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Summary Points Box  

 Meta-analysis methods combine quantitative evidence from related studies to produce 

results based on a whole body of research. 

 Studies that do not provide direct evidence about a particular outcome or treatment 

comparison of interest are often discarded from a meta-analysis of that outcome or 

treatment comparison. 

 Multivariate and network meta-analysis methods simultaneously analyse multiple outcomes 

and multiple treatments, respectively. This allows more studies to contribute toward each 

outcome and treatment comparison. 

 Summary results for each outcome now depend on correlated results from other outcomes, 

and summary results for each treatment comparison now incorporate indirect evidence 

from related treatment comparisons, in addition to any direct evidence. 

 This often leads to a gain in information which can be quantified by the Borrowing of 

Strength statistic, BoS (the percentage reduction in the variance of a summary result that is 

due to correlated or indirect evidence). 

 Under a missing at random assumption, a multivariate meta-analysis of multiple outcomes is 

most beneficial when the outcomes are highly correlated and the percentage of studies with 

missing outcomes is large. 

 Network meta-analyses gain information through a consistency assumption, which should 

be evaluated in each network where possible. There is usually low power to detect 

inconsistency, which arises when effect modifiers are systematically different in the subsets 

of trials providing direct and indirect evidence. 

 Network meta-analysis allows multiple treatments to be compared and ranked based on 

their summary results. However, focusing on the probability of being ranked first is 

potentially misleading: a treatment ranked first may also have a high probability of being 

ranked last, and its benefit over other treatments may be of little clinical value. 

 Novel network meta-analysis methods are emerging to use individual participant data, to 

evaluate dose, to incorporate ‘real-world’ evidence from observational studies, and to relax 

the consistency assumption by allowing summary inferences whilst accounting for 

inconsistency effects.   
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Standfirst 

Organisations such as the National Institute for Health and Care Excellence (NICE) require evidence 

synthesis of existing studies to inform their decisions, for example about the best available 

treatments with respect to multiple efficacy and safety outcomes. However, relevant studies may 

not provide direct evidence about all the treatments or outcomes of interest. Multivariate and 

network meta-analysis methods provide a framework to address this, using correlated and/or 

indirect evidence from such studies alongside any direct evidence. In this article, Riley and 

colleagues describe the key concepts and assumptions of these methods, outline how correlated and 

indirect evidence arises, and illustrate the contribution of such evidence in real clinical examples 

involving multiple outcomes and multiple treatments. 

 

Introduction and rationale 

Meta-analysis methods combine quantitative evidence from related studies to produce results based 

on a whole body of research. As such, meta-analyses are an integral part of evidence based medicine 

and clinical decision-making, for example to guide which treatment should be recommended for a 

particular condition. The majority of meta-analyses are based on combining results (e.g. treatment 

effect estimates) extracted from study publications or obtained directly from study authors. 

Unfortunately, relevant studies may not evaluate the same sets of treatments and outcomes, which 

creates problems for meta-analysis. For example, in a meta-analysis of 28 trials to compare eight 

thrombolytic treatments after acute myocardial infarction, it is unrealistic to expect every trial to 

compare all eight treatments;1 in fact a different set of treatments was examined in each trial, with 

the maximum number of trials per treatment was only eight.1 Similarly, relevant clinical outcomes 

may not always be available. For example, in a meta-analysis to summarise the prognostic effect of 

progesterone receptor status in endometrial cancer, four studies provided results for both cancer-

specific survival (CSS) and progression-free survival (PFS), but other studies provided results for only 

CSS (2 studies) or only PFS (11 studies).2 

 

Studies that do not provide direct evidence about a particular outcome or treatment of interest are 

often excluded from a meta-analysis evaluating that outcome or treatment. This is unwelcome, 

especially if their participants are otherwise representative of the population, clinical settings and 

condition of interest. Research studies require considerable costs and time, and involve precious 

patient involvement, and simply discarding them could be viewed as research waste.3-5 Statistical 

models for multivariate and network meta-analysis address this by simultaneously analysing 

multiple outcomes and multiple treatments, respectively. This allows more studies to contribute 

toward each outcome and treatment comparison. Furthermore, in addition to using direct evidence, 
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the summary result for each outcome now depends on correlated results from related outcomes, 

and the summary result for each treatment comparison now incorporates indirect evidence from 

related treatment comparisons.6 7 The rationale is that by observing the related evidence we learn 

something about the missing direct evidence of interest, and thus gain some information that is 

otherwise lost; a concept sometimes known statistically as ‘borrowing strength’.6 8 

 

Multivariate and, in particular, network meta-analyses are increasingly prevalent in clinical journals. 

For example, a review up to April 2015 identified 456 network meta-analyses of randomised trials 

evaluating at least four different interventions.9 Only six of these 456 were published before 2005, 

and 103 were published in 2014 alone, emphasising a dramatic increase in uptake in the last ten 

years (Figure 1(a)). The BMJ has published more than any other journal (28; 6.1%). Methodology and 

tutorial articles about network meta-analysis have also risen in number, from less than five in 2005 

to over 30 per year since 2012 (Figure 1(b)).10  

 

Here we explain the key concepts, methods, and assumptions of multivariate and network meta-

analysis, building on previous pieces in The BMJ.11 12 13 We begin by describing the use of correlated 

effects within a multivariate meta-analysis of multiple outcomes, and then consider the use of 

indirect evidence within a network meta-analysis of multiple treatments. We also highlight two 

statistics (‘BoS’ and ‘E’) that summarise the extra information gained, and consider key assumptions, 

challenges and novel extensions. Real examples are embedded throughout.  

 

Correlated effects and multivariate meta-analysis of multiple outcomes 

 “Many clinical studies have more than one outcome variable; this is the norm rather 

 than the exception. These variables are seldom independent and so each must carry 

 some information about the others. If we can use this information, we should.” 

                         Martin Bland 14 

 

Many clinical outcomes are correlated with each other, such as a hypertensive patient’s systolic and 

diastolic blood pressure, a migraine sufferer’s level of pain and nausea, and a cancer patient’s 

disease-free and overall survival times. Such correlation at the individual level will lead to correlation 

between effects at the population (study) level. For example, in a randomised trial of anti-

hypertensive treatment, the estimated treatment effects for systolic and diastolic blood pressure are 

likely to be highly correlated. Similarly, in a cancer cohort study the estimated prognostic effects of a 

biomarker are likely to be highly correlated for disease-free survival and overall survival. Correlated 

effects also arise in many other situations, for example when there are multiple time-points 
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(longitudinal data);15 multiple biomarkers and genetic factors that are interrelated;16 multiple effect 

sizes corresponding to overlapping sets of adjustment factors;17 multiple measures of accuracy or 

performance (e.g. in regard to a diagnostic test or prediction model),18 and multiple measures of the 

same construct (e.g. scores from different pain scoring scales, or biomarker values from different 

laboratory measurement techniques19). We broadly refer to these as multiple correlated outcomes 

in this article.  

 

As Bland notes,14 correlation amongst outcomes is potentially informative and worth using. A 

multivariate meta-analysis addresses this by analysing all correlated outcomes jointly. This is usually 

achieved by assuming multivariate normal distributions,7 20 and generalises standard (‘univariate’) 

meta-analysis methods described previously in The BMJ.12 Note that the outcomes are not 

amalgamated into a single outcome; the multivariate approach still produces a distinct summary 

result for each outcome. However, the correlation amongst the outcomes is now incorporated, and 

this brings two major advantages compared to a univariate meta-analysis of each outcome 

separately. Firstly, the incorporation of correlation enables each outcome’s summary result to make 

use of the data for all outcomes. Secondly, we can now include studies that do not report all the 

outcomes of interest.21 This allows more studies and evidence to be included, and consequently can 

lead to more precise conclusions (narrower confidence intervals). More technical details and 

software options are provided in Supplementary Material 1. 22 23 24 25 We now illustrate the key 

concepts through two examples. 

Example 1: Prognostic effect of progesterone for cancer specific survival in 
endometrial cancer 

In the aforementioned endometrial cancer example, prognostic results for CSS are missing in 11 

studies (1412 patients) that provide results for PFS. A traditional univariate meta-analysis for CSS 

simply discards these 11 studies, but they are retained in a multivariate analysis of PFS and CSS, 

which uses their strong positive correlation (about +0.8). This leads to important differences in 

summary results, as shown for CSS in the forest plot of Figure 2. The univariate meta-analysis for CSS 

includes just the six studies with direct evidence and gives a summary hazard ratio (HR) of 0.61 (95%: 

0.38 to 1.00; I2 = 70%), with the confidence interval just crossing the value of no effect. The 

multivariate meta-analysis includes 17 studies and gives a summary HR for CSS of 0.48 (95% CI: 0.29 

to 0.79), with a narrower confidence interval and stronger evidence that progesterone is prognostic 

for CSS. The latter result is also more similar to the prognostic effect for PFS (summary HR = 0.43, 

95% CI: 0.26 to 0.71, from multivariate meta-analysis), as perhaps one might expect. 
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Example 2: Plasma fibrinogen concentration as a risk factor for CVD 

The Fibrinogen Studies Collaboration examine whether plasma fibrinogen concentration is an 

independent risk factor for cardiovascular disease (CVD) using data from 31 studies.17 All 31 studies 

allowed a partially adjusted hazard ratio to be obtained, where the hazard ratio for fibrinogen was 

adjusted for the same core set of known risk factors, including age, smoking, BMI and blood 

pressure. However, a more ‘fully’ adjusted hazard ratio, additionally adjusted for cholesterol, alcohol 

consumption, triglycerides and diabetes, was only calculable in 14 studies. When the partially and 

‘fully’ adjusted estimates are plotted in these 14 studies, there is a strong positive correlation 

(almost +1, i.e. a near perfect linear association) between them (Figure 3). 

 

A standard (univariate) random effects meta-analysis of just the direct evidence from 14 trials gives 

a summary ‘fully’ adjusted HR of 1.31 (95% CI: 1.22 to 1.42; I2 = 29%), which indicates that a 1 g/L 

increase in fibrinogen levels is associated, on average, with a 31% relative increase in the hazard of 

CVD. However, a multivariate meta-analysis of partially and ‘fully’ adjusted results incorporates 

information from all 31 studies, and thus an additional 17 studies (>70000 patients), to utilise their 

large correlation (close to +1). This produces the same ‘fully’ adjusted summary HR of 1.31, but gives 

a more precise confidence interval (1.25 to 1.38) due to the extra information gained. A forest plot is 

shown in supplementary material 2.  

 

Indirect evidence and network meta-analysis of multiple treatments 

Let us now consider the evaluation of multiple treatments. A meta-analysis that evaluates a 

particular treatment comparison (e.g. treatment A versus B) using only direct evidence is known as a 

‘pair-wise meta-analysis’. When the set of treatments differs across trials, this approach may greatly 

reduce the number of trials per meta-analysis, and makes it hard to formally compare more than 

two treatments. A network meta-analysis addresses this by synthesising all trials in the same analysis 

whilst utilising indirect evidence.22 26 27  

 

Consider a simple network meta-analysis of three treatments (A, B and C) evaluated in previous 

randomised trials. Assume that the relative treatment effect (i.e. the treatment contrast) of A versus 

B is of key interest, and that some trials compare A and B directly. However, there are also other 

trials of A versus C and other trials of B versus C, which provide no direct evidence of the benefit of A 

versus B, as they did not examine both A and B. Indirect evidence of A versus B can still be obtained 

from these trials under the so-called “consistency” assumption that, on average across all trials 

regardless of the treatments compared, the 
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 Treatment contrast of A versus B  

  = (treatment contrast of A versus C) – (treatment contrast of B versus C),  

 

where ‘treatment contrast’ is, for example, a log relative risk, log odds ratio, log hazard ratio or 

mean difference. This relationship will always hold exactly within any randomised trial where A, B 

and C are all examined. However, it is plausible that it will also hold (on average) across those trials 

that only compare a reduced set of treatments, if their clinical and methodological characteristics 

(such as quality, length of follow-up, case-mix) are similar in each subset (here, A versus B, A versus 

C, and B versus C trials). In this situation, the benefit of A versus B can be inferred from the indirect 

evidence from comparing trials of just A versus C with trials of just B versus C, in addition to the 

direct evidence coming from trials of A versus B (Figure 4).  

 

There are different options for specifying a network meta-analysis model under this consistency 

assumption, depending on the type of data available. If there are only two treatments (i.e. one 

treatment comparison) per trial, then the simplest approach is a standard meta-regression, which 

models the treatment effect estimates across trials in relation to a reference treatment. The choice 

of reference treatment is arbitrary, and makes no difference to the meta-analysis results. This can be 

extended to a multivariate meta-regression to accommodate trials with 3 or more groups (often 

called ‘multi-arm trials’).28 29 Rather than modelling treatment effect estimates directly, for a binary 

outcome it is more common to use a logistic regression framework to model the numbers and 

events available for each treatment group (arm) directly. Similarly, a linear regression or Poisson 

regression could be used to directly model continuous outcomes and rates in each group in each 

trial. When doing so, it is important to maintain the randomisation and clustering of patients within 

trials,28 and to incorporate random effects to allow for between-trial heterogeneity in the magnitude 

of treatment effects.12 Supplementary Material 1 gives more technical details (and software 

options27 30) for network meta-analysis, and fuller statistical explanation is given elsewhere.28  

 

After estimation of a network meta-analysis, a summary result is obtained for each treatment 

relative to the chosen reference treatment. Subsequently, other comparisons (treatment contrasts) 

are then derived using the consistency relationship. For example, if C is the reference treatment in a 

network meta-analysis of a binary outcome, then the summary log odds ratio (logOR) for A versus B 

is obtained by the difference in the summary logOR estimate for A versus C and the summary logOR 

estimate for B versus C. We now illustrate the key concepts through an example. 
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Example 3: Comparison of eight thrombolytic treatments after acute myocardial 
infarction 

In the aforementioned thrombolytics meta-analysis,1 the aim was to estimate the relative efficacy of 

eight competing treatments in reducing the odds of mortality by 30-35 days; these treatments are 

labelled as A to H for brevity (for full names see below Figure 5). A version of this dataset containing 

seven treatments was previously introduced in the BMJ by Caldwell et al.,13 and our investigations 

below extend this work. 

 

With eight treatments, 28 pair-wise comparisons of potential interest; however, only 13 of these 

were directly reported in at least one trial. This is shown by the network of trials (Figure 5), where 

each node is a particular treatment, and a line connects two nodes when at least one trial directly 

compares the two respective treatments. For example, a direct comparison of C versus A is available 

in eight trials, whilst a direct comparison of F versus A is only available in one trial. With such 

discrepancy in the amount of direct evidence available for each treatment, and between each pair of 

treatments, it is hugely problematic to compare the eight treatments using only standard 

(univariate) pair-wise meta-analysis methods. 

 

Therefore, using the number of patients and deaths by 30-35 days in each treatment group, we 

applied a network meta-analysis via a multivariate random effects meta-regression model, to obtain 

the summary odds ratios for treatments B to H versus A, and subsequently all other contrasts.27 29 

This allowed all 28 trials to be incorporated and all eight treatments to be compared simultaneously, 

utilising direct evidence and also indirect evidence propagated through the network via the 

consistency assumption. The choice of reference group does not change the results, which are 

displayed in Figure 6 and supplementary material 3. The indirect evidence has an important impact 

on some treatment comparisons. For example, the summary treatment effect of H versus B in the 

network meta-analysis of all 28 trials (OR 1.19, 95% CI: 1.06 to 1.35) is substantially different from a 

standard pair-wise meta-analysis of two trials (summary OR 3.87; 95% CI: 1.74 to 8.58). 

Ranking treatments 

Following a network meta-analysis it is helpful to rank treatments according to their effectiveness. 

This process usually, though not always,31 requires using simulation or resampling methods.27 29 32 

These use thousands of samples from the (approximate) distribution of summary treatment effects, 

to identify the percentage of samples (probability) that each treatment has the most (or least) 

beneficial effect. Figure 7(a) shows the probability that each thrombolytic treatment was ranked 

most effective out of all treatments, and similarly second, third, and so on down to the least 
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effective. Treatment G has the highest probability (51.7%) of being the most effective at reducing 

the odds of mortality by 30-35 days, followed by treatment E (21.5%) and B (18.3%).  

 

Focusing on the probability of being ranked first is potentially misleading: a treatment ranked first 

may also have a high probability of being ranked last,33 and its benefit over other treatments may be 

of little clinical value. In our example, treatment G has the highest probability of being most 

effective, but the summary effect for G is very similar to that for B and E, and their difference is 

unlikely to be clinically important. Furthermore, treatment G is also fourth most likely to be the least 

effective (14.4%), reflecting a large summary effect with a wide confidence interval. In contrast 

treatments B, E and F have very low probability (close to 0%) of being least effective. Thus, a 

treatment may have the highest probability of being ranked first, when actually there is no strong 

evidence (beyond chance) that it is better than other available treatments. To illustrate this further, 

let us add to the thrombolytics network a hypothetical new drug, called Brexitocin, for which no 

direct or indirect evidence exists. Given the lack of evidence, Brexitocin essentially has a 50% chance 

of being the most effective treatment but also a 50% chance of being the least effective. 

 

To help address this, the mean rank and the Surface Under the Cumulative RAnking curve (SUCRA) 

are useful.34 35 The mean rank gives the average ranking place for each treatment. The SUCRA is the 

area under a line plot of the cumulative probability over ranks (from most effective to least 

effective) (Figure 7(b)), and is just the mean rank scaled to be between 0 and 1. A similar measure is 

the P-score.31F or the thrombolytic network (now excluding Brexitocin), Treatments B and E have the 

best mean ranks (2.3 and 2.6, respectively), followed by treatment G (3.0). Thus, although treatment 

G had the highest probability of being ranked first, based on the mean rank it is now in third place.  

 

  

Quantifying the information gained from correlated or indirect evidence 

Copas et al. (submitted) propose that, in comparison to a multivariate or network meta-analysis with 

the same magnitude of between-trial heterogeneity, a standard (univariate) meta-analysis of just 

the direct evidence is similar to throwing away 100 × (1 – E)% of the available studies. The efficiency 

(E) is defined by, 

  

𝐸 =
variance of summary result based on direct and related evidence

variance of summary result based on only direct evidence
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where ‘related evidence’ refers to either indirect or correlated evidence (or both), and the variance 

relates to the original scale of the meta-analysis (so typically the log relative risk, log odds ratio, log 

hazard ratio, or mean difference). For example, if E = 0.9 then a standard meta-analysis is similar to 

throwing away 10% of available studies and patients (and events). 

 

Let us also define n as the number of available studies with direct evidence (i.e. those that would 

contribute toward a standard meta-analysis). Then, the extra information gained toward a particular 

summary meta-analysis result by using indirect or correlated evidence can also be considered similar 

to having found direct evidence from a further 𝑛 ×
(1−𝐸)

𝐸
 studies of a similar size to the n trials. For 

example, if there are nine studies providing direct evidence about an outcome for a standard 

univariate meta-analysis and E = 0.9, then the advantage of using a multivariate meta-analysis is like 

finding direct evidence for that outcome from a further 9 ×
(1−0.9)

0.9
= 1 study. We thus gain the 

considerable time, effort and money invested in about one research study. 

 

Jackson et al. also propose the ‘borrowing of strength’ (BoS) statistic,8  which can be calculated for 

each summary result within a multivariate or network meta-analysis by 

 

𝐵𝑜𝑆 = 100 × (1 − 𝐸)%. 

 

BoS provides the percentage reduction in the variance of a summary result that is due to (borrowed 

from) correlated or indirect evidence. An equivalent way of interpreting BoS is the percentage 

weight in the meta-analysis that is given to the correlated or indirect evidence.8  For example, in a 

network meta-analysis, a BoS of 0% indicates that the summary result is based only on direct 

evidence, whereas a BoS of 100% indicates that it is based entirely on indirect evidence. Riley et al. 

show how to derive percentage study weights for multi-parameter meta-analysis models, including 

network and multivariate meta-analysis.{Riley, 2017 #1486} 

Application to the examples  

Let us revisit our three examples. In the fibrinogen example, the summary ‘fully’ adjusted HR has a 

large BoS of 53%, indicating that the correlated evidence (from the partially adjusted results) 

contributes 53% of the total weight toward the summary result. The efficiency (E) is 0.47, and thus 

using the correlated evidence is equivalent to having found ‘fully’ adjusted results from an additional 

14 ×
(1−0.47)

0.47
≈ 16 studies.  
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In the progesterone example, BoS is 33% for CSS indicating that using the PFS results reduces the 

variance of the summary log hazard ratio for CSS by 33%. This corresponds to an E of 0.67, and the 

information gained from the multivariate meta-analysis can be considered similar to having found 

CSS results from an additional  6 ×
(1−0.67)

0.67
≈ 3 studies.  

 

For the thrombolytics meta-analysis, BoS is shown in Figure 6 for each treatment comparison where 

there was direct evidence for at least one trial. It is often large. For example, the comparison of H 

versus B has a BoS of 97.8%, as there are only two trials with direct evidence. This is similar to having 

found direct evidence for H versus B from an additional 2 ×
(1−0.022)

0.022
≈ 89 trials of similar size to 

those existing two trials. BoS is 0% for E versus B, as there was no indirect evidence toward this 

comparison (Figure 6). For comparisons not shown in Figure 6, such as C versus B, BoS was 100% 

because there was no direct evidence. The percentage weight (contribution) of each study is shown 

in Supplementary material 3. 

 

Challenges and assumptions of multivariate or network meta-analysis 

Our three examples demonstrate the potential value of multivariate and network meta-analysis, and 

other benefits are discussed elsewhere.15 20 36 However, the approaches do have issues. 

The benefits of a multivariate meta-analysis may be small 

 “… multivariate and univariate models generally give similar point estimates, although the 

 multivariate models tend to give more precise estimates. It is unclear, however, how often 

 this added precision will qualitatively change conclusions of systematic reviews”. 

          Trikalinos et al.37  

  

This argument, based on empirical evidence,37 might be levelled at the fibrinogen example. Although 

there was considerable gain in precision from using multivariate meta-analysis (BoS = 53%), 

fibrinogen was clearly identified as a risk factor for CVD in both univariate and multivariate analyses, 

and thus conclusions did not change. A counter-view is that this is in itself useful to know. 

 

The potential importance of a multivariate meta-analysis of multiple outcomes is greatest when BoS 

and E are large, which is more likely when: 

 the proportion of studies without direct evidence for an outcome of interest is large;  

 results for other outcomes are available in studies where an outcome of interest is not 

reported; and 
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 the magnitude of correlation amongst outcomes is large (e.g. > 0.5 or < -0.5), either within-

studies or between-studies. 

 

In our experience, BoS and E are usually greatest in a network meta-analysis of multiple treatments; 

that is, more information is usually gained about multiple treatments via the consistency assumption 

than is gained about multiple outcomes via correlation. A multivariate meta-analysis of multiple 

outcomes is best reserved for a set of highly correlated outcomes, as otherwise BoS and E are 

usually small. Such outcomes should be identified and specified in advance of analysis, for example 

using clinical judgement and statistical knowledge, so as to avoid data dredging across different sets 

of outcomes. A multivariate meta-analysis of multiple outcomes is also best reserved for a situation 

with missing outcomes (at the study-level), as anecdotal evidence suggests that BoS for an outcome 

is approximately bounded by the percentage of missing data for that outcome. For example, in the 

fibrinogen example the percentage of trials with a missing fully adjusted outcome is 55% (= 100% ×

 17/31), and thus the multivariate approach is flagged as worthwhile as BoS could be as high as 55% 

for the fully adjusted pooled result. As discussed, the actual BoS was 53% and thus very close to 55%, 

due to the near perfect correlation between partially and fully adjusted effects. In contrast, in 

situations with complete data or a low percentage of missing outcomes, BoS (and thus a multivariate 

meta-analysis) is unlikely to be important. Also, multivariate meta-analysis cannot handle trials that 

do not report any of the outcomes of interest. Therefore, although it can reduce the impact of 

selective outcome reporting in published trials, it cannot reduce the impact of non-publication of 

entire trials (publication bias).  

 

If a formal comparison of correlated outcomes is of interest (e.g. to estimate the difference between 

the treatment effects on systolic and diastolic blood pressure), then this should always be done in a 

multivariate framework regardless of the amount of missing data, in order to account for 

correlations between outcomes and thus avoid erroneous confidence intervals and p-values.38 

Similarly, a network meta-analysis of multiple treatments is preferable even if all trials examine all 

treatments, as we require a single analysis framework for estimating and comparing the effects of 

each treatment. 

 

Model specification and estimation is non-trivial 

Even when BoS is anticipated to be large, challenges may remain.20 Multivariate and network meta-

analysis models are often complex, and achieving convergence (i.e. reliable parameter estimates) 

may require simplification (e.g. common between-study variance terms for each treatment contrast; 
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multivariate normality assumption), which may be open to debate.20 39 40 For example, in a 

multivariate meta-analysis of multiple outcomes, convergence and estimation problems increase as 

the number of outcomes (and hence unknown parameters) increase, and so applications beyond 

two or three outcomes are rare. Specifically, unless IPD are available,41 there can be problems 

obtaining and estimating correlations amongst outcomes;42 43 possible solutions include a Bayesian 

framework utilising prior distributions for unknown parameters to bring in external information. 44-46 

46-48  

 

Benefits arise under assumptions 

 “But borrowing strength builds weakness. It builds weakness in the borrower because it 

 reinforces dependence on external factors to get things done.”               

          Stephen Covey 49 

 

This quote relates to qualities needed for an effective leader, but is pertinent here too. The benefits 

of multivariate and network meta-analysis depend on missing study results being missing at 

random.50 We are assuming that the relationships that we do observe in some trials are transferable 

to other trials where they are unobserved. For example, in a multivariate meta-analysis of multiple 

outcomes the observed linear association (correlation) of effects for pairs of outcomes (both within-

studies and between-studies) is assumed to be transferable to other studies where only one of the 

outcomes is available. This relationship is also used to justify surrogate outcomes,51  but often 

receives criticism and debate therein.52 Missing not at random may be more appropriate when 

results are missing due to selective outcome reporting,53 or selective choice of analyses.54 A 

multivariate approach may still reduce selective reporting biases in this situation,36 but not 

completely.  

 

In a network meta-analysis of multiple treatment comparisons, the missingness assumption is also 

known as transitivity;55 56 it implies that the relative effects of three or more treatments observed 

directly in some trials would be the same in other trials where they are unobserved. Based on this, 

the consistency assumption then holds. When the direct and indirect evidence disagree, this is 

known as inconsistency (incoherence). A recent review by Veroniki et al. found that about one in 

eight network meta-analyses show inconsistency as a whole,57 similar to an earlier review.58  

 

How do we examine inconsistency between direct and indirect evidence? 

Treatment effect modifiers relate to methodological or clinical characteristics of the trials that 

influence the magnitude of treatment effects, and may include follow-up length, outcome 
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definitions, study quality (risk of bias), analysis and reporting standards (including risk of selective 

reporting), and the patient-level characteristics.58-61 When such effect modifiers are systematically 

different in the subsets of trials providing direct and indirect evidence, this causes genuine 

inconsistency. Thus, before undertaking a network meta-analysis it is important to select only those 

trials relevant for the population of clinical interest, and to then identify any  systematic differences 

in those trials providing different comparisons. For example, in the thrombolytics network, are trials 

of A versus C and A versus H systematically different from trials of C versus H in terms of potential 

effect modifiers?62 If so, inconsistency is likely and so a network meta-analysis approach is best 

avoided. 

 

It may be difficult to gauge the potential for inconsistency in advance of a meta-analysis. Therefore, 

following any network meta-analysis, inconsistency should be examined statistically, though 

unfortunately this is often not done.63 The consistency assumption can be examined for each 

treatment comparison where there is direct and indirect evidence (seen as a closed loop within the 

network plot):57 64 65 here the ‘separating indirect from direct evidence’ 65 approach (sometimes 

called ‘node-splitting’ or ‘side-splitting’) involves estimating the direct and indirect evidence, and 

comparing the two. The consistency assumption can also be examined across the whole network 

using ‘design-by-treatment interaction’ models,29 66 which allow an overall significance test for 

inconsistency. If evidence of inconsistency is found, explanations should be sought: for example, 

whether inconsistency arises from particular studies with a different design or at a higher risk of 

bias.55 The network models could then be extended to include suitable explanatory covariates or 

reduced to exclude certain studies.62 If inconsistency remains unexplained, then the inconsistency 

terms may instead be modelled as random effects with mean zero, thus allowing overall summary 

estimates allowing for unexplained inconsistency.67-69 Other approaches for modelling inconsistency 

have been proposed,64 and we anticipate further developments in this area over the coming years. 

However, often there is low power to detect genuine inconsistency.70  

 

In the thrombolytics example, the ‘separating indirect from direct evidence’ approach found no 

significant inconsistency except for H versus B, visible in Figure 6 as the discrepancy between “Study 

22”, “Study 23” and “All studies” under the subheading “H vs B”. However, when we applied the 

‘design-by-treatment interaction’ model there was no evidence of overall inconsistency. If the H 

versus B studies differed in design from the other studies then it might be reasonable to exclude 

them from the network, but otherwise an overall inconsistency model (with inconsistency terms 

included as random effects) may provide the best treatment comparisons. 
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Novel extensions and hot topics 

Incorporation of both multiple treatments and multiple outcomes 

Previous examples considered either multiple outcomes or multiple treatments. However, there is 

growing interest in accommodating both together, in order to help identify the best treatment 

across multiple clinically relevant outcomes.71-76 This is achievable, but challenging due to the extra 

complexity of the statistical models required. For example, Efthimiou et al.72 perform a network 

meta-analysis of 68 studies comparing 13 active antimanic drugs and placebo for acute mania. Two 

primary outcomes of interest were efficacy (defined as the proportion of patients with at least a 50% 

reduction in manic symptoms from baseline to week 3) and acceptability (defined as the proportion 

of patients with treatment discontinuation before 3 weeks). These are likely to be negatively 

correlated (as patients often discontinue treatment due to lack of efficacy), so the authors extend a 

network meta-analysis framework to jointly analyse these outcomes and account for their 

correlation (estimated to be about -0.5). This is especially important as 19 of the 68 studies provided 

data on only one of the two outcomes. Compared to considering each outcome separately, this 

approach produces narrower confidence intervals for summary treatment effects and has an impact 

on the relative ranking of some of the treatments (Supplementary Material 4). In particular, 

Carbamazepine ranks as the most effective treatment in terms of response when considering 

outcomes separately, but falls to fourth place when accounting for their correlation.  

Accounting for dose and class 

Standard network meta-analysis makes no allowance for similarities between treatments. When 

some treatments represent different doses of the same drug, network meta-analysis models may be 

extended to incorporate sensible dose-response relationships.77 Similarly, when the treatments can 

be grouped into multiple classes, network meta-analysis models may be extended to allow 

treatments in the same class to have more similar effects than treatments in different classes.78 

Use of individual participant data (IPD) 

Network meta-analysis using aggregate (published) data is convenient, but sometimes published 

reports are inadequate for this purpose: for example, if outcome measures are differently defined, 

or if interest lies in treatment effects within subgroups. In these cases it may be valuable to collect 

IPD.79 As such, methods for network meta-analysis of IPD are emerging.60 80-85 A major advantage is 

that these allow the inclusion of participant-level covariates, which is important if these are effect 

modifiers that would otherwise cause inconsistency in the network. 
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Inclusion of ‘real-world’ evidence 

There is growing interest in using ‘real-world’ evidence from non-randomized studies in order to 

corroborate findings from randomised trials, and to increase the evidence being used toward 

decision-making. Network meta-analysis methods are thus being extended for this purpose,86 and a 

recent overview is given by Efthimiou et al.,87 who emphasise the importance of ensuring 

compatibility of the different pieces of evidence, for each treatment comparison. 

 

Cumulative network meta-analysis 

Créquit et al.88 show that the amount of randomized evidence covered by existing systematic 

reviews of competing second-line treatments for advanced non-small cell lung cancer was always 

substantially incomplete, with 40 % or more of treatments, treatment comparisons, and trials 

missing. To address this, they recommend a new paradigm “by switching: 1) from a series of 

standard meta-analyses focused on specific treatments (many treatments being not considered) to a 

single network meta-analysis covering all treatments; and 2) from meta-analyses performed at a 

given time and frequently out-of-date to a cumulative network meta-analysis systematically updated 

as soon as the results of a new trial become available.” They latter is referred to as a “live cumulative 

network meta-analysis”, and the various steps, advantages and challenges of this approach warrant 

further consideration.88 A similar concept is the Framework for Adaptive MEta-analysis (FAME), 

which requires knowledge of ongoing trials and suggests timing meta-analysis updates to coincide 

with new publications.89 

Quality assessment and reporting 

Finally, we encourage quality assessment of network meta-analysis according to the guidelines of 

Salanti et al,90 and clear reporting of results using the PRISMA-NMA guidelines.91 The latter may be 

enhanced by the presentation of percentage study weights according to recent proposals,8 92 to 

reveal the contribution of each study toward the summary treatment effects.  

 

 

Conclusions  

Statistical methods for multivariate and network meta-analysis use correlated and indirect evidence 

alongside direct evidence, and here we have highlighted their advantages and challenges. Table 1 

summarises the rationale, benefits and potential pitfalls of the two approaches. Core outcome sets 

and data sharing will hopefully reduce the issue of missing direct evidence,61 79 93 but are unlikely to 
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resolve it completely. Thus, to combine indirect and direct evidence in a coherent framework, we 

expect applications of, and methodology for, multivariate and network meta-analysis to continue to 

grow in the coming years.9 94  
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Figure 1: Publication of network meta-analysis articles over time 

(a): Applied articles reporting a systematic reviews using network meta-analysis to compare at least 
four treatments published between 2005 and 2014. as assessed by Petropoulou et al. 9  

 

* 6 were also published before 2005, and 43 were published in 2015 up to April. 

 
(b): Methodological articles, tutorials, and articles with empirical evaluation of methods for network 
meta-analysis published between 2005 and 2014 (as assessed by Efthimiou et al.10 and available 
from www.zotero.org/groups/wp4_-_network_meta-analysis) 
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Figure 2: Forest plot for the prognostic effect of progesterone on cancer-specific survival (CSS) in 

endometrial cancer, with summary results for univariate and multivariate meta-analysis 

 

N.B. The multivariate meta-analysis of CSS and progression-free survival (PFS) used the approach of 

Riley et al. to handle missing within-study correlations, via restricted maximum likelihood (REML) 

estimation.44  Heterogeneity was similar in both univariate and multivariate meta-analyses (I2 = 

70%). 
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Figure 3: Strong observed correlation (linear association) between the log hazard ratio estimates of 

the partially and ‘fully’ adjusted effect of fibrinogen on the rate of cardiovascular disease 

 

NB. The size of each circle is proportional to the precision (inverse of the variance) of the ‘fully’ 

adjusted log hazard ratio estimate (i.e. larger circles indicate more precise study estimates). Hazard 

ratios were derived in each study separately from a Cox regression, indicating the effect of a 1 g/L 

increase in fibrinogen on the rate of CVD 
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Figure 4: Visual representation of direct and indirect evidence toward the comparison of A versus B. 

(adapted from Song et al.58) 
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Figure 5: Network map of the direct comparisons available in the 28 trials examining the effect of 

eight thrombolytics (labelled A to H) on 30-35 days mortality in patients with acute myocardial 

infarction. 

 

NB Each node (circle) represents a different treatment, and its size is proportional to the 

number of trials it is directly examined in. The width of the line joining two nodes is 

proportional to the number of trials that directly compare the two respective treatments 

(the number is also shown next to the line). Where no line directly joins two nodes (e.g. C 

and D), this indicates there was no trial that directly compared the two respective 

treatments.  

 

A = Streptokinase;  

B = Accelerated altepase;  

C = Alteplase;  

D = Streptokinase + alteplase;  

E = Tenecteplase;  

F = Reteplase;  

G = Urokinase;  

H = Anti-streptilase  
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Figure 6: Extended forest plot showing the network meta-analysis results for all comparisons where 

direct evidence was available in at least one trial 

 

Each square denotes the odds ratio estimate for that study, with the size of the square proportional 

to the number of patients in that study, and the corresponding horizontal line denotes the 

confidence interval. The centre of each diamond denotes the summary odds ratio from the network 

meta-analysis, and the width of the diamond provides its 95% confidence interval. ‘BoS’ denotes the 

borrowing of strength statistic, which can range from 0% to 100%.  
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Figure 7: Plots of the ranking probability for each treatment considered in the thrombolytics 

network meta-analysis 

(a) the probability scale  

 

(b) the cumulative probability scale 
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Table 1: Summary of the multivariate and network meta-analysis approaches 

 Multivariate meta-analysis of multiple 
outcomes 

Network meta-analysis of multiple 
treatment comparisons 

What is the 
context? 

Primary research studies report different 
outcomes, and thus a separate meta-
analysis for each outcome will utilise 
different studies  

Randomised trials evaluate different sets of 
treatments, and thus a separate (pair-wise) 
meta-analysis for each treatment 
comparison (contrast) will utilise different 
studies 

What is the 
rationale for the 
method? 

 To allow all outcomes and studies to 
be jointly synthesised in a single meta-
analysis model 

 To account for the correlation 
amongst outcomes to gain more 
information 

 To enable all treatments and studies to 
be jointly synthesised in a single meta-
analysis model 

 To allow Indirect evidence (e.g. about A 
versus B from trials of A versus C and B 
versus C) to be incorporated  

What are the 
benefits of the 
method? 

 Accounting for correlation enables 
each outcome’s meta-analysis result 
to utilise the data for all outcomes 

 This usually leads to more precise 
conclusions (narrower confidence 
intervals)  

 It may reduce the impact of selective 
outcome reporting 

 It provides a coherent meta-analysis 
framework for summarising and 
comparing (ranking) the effects of all 
treatments simultaneously  

 The incorporation of Indirect evidence 
often leads to substantially more 
precise summary results (narrower 
confidence intervals) for each treatment 
comparison 

When should the 
method be 
considered?  

 When multiple correlated outcomes 
are of interest, with large correlation 
amongst them (e.g. > 0.5 or < -0.5) 
and a high percentage of trials with 
missing outcomes; or  

 When a formal comparison of the 
effects on different outcomes is 
needed 

 When a formal comparison of the 
effects of multiple treatments is 
required 

 When recommendations are needed 
about the best (or few best) treatments 

What are the 
potential pitfalls 
of the method? 

 Obtaining and estimating within-study 
and between-study correlations is 
often difficult 

 The information gained by utilising 
correlation is often small and may not 
change clinical conclusions  

 The method assumes outcomes are 
missing at random, which may not 
hold when there is selective outcome 
reporting 

 Simplifying assumptions may be 
needed to deal with a large number of 
unknown variance parameters 

 Indirect evidence arises via a 
consistency assumption; i.e. the relative 
effects of three or more treatments 
observed directly in some trials is (on 
average) the same in other trials where 
they are unobserved. This assumption 
should be checked but there is usually 
low power to detect inconsistency 

 Ranking treatments can be misleading 
due to imprecise summary results, e.g. a 
treatment ranked first may also have a 
high probability of being ranked last 

 Simplifying assumptions may be needed 
to deal with a large number of unknown 
variance parameters 

 


