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Abstract

The IL-27R, WSX-1, is required to limit IFN-c production by effector CD4+ T cells in a number of different inflammatory
conditions but the molecular basis of WSX-1-mediated regulation of Th1 responses in vivo during infection has not been
investigated in detail. In this study we demonstrate that WSX-1 signalling suppresses the development of pathogenic,
terminally differentiated (KLRG-1+) Th1 cells during malaria infection and establishes a restrictive threshold to constrain the
emergent Th1 response. Importantly, we show that WSX-1 regulates cell-intrinsic responsiveness to IL-12 and IL-2, but the
fate of the effector CD4+ T cell pool during malaria infection is controlled primarily through IL-12 dependent signals. Finally,
we show that WSX-1 regulates Th1 cell terminal differentiation during malaria infection through IL-10 and Foxp3
independent mechanisms; the kinetics and magnitude of the Th1 response, and the degree of Th1 cell terminal
differentiation, were comparable in WT, IL-10R12/2 and IL-102/2 mice and the numbers and phenotype of Foxp3+ cells
were largely unaltered in WSX-12/2 mice during infection. As expected, depletion of Foxp3+ cells did not enhance Th1 cell
polarisation or terminal differentiation during malaria infection. Our results significantly expand our understanding of how
IL-27 regulates Th1 responses in vivo during inflammatory conditions and establishes WSX-1 as a critical and non-redundant
regulator of the emergent Th1 effector response during malaria infection.
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Introduction

IL-27, a member of the IL-12 super-family, was initially

described as a Th1 polarising cytokine due to its ability to increase

the sensitivity of CD4+ T cells to IL-12 and to promote T-bet

expression [Reviewed 1,2]. More recently, however, IL-27 has

been shown to exert diverse suppressive effects on CD4+ T cells

during pro-inflammatory conditions [reviewed 1,2]. IL-27 limits

IFN- c production by CD4+ T cells during various infections [3–
7], attenuates the development, but not necessarily maintenance,

of Th17 responses by limiting retinoid-related orphan receptor

(ROR)c expression [8–11] and stimulates IL-10 production by

multiple effector CD4+ T cell populations [12–14]. All of these

effects are mediated via Signal Transducers and Activators of

Transcription (STAT) 1 and/or STAT 3 dependent pathways.

Finally, IL-27 orchestrates the development of adaptive, IL-10-

producing regulatory T cell subsets through induction of c-MAF,

Aryl hydrocarbon Receptor (AhR), inducible T-cell co-stimulator

(iCOS) and IL-21 pathways [15,16]. IL-27 is thus a key cytokine

that shapes the direction and strength of the T cell response.

Despite reports describing the capacity of IL-27 to limit IFN-c
production by CD4+ T cells during inflammation [3–7], very little

work has been performed to understand the molecular basis of this

regulatory pathway in vivo. IL-27 does not appear to regulate the

initial priming or differentiation of Th1 cells during infection

[3,7], unless IL-4 is present, when IL-27 is required to limit Th2

differentiation and enable Th1 responses to develop [17]. Thus,

IFN-c production by CD4+ T cells is essentially unaltered in IL-

27R deficient (WSX-12/2) mice during the early stages of many

infections and excessive IFN-c production, in general, only occurs

after day 10 [3,7] suggesting that WSX-1 regulates established

effector CD4+ T cells rather than naive or newly primed cells. This
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temporal control may relate to disparate downstream STAT

signalling of the IL-27 receptor in naive and effector CD4+ T cells

[18].

It is possible that WSX-1 signalling could regulate the effector

phase of the Th1 response by suppressing the proliferation and

expansion of effector Th1 cells and/or by promoting apoptosis of

effector Th1 cells, in both cases reducing the magnitude of the

Th1 response. Alternatively, WSX-1 could subvert or destabilise

the Th1 differentiation programme in maturing Th1 cells,

converting Th1 cells into non-Th1 cells [19]. Whilst IL-27 has

been shown to limit IL-2 production and therefore inhibit Th1

proliferation in vitro [20,21], the role of IL-27 in promoting Th1

cell apoptosis or controlling Th1 cell programming has not been

investigated. Moreover the specific pathways through which

WSX-1 may modulate these processes in Th1 cells in vivo during

infection remain poorly described

To define the molecular pathways by which WSX-1 regulates

emergent Th1 responses during inflammation, we have utilised the

Plasmodium berghei (P. berghei) NK65 model of murine malaria. We

have previously shown that WSX-1 signalling suppresses IFN-c
production by CD4+ T cells during this infection and that WSX-1

is essential for preventing CD4+ T cell dependent immunopathol-

ogy [7]. We now demonstrate that Th1 priming and the early

effector phase of the Th1 response are unaffected by lack of IL-27

signalling during P. berghei NK65 infection, but that in WSX-12/2

mice the Th1 response fails to reach a plateau after day 9 of

infection leading to the formation of Killer cell Like Receptor

Group 1 (KLRG-1)-expressing, terminally differentiated, Th1

cells. Thus, IL-27 signalling constrains the developing Th1

immune response during malaria infection by establishing an

upper threshold limit of T-box transcription factor TBX21 (T-bet)

expression and suppressing the Th1 molecular programme. Finally

we provide mechanistic evidence that IL-27 signalling controls the

magnitude and pathogenic activity of the Th1 response by limiting

IL-12 dependent signals and that this is independent of IL-10 and

Foxp3 regulatory mechanisms. Our data thus provide important

new information on how IL-27 regulates CD4+ T cell responses

during infection.

Results

WSX-1 signalling establishes a restrictive threshold for
the Th1 response during malaria infection

To investigate whether WSX-1 suppresses IFN-c production by

effector CD4+ T cells during malaria infection by down regulating

classical Th1 responses, we compared expression of the prototypic

Th1-associated transcription factor, T-bet, by splenic effector

(CD44+CD62Llow) CD4+ T cells in P. berghei NK65-infected WT

and WSX-12/2 mice. WT mice developed a slow, gradually

ascending infection and succumbed with hyperparasitaemia

between days 20—25 post-infection (p.i.) (Figure S1). In contrast,

parasite levels were significantly lower in infected WSX-12/2 mice

from day 7 of infection, but WSX-12/2 mice succumbed to

infection on day 13/14 with severe and fatal immunopathology

(Figure S1). Frequencies and numbers of splenic effector CD4+ T-

bet+ T cells were equivalent in naı̈ve WT and WSX-12/2 mice,

showing that there were no intrinsic differences in T cell

polarization in WSX-12/2 mice under homeostatic conditions

(Figure 1A–C). Percentages and absolute numbers of splenic

effector CD4+ T-bet+ T cells increased at a similar rate in WT and

WSX-12/2 mice until day 9 of infection (Figure 1A–C). The

effector CD4+T-bet+ T cell population plateaued, or even

contracted slightly, in WT mice from day 9 of infection, whereas

the effector CD4+T-bet+ T cell population continued to expand in

WSX-12/2 mice with both frequencies and numbers of effector

CD4+T-bet+ T cells being significantly higher in WSX-12/2 mice

than in WT mice on days 11 and 14 (Figure 1A–C). Similarly,

significantly higher frequencies of malaria specific splenic effector

CD4+ T cells produced IFN-c in WSX-12/2 mice than in WT

mice on day 14 of infection (Figure S2A, B), corresponding with

higher plasma levels of IFN-c [7]. Thus, loss of WSX-1 signalling

leads to dysregulated T-bet expression and exaggerated Th1

responses specifically after day 9 of infection.

To assess whether aberrant IFN-c production by CD4+ T cells

in WSX-12/2 mice during infection [3–7] was simply due to

WSX-1-mediated repression of T-bet expression within the

effector population, or was also due to the suppression of T-

bet+Th1 cell functionality on a cell per cell basis, we examined the

capacity of splenic T-bet+ effector CD4+ T cells from WT and

WSX-12/2 mice to produce IFN-c and TNF following in vitro

Phorbol 12-Myrisate 13-Acetate (PMA)/ionomycin restimulation.

Lack of WSX-1 did not affect the proportion of Th1 cells that were

IFN-c+, TNF+ or both IFN-c+TNF+ on days 0, 7 or 9 of infection

(Figure 1D, E and results not shown); however, significantly higher

frequencies of T-bet+Th1 cells derived from WSX-12/2 mice co-

produced IFN-c and TNF on day 14 of infection (Figure 1D, E)

compared with cells from WT mice. Moreover, T-bet+ Th1 cells

from WSX-12/2 mice produced significantly more IFN-c on a per

cell basis (as measured by mean fluorescence intensity (MFI) of

IFN-c expression) on days 9, 11 and 14, and significantly more

TNF on day 14 of infection (Figure 1D, G). Similarly, T-bet+ Th1

cells from infected WSX-12/2 (D14 p.i.) mice produced signifi-

cantly more IFN-c on a per cell basis when stimulated with

malaria antigen compared with cells from WT mice (Figure S2C,

D). Thus, from day 9 of infection onwards, WSX-1 not only

restricts the magnitude of the Th1 population (by limiting T-bet

expression), but also constrains the quality and effector function-

ality of malaria-specific T-bet+ Th1 cells on a cell-per-cell basis.

WSX-1 signalling represses the development of KLRG-1+

Th1 cells during malaria infection
Our results show that WSX-1 signalling does not restrict the

Th1 response during malaria infection by suppressing cellular

Author Summary

The cytokine interleukin 27 (IL-27), a member of the IL-12
family, is produced by cells of the innate immune system
and has been shown to exert mainly suppressive effects
during a wide range of inflammatory conditions, including
malaria infection, where it suppresses the development of
CD4+ T cell-dependent immunopathology. In this study we
show that IL-27 suppresses the production of IFN-gamma
by CD4+ T cells during blood stage malaria infection by
preventing the development of terminally differentiated
Th1 cells. We investigated the molecular mechanisms by
which IL-27 inhibits the formation of terminally differen-
tiated Th1 cells and found that it does so specifically by
restricting IL-12 signals. Importantly, we demonstrate that
IL-27 mediates its regulatory effects on the Th1 response
through IL-10 and Foxp3+ regulatory T cell independent
mechanisms. Thus, we have identified a new pathway
though which IL-27 signalling regulates the size and
quality of the Th1 response during malaria infection, which
we believe will have relevance to many other pro-
inflammatory conditions. Manipulation of the IL-27 path-
way may therefore represent an amenable therapeutic
approach during chronic inflammatory disorders.

WSX-1 Inhibits Th1-KLRG-1+ Cells during Malaria
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proliferation or promoting apoptosis (Figures S3, S4). We

therefore hypothesised that the temporal dysregulation in the

magnitude (and quality) of the Th1 response in malaria-infected

WSX-12/2 mice was a direct consequence of the reinforcement of

Th1 molecular programming in WSX-12/2 mice, potentiating T-

bet expression and terminal differentiation of effector CD4+T-bet+

T cells. To address this hypothesis, we determined the maturation

status of Th1 cells during the course of malaria infection in WT

Figure 1. WSX-1 signalling restrains the Th1 response during malaria infection. WT and WSX-12/2 mice were infected i.v. with 104 with P.
berghei NK65 pRBC. (A) Representative plots showing T-bet expression by splenic CD4+ effector (CD44+ CD62L2) T cells from naı̈ve and infected WT
and WSX-12/2 mice. (B, C) The (B) frequencies and (C) total numbers of splenic CD4+ effector T-bet+ T cells in WT and WSX-12/2 mice. (D)
Representative plots showing IFN-c and TNF expression by splenic Th1 effector CD4+ T cells from naı̈ve and infected WT and WSX-12/2 mice
following in vitro PMA and ionomycin stimulation. (E–F) The Mean fluorescence intensity of (E) TNF and (F) IFN-c expression by CD4+ effector Th1 cells
from naı̈ve and infected WT and WSX-12/2 mice. (G) The frequencies of polyfunctional CD4+ effector Th1 cells expressing IFN-c and TNF within the
spleen of naı̈ve and infected WT and WSX-12/2 mice. The results are the mean +/2 SEM of the group with 3–5 mice per group. The results are
representative of 5 independent experiments. * P,0.05 between WT and WSX-12/2 mice.
doi:10.1371/journal.ppat.1003293.g001
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and WSX-12/2 mice by measuring expression of the terminal

differentiation marker, KLRG-1. T cell terminal differentiation

occurs under strong and continuous polarising signals [22–24]

and, although short lived, terminally differentiated cells are likely

to be more stable than incompletely polarised cells [19,25]. Very

few effector CD4+ T-bet+ T cells expressed KLRG-1 in either WT

or WSX-12/2 mice on days 0, 7 and 9 of infection (Figure 2A–C).

Similarly, the vast majority of effector CD4+ T-bet+ cells from WT

mice failed to express KLRG-1 on days 11 or 14 infection

(Figure 2A–C). In contrast, in WSX-12/2 mice the frequencies,

and correspondingly the total numbers, of effector CD4+ T-bet+ T

cells expressing KLRG-1 rapidly increased between day 9 and day

11 of infection, such that more than 50% of all splenic effector

CD4+ T-bet+ cells expressed KLRG-1 on day 14 of infection

(Figure 2A–C). Thus, abrogation of WSX-1 signalling led to the

maturation and terminal differentiation of a large proportion of

the Th1 cell population during malaria infection concomitant with

the increase in frequencies and total numbers of splenic Th1 cells

after day 9 of infection (Figure 1A–C). Intriguingly, KLRG-1

expression was almost entirely restricted to the effector CD4+ T-

bet+ population and very few T-bet2effector CD4+ T cells

expressed KLRG-1 in either WT or WSX-12/2 mice on day 14

of infection (Figure 2D). KLRG-1 expressing Th1 cells in infected

WSX-12/2 mice appeared highly proliferative but were not more

potent sources of IFN-c or TNF than the KLRG-12 Th1 cells on

any examined day following PMA/ionomycin stimulation (Figure

S5), and produced only slightly more IFN-c on day 14 of infection

following malaria-antigen stimulation (results not shown), suggest-

ing that they may be atypical terminally differentiated cells.

Ablation of WSX-1 signalling modulates T cell intrinsic
expression of stimulatory and inhibitory receptors

To identify the molecular pathways through which WSX-1

represses Th1 cell terminal differentiation and thereby restricts the

magnitude of the Th1 response during infection, we performed a

phenotypic analysis of the splenic effector CD4+ T-bet+ T cells in

WT and WSX-12/2 mice immediately prior to (day 9) and

following (day 14) dysregulation of the Th1 response in WSX-12/2

mice. We observed no differences in expression (MFI) in any of the

examined molecules by effector CD4+T-bet+ T cells derived from

Figure 2. WSX-1 signalling inhibits the development of terminally differentiated KLRG-1+ Th1 cells during malaria infection. WT and
WSX-12/2 mice were infected i.v. with 104 P. berghei NK65 pRBC. (A) Representative plots showing KLRG-1 expression by splenic Th1 effector CD4+ T
cells from naı̈ve and infected WT and WSX-12/2 mice. (B, C) The (B) frequencies and (C) total numbers of splenic Th1 effector CD4+ T cells from naı̈ve
and infected WT and WSX-12/2 mice expressing KLRG-1. (D) Representative histograms showing the expression of KLRG-1 by CD4+ effector T-bet+

and T-bet2 T cells derived from naı̈ve (dashed) and D14 infected (solid line) WT (black) and WSX-12/2 (grey) mice. The results are the mean +/2 SEM
of the group with 3–5 mice per group. The results are representative of 7 independent experiments. * P,0.05 between WT and WSX-12/2 mice.
doi:10.1371/journal.ppat.1003293.g002
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naı̈ve WT and WSX-12/2 mice, demonstrating that there were no

intrinsic differences in the regulation of effector CD4+ T-bet+ T cells

in naı̈ve WSX-12/2 mice (Figure 3). Similarly, phenotypes of

effector CD4+ T-bet+ T cells from WT and WSX-12/2 mice were

similar on day 9 of infection, with the notable exception of CD25

(IL-2Ra), IL-18R and CD226 which were all expressed at

significantly higher levels on cells from WSX-12/2 mice, and B

and T lymphocyte attenuator (BTLA), which was expressed at lower

levels on cells from WSX-12/2 mice (Figure 3A–D). In contrast, on

day 14 of infection, CD25, IL-12Rb1, IFN-cR, IL-18R, IL-15R,

cytotoxic T lymphocyte antigen-4 (CTLA-4), Lymphocyte activa-

tion gene-3 (LAG-3), T cell immunoglobulin and musin domain

containing protein-3 (Tim-3) and CD226, were all expressed

at higher levels by effector CD4+ T-bet+ T cells derived from

WSX-12/2 mice compared to cells from WT mice, whereas

Programmed cell death protein 1 (PD-1) and BTLA were both

expressed at lower levels by cells from WSX-12/2 mice (Figure 3A–

D). CD28, iCOS, 4-1BB and CD27 were expressed at comparable

levels on effector CD4+ T-bet+ T cells from WT and WSX-12/2

mice (results not shown). CD25, IL-12Rb1, IL-15R, IL-21R, LAG-

3, TIM-3 and CD226 were all expressed at higher levels by Th1-

KLRG-1+ T cells than by Th1-KLRG-12 T cells from WSX-12/2

mice, but the differences in expression were less than the differences

observed between Th1 cells from infected WT and WSX-12/2

mice (Figure S6). Thus, dysregulation of the Th1 response in

WSX-12/2 mice during malaria infection is associated with

temporal and cell-intrinsic changes in multiple stimulatory and

inhibitory pathways that could independently or synergistically

affect Th1 cell maturation and/or function.

Th1 cells from infected WSX-12/2 mice are
hyperresponsive to IL-12 and IL-2

CD25 and IL-12Rb1 were significantly upregulated on splenic

Th1 cells from WSX-12/2 mice compared with cells from WT

mice on Day 14. IL-12 is a well-characterised Th1-promoting

signal and IL-2 is a T cell growth factor, both of which have also

been shown to promote the development of terminally differen-

tiated CD8+ T cells [22–24]. Thus, we examined the functional

relevance of upregulated IL-12R and IL-2R expression on effector

CD4+ T-bet+ T cells in promoting Th1 terminal differentiation

and hyperactivity in WSX-12/2 mice. We first assessed whether

effector CD4+ T-bet+ T cells from WSX-12/2 mice were hyper-

responsive to IL-2 and IL-12. Unstimulated (ex vivo) Th1 cells from

WT and WSX-12/2 mice on day 14 of infection displayed

equivalent levels of pSTAT4 and pSTAT5 expression (Figure 4A,

B). In contrast, effector CD4+ T-bet+ T cells from WSX-12/2

mice on days 9 and 14 of infection were hyperresponsive to both

rIL-12p70 and rIL-2, and significantly upregulated pSTAT4 and

pSTAT5 respectively following in vitro stimulation (Figure 4A, B).

In comparison, effector CD4+ T-bet+ T cells from infected WT

mice did not significantly upregulate pSTAT4 or pSTAT5

following rIL-12 or rIL-2 activation (Figure 4A, B). T-bet+ effector

CD4+ T cells from WSX-12/2 mice preferentially responded to

both IL-12 and IL-2 compared with T-bet2 effector CD4+ T cells

from WSX-12/2 mice, demonstrating that IL-2 and IL-12

hyperresponsiveness was restricted to the Th1 (T-bet+) lineage of

cells (Fig. 4 C, D), but there was no differences in the

responsiveness of Th1-KLRG-1+ and Th1-KLRG-12 cells from

WSX-12/2 mice to either IL-2 or IL-12p70 (Figure 4E, F).

Nevertheless, IL-12Rb12 and IL-2R2 (CD252) Th1 cells from

WSX-12/2 mice (day 14 of infection) responded poorly to IL-12

and IL-2 activation, confirming the functional relevance of

increased cytokine receptor expression by Th1 cells in WSX-12/2

mice (results not shown). In line with these data, plasma IL-12p70

concentrations were significantly higher in WSX-12/2 mice than in

WT mice on day 14 of infection (Figure 4G). Multiple innate MHC-

II+ cell populations produced higher amounts of IL-12 in infected

WSX-12/2 mice (day 13 of infection) compared with correspond-

ing cells from WT mice, indicating that WSX-1 signalling, directly

or indirectly, broadly suppresses the innate compartment during

infection; however, CD8+ DCs appear to be the most potent source

of IL-12 in infected WSX-12/2 mice (Figure S7A). Increased

numbers of macrophages and dendritic cells were also observed in

the spleens of infected WSX-12/2 mice (D13 p.i) than in infected

WT mice (Figure S7B, C). Surprisingly, however, plasma IL-2

concentrations did not differ between infected (D14) WT and WSX-

12/2 mice (Figure 4G) and CD4+ T cells from infected (D14 p.i)

WSX-12/2 mice produced significantly less IL-2 than CD4+ cells

derived from infected WT mice (Figure 4H).

Neutralisation of IL-12p40, but not IL-2, attenuates the
Th1 response in WSX-12/2 mice during malaria infection

We next determined whether IL-12 and/or IL-2 signals led to

over-expansion and terminal differentiation of Th1 cells in WSX-

12/2 mice during malaria infection. Administration of anti-IL-2

mAb to WSX-12/2 mice from day 7 of infection (when Th1

responses are similar in WT and WSX-12/2 mice) failed to restrict

the Th1 response; frequencies and total numbers of effector CD4+

T-bet+ T cells (Figure 5A–C), as well as frequencies and numbers

of KLRG-1+ effector CD4+T-bet+ T cells (Figure 5D–F), were

similar in WSX-12/2 mice treated with anti-IL-2 and control

(untreated) WSX-12/2 mice. In contrast, anti-IL-12p40 treatment

from day 7 of infection (beginning immediately prior to increase in

IL-12 production in WSX-12/2 mice) significantly reduced the

frequencies and numbers of effector CD4+ T-bet+ T cells (to WT

levels) and repressed the development of KLRG-1+ terminally

differentiated cells (Figure 5A–F). Anti-IL-12p40 treatment did not

affect the frequencies or numbers of effector CD4+ T-bet+ T cells

in WT mice (results not shown). Clodronate liposome administra-

tion from day 7 of infection, which depleted both macrophage and

dendritic cell populations, significantly suppressed IL-12p70

production and consequently also reduced Th1 cell terminal

differentiation (Figure S7D–I). Crucially, whilst anti-IL-2 treat-

ment did not modulate parasite burdens (results not shown), and

consequently did not prevent development of fatal immunopa-

thology, anti-IL-12p40 treatment negatively affected parasite

control but significantly reduced the level of tissue-immunopa-

thology (Figure 5G, H). Thus, WSX-1 signalling establishes a

restrictive threshold for the emergent Th1 response during

infection, preventing pathogenic terminal differentiation of Th1

cells, by repressing IL-12p40-dependent signals.

IL-10 does not restrict T-bet expression by effector CD4+

T cells or prevent Th1 cell terminal differentiation during
malaria infection

IL-27 promotes IL-10 production by various populations of T

cells during inflammatory conditions [12–16]. As we, and others,

have shown an important role for IL-10 in limiting immunopa-

thology during malaria infection [7,14,26,27], we determined

whether elevated T-bet expression by effector CD4+ T cells and

increased Th1 cell terminal differentiation in WSX-12/2 mice

during infection was due to lack of IL-10. Intriguingly, ablation of

IL-10 production and IL-10R1 expression did not lead to a

marked increase in the frequencies or total numbers of effector

CD4+T-bet+ T cells during infection (Figure 6A–C). Consistent

with this, lack of IL-10 and IL-10R1 led to only a marginal
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increase in frequencies and total numbers of KLRG-1+ effector

CD4+T-bet+ T cells and their numbers were significantly lower in

IL-102/2 and IL-10R12/2 mice than in WSX-12/2 mice

(Figure 6D–F). Thus, these data strongly indicate that WSX-1

signalling controls pathogenic Th1 responses during malaria

infection through IL-10 independent mechanisms.

The Foxp3+ Treg response is largely unaltered in WSX-12/2

mice during malaria infection
IL-27 can suppress the maintenance and functionality of natural

Foxp3+ regulatory T cells (Foxp3+ Treg) [28–31]. However, it has

also been suggested that Foxp3+ Treg numbers can collapse during

highly pro-inflammatory events, due to conversion into Th1 cells

Figure 3. Phenotypic profiling of T-bet+ cells in WT and WSX-12/2 mice reveals dysregulated expression of multiple disparate
pathways. WT and WSX-12/2 mice were infected i.v. with 104 P. berghei NK65 pRBC. (A–D) Expression of cytokine receptors and regulatory receptors
by splenic Th1 effector CD4+ T cells from naı̈ve and infected WSX-12/2 mice. (A,C) Representative histograms showing expression of each receptor by
splenic Th1 effector CD4+ T cells from WT (red lines) and WSX-12/2 mice (blue lines) on days 9 and 14 of infection. (B,D) The mean fluorescence
intensity of receptor expression by splenic Th1 effector CD4+ T cells from naı̈ve and infected WT and WSX-12/2 mice. The results are the mean +/2
SEM of the group with 3–5 mice per group. The results are representative of 4 independent experiments. * P,0.05 between WT and WSX-12/2 mice.
doi:10.1371/journal.ppat.1003293.g003
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and apoptosis, initiating a pro-inflammatory feedback loop leading

to development of immune mediated pathology [32]. Although

the role of Foxp3+ Treg during malaria is far from clear [26,33–
35], Foxp3+ Treg can, in other models, regulate Th1 cell

homeostasis [36]. Thus, as the final part of this study, we

determined whether Foxp3+ Treg numbers and/or phenotype

were modulated in WSX-12/2 mice during malaria infection. The

frequencies and absolute numbers of splenic CD4+ Foxp3+ T cells

were largely comparable in WT and WSX-12/2 mice at all time

points (Figure 7A–C). Interestingly, the proportion of

CD4+Foxp3+ T cells co-expressing T-bet increased in both WT

and WSX-12/2 mice during the course of malaria infection

(Figure 7A, D), and significantly higher frequencies and numbers

of CD4+Foxp3+T-bet+ T cells were observed in WSX-12/2 mice

compared with WT mice on days 9 and 11 of infection, although

cell numbers were low (Figure 7D, E). Very few splenic

CD4+Foxp3+ T cells expressed IFN-c in naı̈ve or malaria-infected

WT or WSX-12/2 mice and there was only a transient difference

in the frequencies and numbers of CD4+Foxp3+ IFN-c+ cells in

WT and WSX-12/2 mice on day 9 of infection (Figure 7F–H).

Moreover, there were no major differences in the frequencies or

numbers of CD4+Foxp3+ T cells expressing CXCR3 (Th1-

adapted Treg [37] in either the spleen or livers of naive or

infected WT and WSX-12/2 mice (Figure 7I, J and results not

shown). These data suggest that a small proportion of Foxp3+ Treg

either polarise to a specialised Th1-regulatory phenotype [37], or

convert into non-regulatory effector cells [32] during malaria

infection, and that WSX-1 may play a very minor and transient

Figure 4. Splenic Th1 cells from infected WSX-12/2 mice are hyper-responsive to IL-12 and IL-2. (A–F) Splenocytes derived from naı̈ve
and P. berghei NK65 infected (day 9 and 14) WT and WSX-12/2 mice were treated with (A, C, E) rIL-12p70 or (B, D, F) rIL-2 for 10 minutes and the
responsiveness of effector CD4+ T cell populations was determined by the levels of pSTAT4 and pSTAT5 expression respectively. (A, B) Representative
histograms demonstrating the level of (A) pSTAT4 and (B) pSTAT5 expression in Th1 effector CD4+ T cells from WT and WSX-12/2 mice following rIL-
12p70 and rIL-2 stimulation respectively. (C, D) Representative histograms demonstrating the level of (C) pSTAT4 and (D) pSTAT5 in T-bet+ and T-bet2

effector CD4+ T cells from infected WSX-12/2 mice following rIL-12p70 and rIL-2 stimulation respectively. (E, F) Representative histograms
demonstrating the level of (E) pSTAT4 and (F) pSTAT5 in T-bet+KLRG-1+ and T-bet+KLRG-12 effector CD4+ T cells from infected WSX-12/2 mice
following rIL-12p70 and rIL-2 stimulation respectively. (G) The plasma levels of IL-12p70 and IL-2 in naı̈ve and infected (D14) WT and WSX-12/2 mice,
as measured by cytokine bead array. (H) Splenic CD4+ T cells purified from WT and WSX-12/2 mice on day 14 of infection were restimulated in vitro
with anti-CD3 and the frequencies of CD4+ effector Th1 cells expressing Il-2 was determined after 4 days by intracellular staining. (G) The results are
the mean +/2 SEM of the group with 3–5 mice per group. * P,0.05 between infected WT and WSX-12/2 mice. (A–F) The results are representative of
4 independent experiments.
doi:10.1371/journal.ppat.1003293.g004
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role in regulating this adaptation. Crucially, however, depletion of

Foxp3+ regulatory cells throughout the course of malaria infection,

using DEREG mice, did not significantly increase the level of Th1

cell differentiation or lead to development of KLRG-1+ Th1 cells

(Figure S8). Thus, Foxp3+ T cells do not regulate the magnitude or

terminal differentiation of the Th1 population during malaria

infection.

Discussion

In this study we have defined the molecular mechanisms by

which IL-27 restricts Th1 immune responses during infection.

Whilst it is well established that WSX-1 signalling limits IFN-c
production by T cells during infection and inflammation [1,2],

our study is the first to identify that it does so specifically by

preventing the generation of terminally differentiated KLRG-1+

Th1 cells. We have demonstrated that although WSX-1 signalling

modulates the expression of multiple stimulatory and inhibitory

receptors on Th1 cells during infection, including PD-1 and

BTLA, individual neutralisation of IL-12p40 from day 7 of

infection was sufficient to prevent aberrant T–bet expression,

abrogate the development of terminally differentiated KLRG-1+

Th1 cells and attenuate T-cell dependent immunopathology in

malaria infected WSX-12/2 mice. Thus, the dominant immuno-

regulatory role of IL-27 – signalling via WSX-1 - in preventing

hyperactive Th1 responses in vivo during malaria infection appears

to be the downregulation of IL-12-dependent pathways.

Figure 5. Neutralisation of IL-12p40, but not IL-2, attenuates the Th1 response in WSX-12/2 mice during malaria infection. WT and
WSX-12/2 mice were infected i.v. with 104 P. berghei NK65 pRBC. (A–F) Groups of WSX-12/2 mice were injected with 250 mg of anti-IL-12 or anti-IL-2
on days 7, 9, 11 and 13 of infection, or isotype Abs in control groups. (A, D) Representative plots from day 14 of infection showing (A) T-bet
expression by splenic CD4+ effector T cells and (D) KLRG-1 expression by Th1 effector CD4+ T cells from WT, WSX-12/2 and treated WSX-12/2 mice.
The frequencies (B, E) and total numbers (C, F) of splenic effector and effector Th1 CD4+ T cells expressing (B, C) T-bet and (E, F) KLRG-1, respectively.
(G) The peripheral parasite burdens in WT, WSX-12/2 and ani-IL-12p40 treated WSX-12/2 mice were assessed on thin smears by microscopy. (H) The
level of hepatic pathology in WT, WSX-12/2 mice and WSX-12/2 mice treated with ani-IL-2 or anti-IL-12p40 mAbs was examined on day 13 of
infection by histological examination of H & E stained tissue sections (20x magnification). n = areas of necrosis. The results are the mean +/2 SEM of
the group with 3–5 mice per group. The results are representative of 4 independent experiments. * P,0.05 between WT and WSX-12/2 mice;
{ P,0.05 between WT and ani-IL-2mAb treated WSX-12/2 mice; ` P,0.05 between WT and anti-IL-12p40 mAb treated WSX-12/2 mice; ,P,0.05
between ani-IL-2mAb treated WSX-12/2 mice and anti-IL-12p40 mAb treated WSX-12/2 mice.
doi:10.1371/journal.ppat.1003293.g005
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We have shown that Th1 cells derived from malaria-infected

WSX-12/2 mice are hyper responsive to IL-12p70 and that that IL-

12p70 protein levels are significantly higher in WSX-12/2 mice

than in WT mice at the later stages of infection, when the Th1 cell

responses start to diverge. It has previously been shown that

macrophages and dendritic cells derived from WSX-12/2 mice are

hyper-responsive to TLR signalling and produce more IL-12p40

[5,38] than WT cells and that IL-27 reduces IL-12p40 production

by macrophages in vitro [5]. Therefore, it is perhaps unsurprising

that we found that macrophages and dendritic cells, in particular the

CD8+ DC subset that is the dominant source of IL-12 in various

other infections [39], expressed higher levels of IL-12 in malaria

infected WSX-12/2 mice than in infected WT mice. However, T

cell intrinsic WSX-1 expression has also been shown to be required

to limit T cell proliferation and IFN-c production in vivo during

infection [3]. Consequently, it is currently unclear whether the

dysregulated IL-12 pathway in WSX-12/2 mice during infection,

and the corresponding development of KLRG-1+ Th1 cells, is due

to intrinsic loss of WSX-1 mediated regulation within the innate

system, specifically by macrophages and dendritic cells, or whether

it is a consequence of abrogated WSX-1 expression on CD4+ T

cells, which subsequently leads to amplification of the innate

immune response, initiating a positive inflammatory feedback loop.

We are currently examining the relative importance of CD4+ T cell

intrinsic and extrinsic WSX-1 signalling in limiting the IL-12

pathway, and hence Th1 cell differentiation, in vivo during infection.

Th1 cell proliferation and apoptosis were relatively unaltered in

WSX-12/2 mice during the course of malaria infection, suggest-

ing that Th1 hyperactivity in WSX-12/2 mice during malaria

infection was not due to differences in cellular expansion or

survival. It has previously been shown that malaria infection

promotes a biphasic effector T cell response in WT mice, with Th1

responses established early in infection being replaced by Th2-

dominant responses later in infection [40]. As IL-4 mRNA levels

are significantly lower in CD4+ T cells from WSX-12/2 mice than

from WT mice on day 13 of infection (7) our results suggest that

the transition from Th1 to Th2 based immunity does not occur in

WSX-12/2 mice during malaria infection. Thus, our results

indicate that WSX-1 signalling limits Th1 cell terminal differen-

tiation and establishes an upper threshold of T–bet expression

within the effector CD4+ T cell population by inducing instability

within the Th1 molecular programme, causing incompletely

polarised Th1 cells – which exhibit significantly higher functional

flexibility than repeatedly restimulated Th1 cells [25] - to lose T–

bet expression and convert into non-Th1 cell populations, such as

Th2 cells. Whilst Th1 cells are believed to be more stable than

Th17 and iTreg cells [19], the signals that reciprocally enforce and

oppose the fidelity of the Th1 molecular programme during

infection or inflammation in vivo are poorly defined [19]. Our data

indicate that IL-27 may be one such cytokine that orchestrates

Th1 cell conversion in vivo to reduce immune mediated pathology

during infection.

The molecular cues that govern the terminal differentiation of

effector CD4+ T cells are less well characterised than those that

control development of effector CD8+ T cells but our data suggest

that there are some similarities – and some important differences –

Figure 6. IL-10 does not control the magnitude or terminal differentiation of the Th1 response during malaria infection. WT, WSX-12/2,
IL-102/2 and IL-10R12/2 mice were infected i.v. with 104 P. berghei NK65 pRBC. (A) Representative plots showing T-bet expression by splenic CD4+

effector T cells from each strain of mice on day 14 of infection. (B–C) The (B) frequencies and (C) total numbers of splenic effector CD4+ T cells from
each strain of mice expressing T-bet on day 14 of infection. (D) Representative plots showing KLRG-1 expression by splenic Th1 effector CD4+ T cells
from each strain of mice on day 14 of infection. (E, F) The (E) frequencies and (F) total numbers of effector T-bet+ CD4+ T cells from each strain of mice
expressing KLRG-1 on day 14 of infection. The results are the mean +/2 SEM of the group with 3–5 mice per group. The results are representative of 3
independent experiments. * P,0.05 between WT and WSX-12/2 mice; { P,0.05 between WSX-12/2 and IL-102/2 mice; ,P,0.05 between WSX-12/2

and IL-10R12/2 mice; +P,0.05 between WT and IL-102/2 mice.
doi:10.1371/journal.ppat.1003293.g006
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between the two processes. Strong and prolonged IL-12, IL-15

and IL-2 (CD25 dependent) signalling induces the graded

expression of T-bet and B lymphocyte-induced maturation protein

1 (Blimp1) in CD8+ T cells, promoting the development of short-

lived, terminally differentiated effector (KLRG-1+, CD127lo)

CD8+ T cells at the expense of long-lived memory populations,

[22–24,41–44]. In contrast, our data suggest that IL-12, but not

IL-2, is the key cytokine driving Th1 cell terminal differentiation

during infection, presumably through STAT4 positive enforce-

ment of T-bet expression. Whilst anti-IL-12p40 treatment also

potentially abrogated IL-23 activity we do not believe IL-23 plays

a major role in promoting Th1 cell terminal differentiation in

malaria-infected WSX-12/2 mice. IL-23 is not overproduced in

WSX-12/2 mice during malaria infection and Th17 responses are

not amplified in malaria-infected WSX-12/2 mice [7], indicating

that IL-23 does not exert strong activity in infected WSX-12/2

mice. It is also interesting that loss of IL-27 immunoregulation

specifically leads to Th1 cell terminal differentiation during

malaria infection and very few non-Th1 cells express KLRG-1.

This suggests that there is as specific imbalance in signals that

promote Th1 cell terminal differentiation in WSX-12/2 mice

during malaria infection and that disparate cues, which are

unaffected in infected WSX-12/2 mice, orchestrate terminal

differentiation of other CD4+ T cell subsets. Indeed, IL-4 is

expressed at lower levels in malaria infected WSX-12/2 mice than

in WT mice [7]. In addition, it is also possible that during malaria

infection direct IL-27R signalling specifically inhibits Th1

molecular programming.

Figure 7. The Foxp3+ Treg response is unaltered in WSX-12/2 mice during malaria infection. WT and WSX-12/2 mice were infected with
P. berghei NK65. (A) Representative plots showing the expression of Foxp3 vs Tbet by splenic CD4+ T cells from naive and infected WT and WSX-12/2

mice. (B–E) The (B, D) frequencies and (C, E) total numbers of splenic CD4+ T cells from naive and infected WT and WSX-12/2 mice expressing FoxP3
and splenic CD4+FoxP3+ T cells from naive and infected WT and WSX-12/2 mice expressing T-bet, respectively. (F) Representative plots showing the
expression of Foxp3 vs IFN-c by splenic CD4+ T cells from naive and infected WT and WSX-12/2 mice following in vitro stimulation with PMA and
ionomycin. (G–H) The (G) frequencies and (H) total numbers of splenic CD4+FoxP3+ T cells from naive and infected WT and WSX-12/2 mice expressing
IFN-c. (I–J) The (I) frequencies and (J) total numbers of splenic CD4+FoxP3+ T cells from naive and infected (D14) WT and WSX-12/2 mice expressing
CXCR3. The results are the mean +/2 SEM of the group with 3–5 mice per group. The results are representative of 3 independent experiments.
* P,0.05 between WT and WSX-12/2 mice.
doi:10.1371/journal.ppat.1003293.g007
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As IL-27 can induce IL-10 production by effector CD4+ T cell

populations [7,12–16], including during malaria infection [7,14],

we initially hypothesized that the hyperactive Th1 phenotype

observed in WSX-12/2 mice would be recapitulated in IL-102/2

or IL-10R12/2 mice. Indeed, we and others have shown that IL-

10 is required to limit morbidity and mortality during malaria

infection [7,14,26,27]. Surprisingly, however, the Th1 response

was quantitatively and qualitatively similar in IL-10R12/2 mice

and WT mice during malaria infection. These data strongly

suggest that WSX-1 does not regulate Th1 responses in vivo during

infection specifically through IL-10-dependent mechanisms. Con-

sistent with this, IL-27 has previously been shown to mediate IL-

10-independent mechanisms [13]. Thus, under physiological

conditions, IL-27 and IL-10 appear to have discrete immunoreg-

ulatory functions in vivo during malaria infection.

We have also shown that the Foxp3+ regulatory T cell

population is largely unaltered in WSX-12/2 mice during malaria

infection; the frequency, absolute number and phenotype (T-bet,

CXCR3 and IFN-c) of Foxp3+ Tregs were essentially the same in

infected WT and WSX-12/2 mice. Thus, although we cannot be

entirely sure that the Foxp3 Tregs maintain their regulatory

function during malaria infection in WSX-12/2 mice, there is no

evidence that WSX-1 regulates the collapse of the Foxp3+ T cell

population during malaria infection. Moreover, it does not appear

that WSX-1 controls the functional adaptation of Foxp3+ Tregs to

become Th1-Foxp3+ Treg (CXCR3+Foxp3+) during malaria

infection, as is observed during T. gondii infection [45]. Irrespective

of the role of IL-27 in modifying the nature of the Foxp3+

regulatory cell compartment, we have shown that depletion of

Foxp3+ regulatory T cells throughout the course of malaria

infection does not lead to the expansion or terminal differentiation

of Th1 cells. Thus, combined, our results strongly indicate that IL-

27 controls Th1 responses during malaria infection through

Foxp3+ regulatory T cell independent mechanisms.

In summary, our study has significantly expanded our

understanding of how IL-27/WSX-1 signalling regulates Th1

responses in vivo during infection. We have shown that WSX-1

signalling regulates the molecular programming of Th1 cells,

inhibiting the formation of terminally differentiated KLRG-1+

Th1 cells, and thereby establishes an upper threshold limit of T-

bet expression within the CD4+ effector T cell population.

Importantly, IL-27 mediates its effects independently of IL-10

and Foxp3+ Tregs. Thus, our data highlight a critical and non-

redundant role for IL-27/WSX-1 signalling in regulating the size

and quality of the Th1 response during infection. Manipulation of

the IL-27 pathway may therefore represent a therapeutic

approach to limit T cell dependent immunopathology and/or

enhance pathogen control during chronic inflammatory disorders.

Materials and Methods

Ethics statement
All animal work was approved following local ethical review by

LSHTM and University of Manchester Animal Procedures and

Ethics Committees and was performed in strict accordance with

the U. K Home Office Animals (Scientific Procedures) Act 1986

(approved H.O Project Licenses 70/6995 and 70/7293).

Mice and parasites
C57BL/6 mice were purchased from Charles River, UK.

Breeding pairs of C57BL/6 IL-27R knockout (WSX-12/2) mice

[46] were provided by Amgen Inc (Thousand Oaks, USA).

C57BL/6 IL-102/2 and C57BL/6 IL-10R12/2 knockout mice

were kindly provided by Professor Werner Muller (University of

Manchester). DEREG mice, which express DTR receptor and

GFP under control of the FoxP3 promoter [47], were kindly

provided by Dr Mark Travis (University of Manchester). All mice

were maintained at the London School of Hygiene and Tropical

Medicine and the University of Manchester. All transgenic mice

were fully backcrossed to C57BL/6 background. Sex-matched 6 to

10 weeks old mice were used in separate experiments and

maintained in individually ventilated cages.

Cryopreserved P. berghei NK65 parasites were thawed and

passaged once through C57BL/6 mice before being used to infect

experimental animals. Mice were infected intravenously with 104

parasitized red blood cells (pRBC). In some experiments, WSX-

12/2 mice were injected intraperitoneally with 250 mg anti-IL-

12p40 (clone C17.8), 250 mg anti-IL-2 (JES6-5H4) or 300 ml of

clodronate liposomes on days 7, 9, 11 and 13 of infection.

Purified rat IgG2a was used to verify the specific in vivo activity of

anti–IL-12p40 and anti-IL-2 Abs. All Abs were obtained from

BioXCell (West Lebanon, NH). DEREG mice and non-

transgenic littermates were injected with 200 ng DT i.p. from

day 21 and every two days p.i. The course of infection was

monitored every 2nd day by microscopic examination of

peripheral parasitaemia on Giemsa-stained thin blood smears

and by assessing weight loss.

Flow cytometry
Spleens were collected from naı̈ve and malaria-infected mice

(days 7, 9, 11 or 13/14) and single-cell suspensions were prepared

by homogenization through a 70 mm cell strainer (BD Bioscienc-

es). RBCs were lysed (RBC lysing buffer, BD Biosciences),

splenocytes washed and resuspended in FACS buffer (HBSS with

2% FCS). Live/dead cell differentiation and absolute cell numbers

were calculated by trypan blue exclusion (Sigma-Aldrich) using a

haemocytometer.

CD4+ T cells were characterised by surface staining with anti-

mouse antibodies against CD4 (GK1.5), CD44 (IM7), CD62L

(MEL-14), CXCR3 (CXCR3-173), KLRG1 (2F1), IFNcR1 (2E2),

IL-12Rb1 (114), PD-1 (RMP1-30), BTLA (8F4), CTLA-4 (UC10-

4B9), CD25 (PC61), IL-18Ra (BG/IL18RA), IL-7Ra (A7R34),

IL-15Ra (DNT15Ra), IL-21R (4A9), LAG-3 (C9B7W), TIM-3

(RMT3-23) and CD226 (10E5). For intracellular staining, surface-

stained cells were washed in FACS buffer and permeabilized with

Foxp3 fixation/permeabilization buffers (eBioscience) for 30 min.

The cells were then washed and stained in FACS buffer with anti-

mouse antibodies against T-bet (4B10), Foxp3 (FJK-16s) and

CTLA-4 (UC10-4B9) for 30 minutes. To assess intracellular IFN-

c and TNF production, 16106 live cells were incubated in RPMI

1640 medium supplemented with 10% FCS, 200 ng/ml PMA

(Sigma) and 1 mg/ml ionomycin (Sigma) in the presence of

Brefeldin A (1:1000) for 5 h at 37uC, 5% CO2. For experiments

where specific parasite responses were assessed, T cells were

depleted in naı̈ve splenocytes from WT or WSX-12/2 mice using

anti-TCRb PE antibodies and anti-PE conjugated MACS beads

(Miltenyi Biotec), according to the manufacturer’s instructions.

TCR-depleted splenocytes were seeded at 250,000/well and

pulsed overnight with 156106 P. berghei NK65 pRBC lysate/ml.

Control samples included non-pulsed splenocytes. Cultures were

then incubated with 125,000 purified naı̈ve or day 13 infection-

derived WT or WSX-12/2 CD4+ T cells. IFN-c levels were

assessed by intracellular staining after 18 h culture. To detect

intracellular IL-2, 16106 cells were stimulated with 2 mg/ml of

anti-CD3 (BD biosciences) for 96 hrs, followed by PMA and

inonomycin restimulation in presence of brefeldin A, as described

above. The cells were washed, stained for surface markers CD4

and CD44, permeabilized and stained with anti-mouse IFN-c
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(XMG1.2), anti-mouse TNF (MP6-XT22) or anti-mouse IL-2

(JES6-5H4). All antibodies were purchased from eBioscience,

Biolegend or BD Biosciences. Fluorescence minus one controls

were used to validate flow cytometric results (Figure S9). All flow

cytometry acquisition was performed using an LSR II (BD

Systems, UK). All FACS analysis was performed using Flowjo

Software (Treestar Inc, OR, USA).

Assessment of cell proliferation, survival and apoptosis
For the analysis of cell proliferation in vivo, 1.25 mg sterile BrdU

(5-bromodeoxyuridine) diluted in PBS was injected intraperitone-

ally 1 h before mice were killed and organs harvested. Single cell

splenocyte suspensions were prepared and surface molecules

stained as described above. Intracellular BrdU incorporation was

measured by flow cytometry using an anti-BrdU antibody (clone

PRB-1, eBioscience) following the manufacturer’s instructions.

Cells were co-stained for the nuclear antigen Ki67 (clone B56, BD

Biosciences). Survival of naı̈ve (CD62Lhigh CD44low) and effector

Th1 (CD62low CD44high T-bet+) CD4+ T cells was assessed by

intracellular staining of Bcl-2 (clone BCL/10C4, BioLegend). T

cell apoptosis was assessed by flow cytometry using Annexin V (BD

biosciences) and fixable viability dye (eBioscience), following the

eBioscience Annexin V staining protocol.

Intracellular staining for phosphorylated STAT4 and
STAT5

Splenic single-cell suspensions from uninfected, day 9 and day

14 P.berghei NK65 infected C57BL/6 and WSX-12/2 mice were

obtained as described above. 16106 cells/sample were rested on

ice in Medium for 30 min. Cells were incubated with 20 ng/ml

IL-2 (eBioscience) or 2.5 ng/ml IL-12 (R&D Systems) for 10 min

at 37uC, 5% CO2 and immediately fixed for 15 min on ice by

addition of an equal volume of 4% paraformaldehyde. Cells were

permeabilized with 90% ice-cold methanol at 220uC o/n and

then stained for CD4, CD44, CD62L, T-bet and phosphorylated

STAT4 (at residue Y693, clone 38) or phosphorylated STAT5 (at

residue Y694, clone 47; both BD Biosciences) in FACS buffer,

washed and analysed by flow cytometry.

Cytokine quantification
Heparinised blood from uninfected and P. berghei NK65 infected

C57BL/6, IL-102/2,WSX-12/2, anti-IL-12p40 and clodronate

liposomes treated WSX-12/2 mice was collected and spun at

5000 g for 6 minutes. Plasma was immediately stored at 280uC
until further use. Plasma IL-12p70, IL-2 and IFN-c were

measured by Cytometric bead array (CBA) assay (BD Biosciences),

following the manufacturer’s instructions.

Real-time PCR
Splenic MHC-II+ splenocytes from P. berghei NK65 infected WT

and WSX-12/2 mice (day 13 p.i.) were presorted by positive

magnetic selection using anti-MHC-II PE antibody and anti-PE

MACS beads (Miltenyi). Cells were stained with a cocktail of

antibodies against CD3e (145-2C11), CD8a (53-6.7), CD11b

(14.0112.81), CD11c (17-0114-81) and F4-80 (14-4801-81) and

different APC populations were sorted using a FACSAria

according to the gating strategy described in Figure S7A. mRNA

was isolated using the RNeasy isolation kit (Qiagen, Valencia, CA)

and DNAse I treated (Ambion/ABI, Austin, TX) prior to cDNA

synthesis. IL-12p35mRNA levels were quantified using validated

gene expression assays from ABI Biosystems and cDNA expression

was standardized using the housekeeping gene â-actin. (Life

Technologies Ltd, Paisley UK).

Histopathology
A section of liver tissue was removed on day 13/14 p.i. from all

animal groups and fixed in 10% formalin saline. Fixed tissues were

paraffin embedded and sectioned, followed by H&E staining

(Independent Histological Services, London, U.K.). Sections were

examined under a light microscope using 620 magnification.

Statistical analysis
All data were tested for normal distributions using the

D’Agostino and Pearson omnibus normality test. In two group

comparisons statistical significance was determined using the t test

or the Mann–Whitney U test, depending on distribution of the

data. For three or more group comparisons, statistical significance

was determined using a one-way ANOVA, with the Tukey post

hoc analysis for normally distributed data, or a Kruskal–Wallis

test, with Dunn post hoc analysis for nonparametric data. All

statistical analyses were performed using GraphPad Prism. Results

were considered as significantly different when p,0.05.

Supporting Information

Figure S1 The course of P. berghei NK65 infection in WT
and WSX-12/2 mice. WT and WSX-12/2 mice were infected

i.v. with 104 P. berghei NK65 pRBC. The peripheral parasite

burdens in WT and WSX-12/2 mice were assessed on thin smears

by microscopy. * P,0.05 between WT and WSX-12/2 mice.

(TIF)

Figure S2 Malaria specific CD4+ T cells from infected
WSX-12/2 mice produce significantly more IFN-c than
corresponding cells from infected WT mice. Splenic CD4+

T cells were purified from naı̈ve and malaria-infected (day 13 p.i.)

WT and WSX-12/2 infected mice and were restimulated in vitro

with P. berghei NK65 pulsed APCs obtained from naı̈ve mice.

Representative plots showing IFN-c expression by CD4+ effector

T cells (A) or Th1 effector CD4+ T cells (C) after overnight

restimulation. The frequencies of CD4+ effector T cells (B) or Th1

effector CD4+ T cells (D) expressing IFN-c from WT and WSX-

12/2 naı̈ve or infection-derived CD4+ T cells. The results are the

mean +/2 SEM of 3 independent wells. * P,0.05 between WT

and WSX-12/2 pulsed groups.

(TIF)

Figure S3 Restriction of splenic Th1 response in WT
mice during malaria infection is not due to impaired
Th1 cell proliferation. WT and WSX-12/2 mice were infected

i.v. with 104 P. berghei NK65 pRBC. 1.25 mg of BrdU was injected

i.p. 1 h before animals were culled. (A) Representative plots

showing Ki67 expression versus BrdU incorporation by splenic

Th1 effector CD4+ T cells from naı̈ve and infected WT and WSX-

12/2 mice. Numbers within plots represent the frequencies of

Ki67+ BrdU- cells (top left) and Ki67+ BrdU+ (bottom right). (B–E)

The frequencies (B–C) and total numbers (D–E) of splenic CD4+

effector T-bet+ T cells expressing (B, D) Ki67 and (C, E)

incorporating BrdU. The results are the mean +/2 SEM of the

group with 3–5 mice per group. The results are representative of 3

independent experiments. * P,0.05 between WT and WSX-12/2

mice.

(TIF)

Figure S4 Restriction of splenic Th1 response in WT
mice is not due to IL-27R- direct or indirect promotion
of Th1 cell apoptosis or altered survival. WT and WSX-

12/2 mice were infected i.v. with 104 P. berghei NK65 pRBC. (A)

Representative plots showing Annexin V expression by splenic

Th1 effector CD4+ T cells from naı̈ve and infected WT and WSX-
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12/2 mice. (B) The frequencies of splenic Th1 effector CD4+ T

cells derived from naı̈ve and infected WT and WSX-12/2 mice

expressing Annexin V. (C) The mean fluorescence intensity of

Annexin V expression by splenic Th1 effector CD4+ T cells from

naı̈ve and infected WT and WSX-12/2 mice. (D) Representative

histograms showing the levels of expression of Bcl-2 in naı̈ve cells

(CD442 CD62L+, solid histograms) and Th1 effector CD4+ T cells

(empty histograms) derived from naı̈ve and infected WT (grey line)

and WSX-12/2 mice (black line). The results are the mean +/2

SEM of the group with 3–5 mice per group. The results are

representative of 2 independent experiments. * P,0.05 between

WT and WSX-12/2 mice.

(TIF)

Figure S5 KLRG-1+Th1 cells that develop in malaria-
infected WSX-12/2 mice appear to be atypical termi-
nally differentiated Th1 cells. WT and WSX-12/2 mice were

infected with P. berghei NK65. (A) Representative plots showing

KLRG-1 expression versus BrdU incorporation in splenic Th1

effector CD4+ T cells from naı̈ve and infected WT and WSX-12/2

mice. (B) Gating strategy to define KLRG-1+ and KLRG-12 effector

T-bet+ CD4+ T cells. (C) Representative plots of IFN-c versus TNF

production within subdivided splenic KLRG-1+ and KLRG-12 Th1

effector CD4+ T cell populations derived from naı̈ve and infected

WSX-12/2 mice following in vitro PMA + ionomycin stimulation (D)

The frequencies of polyfunctional CD4+ effector Th1 cells expressing

IFN-c and TNF within the KLRG-1+ and KLRG-12 populations

shown in B. The results are the mean +/2 SEM of the group with 3–

5 mice per group. The results are representative of 3 independent

experiments. * P,0.05 between WT and WSX-12/2 mice.

(TIF)

Figure S6 Phenotypic profiling of CD4+T-bet+ KLRG-1+

and KLRG-12 cells in WSX-12/2 mice. WT and WSX-12/2

mice were infected i.v. with 104 P. berghei NK65 pRBC. Expression

of cytokine receptors and regulatory receptors by KLRG-1+ (black

histograms) and KLRG-12 (grey histograms) splenic Th1 effector

CD4+ T cells from WSX-12/2 mice on days 9 and 14 of

infection. Numbers show the mean fluorescence intensity of

receptor expression for each KLRG population.

(TIF)

Figure S7 Depletion of macrophage and dendritic cell
populations attenuates IL-12 production and reduces
Th1 CD4+ T cell terminal differentiation in infected
WSX-12/2 mice. (A) Expression of IL-12p35 by different innate

cell populations in the spleen of P. berghei NK65 infected WSX-12/2

mice (day 13 p.i.), expressed relative to level of IL-12p35 gene

expression by corresponding cells from infected WT mice. All APC

populations were gated from CD32, MHC II+ cells. Macrophages

were sorted as CD11c2 F4-80+ cells, CD8+ and CD82 DCs were

gated from CD11c+ cells and the remaining MHC-II+APCs as

CD11c2 F4-802. (B, C) Absolute numbers of (B) splenic DCs and

(C) macrophages in naı̈ve and infected (Day 13 p.i.) WT and WSX-

12/2 mice. (D) Histogram plots showing the depletion of DC

(CD11c+) and macrophage (F4-80+) cell populations in infected (day

13 p.i.) WSX-12/2 mice following clodronate liposome adminis-

tration from day 7 of infection. (E) The plasma levels of IL-12p70 in

naı̈ve, day 13 infected WT and WSX-12/2 and day 13 infected +
clodronate liposome treated mice, as measured by cytokine bead

array. (F, H) Representative histograms showing (F) T-bet

expression by splenic CD4+ effector (CD44+ CD62L2) T cells

and (H) KLRG-1 expression by CD4+ effector T-bet+ T cells from

infected (day 13 p.i.) control and clodronate-liposome treated WT

and WSX-12/2 mice. (G, I) The total numbers of splenic CD4+

effector T cells expressing (G) T-bet and (I) CD4+ effector T-bet+ T

cells expressing KLRG-1 in infected control and clodronate-treated

WT and WSX-12/2 mice. The results are the mean +/2 SEM of

the group with 3–4 mice per group. * P,0.05 between infected WT

and infected WSX-12/2. # P,0.05 between WSX-12/2 clodro-

nate treated and WSX-12/2 control treated mice.

(TIF)

Figure S8 Depletion of Foxp3+ regulatory T cells does
not lead to aberrant Th1 responses during malaria
infection. DEREG mice and littermate control mice were infected

i.v. with 104 P. berghei NK65 pRBC. Mice were treated every second

day with 200 ng diphtheria toxin (DT), starting one day prior to

infection. (A) The expression of Foxp3-GFP by CD4+ T cells from

DEREG mice immediately prior to DT administration and on day

13 of infection. (B) The expression of Foxp3, as detected by

intracellular staining, on CD4+ T cells from DT treated DEREG

and littermate mice on day 13 of infection. (C) The expression of T-

bet by CD4+CD44+CD62L2 cells from DT Treated DEREG and

littermate mice on day 13 of infection. (D) The expression of

KLRG-1 by CD4+CD44+CD62L2T-bet+ cells from DT Treated

DEREG and littermate mice on day 13 of infection.

(TIF)

Figure S9 Validation of multiparameter flow-cytometry
staining panels by FMO and isotype control staining.
Splenocytes from naı̈ve, day 13 WT and WSX-12/2 infected mice

were surface stained for different markers, permeabilized with

Foxp3 fixation/permeabilization buffers followed by intracellular

staining of FoxP3 or T-bet. For cytokine control staining,

splenocytes were incubated for 5 h in the presence of PMA,

ionomycin and Brefeldin A, followed by the staining protocol

described in Materials and Methods. Staining controls (FMO

staining with the addition of the corresponding isotype control

antibody) are shown in histogram overlay plots for the corre-

sponding CD4 + T cell population used for gating.

(TIF)
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