: Number of eases and standard deviation 

for the average exposure to risk by mother's 

age and parity. (V.?. 8. ) 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

Number of cases and standard deviations 

1 142 274 126 60 42 31 24 
0.87 1.44 2.59 4.85 6.83 6.81 6.76 

2 68 281 203 121 62 34 45 
0.70 1.27 1.88 3.72 5.04 6.02 6.29 

3 14 174 223 151 103 79 47 
0.59 1.01 2.00 2.72 4.18 5.01 4.93 

4 1 67 206 143 94 81 51 
0.00 1.13 1.59 2.41 3.57 4.16 5.37 

5 24 134 134 110 72 70 
0.96 1.32 2.29 3.40 3.68 4.11 

6 5 72 105 119 83 77 
0.93 1.07 2.10 3.03 4.21 4.10 

7 30 99 102 91 74 
1.17 1.53 2.58 3.17 3.93 

8 7 59 97 84 67 
0.60 1.58 2.35 3.31 4.04 

9 3 26 80 83 66 
1.46 1.46 1.65 2.51 2.55 

10 6 55 58 50 
1.32 2.13 2.48 3.91 
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Table A. 7.3 COLOMBIA: limber of cases and standard deviation 

for the average exposure to risk by mother's 

age and parity. (W. F. S. ) 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

Number of cases and standard deviations 

1 99 219 117 42 40 22 18 
0.87 1.65 3.33 4.88 6.76 6.68 6.87 

2 49 193 154 69 47 30 18 
0.72 1.38 2.31 3.74 5.70 5.51 5.79 

3 9 101 132 102 61 43 31 
0.90 1.21 2.22 2.97 4.29 4.72 5.90 

4 2 40 92 80 60 34 36 
0.43 1.24 2.00 2.70 3.90 4.52 6.04 

5 13 66 91 53 41 35 
0.98 1.55 2.47 3.90 3.90 5.21 

6 4 43 52 46 35 32 
0.72 1.39 2.13 2.58 4.41 3.81 

7 22 37 64 47 30 
1.46 2.18 2.75 3.84 4.61 

8 30 47 43 32 
1.70 2.49 3.29 3.29 

9 21 33 33 29 
1.77 2.22 2.86 3.58 

10 18 33 33 
2.21 3.16 2.95 
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Table A. 7.4 LESOThO: Umbar of cases and standard deviation 

for the average exposure to risk by mother's 

age and parity. 

AgeGroup 
Parity 

order 15-19 20-24 25-29 34-34 35-39 40-44 45-49 

Number of cases and standard deviations 

1 143 300 90 37 35 35 20 
0.85 1.51 3.14 5.03 5.02 6.76 5.05 

2 21 234 184 51 36 46 28 
1.01 1.08 2.26 4.15 4.12 6.24 6.10 

3 63 197 95 57 50 28 
1.12 1.64 3.28 4.10 5.00 6.91 

4 22 121 111 68 51 30 
1.66 1.51 1.62 3.46 3.93 5.00 

5 11 33 109 77 50 31 
1.61 1.50 1.72 3.10 4.47 4.79 

6 9 54 75 59 33 
2.40 1.98 2.55 3.07 3.13 

7 2 24 60 61 31 
1.14 1.34 1.49 3.33 3.60 

8 10 35 51 26 
1.15 1.82 1.96 3.00 

9 4 12 37 21 
1.45 2.53 1.97 2.67 

10 6 18 14 
1.27 2.26 2.63 
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