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ABSTRACT 

When calculating the structure-borne sound power of a vibration source, 
such us machines or footfall, it is necessary to know the point mobility of 
the supporting floor. The frequency-averaged mobility is easily calculated, 
but the height of the resonant peaks is also important for power flow at low 
frequencies. This paper describes how the complicated mobility curve for 
rods, beams and plates can be reduced to a skeleton plot consisting of a 
mean line, and an envelope of the resonant peaks. Skudrzyk’s ‘mean value 
method” is used to provide a simple expression for the peak envelope which 
is independent of the resonance frequencies. The formula is exact for rods 
and beams when coupling losses are correctly included. For plates a good 
approximation is obtained and the predicted skeleton plot shows good 
agreement with measured mobilities of ConcreteJEoors. 

1 INTRODUCTION 

The objective of this paper is to develop a simple characterisation of the 
mobility curve for concrete floors which will provide an engineering feel 
for the problem with a minimum of complication. The intended appli- 
cation is to calculation of the transmitted structure-borne sound power 
from machines into their supporting floor.2,3,4 (Mobility is the complex 
ratio of velocity to applied force at a point, i.e. the inverse of mechanical 
impedance.) 

It is well known that the mobility of continuous elements, such as 
beams and plates, converges to the characteristic mobility at high 
frequencies where many resonances overlap. At lower frequencies, where 
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resonances are separated, resonance peaks and antiresonance troughs 
extend respectively above and below the characteristic line5 (see Figs 1 and 
2 for example). For excitation by tonal sources such as machines, the 
actual value of mobility at the excitation frequency is of importance, not 
just the frequency-averaged value. However, detailed calculation of the 
mobility curve in the resonant range is usually impractical because the 
behaviour is complicated. A simplified characterisation consisting of a 
mean line, and an envelope to include the resonant peaks is therefore 
proposed (Fig. 1). 

Fig. 1. Skeleton mobility plot showing mean and peak envelope. 
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Fig. 2. Point mobility of end-excited rods with clamped and free ends. 
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Several authors have obtained estimates for the heights of the resonance 
peaks of concrete floors, mostly empirically and with little or no theo- 
retical support. 6,7,8 Steel9 has suggested a method of analysis based on the 
decomposition of plate response into single modes but a more general 
method will now be investigated. 

The ‘mean value method’, from Skudrzyk,‘,r” has been shown by 
Williams” to be successful in predicting the mean mobility of freely 
suspended metal plates, and a prediction of the height of the resonances 
has yielded promising agreement with measurement. This theory will be 
briefly reviewed and application to building elements examined by means 
of illustrative examples on simple theoretical models and a limited number 
of real floors. 

2 THEORY 

Skudrzyk’ expresses the characteristic mobility for any continuous element 
in terms of the average modal spacing ei and the so called modal mass Mi 
as: 

The resonant peaks and antiresonant troughs are respectively a factor B 
above and below the characteristic mobility where: 

in which Wa = wi . q is the modal bandwidth of a resonance at wi with 77 the 
total loss factor. The resonant peaks are of most interest since this con- 
stitutes the worst case in terms of the power absorbed by the structure, 
and by combining eqns (1) and (2) the mobility at a resonance peak is: 

Y, = Re [F,] . ,!I = & 
I B 

This is real by definition at a resonance. Mi is half the total mass of the 
element for one-dimensional modes such as occur in rods and beams, and 
for quasi-beam modes in plates; for two-dimensional plate modes the 
fraction is a.’ 
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An envelope for the resonance peaks can now be drawn without 
knowledge of the resonance frequencies wi. The limit line, which indicates 
the height a resonance would attain if it occurred at w, say, is given by: 

Y, = 
2 

h4.W.7 
for rods and beams 

Y, = 
4 

A4.W.Q 
for plates 

The above assumes the response to be dominated by a single mode. 
When allowing for modal overlap, Williams” gives the height of the peaks 
as: 

Y, = Re [ YC] . cotanh (1 //I) (6) 

Equation (6) reduces to eqn (3) at low frequency and to the characteristic 
value at high frequency. Figure 1 shows the relative heights of the peaks 
above the characteristic mobility and is general for rods, beams, plates and 
shells. Thus, the required characterisation, namely the mean and the peak 
envelope, can be obtained using simple formulae, eqns (4) (5) and (6). 

In general, when structural elements are subject to excitation the 
position of excitation and the boundary conditions have a strong influence 
on the mobility curve. It is remarkable then that equations (5) and (6) 
indicate that there is no dependence of the peak envelope on either of 
these factors (except in so far as the boundary conditions affect loss 
factor). This far-reaching result will first be investigated using exact solu- 
tions for simple systems of rods, beams and plates, before the formulae are 
applied to real concrete floors. 

3 THE EFFECT OF BOUNDARY CONDITIONS AND 
EXCITATION POSITION 

Mobilities of two rods with fixed and free ends are shown in Fig. 2. The 
natural frequencies are different for each configuration, yet eqn (4) exactly 
predicts the resonant peaks for both cases. Exact agreement is also 
obtained for beams with simply supported, clamped, and free boundary 
conditions with the exception of the lowest resonance for which end 
distortion causes a small discrepancy. Therefore, for rods and beams, the 
peak envelope is independent of the boundary conditions (assumed to be 
lossless at this stage). 
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Turning attention now to the effect of excitation position, the mobility 
of a rod with fixed ends is shown in Fig. 3. The variation in mobility with 
increased distance of the excitation point from the centre is illustrated. 
Excitation at the centre causes antisymmetric modes to be excited to their 
full height, and their peaks touch the predicted upper limit. Away from 
the centre some modes are partially excited and the prediction is 
conservative. The mobility at the boundary is theoretically zero, and in 
practice would be small. l2 Equation (4) is therefore applicable for rods 
excited at any position. Prediction is exact if the excitation coincides with 
an antinode, and conservative for other positions. There is no reason to 
suppose that this conclusion does not hold for beams. 

The situation for plates is more complicated as illustrated in Fig. 4 
where the mobility of a simply supported plate is plotted for various 
aspect ratios (for this example M = 39 kg and 7 = 5%) The results 
indicate an important difference from rods and beams, which are one- 
dimensional wave guides and have regularly spaced resonances, (see Fig. 2, 
where for rods the modal spacing is constant). For plates, the average 
modal spacing is frequency invariant l3 but it is possible for modes to 
bunch together. Thus it is possible for, say, two coincident resonances to 
double the response, but only if both are simultaneously excited at an 
antinode. The worst case for such increases in response is for square plates 
excited at the centre, as shown in Fig. 4, because square plates have 
several coincident resonances, and the centre is always an antinode for 
symmetrical modes. For non-square plates, exactly coincident resonances 
are less likely, and for non-central excitation the chance of full excitation 
of all modes is reduced. These trends are illustrated in Fig 4. Thus, eqns 
(5) and 6) will yield reasonable estimates of peak height for plates with any 
(lossless) boundary conditions, although not a strict upper bound. 

4 THE EFFECT OF COUPLING LOSSES 

In the examples so far, only material losses have been present. In theory 
one can also include coupling losses by use of the total loss factor: 

in which Q, and nm are the coupling and material loss factors respectively. 
An example will illustrate whether this is possible in practice. 

Figure 5 shows a rod that is attached to collinear semi-infinite rods 
of the same material but different cross-sectional area at each end. The 
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Fig. 3. Point mobility of a clamped rod for excitation at various positions. 
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efficiency of the coupling is dependent on the ratio of these areas A, and 
AZ; the transmission coefficient at the junction is given by? 
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Fig. 4. Point mobility at the centre of simply supported plates of various aspect ratios. 
(a) Aspect ratio = 1; (b) aspect ratio = 1.36; (c) aspect ratio = I .44; (d) aspect ratio = I ,5. 
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Fig. 4-contd. 

Figure 5 shows the effect of these lossy boundary conditions. The height 
of the peaks decreases as energy is lost at the boundaries, as expected. In 
the limiting case where the coupling is perfect there are no reflections and 
the characteristic mobility is obtained. 

Unfortunately, there is not complete agreement in the literature as to 
the correct definition of coupling loss factor. Sablikt4 gives three alter- 
native definitions in common use: 
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Fig. 5. Point mobility of a rod with various degrees of end loss. 

CL r 
rlc = 7 (9) 

CL . 7 

% = 21w (10) 

CL . r 

rlc = lw (2 - T) (11) 

where CL is the longitudinal wave speed. The peak height has been 
predicted using each of these definitions and results, shown in Fig. 6, 
indicate reasonable agreement for definition (1 l), but eqn (9) is seen to be 
unconservative. 

It can easily be shown that exact agreement would be obtained if Q 
were given by: 

2CL .7- 

vz = zw . [l + dm]2 
(12) 

and this represents an alternative definition of coupling loss factor which 
has been incidentally derived. It agrees closely with eqn (11) except at high 
values of 7 unlikely to be encountered in practice. Definitions (9)-(11) 
have been derived on statistical bases, but Skudrzyk’s theory,’ which forms 
the basis of eqn (12), is exact, and it therefore seems likely that eqn (12) is 
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Eqn 9 (b) 
Eqn 9 Cc) 

Eqn 9 (a) 

f- 
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L_ 

Fig. 6. Prediction of peak envelope using various definitions of coupling loss factor. 

the correct definition. (Note that none of eqns (9)-(11) give p -+ 1 which 
is the correct limit for r -+ 1.) 

It has thus been demonstrated that the upper bound is valid using 
the total loss factor in eqn (4) provided that the correct expression for 
coupling loss factor can be derived. When the receiving substructures are 
highly resonant this becomes difficult as coupling losses vary rapidly with 
frequency due to resonant behaviour. Consequently, the simplicity of the 
prediction is lost, although a conservative estimate is still possible, by 
assuming material losses only. 

For beams, coupling losses are more appropriately described with an 
absorption coefficient: 

o!= E ri (13) 
i 

where the ri are the transmission coefficients from the driven element to 
each of the receiver elements. Absorption coefficients for some common 
junctions are given in Fig. 7. 

It is now possible to make predictions of the heights of the resonance 
peaks for beams using the absorption coefficient (Fig. 7), the definitions 
of coupling loss factor (eqns (9)-(11)) and eqn (4). These absorption 
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coefficients should be used with care since they are derived assuming all 
elements forming the junction are of identical materials and cross sections. 
Factors that cause an increase in impedance mismatch, such as a change in 
cross section or material, or poor joins between elements will tend to 
reduce the absorption coefficient, thereby increasing the height of the 
peaks. 

For plates, the absorption coefficient depends on the angle of incidence 
of the incoming wave. Cremers shows that the ‘random incidence trans- 

Configuration 
Normal Random 

incidence incidence 

- 

I-, I 0.375 0.25 

- 

1’1 0.444 0.3 

Fig. 7. Absorption coefficients for beam and plate junctions. 
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mission’ coefficient is two-thirds of the normal incidence value. Transmission 
and absorption coefficients for plates are given in Fig. 7; as for beams, any 
change will cause a decrease in absorption coefficient. Craik15 presents 
figures giving the absorption coefficients for all combinations of thickness 
and material properties, from which an absorption coefficient of O-3 is seen 
to be reasonable for any configuration of similar plates, provided that the 
thicknesses do not vary by more than about 20%. 

The coupling losses are given by Craikls as: 

where S is the area of the plate and U the length of its perimeter. The 
mean absorption coefficient d is defined as: 

a _ xi liai 

xi Ii 
(15) 

and the product U& physically represents an equivalent length of perfectly 
absorbing boundary (analogous to Sabine’s ‘open window units’ for room 
acoustics). 

An expression for the heights of the peaks of plates with edge losses is 
obtained by combining equations (14) and (5), yielding: 

(16) 

In eqn (16), it is assumed that material losses are dominated by edge 
losses, which is reasonable for most building structures and is in any case 
conservative. The peak envelope can be adjusted to account for over- 
lapping modes by calculating the relative height of the peaks above the 
characteristic line, p = Yr/ Yc, and then using eqn (6). 

Equation (16) will now be tested against experimental results for 
concrete floors. 

5 EXPERIMENTAL RESULTS FOR FLOORS 

The measured point mobilities presented in Figs 8,9 and 10 were obtained 
in situ by an impulse response method, in which the impulse is applied 
with a hammer and the response measured with an accelerometer. The 
pulse length was 2 ms for the measurements shown. Measurements were 
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made in the frequency range O-l kHz, thus covering most of the region of 
resonant behaviour. Prediction of the peak height was carried out 
according to eqn (16), and adjusted as described in section 4. 

The floors were all concrete cast-in-situ type and therefore significant 
coupling losses were expected. It was assumed that fluctuations in the 
coupling losses due to resonances in the side walls would be minimal. 

-90 ( 
1 

predicted upper bond 

(b) 
-90 

_l3o- 
0 (c) 1 kHz 

Fig. 8. Point mobility (real part) of the reverberation chamber. (a) Position A; (b) position 
E; (c) position G. 
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Fig. 9. Average of point mobility over positions A-F on reverberation chamber roof. 

5.1 Roof of small reverberation chamber 

The first example is the roof of a small reverberation chamber, shown in 
Fig. 11, which was of a typical concrete-slab construction. The 4.83 m x 3 m 
roof slab was of cast concrete 120 mm thick with a mass of 4.2 tonnes 
supported on brick walls 115 mm thick. The floor and wall plates formed 
right-angled junctions and an absorption coefficient of 0.33 is therefore 
appropriate from Fig. 7. The roof and walls were of different materials; 
however, brick and concrete have similar densities and Young’s moduli so 
no allowance was thought necessary for this difference. 

The measured point mobilities at the positions indicated are shown in 
Fig. 8. Results at all other positions are similar, with the worst agreement 
obtained for position G, thought to be due to imperfect joining between 
the floor and walls at this point. This may also have been a result of 
two coincident modes both being excited at antinodes at this position but 
this explanation would seem less likely. The results are encouraging, with 
the predicted mean and peak mobilities successfully characterising the 
measured curves. 

When dealing with sources connected to the floor at multiple points the 
average of the mobilities at all connection points is of interest in deter- 
mining structure-borne power into the floor.3 Figure 9 shows the real part 
of mobility averaged over points A-F, which could be likened to the 
connection points for a typical machinery installation. The averaging 
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process has had the effect of reducing the variations about the mean value. 
This is because each resonance is excited to a different extent at each position. 

5.2 Plant room floor 

The plan and edge detailing of this plant room floor are shown in Fig. 12. 
The floor is of 300 mm concrete slab set into concrete walls at the edges. 
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Fig. 10. Point mobility (real part) of the plant room floor. 
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One difficulty that immediately arises is that the floor is far from the 
rectangular shape assumed in the derivation of the theory. The plate has 
therefore been treated as two separate rectangular areas as shown. The 
absorption coefficient at the edges is variable depending on the ratio of 
floor to wall thickness, as shown in Fig. 12. Perfect reflection has been 
assumed at the riser cut-out and zero reflection at the open edge between 
the two areas. Mean absorption coefficients of 0.23 and 0.34 are applicable 
for the larger and smaller areas respectively. 

The remaining results for the three sections are shown with the pre- 
dictions in Fig. 10. As before, the characteristic mobility is a good 
approximation to the mean mobility up to 600 Hz, above which thick- 
plate theory is applicable,16 and local stiffness causes an increase in mean 
mobility. 

The predicted peak envelope is more conservative than in the previous 
example; this is possibly due to the floor having been split into two sections 
for the purpose of prediction, each with a lower mass than the whole floor. 

Further measurements on a similar floor produced very similar results. 

6 CONCLUDING REMARKS 

It has been proposed to represent the mobility of concrete floors by 
a skeleton plot made up of the mean mobility and the envelope of the 
resonant peaks. The advantage of this simple characterisation is that the 

Concrete slab roof 

Brick walls 

Dimensions in mm 

Rig. 11. The roof of the reverberation chamber. 
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essential features of the mobility plot can be established without a need for 
complex calculations. In particular, the natural frequencies of the floor 
need not be known because the envelope of the resonant peaks has been 
shown to be independent of the position of the actual resonances on the 
frequency plot. 

An advantage of the above formulation over previous empirical methods 
is that it has a theoretical basis that yields insight into the problem. 
Empirical results cannot be extrapolated to new floor configurations, a 
particular difficulty being the influence of coupling losses. The above 
formulation allows the effect of losses at floor boundaries to be estimated. 

The intended application is for prediction of structure-borne sound 
transmission through the contact points of machines installed in buildings, 
but the formulation is general. 

Ci = 0.23 

* 12s 

yTJ 
a = 0.22 

Fig. 12. Plan and edge detailing for plant room floor. 
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