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Abstract: The inverse structural modification for assigning a subset of natural frequencies of 

a structure to some targeted values has been found to inevitably lead to undesired changes to 

the other natural frequencies of the original structure that should not have been modified, 

which is referred to as the frequency “spill-over” phenomenon. Passive structural 

modifications of mass-spring systems for partial assignment of natural frequencies without 

frequency “spill-over” are addressed in this paper. For two kinds of lumped mass-spring 

systems, i.e. simply connected in-line mass-spring systems and multiple-connected 

mass-spring systems, two solution methods are proposed to construct the required 

mass-normalised stiffness matrix, which satisfies the partial assignment requirement of 

natural frequencies and maintains the configuration of the original structure after 

modifications. The modifications are also physically realisable. Finally, some examples of 

lumped mass-spring systems are analysed to demonstrate the effectiveness and accuracy of 

the proposed methods.  

 

1. Introduction 

 

Structural modifications (SM) are a procedure aimed at determining values of physical 

parameters of a structure to achieve desirable dynamic characteristics (usually modal 

properties such as natural frequencies and mode shapes, i.e. eigenpairs). One common task of 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/131172042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

SM is to predict modal properties as a result of structural modifications. The inverse SM 

problem, however, aims to determine the necessary structural modifications such that the 

modified structure has some prescribed desired dynamic behaviour, which usually involves 

an optimisation procedure looking for right modifications. As is well known, when the 

frequency of excitation is very close to a natural frequency excessive vibration occurs that 

may lead to structural failure. In this situation, it is useful to determine the changes of 

geometrical parameters (such as thickness, length, diameter, etc.) and/or material parameters 

(such as density, Young’s modulus, etc.), and/or consider the addition of any combination of 

lumped masses and stiffnesses in order to relocate the natural frequencies concerned to other 

locations. This inverse structural frequency modification problem is known as frequency 

(eigenvalue) placement or assignment.  

Mathematically, it is closely related to inverse eigenvalue problems (IEP), which involve 

the specification of one or more eigenvalues of a matrix or a matrix pencil and the evaluation 

of how the elements of the matrix need to change to result in the prescribed eigenvalues. 

These problems have attracted much attention of researchers over the past thirty years.  

 

1.1 Literature review 

Research into structural modifications has been conducted mainly from two aspects: 

theoretical modelling (such as physical models, modal models, and frequency response 

function or FRF models) and experimental testing (e.g. modal testing). The goal of having 

desirable modal properties can be achieved by either passive or active procedures. Of course, 

it can be carried out by combining the above two procedures in a hybrid approach, in order to 
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achieve the desired changes. It should be noted that even on frequency placement by 

structural modifications studied in this paper, there exist a large number of publications in the 

literature, and therefore only a brief review of some relevant papers is attempted below. 

The methods for inverse structural modifications are based on the use of modal properties 

derived from a finite elements solution or experimental modal analysis. He [1], Sestieri and 

D’Ambrogio [2], and Nad [3] reviewed various structural modification methods. Tsuei and 

Yee [4] described a method for shifting natural frequencies by using only measured frequency 

response data at modification points. This is particularly convenient and effective for modal 

testing. Mottershead [5], and his collaborators [6, 7] studied the relocation of an 

antiresonance and cancellation of a resonance with an antiresonance, and the assignment of 

natural frequencies and nodes of normal modes by the addition of grounded springs and 

concentrated masses using FRF data. Park and Park [8, 9] used FRF formulations to find 

analytically the necessary multiple mass, stiffness and damping modifications in order to 

exactly achieve both required eigenvalues and eigenvectors. For other related works based on 

FRF data, refer to [10–13]. 

Bucher and Braun [14] derived structural changes to produce prescribed frequencies 

and/or mode shapes, using incomplete modal data from experimental results. Sivan and Ram 

[15] and Ram [16] studied the construction of a mass-spring system with prescribed natural 

frequencies. They [17] developed a new algorithm based on Joseph’s work [18]. Gladwell [19] 

studied finite-element discretised structures and mass-spring structures with tridiagonal mass 

and stiffness matrices and derived a closed-form solution of reconstructed mass and stiffness 

matrices. Braun and Ram [20] analysed structures consisting of discrete masses and springs 
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and put forward an approximate method for calculating the modification matrices of the 

structure.  

Fox and Kapoor [21] provided expressions of both eigenvalue and eigenvector sensitivities 

with respect to a design parameter, which can be expressed in terms of only the 

corresponding unmodified modal parameters and the structure's matrices. Smith and Hutton 

[22] discussed the use of Newton's method and inverse iteration of mode shape updating on 

the frequency modification in terms of first-order expansions of eigenvalues with respect to 

design variables. Farahani and Bahai [23] provided algorithms for relocating eigenvalues of 

structures based on eigenvalue sensitivities and their second-order expansions. Djoudi et al. 

[24] gave a formulation free from iterations for the inverse modification of bar and truss 

structures. Olsson and Lidström [25] considered constraints on structures when obtaining 

desired frequencies. The undamped natural frequencies of a constrained structure were 

calculated by solving a generalised eigenvalue problem derived from the equations of motion 

for the constrained system involving Lagrange multipliers. Smith and Hutton [26] and Kim et 

al. [27] solved inverse modification problems using perturbation theory. 

All these above approaches involve assigning a subset of natural frequencies of a structure 

to some targeted values, and inevitably lead to undesired changes to the other natural 

frequencies of the original structure that should not have been modified, which is referred to 

as the frequency “spill-over” phenomenon. For example, it may happen that an unknown 

frequency would gain an unwanted value, and the effects brought about by the changes in the 

modified structure are usually difficult to predict when a global or a large local structural 

modification to large-scale structures is made, because not all eigenvalues or natural 
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frequencies of large-scale structures could be obtained accurately using the state-of-the-art 

techniques of matrix computations, or be measured using existing experimental facilities due 

to hardware limitations.  

It should be mentioned that a necessary and sufficient condition was proposed for the 

incremental mass and stiffness matrices that modify some eigenpairs while keeping other 

eigenpairs unchanged in [28] but these matrices are not guaranteed to lead to physically 

realisable structural modifications. Additionally, there are several papers devoted to a related 

problem that a specific natural frequency of a structure does not change after mass and/or 

stiffness modifications. Çakar [29] studied a situation in which one of the pre-specified 

natural frequencies can be preserved by attaching a grounded spring to a structure after 

adding a number of masses to it. He developed a method based on the Sherman-Morrison 

formula in order to determine the necessary spring constant. Gürgöze and İnceoğlu [30] was 

concerned with satisfying a design objective such that the fundamental frequency of a 

cantilever beam remained the same in spite of the addition of a mass at some point on the 

beam. Mermertaş and Gürgöze [31] investigated the possibility of using springs to preserve 

the fundamental frequency of a thin rectangular plate carrying any number of point masses.  

In active control of structural vibration via eigenvalue assignment techniques, the 

frequency “spill-over” phenomenon is overcome by using some partial eigenvalue 

assignment methods, which reallocate some ‘troublesome’ eigenvalues (or natural 

frequencies) of the open-loop structure to suitable locations, while leaving the remaining 

eigenvalues and/or corresponding eigenvectors unchanged in the closed-loop structure. The 

partial eigenvalue assignment problem of the first-order control system has been widely 
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studied from both theoretical and computational view points, for example, see [32, 33]. To 

describe the dynamics of a structural system, usually a second-order differential equation is 

used, with structural matrices that are symmetric and sparse. However, transferring 

second-order equations to first-order configuration doubles the dimension of the system and 

the structural matrices lose some nice properties, such as positive semi-definiteness and 

sparsity, and even symmetry. Therefore, a large effort can be seen from the literature to have 

been made to tackle this problem directly on second-order dynamic system models over the 

past ten years, for example, see [34-39].  

The capability of active control in making partial eigenvalue or eigenstructure assignment 

has been known. Obviously, it is desirable to make partial eigenvalue (or natural frequencies) 

assignment, without frequency “spill-over”, by means of passive control or passive structural 

modification (abbreviated as PEVAPSM in this paper) due to its advantage of low cost and 

maintenance of system stability. However, this is a far more difficult task. To the authors’ best 

knowledge, this has not been achieved before and is the major objective of this investigation. 

In this paper, two methods for making partial assignment of natural frequencies for 

undamped mass-spring systems are proposed. Importantly, the configuration of the structure 

is also kept, that is, the structure of the mass and stiffness matrices is maintained after 

modifications. This is a very desirable property, meaning that modifications are made to the 

existing masses and springs (and unconnected masses in the original structure remain 

unconnected). Of course, it is easier to make partial eigenvalue assignment without keeping 

the configuration of the structure concerned than keeping it. It should be pointed out that the 

latter covers the former. 
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1.2 Problem definition 

Problem PEVAPSM: For an n-degree-of-freedom (DOF) undamped vibrating system 

with a given theoretical model {𝐌0, 𝐊0}, a set of its associated eigenpairs (𝜆𝑖, 𝐱𝑖) (𝑖 =

1,2, … , 𝑝) with 𝑝 < 𝑛, and another set of targeted (or modified) eigenvalues ( 𝜇𝑖)  (𝑖 =

1,2, … , 𝑝) , find a physically realisable n-DOF undamped vibrating system with the 

theoretical model {𝐌,𝐊}, which has the same structured form as {𝐌0, 𝐊0}, such that: 

(1)  The modified model {𝐌,𝐊} now has eigenvalues ( 𝜇𝑖)  (𝑖 = 1, 2, … , 𝑝); 

(2)  The remaining (unknown) 𝑛 − 𝑝 eigenvalues of the modified model {𝐌,𝐊} are the 

same as those of the original model {𝐌0, 𝐊0}. 

where 𝐌0 , 𝐌, and 𝐊0, 𝐊 are, respectively, the mass and stiffness matrices of the  models 

of the original and modified structures, and 𝐌0 = 𝐌0
T > 𝟎, 𝐊0 = 𝐊0

T ≥ 𝟎, 𝐌 = 𝐌T > 𝟎, 

𝐊 = 𝐊T ≥ 𝟎. 

PEVAPSM discussed here is seemingly similar to a model updating problem (MUP) [40, 

41]. The essential differences between them are that (1) PEVAPSM involve modifications to 

structures and these must be physically realisable and frequency changes and the needed 

modifications can be very big, while model updating involves small modifications of system 

parameters; (2) PEVAPSM has the freedom in choosing which masses or springs to modify 

and the solution is not unique, which allows other design constraints to be considered to 

achieve other desirable functions of the structure concerned, but model updating is restricted 

to a prescribed set of sensitive system parameters; (3) the modified structure allows addition 

of new members (springs) to the original structure with its number of degrees-of-freedom 

unchanged in PEVPPSM, which can be considered an extension of (2); (4) Parametric model 
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updating always leads to spill-over, while direct model updating usually does not result in 

physically realisable modifications. 

Two kinds of lumped mass-spring systems are considered in this paper: (1) simply 

connected in-line mass-spring systems; (2) multiple-connected mass-spring systems. Their 

solutions are obtained from different numerical construction procedures. The former applies 

Lanczos method of tridiagonalisation reported in [42–44] to the real symmetric matrix 

constructed from the mass and stiffness matrices of the original structure and the eigenvalues 

to be assigned; while the latter exploits the gradient flow method for inverse eigenvalue 

problems with prescribed entries [45, 46]. In what follows, a real symmetric matrix satisfying 

the eigenvalue demands of PEVAPSM is constructed, and the solution of simply connected 

mass-spring systems is presented with a numerical example in Section 2. In Section 3, 

multiple-connected mass-spring vibrating systems are tackled, and the solution method and 

conditions for realising PEVAPSM are introduced with two numerical examples. Finally, 

some conclusions are drawn in Section 4. 

 

2. PEVAPSM solution for simply connected mass-spring systems 

 

2.1 Construction of a real symmetric matrix 𝐉𝑠 

For an n-DOF undamped vibrating system with a given theoretical model {𝐌0,𝐊0}, its 

dynamics is characterised by the following eigenvalue equation: 

(𝐊0 − 𝜆𝐌0)𝐱 = 𝟎.               (1) 

Introducing 𝐃0 so that 𝐌0 = 𝐃0
2, and 𝐮 = 𝐃0𝐱, Eq.(1) is rewritten as follows: 

𝐃0
−1(𝐊0 − 𝜆𝐃0

2)𝐃0
−1𝐮 = 𝟎, 

that is 
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(𝐉0 − 𝜆𝐈)𝐮 = 𝟎,                (2) 

where 

𝐉0 = 𝐃0
−1𝐊0𝐃0

−1.                (3) 

𝐉0 is known as the mass-normalised stiffness matrix and it has the same eigenvalues as 

{𝐌0,𝐊0}. For simply connected mass-spring systems (which means a mass is connected via a 

spring to only an adjacent mass and the system is in the form of a chain of consecutive 

masses and springs; a mass is connected to at most two other masses), 𝐉0 is a Jacobi matrix 

in a tridiagonal form as follows: 

[
 
 
 
 
 
 

  

1 1

1 2 2

1

1

0 0

0 0

0 0

n

n n

a b

b a b

b

b a







 





 

]
 
 
 
 
 
 

 ,           (4) 

where 𝑎𝑖 > 0, 𝑏𝑖 > 0.  

In what follows, a real symmetric matrix 𝐉𝑠 is constructed first such that it has ( 𝜇𝑖)  (𝑖 =

1, 2, … , 𝑝), and (𝜆𝑖  ) (𝑖 = 𝑝 + 1, 𝑝 + 2,… , 𝑛) (unmodified eigenvalues of {𝐌0,𝐊0}) as its 

eigenvalues. Let 

𝚲1 = diag(𝜆1, 𝜆2, ⋯ , 𝜆𝑝), 𝚲2 = diag(𝜆𝑝+1, 𝜆𝑝+2, ⋯ , 𝜆𝑛), 𝚺1 = diag(𝜇1, 𝜇2, ⋯ , 𝜇𝑝), 

 𝐗1 = {𝐱1, 𝐱2, ⋯ , 𝐱𝑝} ,  𝐗2 = {𝐱𝑝+1, 𝐱𝑝+2, ⋯ , 𝐱𝑛} .  𝐗 = ( 𝐗1  𝐗2)  is the mass-normalised 

eigenvector matrix of Eq.(1). Correspondingly, 𝐔 = (𝐔1 , 𝐔2 ) is the normalised eigenvector 

matrix of Eq.(2), partitioned corresponding to  𝐗1 and  𝐗2. From the spectral decomposition 

theorem of symmetric matrices [47], 𝐉𝑠 can be constructed as follows: 

 𝐉𝑠 = 𝐔1𝚺1𝐔1
T + 𝐔2𝚲2𝐔2

T.              (5) 

Using the condition 𝐔1 = 𝐃0 𝐗1 and 𝐔2𝚲2𝐔2
T  = 𝐉0 − 𝐔1𝚲1𝐔1

T, one has 
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 𝐉𝑠 = 𝐉0 + 𝐃0𝐗1 (𝚺1 − 𝚲1)𝐗1
T𝐃0.            (6) 

Note that (1) the constructed matrix 𝐉𝑠 has the same eigenvectors as 𝐉0; (2) 𝐉𝑠 usually is 

not in a Jacobi matrix form as in (4), and thus a physically realisable simply connected 

mass-spring system cannot be reconstructed from 𝐉𝑠 . This calls for an alternative 

mass-normalised reconstructed stiffness matrix 𝐉 = 𝐃−𝟏𝐊𝐃−𝟏  that possesses the same 

eigenvalues as 𝐉𝒔 and at the same time is in a Jacobi form (4) (so that the modifications will 

be physically realisable), where 𝐃𝟐 = 𝐌，and 𝐌 and 𝐊 are mass and stiffness matrices of 

the modified system, respectively.  

 

2.2 Tridiagonalisation of 𝐉𝒔 using Lanczos algorithm 

The Lanczos algorithm has often been used to reduce symmetric matrices to tridiagonal 

form in order to solve for their eigenvalues. A variation of it is also used to solve inverse 

eigenvalue problems of vibrating systems [42, 47], which is employed here. This variation is 

based on the idea of producing the orthogonal similarity transformation formula as follows: 

𝐉 = 𝐕T𝐉𝑠𝐕  or  𝐕𝐉 = 𝐉𝑠𝐕,              (7) 

Here 𝐕 is an orthogonal matrix and it is built up column by column from 𝐉𝑠. It is known that, 

if 𝐉𝑠 is positive semi-definite, its eigenvalues are all distinct, and the initial vector 𝐯1 (i.e. 

the first column of V) is not orthogonal to any eigenvector of 𝐉𝑠, then the algorithm will 

result in a unique Jacobi matrix (4) for a given 𝐯1 [42]. Additionally, this algorithm has the 

advantage that numerically it is well conditioned. Now, the algorithm is outlined as follows: 

Lanczos algorithm: Given a symmetric matrix 𝐉𝑠, randomly choose a unit vector with its 

value of each component lying in (-1,1) as an initial Lanczos vector 𝐯1.  
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Output: a Jacobi matrix 𝐉  in the form of (4) and an orthogonal matrix 

𝐕 = (𝐯1, 𝐯2 , … , 𝐯𝑛) such that 𝐉 = 𝐕T𝐉𝑠𝐕. 

 (1) set 𝑎1 ∶= 𝐯1
T𝐉𝑠𝐯1 

 (2) for 𝑖 = 1, 2, … , 𝑛 − 1 

  if 𝑖 = 1 then 𝐳1 = 𝑎1𝐯1 − 𝐉𝑠𝐯1, 𝑏1 = √𝐳1
T𝐳1 , 𝐯2 = 𝐳1 𝑏1⁄ . 

  else 𝑎𝑖 = 𝐯𝑖
T𝐉𝑠𝐯𝑖, 𝐳𝑖 = 𝑎𝑖𝐯𝑖 − 𝑏𝑖−1𝐯𝑖−1 − 𝐉𝑠𝐯𝑖, 𝑏𝑖 = √𝐳𝑖

T𝐳𝑖  , 𝐯𝑖+1 = 𝐳𝑖 𝑏𝑖⁄ . 

  end if 

  end for 

 (3) set 𝑎𝑛 ∶= 𝐯𝑛
T𝐉𝑠𝐯𝑛.  

Note that, for a given matrix 𝐉𝑠, the resultant Jacobi matrix 𝐉 from the above algorithm is 

not unique due to randomly chosen initial Lanczos vector 𝐯1. 

 

2.3 Reconstruction of mass-spring systems solving PEVAPSM 

Reconstruction of a simply connected lumped mass-spring system from a given Jacobi 

matrix 𝐉  (i.e. the mass-normalised stiffness matrix of the modified system) has been 

extensively studied during the last thirty years [43, 44]. For three types of end constraint 

conditions, i.e. “fixed-free”, “fixed-fixed”, and “free-free”, system model {𝐌,𝐊} can be 

uniquely determined under certain given conditions on the entries of 𝐌 and/or 𝐊. For 

example, for the “fixed-free” type system, if the total mass of the modified system is 

prescribed, then its system model {𝐌,𝐊} can be uniquely determined from a given Jacobi 

matrix 𝐉. In the following 𝐌 and 𝐊 are given for the “fixed-free” system as an example by 
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𝐌 =

1

2

0 0 0

0 0 0

0 0 0 n

m

m

m

 
 
 
 
 
 
 
 

,𝐊 =

1 2 2

2 2 3 3

1 1

0 0

0 0

0

0

0 0

0 0

n n n n

n n

k k k

k k k k

k k k k

k k

 

  
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  

 
 
 
 
   
 

 

 (8) 

Let 𝐪1 = (1, 1, … ,1 )T
, one has 

𝐊𝐪1 = (𝑘1, 0, … ,0 )T
.               (9) 

Since 𝐊 = 𝐃𝐉𝐃, one has 

𝐃𝐉𝐃𝐪1 = 𝐃𝐉𝐃(1, 1, … ,1 )T = (𝑘1, 0, … ,0 )T
,         (10) 

where 𝐃 = 𝐌1 2⁄ = diag(√𝑚1, √𝑚2 , … , √𝑚𝑛). Then Eq.(10) is rewritten as 

𝐉(√𝑚1, √𝑚2 , … , √𝑚𝑛)
T

= (𝑘1 √𝑚1⁄ , 0, … ,0 )T.        (11) 

Since the previously given Jacobi matrix 𝐉 is non-singular, it is known that its inverse 

matrix 𝐉−1 is a strictly positive matrix, meaning that each element of 𝐉−1 is strictly positive 

[43]. Therefore, it is guaranteed that (√𝑚1, √𝑚2 , … , √𝑚𝑛)
T
 solved from Eq.(11) will be a 

strictly positive vector.  

Now, take the obtained non-singular 𝐉 in Section 2.2 and solve 𝐉𝐪 = (1, 0, … ,0 )T for 𝐪. 

The solution 𝐪 is strictly positive. Thus the solution of Eq.(11) can be rewritten as 

(√𝑚1, √𝑚2 , … , √𝑚𝑛)
T

= 𝑐𝐪,            (12) 

where 𝑐 > 0 is to be determined from other considerations, for example, one can assume the 

total mass of a structure remains unchanged or should not exceed a certain value.  

Suppose that the total mass of the system is m. Then  

𝑚 = ∑ 𝑚𝑖 =𝑛
𝑖=1 𝑐2𝐪𝐪T.              (13) 

Thus, with the prescribed m and the obtained 𝐪, one can get 𝑐  from (13), and 𝐃 =
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diag(√𝑚1, √𝑚2 , … , √𝑚𝑛) from (12). Then 𝐊 = 𝐃𝐉𝐃 completes the reconstruction for 

the “fixed-free” system. For details of the reconstruction for other types of systems, refer to 

[43, 44].  

The above discussion shows the existence of a meaningful solution of PEVAPSM for 

simply connected mass-spring systems and how to find it. A numerical example is presented 

below. 

Example 2.1: a five-DOF “fixed-free” type of simply connected mass-spring system, as 

shown in Fig.1, with {𝐌0,𝐊0} as follows: 

0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 
 
 
 

M , 0

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 1

 
 
 
 
   
 

  
  

K . 

Its eigenvalues (or natural frequencies squared) are λ = {0.0810, 0.6903, 1.7154, 2.8308, 

3.6825}, respectively. The first two eigenvalues 𝚲1 = diag(0.0810, 0.6903) are required to 

become 𝚺1 = diag(0.15, 0.95), and the other eigenvalues remain unchanged. It is assumed 

that the total mass of the system remains unchanged too after the modification. The 

mass-normalised modal matrix  𝐗1 corresponding to 𝚲1 is 

1

 0.1699 0.4557

0.3260 0.5969

0.4557 0.3260

0.5485  0.1699

0.5969  0.5485







 
 
 


 
 
 
 

X . 

The obtained matrices 𝐉𝑠 and 𝐉 are, respectively, 

𝐉s =

(

 
 

    2.0559  − 0.9255    0.0439    − 0.0137  − 0.0579
 −0.9255    2.0999 − 0.9392   − 0.0140   − 0.0716
   0.0439  − 0.9392    2.0419    − 0.9971   − 0.0277
−0.0137   − 0.0140   − 0.9971    2.0283   − 0.9532
−0.0579   − 0.0716   − 0.0277   − 0.9532    1.1027)

 
 

, 
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𝐉 =

(

 
 
 
 

2.5231 1.0909 

1.0909  2.4089 0.7028

0.7028 1.2693 0.7848

0.7848 1.7352 1.0278

0 0 0

0 0

0 0

0 0

0 1.0278 1.39220 0



 

 

 


)

 
 
 
 

 

The modified mass and stiffness matrices constructed from 𝐉 are, respectively, 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

1.9823

0.8822
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 
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M  
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 
 
 
 
 
 
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

 



K . 

 

The new masses and spring constants that make the partial frequency assignment are given 

in the brackets in Fig. 1.  

 

Figure 1. A five-DOF “fixed-free” type of original mass-spring system and modified system 

 

3. PEVAPSM solution for multiple-connected mass-spring systems 

 

3.1 Matrix structures of mass and stiffness matrices 

For multiple-connected mass-spring systems, the matrix structure of mass matrix 𝐌 

remains unchanged: it is real, positive and diagonal. However, the matrix structure of 

stiffness matrix 𝐊 varies according to different configurations of the connectivity of masses 

and springs, except that 𝐊  is real symmetric and positive semi-definite. Additionally, 

stiffness matrix 𝐊 = (𝑘𝑖𝑗) has the following properties: 

(1) 𝐊 has positive diagonal elements and non-positive off-diagonal elements, and is at least 
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weakly diagonally dominant; 

(2) If there is a spring, denoted by 𝑖ℓ, between the a-th mass and the b-th mass, then the 

entries 𝑘𝑎𝑏  and 𝑘𝑏𝑎  of 𝐊 are given by – 𝑘𝑖ℓ , where 𝑘𝑖ℓ  is the stiffness of spring 𝑖ℓ . 

Otherwise 𝑘𝑎𝑏 = 𝑘𝑏𝑎 = 0. If the a-th mass is connected to springs 𝑗1, … , 𝑗ℎ, then 𝑘𝑎𝑎 =

∑ 𝑘𝑗𝑠
ℎ
𝑠=1 .  

The mass-normalised stiffness matrix 𝐉 = 𝐃−1𝐊𝐃−1 of a multiple-connected mass-spring 

system has the same matrix structure as stiffness matrix 𝐊, it is real symmetric and positive 

semi-definite with the same zero entry patterns as 𝐊. Here 𝐉 is no longer in a Jacobi matrix 

form as (4) either, and may take the widely populated form, for example, for a general 

lumped mass-spring system as follows: 

𝐉 =

11 1 12 1 2 13 1 3 1 1

12 1 2 22 2 23 2 3 2 2

13 1 3 23 2 3 33 3 3 3

1 1 2 2 3 3

n n

n n

n n

n n n n n n nn n

k m k m m k m m k m m

k m m k m k m m k m m

k m m k m m k m k m m

k m m k m m k m m k m

   
 
   
 
   

 
 
    

.   (14) 

 

3.2 Inverse eigenvalue problem and the gradient flow method 

3.2.1 Problem description 

To solve PEVAPSM for a multiple-connected mass-spring system, the first step is to 

construct a real symmetric matrix 𝐉𝑠, using the formula (6) in Section 2.1, from the original 

multiple-connected mass-spring system {𝐌0,𝐊0}, and its partial eigenpairs 𝚲1 and  𝐗1 and 

the targeted eigenvalues 𝚺1. This step is the same as the simply connected mass-spring 

system. Also, the obtained 𝐉𝑠 usually does not have the same matrix structure form as that of 

matrix 𝐉0 = 𝐃0
−1𝐊0𝐃0

−1 (the mass-normalised stiffness matrix obtained from the original 
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multiple connected mass-spring system {𝐌0,𝐊0}). It implies that one cannot physically 

reconstruct a multiple-connected mass-spring system while keeping the configuration of the 

structure unchanged in solving PEVAPSM. To overcome this problem, one naturally tries to 

convert the obtained 𝐉𝑠 into a matrix 𝐉 through orthogonal similarity transforms such that 𝐉 

has the same matrix structure as 𝐉0. Thus the resultant 𝐉 can become the mass-normalised 

stiffness matrix of a new system {𝐌, 𝐊}, and one can reconstruct this new multiple-connected 

mass–spring system from 𝐉 with the same configuration of the structure as that of the 

original system.  

Toward this end, a special type of IEP, matrix completion with prescribed eigenvalues [45, 

46], is briefly discussed here, and a numerical algorithm, the gradient flow method, which 

was used to tackle such an IEP, is exploited to achieve the goal mentioned above.  

The goal of matrix completion is to construct a matrix subject to both the structural 

constraint of prescribed entries and the spectral constraint of prescribed eigenvalues. This 

special kind of IEP corresponds to the circumstance that “a portion of the physical system is 

known a priori, a portion of the matrix to be constructed has fixed entries. The prescribed 

entries are used to characterise the underlying structure. The task is to specify values for the 

remaining entries so that the completed matrix has prescribed eigenvalues”, as indicated in 

[45]. For the problem of constructing matrix 𝐉 such that 𝐉 has the same matrix structure as 

that of 𝐉0 and the same eigenvalues as those of 𝐉𝑠, one can set some non-zeros entries of 𝐉 

with a general form like (14) to be known, which means that ratios of some spring constants 

to some masses of the modified system are given a priori, or these entries of 𝐉 are taken to 

be the same as those in 𝐉0 at the same locations. Meanwhile, let zero entry patterns of 𝐉 be 
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the same as those of 𝐉0. Thus, the problem is now converted into the completion of matrix 𝐉 

with prescribed eigenvalues of matrix 𝐉𝑠.  

Unfortunately, very few theories or numerical algorithms are available for solving such an 

IEP. The challenge lies in the intertwining of the cardinality and the locations of the 

prescribed matrix entries so that the inverse problem is solvable. Chu et al. [45] recast the 

matrix completion problem as minimising the distance between the isospectral matrices (i.e. 

those matrices with the same eigenvalues) with the prescribed eigenvalues and the affined 

matrices with the prescribed entries, and then finding the intersection of them. As the gradient 

of the objective function can be explicitly calculated, a steepest descent gradient flow 

therefore can be formulated. By integrating this gradient flow numerically, they developed a 

way to tackle the matrix completion problem. Additionally, this gradient flow method is 

general enough that it can be used to explore the question on existence of a solution when the 

prescribed matrix entries are set at some particular locations with some corresponding 

cardinalities, such as the case of constructing structured matrix 𝐉 discussed in this subsection. 

In what follows the gradient flow method of matrix completion is outlined. 

 

3.2.2 The gradient flow method 

The gradient flow method proposed in [45] is for a general real matrix completion, which 

is presented in the simplified form for a real symmetric matrix completion as follows. 

Let 𝐖 ∈ 𝑛×𝑛
 denotes a real symmetric matrix with distinct eigenvalues {

1
, 

2
 , … , 

𝑛
}. 

The set 

𝔐(𝐖) = {𝐕𝐖𝐕T | 𝐕 is a 𝑛 ×  𝑛 orthogonal matrix}       (15) 
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consists of all matrices that are isospectral to 𝐖. Given an index subset of locations 

𝒦 = {(𝑖ν , 𝑗ν)}ν=1
ℓ  and the prescribed values 𝐠 = {𝑔1, 𝑔2 , … , 𝑔ℓ}, the set 

ℵ(𝒦, 𝐠 ) = {𝐀 ∈ 𝑛×𝑛 | A𝑖ν𝑗ν = 𝑔ν , ν = 1,… , ℓ}        (16) 

contains all matrices with the prescribed entries at the desired locations. 

For convenience, split any given matrix 𝐘 in 𝔐(𝐖) as the sum 

𝐘 = 𝐘𝒦 + 𝐘𝒦𝑐,                (17) 

where entries in 𝐘𝒦 are the same as 𝐘, except those entries that do not belong to 𝒦 are set 

identically zero; and 𝒦𝑐 is simply the index subset complementary to 𝒦. With respect to 

the Frobenius inner product 

〈𝐁, 𝐃〉 = ∑ 𝑏𝑖𝑗𝑑𝑖𝑗
𝑛
𝑖,𝑗=1  ,              (18) 

the projection 𝑃(𝐘) of any matrix 𝐘 onto the affine subspace ℵ(𝒦, 𝐠 ) is given by 

𝑃(𝐘) = 𝐀𝒦 + 𝐘𝒦𝑐,               (19) 

where 𝐀𝒦 is a constant matrix in ℵ(𝒦, 𝐠 ) with zero entries at all locations corresponding 

to 𝒦𝑐. For each given 𝐘 ∈ 𝔐(𝐖), it is intended to minimise the distance between 𝐘 and 

ℵ(𝒦, 𝐠 ). Equivalently, it is to minimise the function defined by 

𝑓(𝐘) =
1

2
〈𝐘 − 𝑃(𝐘), 𝐘 − 𝑃(𝐘)〉,            (20) 

where 𝐘 − 𝑃(𝐘) = 𝐘𝒦 − 𝐀𝒦.  

Let 𝐘 =  𝐕𝐖𝐕T. This minimisation with objective function 𝑓(𝐘) can be rewritten as an 

unconstrained optimisation problem in terms of 𝐕 as follows: 

ℎ(𝐕) =
1

2
〈𝐕𝐖𝐕T − 𝑃(𝐕𝐖𝐕T), 𝐕𝐖𝐕T − 𝑃(𝐕𝐖𝐕T)〉.       (21) 

The gradient ∇ℎ of objective function ℎ is given by [45] 

∇ℎ(𝐕) = (𝐕𝐖𝐕T − 𝑃(𝐕𝐖𝐕T))𝐕𝐖 − (𝐕𝐖𝐕T)T(𝐕𝐖𝐕T − 𝑃(𝐕𝐖𝐕T))𝐕.  (22) 
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Post-multiplying Eq.(22) by 𝐕T , one obtains 

∇ℎ(𝐕)𝐕T = [𝐘 − 𝑃(𝐘),  𝐘T],             (23) 

where [𝐘 − 𝑃(𝐘),  𝐘T] denotes the Lie bracket commutator, i.e. [𝐁,𝐃] =  𝐁𝐃 − 𝐃𝐁, and 

𝐘 =  𝐕𝐖𝐕T. It follows that the vector field 

𝑑𝐕

𝑑𝑡
= [ 𝐘T, 𝐘 − 𝑃(𝐘)]𝐕              (24) 

defines a gradient flow of ℎ(𝐕) in the open set consisting of n × n orthogonal matrices and 

moves in the steepest descent direction to reduce the value of ℎ(𝐕) [45]. The system of 

ordinary differential equations (24) can be readily integrated from a starting point, say, 

𝐕(0) = 𝐈  (the identity matrix). ∇ℎ(𝐕(𝑡))  will converge to zero as t goes to infinity, 

implying that a local minimum for ℎ(𝐕) has been found. The integration stop criterion of 

Eq.(24) can be chosen as follows: 

min {‖𝐘(𝑡𝑘) − 𝑃(𝐘(𝑡𝑘))‖𝐹
 , ‖[𝐘(𝑡𝑘)

T, 𝐘(𝑡𝑘) − 𝑃(𝐘(𝑡𝑘))]‖𝐹
} ≤ 10−8,   (25) 

where ‖∙‖F denotes the Frobenius norm of a matrix. It should be noted that, in the event that 

a solution does not exist, the formulation enables one to find a least-squares solution. 

 

3.3 Numerical examples of PEVAPSM solution 

Based on the above discussion, PEVAPSM solutions of two multiple-connected 

mass-spring systems are presented for the purpose of demonstration in the following. One is a 

simple 4-DOF system and the other a more complex 10-DOF one. The existing ordinary 

differential equation solver ode15s in Matlab is used to implement the computation in this 

subsection. To control the integration, local tolerance values of AbsTol = 10−10  and 

RelTol = 10−9 are set while maintaining all other parameters at the default values in the 
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Matlab codes. 

Example 3.1. a 4-DOF mass-spring system, as shown in Fig.2, with {𝐌0,𝐊0} as follows: 

𝐌0 =

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

m

m

m

m

 
 
 
 
 
 

, 𝐊0 =

1 2 5 2 5

2 2 3 3

5 3 3 4 5 4

4 4

0

0

0 0

k k k k k

k k k k

k k k k k k

k k

    
 

  
 
     
 

 

. 

Let 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 1.0 and 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 = 1.0. Its eigenvalues (or 

natural frequencies squared) are λ = {0.1783，1.1538，3.4882，4.1796}, respectively. The first 

two eigenvalues 𝚲1 = diag(0.1783,1.1538) are required to relocate to 𝚺1 = diag(0.5, 1.5), 

and the other eigenvalues remain unchanged.  𝐗1 is not listed for the sake of saving space. 

The mass-normalised stiffness matrix 𝐉0 = 𝐃0
−1𝐊0𝐃0

−1 of {𝐌0,𝐊0} is given by 

𝐉0 =

1 2 5 2 5

1 1 2 1 3

2 2 3 3

21 2 2 3

5 3 3 4 5 4

31 3 2 3 3 4

4 4

43 4

0

0

0 0

k k k k k

m m m m m

k k k k

mm m m m

k k k k k k

mm m m m m m

k k

mm m

  
  

 
 
  

 
  
   

 
 
 
 
 

=

3 1 1 0

1 2 1 0

1 1 3 1

0 0 1 1

  
 
 
 
   
 

 

. (26) 

 

Figure 2. A 4-DOF “fixed-free” type of multiple connected mass-spring system 

 

The constructed real symmetric matrix 𝐉𝑠 from the formula (6) in Section 2.1 is given by 

𝐉𝑠 =

3.0862 0.8745 0.9280 0.0225

0.8745 2.1835 0.8998 0.0478

0.9280 0.8998 3.0890 0.9252

0.0225 0.0478 0.9252 1.3091

   

  

  




 
 
 


 


.        (27) 

Its eigenvalues satisfy the modification requirement of partial eigenvalues, but its matrix 
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structure is not the same as that of 𝐉0, which means one cannot reconstruct the modified 

system directly from 𝐉𝑠 with the same configuration structure as {𝐌0,𝐊0}. 

Now, the mass-normalised stiffness matrix 𝐉 of the modified system with the same matrix 

structure as 𝐉0 and the same eigenvalues as 𝐉𝑠 is to be constructed using the gradient flow 

method of the matrix completion discussed in subsection 3.2.2. Let some non-zero entries of 

𝐉 be set to be known a priori. For example, suppose modified values of 𝑚3, 𝑚4 and 𝑘4 are 

prescribed a priori, or for convenience, their values are left unchanged, i.e. 𝑚̃3 = 𝑚̃4 =

1.0,  𝑘̃4 = 1.0, which means 𝐉(3,4) = 𝐉(4,3) = −1, 𝐉(4,4) = 1. Additionally, let zero entry 

pattern of 𝐉 be the same as that of 𝐉0, which means 𝐉(1,4) = 𝐉(2,4) = 𝐉(4,1) = 𝐉(4,2) = 0. 

At this point, using notation in subsection 3.2.2, one has 

𝐀𝒦 =

0

0

1

0 0 1 1

   
 
  
 
    
 

 

,  𝐖 = 𝐉𝑠, 

where the stars in 𝐀𝒦 indicate unknown entries to be determined. Set 𝐕(0) = 𝐈 (a 4 ×  4 

identity matrix), and start with 𝐘0 = 𝐕(0)𝐉𝑠𝐕(0)T = 𝐉𝑠.  

The gradient flow method gives 𝐉 = 𝐘 = 𝐕𝐉𝑠𝐕
T as follows: 

𝐉 =

3.0933   0.8264 0.7768

0.8264 2.2711 0.6801

0.7768 0.6801 3.3034

0

0

1

0 0 1 1

 
 
 
 
 









 




.          (28) 

It is easily verified that the obtained 𝐉 has eigenvalues {0.5，1.5，3.4882，4.1796}. 

Now, one can reconstruct the modified mass-spring system with the same configuration 

structure as {𝐌0,𝐊0}, shown in Fig.2, from 𝐉. Note that the physical parameters of masses 

and springs of the modified system constitute the entries of 𝐉, just like 𝐉0 shown in (26). 
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Take 𝐪 = (1, 1, … ,1 )T
 as the static displacements of all the masses, one has 

𝐊𝐪 = (𝑘̃1, 0, … ,0 )
T

               (29) 

𝐮 = 𝐃𝐪 = 𝐌1 2⁄ 𝐪 = (𝑚̃1
1 2⁄

, 𝑚̃2
1 2⁄

, 𝑚̃3
1 2⁄

, 𝑚̃4
1 2⁄

)
T

        (30) 

𝐉𝐮 = 𝐌−1 2⁄ 𝐊𝐌−1 2⁄ 𝐌1 2⁄ 𝐪 = 𝐌−1 2⁄ 𝐊𝐪 = (𝑘̃1/√𝑚̃1, 0,0,0)
T

      (31) 

Substituting 𝐉 of (28) into (31), expanding the first three equations of (31), one has 

1 2 1 2 1 2

1 2 3 1 1

1 2 1 2 1 2

1 2 3

1 2 1 2 1 2 1 2

1 2 3 4

3.0933 0.8264 0.7768

0.8264 2.2711 0.6801 0

0.7768 0.6801 3.3034 0

m m m k m

m m m

m m m m

   


   

    

.        (32) 

Simultaneously solving the second and third equation of (32) in terms of 𝑚̃3 = 𝑚̃4 = 1.0, 

one gets 𝑚̃1 and 𝑚̃2. Substituting them into the first equation of (32), one gets 𝑘̃1. Because 

entries 𝐉(1,2) = 2 1 2k m m = 0.8264 , 𝐉(1,3) = 5 1 3k m m = 0.7768 , 𝐉(2,2) =

2 3 2( )k k m = 2.2711 , one obtains 𝑘̃2 , 𝑘̃3 , and 𝑘̃5 . Thus one has entire physical 

parameters of the modified system, as shown in Table 1. 

Table 1.  Masses and spring constants of the original and modified 

structures (𝑚̃1−4 and 𝑘̃1−5) 

  𝑚1       𝑚2     𝑚3     𝑚4      𝑘1      𝑘2     𝑘3     𝑘4     𝑘5 

  1.0     1.0     1.0     1.0      1.0     1.0     1.0     1.0     1.0 

  𝑚̃1       𝑚̃2      𝑚̃3     𝑚̃4      𝑘̃1      𝑘̃2     𝑘̃3     𝑘̃4     𝑘̃5 

4.2024   1.0929    1.0     1.0    9.6359  1.7710  0.7110   1.0   1.5924 

 

It is worthwhile to note that (1) if 𝐕(0) is chosen to be an arbitrary orthogonal matrix, the 

gradient flow method would ends at a different limit point, such as 

𝐉 =

1.6600   0.1625 0.6931

0.1625 4.0368 0.3498

0.6931 0.3498 2.9710

0

0

1

0 0 1 1

 
 
 
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 









 




, 
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which means one can reconstruct another PEVAPSM solution of the original system from 

𝐉 above; (2) if other non-zero entries of 𝐉 are set to be known a priori, one can also 

reconstruct different PEVAPSM solutions. 

Example 3.2. a 10-DOF mass-spring system [48], as shown in Fig.3, with {𝐌0,𝐊0} as 

follows: 

𝐌0 = diag(𝑚1,𝑚2, … ,𝑚10), 

0

1 13 14 13 14
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13 12 3 12 13 16 16
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22 18
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0 0 0
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k k k k k k k k k k k

k k k k k k k
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
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  
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All spring constants are 2.4 × 105 N m⁄ , and 𝑚1 = 30kg,𝑚2 = 35kg,𝑚3 = 40kg,𝑚4 =

45kg,𝑚5 = 45kg,𝑚6 = 45kg,𝑚7 = 40kg,   𝑚8 = 35kg,  𝑚9 = 30kg,𝑚10 = 25kg . Its 

eigenvalues (or natural frequencies squared) are λ = {6298.12，9628.31，14109.22, 22117.92, 

22733.69, 27718.30, 32139.94, 35557.23, 42219.32, 49077.96}, respectively. The first two 

eigenvalues 𝚲1 = diag(6298.12，9628.31)  are required to relocate to 

𝚺1 = diag(9012，12118), and the other eigenvalues remain unchanged.  𝐗1, 𝐉0 and 𝐉𝑠 

are not listed for the sake of saving space. 

 

Figure 3. A 10-DOF “fixed-fixed” type of multiple connected mass-spring system 
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The matrix structure of the obtained 𝐉𝑠 is not the same as that of 𝐉0 either, which means 

one cannot reconstruct the modified system directly from 𝐉𝑠 with the same configuration 

structure as {𝐌0,𝐊0}. Now, the mass-normalised stiffness matrix 𝐉 of the modified system 

with the same matrix structure as 𝐉0 and the same eigenvalues as 𝐉𝑠 is to be constructed 

using the gradient flow method of matrix completion. Sometimes it is convenient to allow 

some entries of 𝐉 , for example, 𝐉(9, 9) = (𝑘̃9 + 𝑘̃20 + 𝑘̃25) 𝑚̃9⁄ , 𝐉(9, 10) = 𝐉(10, 9) =

−𝑘̃25 √𝑚̃9𝑚̃10⁄  , 𝐉(8, 10) = 𝐉(10, 8) = −𝑘̃23 √𝑚̃8𝑚̃10⁄  , 𝐉(7, 10) = 𝐉(10, 7) =

−𝑘̃24 √𝑚̃7𝑚̃10⁄ , and 𝐉(10, 10) = (𝑘̃10 + 𝑘̃23 + 𝑘̃24 + 𝑘̃25) 𝑚̃10⁄ , to be equal to the 

corresponding entries of 𝐉0. The mathematical expressions of these entries of 𝐉 are explicitly 

given to aid understanding of their physical meanings . Meanwhile, let zero entry pattern of 𝐉 

be the same as that of 𝐉0. Thus one has 

𝐀𝒦 =

 

 

   

       

0

0

0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 7,10

0 0 0 0 0 0 8,10

0 0 0 0 0 0 0 9,9 9,10

0 0 0 0 0 0 10,7 10,8 10,9 10,10

   
 

  
 
    
 
      
    
 

   
     
 

   
 
 
 
 

J

J

J J

J J J J

. 

Set 𝐕(0) = 𝐈 (a 10 ×  10 identity matrix), and start with 𝐘0 = 𝐕(0)𝐉𝑠𝐕(0)T = 𝐉𝑠, the 

gradient flow method gives 𝐉 = 𝐘 = 𝐕𝐉𝑠𝐕
T as follows: 

𝐉 = 
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2.4090e+4 0 -6.4017e+3 -5.8373e+3 0 0 0 0 0 0

0 2.0638e+4  -5.5792e+3 -4.7904e+3 0 0 0 0 0 0

-6.4017e+3 -5.5792e+3 2.5478e+4 -4.1434e+3 0 0 0 0 0 0

-5.8373e+3 -4.7904e+3 -4.1434e+3 3.3804e+4 -4.6084e+3 0 -4.3752e+3 0 0 0

0 0 0 -4.6084e+3 1.8417e+4 0 -2.0021e+3 -7.3117e+3 0 0

0 0 0 0 0 1.7552e+4 -3.0753e+3 0 -5.9524e+3 0

0 0 0 -4.3752e+3 -2.0021e+3 -3.0753e+3 3.8423e+4 -5.6127e+3 0 -7.5895e+3

0 0 0 0 -7.3117e+3 0 -5.6127e+3 2.6001e+4 0 -8.1135e+3

0 0 0 0 0 -5.9524e+3 0 0 2.4000e+4 -8.7636e+3

0 0 0 0 0 0 -7.5895e+3 -8.1135e+3 -8.7636e+3 3.8400e+4

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

It should be noted that the entries with numerical values in the orders of 10−11 or below in 

the above matrix 𝐉 are already set to be zero. 

Now, one can reconstruct the modified mass-spring system with the same configuration 

structure as {𝐌0,𝐊0}, shown in Fig.3, from 𝐉. Similar to (29)-(31), one has 

𝐉(𝑚̃1
1 2⁄

, 𝑚̃2
1 2⁄

, … , 𝑚̃10
1 2⁄

)
T

= (𝑘̃1/√𝑚̃1, 𝑘̃2/√𝑚̃2, … , 𝑘̃10/√𝑚̃10)
T
 . (33) 

At this point, a different reconstruction procedure for physical parameters is used. One can 

prescribe values of the entries of the right-hand vector in Eq.(33). Here the ratios of 

𝑘̃1/√𝑚̃1, 𝑘̃2/√𝑚̃2, … , 𝑘̃10/√𝑚̃10 are taken to be the same as that of the original system. 

Then solving Eq.(33), one has 𝐃 = 𝐌1 2⁄ = diag(𝑚̃1
1 2⁄

, 𝑚̃2
1 2⁄

, … , 𝑚̃10
1 2⁄

), and subsequently 

𝐊 = 𝐃𝐉𝐃. The results are listed as follows: 

𝐌 = diag(14.620, 15.591, 15.641, 15.492, 27.244, 17.019, 12.720, 25.479, 18.588, 16.043), 

𝐊 = 

e+5 0 - e+4 -8.7850e+4 0 0 0 0 0 0

0 3.2175e+5  -8.7124e+4 -7.4449e+4 0 0 0 0 0 0

-9.6806e+4 -8.7124e+4 3.9851e+5 -6.4498e+4 0 0 0 0 0 0

-8.7850e+4 -7.4449e+4 -6.4498e+4 5.2371e+5 -9.4676e+4 0 -6.1418e+4 0 0 0

0 0 0 -9.

3.5220 9.680

4676e+

6

4 5.0174e+5 0 -3.7269e+4 1.9264e+5 0 0

0 0 0 0 0 2.9871e+5 -4.5246e+4 0 -1.0587e+5 0

0 0 0 -6.1418e+4 -3.7269e+4 -4.5246e+4 4.8873e+5 -1.0104e+5 0 -1.0841e+5

0 0 0 0 -1.9264e+5 0 -1.0104e+5 6.6248e+5 0 -1.6403e+5

0 0 0 0 0 -1.0587e+5 0 0 4.4612e+5 -1

-

.5134e+5

0 0 0 0 0 0 -1.0841e+5 -1.6403e+5 -1.5134e+5 6.1604e+5

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This modified system {𝐌,𝐊}  accurately assigns the first two eigenvalues to 

(9012，12118), and keeps the remaining eigenvalues of {𝐌0,𝐊0} unchanged. The absolute 
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errors of the remaining eigenvalues between {𝐌,𝐊} and {𝐌0,𝐊0} are listed in Table 2. 

Table 2. The absolute errors of the remaining eigenvalues 

  

  |𝜇3 − 𝜆3|   |𝜇4 − 𝜆4|   |𝜇5 − 𝜆5|   |𝜇6 − 𝜆6|   |𝜇7 − 𝜆7|   |𝜇8 − 𝜆8|   |𝜇9 − 𝜆9|   |𝜇
10

− 𝜆10| 

  1.1879e-5  1.5775e-6  6.7383e-5  6.2182e-6  2.2771e-6   3.8391e-5   1.0212e-5   1.0869e-5 

  

which indicates an excellent assignment. 

Clearly, the PEVAPSM solution of this 10-DOF multiple-connected mass-spring system is 

not unique either. Additionally, it should be pointed out firstly that according to Eq. (5) (i.e. a 

real symmetric matrix Js constructed), the spectral orders of the eigenvalues of the original 

system to be assigned before assignment must be in the same spectral orders of the modified 

system after assignment. Secondly, the first method based on Lanczos algorithm is just 

applicable to the simply connected systems and is computationally effective; while the 

second method based on the gradient flow algorithm is applicable to both systems, but is 

computationally more expensive for large systems. 

 

4. Conclusions 

 

Passive structural modifications for partial assignment of natural frequencies of lumped 

mass-spring systems are successfully made. For two kinds of mass-spring systems, i.e. simply 

connected in-line mass-spring systems and multiple-connected mass-spring systems, two 

numerical solution procedures are proposed to construct the required mass-normalised 
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stiffness matrix, which satisfies the partial assignment requirement of natural frequencies and 

at the same time keeps the structural configuration of the original system, that is, the structure 

of the mass and stiffness matrices remains unchanged after modifications. The methods only 

need information of those few eigenpairs to be assigned and the analytical mass and stiffness 

matrices of the original system. Their solutions are not unique and dependent on the 

prescribed conditions on the physical parameters of masses and springs of the modified 

system. 

For continuous structures (or distributed systems), quite often lumped mass matrices are 

used in the finite element discretisation, and the methods put forward in this paper are also 

applicable.  

The methods also allow other design constraints to be considered, for example, 

maintenance of the total mass. Structural optimisation with partial eigenvalue assignment can 

be carried out. 

It will be a challenge to be able to deal with non-diagonal mass matrices (for example, 

consistent mass matrices in the FEM).  This will be the authors’ next research topic. 
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Figure 1. A five-DOF “fixed-free” type of original mass-spring system and modified system 

Figure 2. A 4-DOF “fixed-free” type of multiple connected mass-spring system 

 

Figure 3. A 10-DOF “fixed-fixed” type of multiple connected mass-spring system 
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