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ABSTRACT 

Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis (ZVL) in 

the Mediterranean region, with the domestic dog as the main reservoir host. 

Phlebotomus (Larroussius) arias! is the principal vector in cooler, forested ecotopes in 

southwest Europe, which suggests that it might be subject to environmental and 

geographical isolation. However, the population genetics of P. ariasi had been little 

studied before this thesis, which investigated how the population differentiation of this 

vector might affect its ability to spread northwards, or persist in the Mediterranean 

region, in response to climate and habitat change. Thirty-six spatio-temporal 

populations of P. arias! were molecularly characterized across its range, predominantly 
from southwest France but including geographical outgroups from Spain, Portugal and 
North Africa. Phylogenetic and population genetic assessments were made based on 
five DNA sequences: mitochondrial cytochrome b, nuclear elongation factor-la and 

apyrase, plus two anonymous nuclear loci, AAm20 and AAm24. The results 
demonstrated the absence of cryptic sibling species of P. arias! and the selective 

neutrality of each locus. Mitochondrial DNA revealed a historical phylogeographic 

structure, which was consistent with Pleistocene climate change driving multiple 
haplogroup divergences within glacial refuges and phalanx-like population expansions 
in interglacial periods. Nuclear loci mostly showed isolation by distance, but some 

supported restricted gene flow between the Pyrenees and the Massif Central, France, as 
indicated by cytochrome b. A glacial refuge may have existed north of the Pyrenees. 

The genetic diversity observed in the northeast Pyrenees, France, permitted an 

assessment of the effects of broadleaf forest fragmentation on the differentiation of P. 

arias!. No conclusive evidence was found to support contemporary genetic sub- 

structuring or impoverishment associated with a recent increase in forest fragmentation. 
The salivary peptide apyrase revealed a geographical pattern of polymorphism 
consistent with the other selectively neutral loci. A range of selection tests indicated that 

apyrase was not evolving under positive directional or balancing selection and, 
therefore, a genetic arms race with the mammalian host and/or Leishmania parasite was 
not supported. The approach taken provides a proof of principle for helping to assess 
apyrase and other salivary peptides as vaccine candidates against leishmaniasis. 
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CHAPTER 1 

General introduction 

1.1 Overview 

In the western Mediterranean Phlebotomus (Larroussius) ariasi Tonnoir, 1921 

(Diptera: Psychodidae) is one of the two main incriminated sandfly vectors of 

Leishmania infantum Nicolle, 1908 (Kinetoplastida: Trypanosomatidae), the causative 

agent of both cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) in humans 

and canine reservoirs. Disease distribution is geographically limited, determined by the 

combined environmental requirements of all three components of the transmission cycle 

- parasite, vector and mammalian host. This thesis resulted from a co-ordinated 
European research project (Emerging Diseases in a changing European eNvironment), 

whose aims were in part to use molecular genetics to resolve vector population structure 

to assist epidemiological risk modelling of the leishmaniases. Between 2005 and 2008 

populations of sandflies were captured in southwest France using a systematic sampling 

strategy. Investigations specific to this thesis were to examine the monophyly of P. 

ariasi and the effects of past climate change on its population genetic structure (Chapter 

2), to determine the natural polymorphism and the processes of molecular evolution on 
the salivary peptide apyrase of Phlebotomus including P. ariasi (Chapter 3), and to 

identify the local landscape features that affect the distribution of P. ariasi (Chapter 4). 

This introduction summarizes the literature on the components of the disease 

transmission cycle, provides a background to the techniques implemented and gives the 

thesis' aims. 

1.2 The Ieishmaniases and their sandily vectors 
1.2.1 Sandflics in relation to the distribution of the Ieishmaniascs 

Approximately 1200 species of phlebotomine are known, of which the females 

of ca. 30 Phlebolomus species (predominantly belonging to four subgenera) arc 
suspected or proven vectors of Leishmania species causing anthropozoonotic 
transmission in the Old World (Killick-Kendrick, 1990; Lane and Crosskey, 1993). 
Transmission among mammalian reservoirs and hosts typically occurs when an 
infective female takes a blood meal in order to acquire the necessary proteins for the 
development of her eggs (Lane and Crosskey, 1993). Vectorial competence of the 
sand fly initially requires its ability to support the development of the ingested parasite 
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in the gut (Bates, 2007) and its capacity to transmit relies on the close proximity of both 

a sustained vector and reservoir host population. Directly limiting the distribution of the 

various leishmaniases is their co-association, co-evolution or co-speciation with specific 
Phlebotomus (reviewed Ready, 2000). It follows that an understanding of Phlebotomus 

speciation (i. e. presence of a species complex) will have implications for both disease 

distribution and its targeted control or intervention. 

The leishmaniases are a globally widespread group of diseases, whose first 

clinical symptoms were given in 1756 and the causative parasite formally identified and 

named Leishmania Ross, 1903 (Kinetoplastida: Trypanosomatidae). Endemic in 88 

countries on five continents, leishmaniasis affects 12 million people with 1.5 to 2 

million new cases arising annually and a further 350 million people at risk (WHO, 

2010a). The leishmaniases of humans can be classified into four main forms that have a 

range of clinical descriptions from localized cutaneous manifestations (cutaneous 

leishmaniasis, CL), disseminated and chronic skin lesions (diffuse cutaneous 
leishmaniasis, DCL), the destruction of mucous membranes (mucocutaneous 

leishmaniasis, MCL) to a visceralizing disease with 100% mortality if left untreated 
(Kala azar or visceral leishmaniasis, VL). Global VL mortality is estimated at 59,000 

per annum, (WHO, 2002) but as leishmaniasis is only notifiable in 32 of the 88 

countries affected, actual mortality is likely to be higher. Relevant to this thesis, VL is 

caused by the zoonotic Leishmania infantum Nicolle, 1908, distributed in most of the 
Mediterranean Basin both in Europe and north Africa, through to Iran and China. The 

same species (L. i. chagasi) is a greater health problem in the Neotropics. VL also can 
take an anthroponotic form, when caused by L. donovani sensu lato in northeast Africa 

and the Indian subcontinent. The dependence of L. infantum on a restricted number of 
related sandflies leads to a strong association between leishmaniasis and environmental 
features (Ashford, 2000). For example, proven Old World sandfly vectors transmitting 
L. infantum are all classified in the subgenus Larroussius (Killick-Kendrick, 1990), 

which is mostly restricted to Mediterranean bioclimates, including the sub-humid, 
humid, semi-arid and and (Ready, 2008). 

1.2.2 Choice of transmission cycle: L. infantum and P. ariasi in southwest Europe 
Leishmaniasis is caused by a wider range of parasites than many other parasitic 

diseases of man, with at least 23 species implicated globally (Killick-Kendrick, 1990). 
In Europe, two species or species complexes are found: L. infantum and L. tropica 
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(reviewed Ready, 2008). The causative agent of VL in Europe is solely L. infantum, and 

it is transmitted by five Larroussius species whose distributions are sympatric or 

parapatric: in western Europe, P. (L) ariasi and P. (L). perniciosus Newstead, 1911; in 

Italy, additionally P. (L). perfiliewi Parrot, 1930 and P. (L). neglectus Tonnoir 1921; 

and in eastern Europe, P. ariasi is replaced by P. neglectus and P. perniciosus by P. (L). 

tobbi Adler, Theodor and Lourie, 1930. 

P. ariasi and P. perniciosus are sympatric vectors in southern France, Portugal, 

Spain, Italy, Morocco and Tunisia (Esseghir et al., 2000; Rioux and Golvan, 1969). The 

current study region of southern France comprised the Massif Central (which in this 

thesis includes also the Lot and Rhone valleys) and southwestern Mediterranean France 

bordered to the west by the central Pyrenees. This region lies at the edge of 

leishmaniasis endemicity (Rispail et al., 2002; Trotz-Williams and Trees, 2003) and 

vector distribution (Rioux and Golvan, 1969; P. D. Ready and B. Pesson, unpublished), 

so poses a significant risk for range expansion of both vector and disease with 

environmental change, including climate warming. 

The ecological distributions of these two vectorial sandflies are overlapping, 

which leads to a disjunct geographical distribution in some regions. The distribution of 

P. ariasi is predominantly related to the humid and sub-humid bioclimatic belts 

(Sauvage and Brignon, 1963), with Mediterranean oaks (Quercus ilex, Q. pubescens and 

Q. coccifera) as indicators (Emberger, 1936; 1939; Rioux et al., 1984; Rispail et al., 

2002), whereas P. perniciosus favours semi-arid and and areas (Rioux et al., 1984). 

Grandes et al. (1988) reviewed the reports and concluded that P. perniciosus 

predominates over P. ariasi in Marseilles, Italy and semi-arid Mediterranean Spain, 

whereas the reverse is true in the cool French Cevennes (Rioux et al., 1967). The latter 

is also true for the cooler bioclimatic zones in Spain (Aransay et al., 2004). The species' 

bioclimatic preferences can lead to altitudinal separation in a given region. With the 

average air temperature decreasing by 0.6°C with each 100 m increase in altitude 
(International Standard Atmosphere; ISO 2533: 1975), P. ariasi has been collected at 

altitudes > 750 m. a. s. 1. in the cooler, more humid supra-Mediterranean bioclimatic zone 

of Spain, shifting upwards at more southerly latitudes (Aransay et al., 2004). Similar 

patterns are reported from France, where in the cooler and more temperate Cevennes 

mountains (southern Massif Central) and Pyrenees, P. perniciosus occurs in 

comparatively low numbers at altitudes up to 600 m, whereas P. ariasi peaks in 

abundance at 300-500 m. a. s. l. (Rioux and Golvan, 1969). In the eastern Pyrenees, 
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France P. ariasi has been recorded from 120 to 1415 m. a. s. l., whereas the P. 

perniciosus was limited to below 600 m. a. s. 1. (P. D. Ready, S. S. Mahamdallie and B. 

Pesson, unpublished). 
In France and Iberia the two sandflies' habitats differ, with P. perniciosus often 

being found peri-domestically, whereas P. ariasi is more frequently associated with 

hillsides and forests (Rioux and Golvan, 1969; P. D. Ready, S. S. Mahamdallie and B. 

Pesson, unpublished). The distribution of P. perniciosus has been described based on 

phylogeographic and population-based inferences, in addition to knowledge of its 

ecology - requirement for Mediterranean-like environment for adult activity and 

overwinter survival of diapausing larvae (Rioux and Golvan, 1969; Ready and Croset, 

1980). This fly's distribution has been limited by historical changes in climate, with 

Pleistocene refugia during the glacials in southern Spain and Italy (Esseghir et al., 2000; 

Pesson et al., 2004), and post-glacial secondary contact in southern France (Perrotey et 

al., 2005). However, population studies of P. perniciosus in France at its northern limit 

have shown predominantly low levels of genetic differentiation (P. D. Ready, S. S. 

Mahamdallie and B. Pesson, unpublished) and putative genetic introgression, both 

hindering further population genetic inferences (Perrotey et al., 2005). 

Several biological characteristics of P. ariasi make it a suitable and important 

choice for population studies. Firstly, occurrence in relatively cool environments not 

only suggests greater genetic diversity, but also identifies it as the vector most likely to 

expand northwards with climate warming. Indeed the few studies which have been 

conducted support a greater genetic diversity of this species compared to P. perniciosus 
in the study region (B. Pesson, unpublished data). Secondly, the virtual absence of P. 

ariasi in continental northern Italy (P. perniciosus abundant) (Maroli et al., 2008) 

makes this re-colonization route into France unlikely, limiting the possibility of bias by 

the genetic introgression of diverged lineages that may mask the detection of historical 

events. Thirdly, the many eco-epidemiological reports from France make P. ariasi a 

good vector to study. In the 1960s to 1980s, J. -A. Rioux, R. Killick-Kendrick and 

colleagues carried out an extensive body of work on the biology and ecology of P. 

ariasi and the epidemiology of leishmaniasis in southern France, concluding that 

specifically in the Cevennes, around the northern limit of Leishmania, this species was 
the predominant vector of human leishmaniasis (HumL) and canine leishmaniasis 
(CanL). This result was matched by Grandes et al. (1988), outside the study region in 
Salamanca, Spain, who demonstrated a linear relationship between P. ariasi density and 

27 



CanL prevalence and, therefore, HumL prevalence. As P. ariasi and disease distribution 

are associated, it is therefore relevant to understand the extrinsic variables that shape 

this sandfly's historical and contemporary population structure, in order to inform 

predictions of disease emergence and spread. 

The final component of this zoonotic transmission cycle, the reservoir host, 

poses both a significant public and veterinary problem. In most parts of the range of L. 

infantum, including southwest Europe, domestic dogs (Canis lupusfamiliaris Linnaeus, 

1758) are considered the main reservoirs of infection for zoonotic VL (Ashford, 1996), 

with both symptomatic and asymptomatic dogs as sources for transmittable parasites 

(Molina et al., 1994). CanL is of significant epidemiological concern in southwest 

Europe from two perspectives. Firstly, like most human leishmaniases, those caused by 

L. infantum are actively zoonotic or have recent zoonotic origins (Ashford, 2000) and 

HumL is endemic when suitable reservoir hosts and vectors co-occur. Secondly, CanL 

is of major veterinary concern per se, endemic in all countries bordering the 

Mediterranean Sea and Portugal (reviewed Dereure et al., 1999). In the Mediterranean 

Basin prevalence rates are as high as 80% (reviewed Trotz-Williams and Trees, 2003), 

with high prevalances in both Spain (up to 34%) and France (4-20%; 5000 clinical 

canine cases) (Dujardin et al., 2008), where in the latter all rural dogs will become 

infected at some stage in their lifetime. 

1.2.3 Leishmaniasis as a (re-)emerging zoonosis in western Europe and disease 

modelling in relation to environmental change 

Classically circum-Mediterranean, VL took an `infantile' form that was a public 

health problem until the 1950s-1960s, when it declined following the introduction of 

DDT for malaria control, and improved nutritional status and housing of children in 

western Europe post-World War II (Ashford, 2000). However, as the disease has 

remained a serious problem in dogs, actual transmission was not greatly affected. 

Dujardin et al. (2008) estimated approximately 700 new human cases per year are 

reported in southern Europe (3,950 if Turkey is included), confirming the general 

recognition of leishmaniasis (re-)emergence (e. g. Ashford, 2000; Dujardin et al., 2008; 

Ready, 2008). Several conditions, some new while others previously known, are 

responsible for this (re)-emergence (reviewed in Desjeux, 2001; Dujardin, 2006). Two 

of the major risk factors proposed are relevant to European VL: (i) host immune status; 

and (ii) anthropogenic or natural environmental changes. Addressing the first, 
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Leishmania-HIV co-infections in southern Europe account for 70% of adult VL cases 

where symptoms can be fatal (WHO, 2010b), which in addition to transmission by the 

sharing of syringes among infected intravenous drug users (Alvar and Jimenez, 1994) 

make these populations most at risk. Patients with Leishmania-HIV co-infections can 

act as reservoirs for VL and syringes potentially by-pass the need for transmission by 

the sandfly. These factors have changed the traditional epidemiology of the disease in 

Europe, where conditions for epidemics are now favoured in urban areas (WHO, 

2010b). 

The combined effects of the alteration of global climate and other environmental 

changes (i. e. local land use) disrupt the natural ecosystem and can increase the risk of 

disease emergence (Patz et al., 2000), and/or expand the range of arthropod-borne 

diseases (Dujardin et al., 2008). Indeed in Europe, autochthonous cases of leishmaniasis 

are no longer limited to the Mediterranean region, with northerly reports of VL in 

Germany (Naucke and Schmitt, 2004: Ready, 2008), and focal endemics in continental 

Italy (Maroli et al., 2008). 

Climate change is popularly discussed as a risk factor for the spread of vector- 

borne diseases in general, which has spurred the development of models to predict 

disease emergence and spread. It is accepted that to correctly predict future patterns of 

disease emergence and spread, temperature should be included as a single variable in a 

multivariate climate model, and this estimate in turn must be incorporated into a more 

comprehensive model of the transmission cycle as a whole. Moreover, caution should 

be taken when extrapolating results outside of the region or the particular transmission 

cycle studied (e. g. Dye and Reiter, 2000; Rogers and Randolph, 2000; Ready, 2008). 

Explanatory and predictive risk modelling of zoonotic diseases generally use the same 

set of tools, often involving variants of linear or logistic regression and discriminant 

analysis, frequently with a Geographical Information System (GIS) where multiple 

environmental information (data layers) can be combined for a single location. These 

data layers can integrate field, remote sensed and molecular data, which in concert with 

statistical tools hold great promise to understand disease epidemiology. However, such 

models are not without their drawbacks. Detailed knowledge of the ecology and biology 

of the transmission cycle are required, but are not always available or sufficient. 
The environmental risk factors implicated for the leishmaniases include: 

temperature, average rainfall, soil type, re-/de-forestation and other vegetation changes, 
immigration and travel of humans and reservoir hosts, vector and host population 
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density changes and shifts, urbanization and malnutrition (reviewed in Ashford, 2000; 

Patz et al., 2000; Ready, 2008). In Europe, HumL and CanL occur in regions where 

vector population and vegetation type distributions have been shown to be correlated as 

outlined above (e. g. oak or broadleaf forest), and it is these preferred habitats which are 

associated with the greatest risk of transmission of VL (Rioux et al., 1980). As new foci 

of CanL have been reported over the last 20 years in southern France (Dereure et al., 

1999), spatial modelling is likely to prove a valuable tool for mapping the risk of 

emergence of Phlebotomus species and leishmaniasis. 

1.3 Chosen molecular markers 
1.3.1 Characteristics of molecular markers to investigate speciation and neutral 

population structure 

The development of the polymerase chain reaction (PCR) to amplify targeted 

DNA fragments and associated analytical tools have revealed information at all levels 

of biotic hierarchy, from population to phylum (Avise, 1994). Molecular markers are 

mainly classified into two types, mitochondrial (from organelles present in the cell 

cytoplasm) and nuclear loci (contained in a cell nucleus), and are recommended to be 

used in concert to avoid evolutionary inferences based on a single genealogy (Ballard 

and Whitlock, 2004). A plethora of genetic techniques are available to infer the 

evolution of a genetic system, where the appropriate marker depends on the given 

question to be studied and ideally the availability of a comparative database for the 

same gene region if outgroups of species or populations are required. 
The mitochondrial (mtDNA) genome has been characterized for about 20 years. 

Kocher et al. (1989) published the first highly conserved primers for PCR. MtDNA has 

become a mainstay of phylogenetics and intra-specific genealogies, specifically 

phylogeography, due to its technical convenience. This includes: (i) mtDNA is present 
in high copy number in most eukaryotes, making it relatively easy to isolate in the 

laboratory; (ii) mtDNA is usually maternally inherited which, along with its frequent 

lack of recombination, allows the reconstruction on a single genealogy, and this is 

certainly true for many Diptera; (iii) mtDNA can have an evolutionary rate up to 10- 

fold higher than a single copy nuclear genome (see review by Ballard and Whitlock, 

2004), allowing for shallower phylogenetic inferences than some nuclear genomes. 
Lack of recombination can be a drawback of mtDNA through its inheritance as a 

single linkage group, where independent population history estimates cannot be gained 
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from other mtDNA gene regions in the same sample (Moore, 1995). The biology of 

mtDNA and nuclear DNA (nDNA) differ in a number of innate characteristics: their 

ploidy (haploid vs. diploid), mode of inheritance (maternal vs. biparental), mutation 

rates (mtDNA > nDNA), number of introns, number of copies (mtDNA present in 

hundreds to thousands of copies, whereas many nDNAs are single-copy genes). The 

effective population size (Ne) is one of the main differences between mtDNA and 

nDNA. All things being equal, Ne causes mtDNA to fix mutations through random 

genetic drift four times faster than nDNA (Ballard and Whitlock, 2004). These 

characteristics allow mtDNA to resolve shallower phylogenies or population processes, 

whereas nDNA tends to be too invariant (Sunnucks, 2000), often being more usefully 

applied to construct deeper phylogenies (Cho et al., 1995). 

Nuclear genomes are popularly characterized in two ways, directly sequenced or 

genotyped, with analyses of mutations in the former providing inferences at the longest 

time-scale in phylogeography or phylogenetic studies as discussed above (Avise, 2000; 

Moore, 1995). Genotype markers often provide information on allele or genotype 

frequencies only, which are appropriate in aiding our understanding of population 

processes. These markers amongst others include single-locus microsatellites which, 

although their isolation can be laborious, once developed can provide sensitive, 

connectible data from individual identification through to shallow phylogeny 
(Sunnucks, 2000). These markers can reflect genetic variation at two levels. Firstly, as 

the process of sexual reproduction reorganizes genotypes each generation, the 

concatenation of several independent genotype datasets allows individual level or 

within-population inferences at this shortest time-scale (current generation), e. g. 

parentage, individual relatedness and migration (Queller and Goodnight, 1989; Rannala 

and Mountain, 1997). Whereas, the application of single-locus allele frequency data 

can be used to infer relatively long timescale population processes such as population 

size changes, gene flow and genetic drift (Bossart and Prowell, 1998). 

1.3.2 Molecular markers chosen to investigate the effects of environmental change on 
P. ariasi distribution 

The metazoan mtDNAs range from ca. 11.5 kilobases (kb) to 32 kb, are double- 

stranded and most frequently consist of 37 genes (Gissi et al., 2008): 24 encode the 

translational machinery of the mtDNA itself, the additional 13 encode subunits for the 

electron transport chain that metabolises substrates for ATP production. Part of this 

31 



machinery includes the one gene of mitochondrial cytochrome b (cyt b). Cyt b is one of 

the least conserved of the protein coding subunits, second to the A-T rich control 

region, making it a useful molecular tool in the systematics. of closely related genera 
rather than deep divergences (Simmons and Weller, 2001). Direct sequencing of cyt b 

has proved useful in sandfly systematics. Successful amplification of the 3' terminus 

(449 to ca. 720 bp, ) across the genus Phlebotomus, has utilized sequences for species 
level comparisons, further to its use in discerning species complexes and demographic 

histories associated with historical climate change of individual sandfly species 
(Esseghir et al., 1997; 2000; Pesson et al., 2004). However, comparative cyt b direct 

sequencing has been unsuccessful at resolving population structures in P. perniciosus of 
Spain (Aransay et al., 2001; 2003) and limited for P. papatasi of Iran (Parvizi et al., 
2003) and across the Mediterranean (Hamarsheh et al., 2007). 

Heteroplasmy (carrying more than one mtDNA haplotype, often in somatic 

tissues only) and recombination of the mtDNA genome can pose problems for 

molecular inferences i. e. assessment of multiple histories instead of a single genealogy. 
For recombination to be important in terms of changing the patterns of descent it is 

necessary that some individuals be heteroplasmic (Ballard and Whitlock, 2004). The 

studies at the Phlebotomus cyt b locus described above have not reported evidence of 
heteroplasmy in their direct sequences. As cyt b has an appropriate biology to study 

sandfly molecular ecology, phylogeography, and phylogenetics, it was used as a marker 
in this thesis for such purposes. 

Elongation factor-la (EF-la) is a conserved nuclear protein coding gene (ca. 

1,300 bp) involved in the GTP-dependent binding of charged tRNAs to the acceptor 

sites of the ribosome during translation of mRNA to proteins (Hovemann et al., 1988). 

EF-la is widely applicable in insect systematics to resolve both deep and derived 

phylogenetic relationships (e. g. Cho et al., 1995; Esseghir et al., 2000; Kandul et al., 
2004). Attributes include an absence of internal repeats, highly conserved amino acid 
sequence, and a moderate synonymous substitution rate. One drawback in 

characterizing EF-la is the existence of two paralogous copies in a diverse array of 
insects (including flies and other holometabolous insects), which may confound 
phylogenetic studies if paralogous copies are confused (Danforth and Ji, 1998). 

Esseghir et al. (2000) demonstrated that EF-la was not conserved across 
Phlebotomus. Their primers successfully amplified and re-constructed its gene tree for 

species of the subgenus Larroussius (in which P. ariasi is classified), but not for species 
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of the subgenera Phlebotomus and Paraphlebotomus. They concluded that their primers 

targeted a single-copy sequence from an orthologous locus in Larroussius, evidenced by 

intronless PCR products, occurrence of only synonymous substitutions, and 

homogeneity of nucleotide base composition of 10 Larroussius species. In this thesis, I 

shall use the same primers as Esseghir et al. (2000) to target a fragment of the EF-la 

from P. ariasi, to determine whether it is a suitable marker to resolve inter-specific 

relationships, identify intra-specific lineages, and/or study the population structure of 

this species. 
Published nucleotide sequences in GenBank are few for P. ariasi. These include 

mitochondrial cyt b and NADH1, and nuclear 5.8S/2S/28S ribosomal RNA, EF-la and 

various salivary peptides. No hypervariable markers are known - no single locus 

microsatellites, which are considered the most sensitive and informative markers for 

shallow phylogenetic inferences i. e. in population genetics. As the scope of this thesis 

was not only to understand current population structure but also the demographic 

history and evolutionary processes driving genetic variation, it was not considered time 

effective to isolate microsatellites for P. ariasi. Polymorphic microsatellites have been 

isolated from P. perniciosus (Aransay et al., 2001), a sympatric species of Larroussius 

(Esseghir et al., 1997; 2000; Di Muccio et al., 2000). Of its six microsatellites, only 

three amplified consistently in P. ariasi, but based on a limited data set of 100 flies 

originating from the Massif Central and Pyrenean France, only a single size variant was 

recorded over all loci (S. Mahamdallie and F. Halstead, unpublished data). Of these 

three loci, two were shown to be single locus and polymorphic at the nucleotide 

sequence level - loci AAm20 and AAm24 (Aransay et al., 2001) - and were used in 

this thesis as two anonymous nuclear loci. 

1.3.3 Investigation of one salivary peptide gene putatively under selection in sandflies 

The four aforementioned markers were characterized to investigate the 

phylogeography and population genetics of P. ariasi, because it was probable that they 

were evolving neutrally or under purifying selection, not under positive directional or 

balancing selection resulting from interactions with the environment, mammalian hosts 

or Leishmania. In contrast, the fifth marker characterized in this thesis was chosen for 

its potential as a marker under positive or balancing selection and its relevance in the 

Leishmania transmission cycle. During blood feeding female sandflies counteract their 

host's protective haemostatic, inflammatory and immune responses, by secreting a suite 
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of potent pharmacological substances into their saliva (Ribeiro and Francischetti, 2003). 

Salivary peptides' relevance to the disease transmission cycle have been demonstrated 

in mouse models, where co-inoculation of sandfly homogenised salivary glands with 

Leishmania parasites has been shown to exacerbate parasite load and thus the course of 

infection (e. g. Belkaid et al., 1998). Conversely, pre-exposure to sandfly bites 

(Kamhawi et al., 2000) or saliva (Belkaid et al., 1998) is associated with protection 

against Leishmania development, through either cell-mediated (CM) immunity or anti- 

saliva antibody production of the vertebrate host. 

Salivary gland apyrase has been studied in a diverse range of haematophagous 

arthropods e. g. sandflies (Ribeiro et al., 1989), blackflies (Cupp et al., 1993), tsetse flies 

(Mants and Parker, 1981), and mosquitoes (Ribeiro et al., 1984). Sandfly (both Old and 

New World) apyrase is homologous to the Cimex apyrase family of proteins 

(Valenzuela et al., 1998). Binding to Ca2+ activates the apyrase to function as a potent 

anti-platelet factor, by the hydrolysis of platelet activator ATP and ADP, and it inhibits 

the host's inflammatory and vasodilation responses (Riberio et al., 1986; 1987a; 

Valenzuela et al., 1996; 1998). Apyrase has the most abundant transcript in the salivary 

gland cDNA library of P. ariasi (Oliveira et al., 2006). Pre-sensitisation of mice by 

injection of a DNA plasmid expressing apyrase of P. ariasi was shown to produce the 

second strongest CM delayed-type hypersensitivity (DTH) response, accompanied by a 

no antibody response, after subsequent exposure of mice with salivary gland 

homogenate (SGH) (Oliveira et al., 2006). Reverse antigen screening revealed that the 

DTH response induced by inoculation using apyrase plasmids was consistent with a CM 

recall response associated with protection against Leishmania infection (Kamhawi et 

al., 2000). Natural variation in the apyrase of P. ariasi may therefore influence the ZVL 

transmission cycle in Mediterranean Europe, and this variation should be considered if 

apyrase is selected for use in an anti-Leishmania vaccine. Sandfly species salivary 

peptides have been used experimentally as vaccine candidates in other transmission 

cycles (Morris et al., 2001; Valenzuela et al., 2001a; Collin et al., 2009). However, few 

studies have aimed to understand the evolution of the salivary genes in (natural) sandfly 

populations (Milleron et al., 2004a; Elnaiem et al., 2005). For example, this evolution 

may be driven by an arms race as often observed in endoparasite-host immunity gene 

systems (Endo et al., 1996), which could hinder vaccine success. Apyrase was 

characterized in this thesis both among related sandfly species and populations of P. 
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ariasi to investigate genetic variation driven by positive directional or balancing 

selection, which might result from sandfly peptide-host-parasite interactions. 

1.4 Theory of speciation and statistical methods for identifying species and 

intra-specific lineages using DNA sequences 

The species is considered a fundamental unit in biology, whose delimitation has 

real purpose in vector-borne disease transmission cycles, because correct identification 

of vectors is important for targeted interventions (Curtis, 1999). Two of the dominant 

speciation concepts, which are referred to in this thesis, include: (i) the Biological 

Species Concept (BSC) (Mayr, 1942; 1963) and (ii) the Phylogenetic species concept 

(PSC) (Eldredge and Cracraft, 1980; Nelson and Platnick, 1981). BSC defines a species 

as a group of interbreeding natural populations that are reproductively isolated from 

other such groups, and not based on phenotypic similarly. The BSC still remains the 

most widely accepted species concept 60 years after its formulation, and has not been 

rejected even though it is inapplicable to asexual organisms, and its premise of 

inbreeding in terms of gene flow introduces many caveats in delimiting speciation with 

respect to geographical proximity in nature i. e. in the case of ring species (Donoghue, 

1985), or temporal separation (Willmann and Meier, 2000). The most frequent 

alternative to the BSC, the PSC, has been defined as a character-based concept "... the 

smallest aggregation of (sexual) populations or (asexual) lineages diagnosable by a 

unique combination of character states" (Wheeler and Platnick, 2000), or as a lineage- 

based concept "... a basal group of organisms all of whose genes coalesce more recently 

with each other than with those of any organism outside the group" (Baum and 

Donoghue, 1995). PSC applied to DNA sequences also has its caveats, for example any 

number of natural events (e. g. hybridization with inter-specific introgression) can result 

in the non-monophyly of a species (Avise, 2000). 

A phylogenetic tree describes the evolutionary ancestor-descendant relationships 
between DNA sequences (or organisms) showing timing and direction of mutations and 

the position of shared characters. These trees can be used in both species delimitation 

and to identify amino acid residues showing evidence of being shaped by natural 

selection (e. g. location of excessive non-synonymous substitutions) (Holder and Lewis, 

2003). Traditional methods of tree reconstruction include distance matrix methods 
(Neighbour-Joining (NJ), not further discussed) and tree searching methods that use an 

optimal criterion to search for the best tree (Maximum Parsimony (MP) or Maximum 
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Likelihood (ML)), and then assess the confidence of this optimal tree (e. g. by 

bootstrapping). Whereas, the newer Bayesian approach simultaneously produces both a 

tree estimate and a measure of uncertainty for group nodal support (Lewis, 2001). MP, 

ML and Bayesian reconstructions are all discrete character-based methods, but differ in 

their ability to incorporate models of character changes, how they construct the `tree 

space' to find the optimal/true tree, and how they assess the statistical confidence of a 

given tree. The principles of each of these algorithms have been reviewed 

comprehensively elsewhere (see Lewis, 2001; Holder and Lewis, 2003), so the next 

section briefly outlines the advantages and disadvantages of these character-based 

methods, the genetic content they utilize and appropriate application. 
MP is often used to construct trees for large datasets and is considered robust for 

closely related species or for dense datasets (which can avoid long-branch attraction). 

The MP optimal tree is that requiring the least number of character changes to explain 

the data. Although rapid to compute, MP's drawbacks mainly stem from its inability to 

include nucleotide substitution models (Hall, 2004). ML improves on MP in its ability 

to correct for multiple hits at a single base position and, therefore, is appropriately 
implemented to reconstruct the relationships between sequences that have been 

separated for a long time or are evolving rapidly (Holder and Lewis, 2003). However, 

ML considers all probable mutation pathways that are compatible with the data which, 

along with the bootstrap to assess the statistical confidence of a grouping, makes the 

computation of this algorithm a burden and an obstacle for its application. Both ML 

(limited options) and Bayesian (extensive options) can incorporate nucleotide 

substitution models, which culminate in the most complex model the General Time 

Reversible model (GTR). This allows unequal nucleotide frequencies and all six 

changes between nucleotide states to occur at different rates (Rodriguez et al., 1990). 

Moreover, information can be included that allows various levels of substitution rate 
heterogeneity across sites (Lewis, 2001). Such breadth of substitution-model options 

makes Bayesian modelling an attractive alternative to ML, especially as it uses a 

relatively fast algorithm (Markov Chain Monte Carlo (MCMC)) to generate the tree 

space and a posterior probability approach to support a given hypothesis (i. e. tree). In 

Bayesian reconstruction, the true tree is one that maximises the posterior probability 
density - an estimate proportional to the product of the prior probability and the 
likelihood (Lewis, 2001) - which is conditional on the model, the priors, and the data. 
The reliability of the method rests, therefore, on the model and parameter priors that are 
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assumed by the user (Huelsenbeck et al., 2002). Erixon et al. (2003) showed that 

Bayesian modelling is more sensitive to under-parameterization. Therefore, when 

applied in this thesis, all models will be compared to the most complex GTR+I+G 

model, and Bayes factors calculated to support one model over the other. 

As mentioned, support for a group, node or phylogenetic species is estimated 

either through bootstrapping or posterior probabilities, but there can be debate over the 

value deemed as a reasonable cut-off. A general consensus concludes that a bootstrap 

value of 70% is an indication of strong group support (Hillis and Bull, 1993). Bayesian 

posterior probabilities are used more conservatively than bootstrap values (Huelsenbeck 

et al., 2002), e. g. Mar et al. (2005) found a posterior probability of 100% corresponds to 

about an 80% bootstrap proportion. However, whether the posterior probability is too 

trusted for estimating group support, or whether these two estimators measure 

something qualitatively different, is an area of debate (Erixon et al., 2003). 

Phylogenetic trees are ideally used to investigate relationships among species, 

but are also utilised to distinguish between inter-specific diversification and intra- 

specific coalescence. Several statistical methods offering operational criterion for 

delimiting species based on DNA sequence clusters have been proposed. The Birky 4x 

rule (Birky et al., 2005), delimits different species when two monophyletic groups have 

a mean sequence difference between them greater than four times 0=2Neµ, where NQ is 

the effective population size and µ the mutation rate/base/generation. The Mixed Yule 

Coalescent (MYC) method (Pons et al., 2006) uses a clock-constrained phylogram and 

ML to determine the point of transition from slow to faster branching rates expected at 

the boundary between species-level and population-level evolutionary processes. 

Alternatively, Hart and Sunday (2007) use the 95% parsimony connection limit of a 

TCS network to provide a simple quantitative standard for phylogenetic species. In this 

thesis, one aim is to delimit intra-specific lineages within morphologically identified P. 

ariasi, so a genealogical network approach was implemented both for species 
delimitation, to define intra-specific lineages/haplogroups (Avise, 2000) and to 

reconstruct evolutionary relationships. Intra-specific data can be subject to processes 

such as parallel mutation, hybridization, recombination and gene-conversion, and such 

evolutionary histories can not be modelled by a bifurcating tree (Posada and Crandall, 

2001). 
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1.5 Theory of genetic selection in relation to the thesis' aims 

Initial studies on the mechanisms of evolution were based on the principles of 

Darwin's (1859) evolution by natural selection, Mendel's theoretical and practical 

studies on the laws of hereditary and the population genetic theorems of Fisher (1918), 

Wright (1921) and Haldane (1932). Applying Darwin's theory of natural selection on a 

genetic (as opposed to phenotypic) level, adaptation arises by the transmission of 

genotypes that promote survival in their current environment. The pressures of selection 

are differentially experienced depending on how a variant allele or genotype frequency 

is correlated to the fitness of an individual. This variation in a natural population drives 

the fittest or `improved' genotypes (as a function of its alleles) to become present in 

disproportional excess and thus contribute more to the next generation. Ultimately a 

population becomes ̀ adapted' to its environment and diverges genetically from those 

individuals inhabiting environments with differing selection pressures and allelic fitness 

(Hart!, 1981). 

1.5.1 Types and genetic signals of selection 
The terminology used to describe the various modes of selection pressures on 

molecular evolution can vary within different scientific communities, and therefore this 

thesis follows the definitions given by Nielsen (2005). Purifying (or negative) selection 
describes any type of selection against new deleterious mutations, eliminating them 

from a population due to their negative fitness effect. Gene regions often under 

purifying selection reflect their functional importance, for example in proteins where 

mutations cause disruption to structure and consequently function (Zhao et al., 2003). 

Signals of purifying selection include lower diversity in coding versus non-coding 

regions, a deficiency of rare and intermediate frequency alleles, and a low level of 

nonsynonymous compared to synonymous divergence (among species). Along with 

purifying selection, positive selection - where new mutations are advantageous - is an 

example of directional selection. Both eliminate variation within populations lowering 

its heterozygosity. However, positive directional selection is accompanied by raised 

nonsynonymous (compared to synonymous) divergence (Hurst and Smith, 1999). When 

a mutation is driven to fixation by positive selection, neighbouring sites that are neutral 
but linked through short genomic distances can experience a loss in their variability in a 
process termed a selective sweep (Nielsen, 2005): a within population force 

distinguished from positive directional selection by no accompanying change in 
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divergence. Opposing the process of directional selection, which erodes genetic 

variability, balancing selection maintains multiple alleles above the rate of neutral 

mutations within a population and between species, which is evidenced by high levels 

of heterozygosity. Mechanisms by which balancing selection maintains variability 

include heterozygote advantage (over-dominance) and frequency-dependent selection. 

The former describes heterozygotes that have greater fitness than homozygotes, whereas 

the latter concerns the fitness of a genotype that is dependent (negatively or positively) 

on its frequency relative to the other genotypes in the population (Gilbert et al., 1998). 

1.5.2 Selection and its relevance to this study 

The appropriate application of a locus in genetic studies requires knowledge of 

the processes of molecular evolution to which it is subject. Population processes 

affecting species' geographic spatial structure are commonly investigated through 

population genetic tests that assume neutral evolution of a marker e. g. FST as an 

estimator of genetic differentiation, AMOVA testing for population sub-division, allele 

frequency spectrum based neutrality tests identifying demographic events (Chapter 2). 

For this reason mtDNA (or chloroplast DNA of plants) has historically been an 

informative molecular marker (Hewitt, 1999; Avise, 2000), for which selection has been 

assumed to be absent. However, a growing body of evidence expresses caution in using 

mtDNA as a neutral marker, because its haplotypes are shown to be under pressure of 

direct selection (e. g. Mishmar et al., 2003; Ballard and Kreitman, 1994) or indirect 

selection (reviewed Ballard and Whitlock, 2004). Bazin et al. (2006) analyzed an 

extensive range of animal sequences and found that mtDNA nucleotide diversity was 

not correlated with effective population size, showing that in fact mtDNA diversity 

distribution is explained by recurrent adaptive evolution - selective sweeps. One 

example of indirect selection that might affect P. ariasi is mitochondrial cytoplasmic 
hitchhiking with Wolbachia transmission (Benlarbi et al., 2003). Acknowledging the 

possibility of selection at any locus, mitochondrial or nuclear, this thesis will test the 

assumption of neutrality for all loci, in addition to seeking evidence of positive 
directional or balancing selection on the salivary peptide apyrase of Phlebotomus. 
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1.6 Population structure: population demographics and genetics 

1.6.1 Theory of population structure and some population genetic parameters 

In natural environments, members of a species are rarely distributed 

homogeneously in space. Sub-division of a species into "populations" is often caused by 

environmental patchiness -a mosaic of areas with favourable and unfavourable habitats 

-a result of both past historical and contemporary population processes. Even in 

landscapes where species' habitats are continuous, populations can become sub-divided 

to some extent if migration is smaller than the habitat range, constituting a 

metapopulation sensu lato (Hanski and Gilpin, 1997). Accordingly, in the genetic sense, 

a population is an interbreeding group of individuals sharing a common geographical 

area (Hartl, 1981), and it is this spatial structure that has important consequences in 

determining the genetic structure of natural populations (Slatkin, 1973). 

Population structure is composed of two distinct yet interrelated parts: 

demographic structure determined by the processes associated with birth, death, 

extinction, colonization, population density and migration distances (gene flow); and 

genetic structure determined by genetic drift, mutation, selection and recombination 
(Slatkin, 1995). Mutation, a heritable change in genetic material, is considered the 

"ultimate source of genetic variation" (Hard, 1981), and the neutral theory of molecular 

evolution (Kimura, 1968; 1983) proposes that in most natural populations the high level 

of polymorphisms observed and their changes in frequency are driven by the fixation of 

neutral mutations by random genetic drift not Darwinian selection. 
Population genetic theory allows the prediction of actual genetic structure from 

knowledge of observed genetic structure, which in turn allows conclusions to be drawn 

about demographic structure and its processes (Slatkin, 1995). Within-species genetic 
diversity is thought to reflect population size, history, ecology, and ability to adapt. The 

effective population size, Ne, is an example of a core population genetic parameter 
(Wright, 1931). It is defined as the number of individuals that have descendents at the 

next generation, which is approximately equal to one-half the number of mating 
individuals. Neutral theory predicts that a positive relationship should exist between N. 

and the extent of genetic variation (allelic diversity and heterozygosity) at loci not 

subject to strong selection (Kimura, 1983). Based in this premise, small populations 
formed by bottle-neck, vicariant or other population contraction events, should be less 

polymorphic than large populations. This was demonstrated by Spielman et al. (2004), 

who showed that lowered heterozygosity in small populations was associated with 

40 



lower evolutionary potential, compromised reproductive fitness, and elevated extinction 

risk. 
The stochastic process of genetic drift is a corollary of neutral population 

structure. In finite populations, chance natural sampling from the ancestral population 

and an inbreeding-like effect of population sub-division cause the loss of some alleles 

and the accumulation and eventual fixation of others (and thus a heterozygosity 

decline). This process is known as genetic drift. Accordingly, each sub-population can 

have its own genetic trajectory (Hartl, 1981), and therefore genetic drift can result in 

neutral evolutionary divergence between sub-populations (i. e. populations isolated by 

landscape fragmentation). In ideal (diploid) populations (Wright-Fisher model) the rate 

at which genetic drift causes an increase in divergence between isolated populations is 

given by 1/(2N) where N is number of mating individuals. Therefore, as the rate of 

change of gene frequency by random drift depends on the size of the population, N. can 

be thought of in terms of a measure of the strength of the stochastic process of genetic 

drift in a finite population (Wang and Caballero, 1999). 

Gene flow is a further important component of neutral population structure, 

where it determines the extent to which each local population evolves as an independent 

evolutionary unit. Gene flow opposes mutation and random genetic drift, allowing 

genetic exchange which limits genetic divergence, and results in homogenization and 

thus sub-population connectedness (Hedrick, 2000). One generation of complete gene 

flow (accompanied by random mating) should cause differentiation among sub- 

populations to disappear completely. 
As the geographical structure of natural populations can be complex, patterns of 

allele frequencies attributed to gene flow and drift between sub-populations have been 

simplified by models such as the "stepping stone model" (Kimura, 1953) or the 

"neighbourhood model" (Wright, 1943; 1946). Discontinuous sub-population 
distribution causes patterns of allele frequencies to exhibit large changes over short 

distances ("step" or discontinuous changes), where barriers to gene flow (discontinuous 

habitat) or putative adaptive hotspots can be inferred. Alternatively, individuals in a 

natural population can be continuously distributed, but the continuum is formed by 

random mating units (neighbourhoods) (migratory distance is larger than distance 

separating populations, but smaller than the entire species range). As individuals are 

more likely to reproduce locally, allele frequency patterns will follow a gradual (clinal) 

pattern, showing patterns according to an isolation-by-distance model (Wright, 1943). 
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Such patterns could be seen in sub-populations arranged along a linear axis, e. g. 

sampling along a latitudinal, longitudinal or altitudinal gradient. 

1.6.2 Estimating population genetic structure using the principles of neutral theory: 

inferring selection and demographics 

One of the important outcomes of neutral theory lies in its power to make 

statistical predictions of the mutation and allele distribution within populations and 

between species, by providing a null hypothesis for studying molecular evolution. 

Neutrality tests are categorized into two groups (Nielsen, 2001), those assessing 

molecular evolution through polymorphism and divergence between different classes of 

mutations to detect selection, and those based on the haplotype/allele frequency 

spectrum. 
Neutrality tests based on DNA sequence evolution estimate polymorphism 

(within a species) and divergence (between species). They are amongst the most 

powerful tests for selection, in part explained by their general robustness to 

demographic alternatives (Garrigan and Hedrick, 2003), and so population size is not 

required to be at statistical equilibrium. Tests based on the evolution of sequences 

(mutations) are appropriate to detect long-term selection. In population genetic studies, 

the most widely used test for protein coding data is the McDonald-Kreitman (1991) 

(MK), which compares the relative counts of nonsynonymous and synonymous 

substitutions, with a null (neutral) hypothesis predicting the ratio of nonsynonymous to 

synonymous substitutions to be the same within populations and between a closely 

related outgroup if driven by mutation and genetic drift. Deviations from this null 

hypothesis indicate either directional or balancing selection. 
Statistical tests modelling neutrality based on the allele frequency spectrum 

make demographic assumptions (e. g. constant population size, no population structure) 

and genetic assumptions of neutral mutations (do not affect fitness), which along with 

genetic drift are the only forces driving genetic variation. Based on these assumptions, 

such statistics as Tajima's (1989) or Fu and Li's (1993) D, are appropriate to distinguish 

population growth or decrease from constant size, and population sub-division. 
However, as noted, the null hypothesis is a composite hypothesis, so violations of these 

assumptions can be explained by the occurrence of selection (Nielsen, 2001). 

Consequently, these alternative explanations will be considered for the test results 

obtained in this thesis. 
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1.7 Thesis aims 
This study of P. ariasi, the vector of L. infantum in southwest Europe, aims: 

1. To confirm that P. arias! is a single species over the geographical range 
investigated, so that any natural variation can be attributed to neutral or adaptive 

evolution rather than reproductive barriers. 

2. To determine the neutral genetic differentiation of P. ariasi across the 

geographical range investigated. 

3. To use these results to infer the historical demographic events and identify the 

landscape features that affect the distribution of this species. 
4. To design a molecular protocol to score the genotypes of the salivary peptide 

apyrase in individual sandflies, in order to investigate whether apyrase is subject 

to selection that might be driven by sandfly peptide-host-parasite antagonism or 
environment. 

5. To evaluate the implications of the findings for the emergence of P. ariasi (and 

the transmission of L. infantum) in western Europe. 
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CHAPTER 2 

Multip le genetic divergences and population ex pansions of a Mediterranean 

sandfl y, Phlebotomus ariasi, in Europ e during the Q uaternar y glacial cycles 

2.1 Introduction 

The oscillating climatic extremes of the Quaternary (Pleistocene and Holocene 

epochs) have produced repeated shifts in species' distribution limits across Europe that 

are highly variable in space and time (e. g. Coope, 1994; Hewitt, 1996; 1999; 2000; 

2001; 2004a; Taberlet et al., 1998; Petit et al., 2003; Gomez and Lunt, 2006). 

Evaluations based on insect subfossil distribution show extant species to have 

responded to Pleistocene climate oscillations, by evolving out and/or moving out of 

trouble (Coope, 1994). It is widely accepted that species' geographical distribution 

limits are locally not globally determined, dependent on individual ecological 

requirements, dispersal ability, presence of pre-colonizers and barriers to gene flow, 

factors that are closely correlated with climatic variables and biogeographic barriers 

(e. g. review Huntley, 2001; Schmitt, 2007). Phlebotomus ariasi is a vector of 

Leishmania infantum in the Mediterranean bioclimates of Iberia and France (Ready, 

2008). The distribution range of this species extends into northwest Italy where its low 

population densities (Maroli et al., 2008) suggest re-colonization into France only from 

Iberia. P. ariasi is endemic in the Iberian Peninsula and shows a current distribution in 

the previously glaciated regions of France (Pyrenees and the Massif Central), abundant 

and widespread in southern France up to latitude 45° N (Rioux and Golvan, 1969). The 

aim of this chapter is to investigate whether the opportunities for its current populations, 

and therefore the Leishmania it transmits, to spread northward have been constrained by 

the effects of past climate change and the role played by biogoegraphical barriers (e. g. 

the Pyrenees mountains) in limiting the re-colonization of France by a Mediterranean 

species. 
The distribution shifts of temperate European species, including insects, in 

response to Quaternary climate changes have been well studied, where periods of 

climate cooling forced their contraction into warmer refugia of southern latitudes, 

followed by subsequent expansion during climate warming: refugia were commonly 
limited to between 30° N and 40° N, restricted at northern latitudes by the 
Fennoscandian ice sheet and permafrost, and the Mediterranean Sea in the south 
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(Hewitt, 2004b; Taberlet et al., 1998). There is strong evidence that the cold glacial 

climates isolated temperate species into three independent Mediterranean refugia: (i) 

Atlantic-Mediterranean (Iberia, Maghreb); (ii) Adriatic-Mediterranean (Italian 

Peninsula); (iii) Pontic-Mediterranean (Balkan Peninsula) (Hewitt, 1999; Taberlet et al., 

1998; Schmitt, 2007). Little or no genetic exchange occurred between these refugia as 

species would have had to migrate over several hundred kilometres of open sea. Such 

demographic processes can observably shape species' genetic structure, for example 

fragmented niches tended to sub-divide species into independently evolving genetic 

groups (lineages/haplogroups) each containing a large proportion of unique haplotypes 

(Taberlet et al., 1998; Hewitt, 2000; Schmitt, 2007). 

In periods of climate warming, species re-colonized previously unsuitable cold 

landscapes by northward expansion from their southern refugia. Most reports on the 

four paradigms of post-glacial re-colonization in Europe - categorized by their refugia 

and the mountain ranges that act as barriers to their dispersal - have focused on the 

dispersal of temperate not Mediterranean species (Hewitt, 1999; 2004a; Habel et al., 
2005; Schmitt, 2007). Temperate species often show isolation in more than one 

allopatric glacial refugium. Examples of this are common in species of the Iberian 

Peninsula (e. g. Martinez-Solano et al., 2006; Gomez et al., 2007), the mountain ranges 

of which offer high microclimatic scope to create heterogeneous landscapes of diverse 

microhabitats (Hewitt, 1996). The punctuation of large refugial regions is well 

supported, described by the "refugia within refugia" paradigm of Gomez and Lunt 

(2006). 

The mountain ranges of Mediterranean Europe (including the Pyrenees) offered 

some of the main refugia for retreating northern temperate species and for the 

interglacial survival of montane species in the same region that tracked vertical shifts in 

their habitats (Hewitt, 1996; 2004a). In addition these high mountain systems shaped 
the post-glacial expansions from Mediterranean refugia, often cited as hybrid (suture) or 

secondary contact zones, the latter evidenced by the presence of parapatric lineages 

(Taberlet et al., 1998; Hewitt, 2004b; Schmitt, 2007). Species persistence in the 
fragmented yet stable mountain environments is evidenced by their harbouring relict 

populations (bank vole Myodes glareolis in the Pyrenees; Deffontaine et al., 2009), 

endemic species (Varga and Schmitt, 2008), deeper haplogroups, (Hofman et al., 2007), 

and high genetic diversity (Gugerli et al., 2001). 
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This chapter provides the first genetic study of P. ariasi, including both 

phylogenetics and population differentiation, taken from across its South-North range. 

This species' geographically sympatric vector, P. perniciosus does not provide a 

comparable population distribution model, because it is found peri-domestically, at 

lower altitudes and in southern France comprises two independent lineages originating 

from glacial refugia in Iberia or Italy/north Africa/Malta (Esseghir et al., 1997; 2000; 

Pesson et al., 2004). Assuming P. ariasi is a single species (phylogenetic and 

biological), which has yet to be determined, the simplest model should consider this 

species to be unable to survive in its current position north of the Pyrenees. My first 

hypothesis is that the species constitutes a single continuous population, with northward 

post-glacial expansion from a refugium most likely to be in southern Iberia or north 

Africa. Alternatively, following the lineage distribution of P. perniciosus, north African 

flies may be of an independent lineage to Iberian/French P. ariasi. 
In France Quercus spp. (Q. pubescens, Q. ilex) are considered biological 

indictors for the presence and abundance of P. ariasi (Rioux and Golvan, 1969; Riou, 

2004). Based on this premise phylogeographic studies of cpDNA might allow for the 

inference of alternative Pleistocene glacial and post-glacial population responses of P. 

ariasi. Lumaret et al. (2002) showed genetic support for two Iberian Q. ilex refugia, one 

eastern and the other in the south and (north) west: a cpDNA distribution that is 

approximately coincident to two recognised morphs. Furthermore, chlorotype 

phylogeography suggests a post-glacial migration route into France following the 

Mediterranean clime by crossing the Pyrenees exclusively in the East. 

An alternative demographic scenario accepts the model that mesophilous trees 

e. g. deciduous Quercus (Beaudouin et al., 2007), as well as temperate mammals 

(Deffontaine et al., 2009) and insects (Kidd and Ritchie, 2006) were present outside of 

southern refugia, surviving during the Last Glacial Maximum (LGM) in the protective 

microclimate of valleys of southern France. P. arias! prefers cooler environments, the 

adults most abundant and active on hillsides in wooded rural regions during the dry 

Mediterranean summer. In Languedoc-Roussillon region of southeast (SE) France, P. 

ariasi can be found up to 1,400 m. a. s. l. (Rioux and Golvan, 1969; P. D. Ready, S. S. 

Mahamdallie and B. Pesson, unpublished), so may have had the capability to track 
limited altitudinal shifts in this region to find suitable mircoclimates and persist in situ. 
If true, then the Pleistocene climate oscillations could have accentuated the 
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fragmentation of P. ariasi habitat quality over space and time, creating multiple isolated 

buffered microclimates/refugia across Iberia and France. 

Standard criteria for defining phylogeographic lineages have been quantitatively 

defined using the distribution of pairwise sequence differences within and between 

putative haplogroups (e. g. Naderi et al., 2007). Population histories can be complex, i. e. 

sequential divergence with migration rather than divergence by bifurcation, where their 

discrimination requires a composite of summary statistics. In this way genealogical 

samplers use molecular genetic data (i. e. allelic diversity) and their estimated gene 

networks to attempt to disentangle the contributions of demographic histories and 

recurrent gene flow, to identify supported alternative explanations for observed 

variation in spatial structure (Kuhner, 2009). Implementation of these often coalescence 

based samplers should be taken with caution as populations and/or data do not always 

meet the model assumptions or parameter demands (e. g. Hey, 2010), or confidence 

limits of hypotheses are not assessed (e. g. Nested Clade Analysis as discussed in 

Knowles and Maddison, 2002). 

As detailed, the responses of temperate species to Quaternary climate changes 

are well evidenced. However, the response of true Mediterranean and named subtropical 

species are less well documented. The Mediterranean regions supported isolated patches 

of multiple refugia. Each may have been associated with individual demographic 

histories, leading to no single model of response to Quaternary changes (Canestrelli et 

al., 2007; Pinho et al., 2007). P. ariasi is an appropriate species to investigate the 

correlation between the Quaternary climates and species' distributions through 

biogeographic patterns of genetic architecture, as it has a sufficiently high dispersal 

ability to spread rapidly into newly emerging suitable habitats, yet single individuals are 

mostly sedentary so a phylogeographical pattern is not blurred by high migration 

(Schmitt, 2007). Moreover, isoenzyme studies record P. ariasi as showing greater local 

geographical variation than sympatric P. perniciosus (Pesson et al., 2004; B. Pesson, 

unpublished), making it easier to study the effects of past demographic events. 
Considering P. ariasi has a preferred ecological niche (Rioux and Golvan, 

1969), the presence of multiple refugia and secondary contact zones in its western 

Mediterranean distribution range is a plausible scenario. Moreover, it is important to 

identify any refugia in the northern Pyrenees as they might have given P. ariasi a 

springboard for post-glacial re-colonization northwards. Alternatively, however, such 

refugial populations might have blocked (sensu Hewitt, 2004a) the dispersal of Spanish 
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populations containing flies better adapted to northern environments or disease 

transmission. This chapter characterizes the genetic variability in morphologically 

identified P. ariasi, based on the nucleotide sequences of mitochondrial cytochrome b 

(cyt b) (19 populations) and three nuclear loci (18 populations). The latter are 

elongation factor-1 alpha (EF-la) and two anonymous loci (AAm20 and AAm24) 

originally reported as microsatellites of P. perniciosus (Aransay et al., 2001; 2003). A 

population was defined by being distinct either in space or time (capture year). 

This chapter's aims were: 
1. To confirm that morphologically identified P. ariasi is a single phylogenetic and 

biological species, to guard against demographic analyses being confounded by 

the presence of cryptic sibling species. 

2. To test the assumption of neutrality at each of the four loci characterized, 
justifying their use for inferring neutral population structure. 

3. To determine the genetic structure of P. ariasi, to explore if its distribution has 

been restricted by past environmental change. 
4. To assess the population structure of P. arias!, to identify the roles played by the 

Pyrenees mountains and local environmental barriers on its postglacial re- 

colonization of southwest France. 

The findings of this study should be informative for predicting the risk of spread 

of zoonotic visceral leishmaniasis (ZVL) in response to climate and other environmental 

change. 
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2.2 Materials and methods 

2.2.1 Sampling of P. ariasi and pre-molecular preparation 

19 rural populations, 464 individual P. ariasi, were sampled along the South- 

North axis of its range, from Morocco through the Iberian Peninsula to southern France 

(Figure 2.1; Table 2.1). 15 populations originated from France: eight populations 

sampled from within and bordering the Massif Central region, a single population 

within the Massif Central (ROQ), three at the northern distribution `leading-edge' 

(SAM13 and Lot LNP, RME), two at its southern foothills (CTU, SPV) and one in the 

Rhone valley (DRAz4); six populations from the eastern Pyrenees (PAS, TUL, IRL07, 

ARQ06, ARQ08, CAT); and two populations from the central Pyrenees (HP1, HP2). 

Four populations were outgroups to France; northeastern (TRJ) and northwestern (CSP) 

Spain; northern Portugal (CHR) and Marrakech Morocco (AGH). Numbers of 

individual P. ariasi per population ranged between 13 and 54, sample sizes appropriate 

to confer statistical support for population genetic tests and to be comparable - between 

22 to 27 individuals in 12 to 14 populations (locus dependent). 

Collections of adult flies were made using either Centers for Disease Control 

(CDC) miniature light traps (Sudia and Chamberland, 1962) placed overnight in peri- 

domestic locations, usually 1-2 m above the ground near farm-animal shelters, or by 

sticky traps (A4 papers covered in castor oil) placed in road-side walls, retrieving after 

four nights. In a field laboratory, flies from light traps were immobilized at -20°C and 

stored in 80% analytical grade ethanol or dry in liquid nitrogen. Flies on sticky papers 

were removed with fine brushes wetted with 96% (v/v) ethanol and stored in 80% 

analytical grade ethanol at 4°C. Longer-term storage was in ethanol at -20°C or frozen 

dry at -80°C or -196 °C. 

All P. ariasi were identified (by the author or P. D. Ready) based on external 

form, colour and size (P. D. Ready, unpublished) and on internal morphological 

characters of the head and genitalia (Gällego et al., 1992). P. ariasi and other 

Phlebotomus (Table 2.1) used for molecular characterization were dissected according 

to the sterile procedures of Testa et al. (2002): flame sterilizing dissection forceps and 

microneedles between preparations; dissections carried out in a room away from the 

molecular biology laboratory to minimize polymerase chain reaction (PCR) carry-over 

risk. Voucher specimens of slide-mounted heads and abdominal terminalia in Berlese 

fluid, were placed in the phlebotomine collection of the Department of Entomology, 

Natural History Museum, London. 
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Figure 2.1 Digital Elevation Map of the western Mediterranean showing locations 
where 19 P. ariasi populations were sampled for molecular characterization. Additional 
information on location environment given in Table 2.1. 
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2.2.2 Molecular characterization 

DNA extraction 
Genomic DNA was extracted from each sandfly thorax and/or anterior abdomen, 

according to the ethanol precipitation based protocol of Ish-Horowicz (1982) and 

described for phlebotomine sandflies by Ready et al. (1991) (Appendix 2.1). 

Polymerase Chain Reaction (PCR) amplification 

PCR amplifications and sequencing reactions were performed using a 0.2 ml 96- 

well format in one of two thermocyclers (Techne Genius Thermal Cycler or Applied 

Biosystems Perkin Elmer model 9700). A single PCR reaction for loci cyt b and EF-la 

gave a final volume of 25 µl, that included: I µl of DNA extract; lx Colorless GoTaq® 

Flexi buffer (Promega Corporation); 100µM each dNTP (Applied Biosystems Inc); 

1.5mM MgCl2 (standard concentration unless otherwise stated) (Promega Corporation); 

500ng of each forward and reverse primers (Sigma-Genosys); 1.5U Taq (GoTaq® Flexi 

DNA polymerase, Promega Corporation). A single PCR reaction for loci AAm20 and 

AAm24 gave a final volume of 20 µl, where concentrations were the same as above but 

modifying each forward and reverse primer (Sigma-Genosys) to 0.5µM. Volumes were 

made-up to total using PCR grade water (Sigma). To minimize potential of 

contamination, all PCRs were carried out in a laminar flow hood with DNA free 

pipettes using filtered tips. 

All primers are quoted in base pairs (bp) from 5' to 3' on the DNA sense strand 

and fragment lengths include primers unless otherwise stated. 

Locus cytochrome b (c 3l bb) 

A 796 bp fragment was amplified that included the 3' terminus of the cyt b gene 
in addition to the immediate downstream Intergenic Spacer (IgS) and transfer RNA 

(tRNASe` (UCN)), and was targeted by primer pair CBI-SE (Testa et al., 2002): 

TATGTACTACC[C]TGAGGACAAATATC [C to A nucleotide substitution in the 

modified sense strand primer CBI of Simon et al. (1994) used for sequencing], and CB- 

R06: TATCTAATGGTTTCAAAACAATTGC (Parvizi and Ready, 2006). PCR cycling 

parameters (adapted from Parvizi and Ready, 2006) used a `hot start' at 80°C; an initial 

3 min denaturation step at 94°C; 35 cycles of denaturation 94°C for 30 sec, annealing at 
51°C for 30 sec and extension at 72°C for 90 sec; a final extension step of 72°C for 10 

min; terminating by holding at 4°C. If PCR failed because of DNA degradation, two 
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short overlapping fragments were amplified. 5' 488 bp were targeted by primer pair 

CBI-SE with CB3-R3A: GCTATTACTCCYCCTAACTTRTT (Esseghir et al., 2000). 

3' 388 bp were targeted by primer pair CB3-FC with CB-R06: 

CAYATTCAACCWGAATGATA (Esseghir et al., 2000). PCR annealing temperatures: 

the first five cycles at 40 or 44°C, and the final 35 cycles at 44 or 48°C, for CB3-R3A or 

CB3-FC, respectively. 

Locus elongation factor-la (EF-la) 

A 856 bp fragment of EF-la was targeted by the conserved primers designed for 

Larroussius (Esseghir et al., 2000); EF-FSE: TGAGCGTCAGCGTGGTATC and EF- 

SE2: CGGGTGGTTCAGTACGATGA. PCR thermocycling conditions were as quoted 

for cyt b with the first 5 cycles annealing at 51°C, and the final 35 cycles annealing at 

55°C (optimized for P. ariasi based on Esseghir et al., 2000). Direct sequencing of this 

product in P. ariasi revealed superimposed nucleotide peaks, often of equal amplitude, 

at single base positions. The method of PCR Amplification of Specific Alleles (PASA) 

was used to directly resolve genotypes where two or more heterozygous base positions 

occurred (Sommer et al., 1992). 6 novel allele-specific reverse primers were designed to 

discriminate ambiguous genotypes, by pairing with the conserved EF-FSE forward 

primer. In the following PASA primer names, the number denotes the variable 3' 

nucleotide (underlined) which conferred specificity by targeting one of the two 

nucleotides present at the heterozygous base position; parentheses give optimized PCR 

annealing temperatures (35 cycles); and all amplifications utilized a final MgC12 

concentration of 1mM, otherwise PCR cycling conditions were standard. EFRSM-817G 

(61°C): CTGAGCGGTAAAGTCAGAG; EFRSM-709C (62°C): ATTGTCACAGGGA 

ACGGCC; EFRSM-643T (64°C): GAGATTGGCCGGGGCGAAT; EFRSM-631G 

(62°C): GGCGAAAGTCACGACAGTG; EFRSM-619C (62°C): GACAGTTCCTGGC 

TTCAGC; EFRSM-496C (62°C): CAGAATGGCGTCCAGAGCC. 

Loci AAm20 and AAm24 

Non-fluorescent primers were adapted from Aransay et al. (2001) that sized the 

P. perniciosus microsatellites AAm20 and AAm24. Both loci showed little or no size 

variation in P. ariasi, and so were directly sequenced as anonymous nuclear DNA loci 

in P. ariasi and P. mascittii. PCR cycling conditions included (Aransay et al., 2001): a 
`hot start' at 80°C; an initial 5 min denaturation step at 94°C; first 5 cycles of 
denaturation 94°C for 30 sec, annealing 57°C for 40 sec, extension 72°C for 60 sec; 30 
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cycles annealing at 55°C; a final extension step of 72°C for 10 min; cooled and held at 

4°C. For locus AAm20 a ca. 187 bp product was amplified by primers AAm20F2: 

CTGGTGGAGGGTGAGTTGAG and AAm20R2: ACAAGCGAGTCATAG 

AGTCCG. Two novel PASA primers were designed to resolve the allele composition of 

ambiguous genotypes, paired with conserved reverse primer AAm20R2 using 1mM 

MgCl2, and one annealing temperature for 35 cycles; AAm20F-33G (66°C): 

AGTTGAGGCTTGCGTATCCG, and AAm20F-51C (66°C): CCCAGAGAGCGACG 

ACTG. For locus AAm24 a 170 bp product was amplified by primers AAm24F1: 

TCAATCGACATTCGGACAGGC, with AAm24RI: CTATTCCCGCCCCACTTGG. 

PCR cycling conditions were as stated for locus AAm20. PASA primers were designed 

to resolve ambiguous genotypes: conserved forward primer AAm24F 1 paired with 

AAM24R-151C TATTCCCGCCCCACTTGGC (66°C 35 cycles; 0.7mM MgCl2); and 

AAM24F-79G AGTTCAGCCGTCGCAGCAG (64°C 35 cycles; 1mM MgC12) paired 

with forward conserved primer AAm24R1. 

PCR product purification 

Two methods of PCR product purification were utilized, if PCR generated non- 

specific bands the targeted DNA fragments were fractionated by submerged agarose gel 
horizontal electrophoresis, excised and purified using GENECLEAN® II (BIOL 101 

Qbiogene, Inc. ). Millipore MultiScreen® PCR96 Filter Plates were used for higher 

throughput when PCR amplified specific products. (Protocols in Appendix 2.2). 

Direct sequencing 

Following purification nucleotide concentrations were estimated, for 

sequencing, using a photometric Nanodrop apparatus (Labtech International). Cycle 

sequencing was carried out on both strands using conserved primers and the single 

strand of PASA primers. 1/8 sequencing reactions were set-up on ice and carried out 

using the BigDye® Terminator vl. 1 Cycle Sequencing Kit. A total 10 µl volume per 

reaction included: 2ng DNA per 100 bp of purified PCR product; lpMol of a single 

sequencing primer (one direction only); 0.75x Big Dye Dilution Buffer (from kit); I µI 
Big Dye Terminator Mix (from kit). Thermal cycling at: 1 cycle of 96°C for 5 min; 25 

cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min; cooled and held at 4°C. Dye 

terminators were removed by ethanol precipitation, and sequences were read using a 
3730 capillary sequencer (Applied Biosystems). 
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2.2.3 Sequence editing and alignment 
Sequence chromatograms of nucleotides were edited in SEQUENCHERTM v4.6 

for Macintosh (Gene Codes Corporation), by manually correcting for errors introduced 

by the automatic processing of the ABI software. Ambiguity codes were scored where 

appropriate, these identifying genotypes whose allele composition required a PASA 

system for their resolution. Primers were removed for analyses and a consensus 

sequence (labelled with specimen and locus name) exported. Fully resolved (no 

nucleotide ambiguities) consensus sequences per locus were aligned in 

SEQUENCHERTM to permit the identification of unique sequences (haplotypes and 

alleles) for phylogenetic or population genetic analyses of P. ariasi. Composite 

sequence files for analyses were exported from SEQUENCHERTM in Nexus sequential 
format. 

Where alignment required the insertion of gaps, nucleotide sequences were 

`contigged' in SEQUENCHERTM and gaps manually inserted (by the author or P. D. 

Ready). Gap placement was either based on alignments from the literature, or following 

a rule to retain the locus' Open-Reading Frame(s) (preserving codons/amino acid units). 
BIOEDIT Sequence alignment Editor v7.0.9.0 for Windows (Hall, 1999) was used to 

translate nucleotide sequences to amino acids. 

2.2.4 Methodology for allele inference 

Most alleles in heterozygous genotypes could be deduced directly (for one 
dimorphic site) or by PASA (for >1 dimorphic sites). However, it was not resource 

effective to resolve by PASA genotypes present in only 1-3 specimens. A compromise 

was made and in some cases deductive and inferred reasoning was applied to score 

alleles from ambiguous DNA direct sequences. 
Alleles were inferred manually based on estimating the number of alternatives at 

a single locus (e, where r= number of alleles observed at each polymorphic site and n 
= number of observed polymorphic sites) and by using the following algorithm. Step I 

For each population, the allele and genotype frequencies were calculated based only on 

alleles read directly (homozygotes) or deduced (one dimorphic site). Step 2 These 
known alleles were aligned with each ambiguous sequence to identify any allele pairs 
that could constitute the latter. Step 3 The likelihood that each of these genotypes 
formed the ambiguous sequence was then ranked, based on the frequency of their alleles 
in the population. Often, the selected genotype contained one allele with high frequency 
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in the population and nearby (geographical regional bias) and one unrecorded allele. 

Step 4 If alternative genotypes were equally likely, then a TCS network of known 

alleles was used to identify by statistical parsimony the least derived unrecorded allele. 

2.2.5 Data analyses 

2.2.5.1 Phylogenetic reconstruction 

Phylogenies were reconstructed for each locus to evaluate the phylogenetic 

species status of the P. ariasi under investigation, to identify discrete intra-specific P. 

ariasi lineages and their relative branching order, and to identify appropriate outgroups 

for selection tests. Outgroups to P. ariasi were molecularly characterized (Table 2.1) or 

were downloaded from GenBank among sequences available for Phlebotomus (listed in 

Appendix 2.3). The nomenclature of Esseghir et al. (2000) was followed: the P. 

perniciosus complex as P. perniciosus, P. tobbi, P. orientalis, P. longicuspis, P. 

langeroni; the P. major complex as P. major, P. neglectus, near P. neglectus (probably 

P. syriacus); the P. ariasi complex as morphologically identified P. ariasi caught in 

France and near P. ariasi from Tunisia. Near P. ariasi are likely to be P. chadlii where 

only males can be morphologically identified through a qualitative character of their 

genitalia, whereas females are morphologically indistinguishable or nearly so (Chamkhi 

et al., 2006) (GenBank near P. ariasi accession number AF 161196 was a female). 

Phylogenetic trees were reconstructed by Bayesian estimation using MRBAYES 

v3.1.2 (Ronquist and Huelsenbeck, 2003; submitted online to http: //cbsuapps. 

tc. cornell. edu/mrbayes. asnx). Nucleotide substitution models given the data were 

selected using the Akaike Information Criterion (AIC) approach in MRMODELTEST 

(v2.3; Nylander, 2004). Each analysis was run for 10 million generations with two 

parallel searches, using one cold and three heated Markov chains. Trees were sampled 
from each chain every 1000th generation and the first 5000 tree samples were discarded 

as burn-in. All other parameters of the Markov chain Monte Carlo (MCMC) run were 
left as default. Convergence of the two MCMCs onto a stationary distribution was 

assessed in the sump file (Convergence diagnostics: split frequency approaching zero, 
Potential Scale Reduction Factor (PSRF) of each model parameter approaching one). 
Frequent mixing of the two runs was assessed using the plot of the log likelihood values 

against generation. TRACER (v1.4.1; Rambaut and Drummond, 2007) was used to plot 
log likelihood values of the cold chain against generation to visualize the suitable burn- 
in point from the stationary phase at which the logarithm of the harmonic mean was 
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estimated. Bayes factors were then estimated and used as indicators of evidence for 

favouring the better of two models; the Bayes factor =2x (harmonic mean I- harmonic 

mean 2), where harmonic mean I and 2 are the more and less restrictive model, 

respectively. Higher log likelihoods (closer to zero) indicate a better model fit, 

significantly so when the Bayes factor is six units or greater (Kass and Raftery, 1995). 

Phylogenetic trees were viewed and edited in FIGTREE (v 1.2.2; Rambaut, 2009). 

Effects of alternative parameters on tree topology were tested using MRBAYES 

(v3.1.2) including: partitioning the data by codon position, lst, 2nd and 3`d position 

independently, versus 1s' + 2nd apart from 3`d position, versus no partitioning and each 

partition having independent preset commands for model priors; outgroup choice, where 

a probability value of 100 was given when multiple taxa were constrained as the 

outgroup; substitution model, as chosen by MRMODELTEST (v2.3) compared against 

the most parameterized model of GTR+I+G. 

To compare topologies generated by alternative tree building algorithms, 

maximum likelihood (ML) and maximum parsimony (MP branch-and-bound search) 

were implemented on sequence datasets which were considered to reconstruct the `best' 

Bayesian topologies. Rapid bootstrapping heuristics for ML (1,000 replicates) were 

conducted using RAxML (v7.0.4; Stamatakis et al., 2008) through the CIPRES portal 
(vl. 15; httl2: //www. phylo. org/portal/Home), which has the advantage over other ML 

methods i. e. PHYML and GARLI, by not only having faster processing capabilities but 

also allows data partitioning, however, this is limited to a single nucleotide substitution 

model (GTR). MP groups taxa in the absence of a substitution model, where groups are 
formed by assuming that shared characters result from common descent. In PAUP* 

(v4. Ob10; Swofford, 2002) each locus was partitioned by 1St, 2nd, 3`d codon positions 

weighted as 2: 5: 1, respectively. MP search parameters included: max trees set to 100; 

initial upper bound computed heuristically; furthest additional sequence; MulTrees in 

effect. Statistical support for trees generated was obtained by resampling using 1,000 

bootstrap replicates. 

2.2.5.2 Genealogical network reconstruction for P. ariasi 
Haplotype (or allele) networks were constructed to represent the intra-specific 

gene genealogy for P. ariasi per locus. Networks are preferred over bifurcating 

phylogenetic trees to represent intra-specific data as they take into account population 
phenomena such as persistent ancestral nodes, multifurcations and reticulations (review 
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Posada and Crandall, 2001). Networks were reconstructed using statistical parsimony in 

TCS (vl. 21 for Macintosh; Clement et al., 2000), by inclusion of nucleotide sequences 

from all individuals that were connected based on single step-wise substitutions 

between haplotypes. A 95% parsimony connection limit was set to test whether P. 

ariasi formed a single haplotype network expected of a phylogenetic species (Hart and 

Sunday, 2007). Patterns of network reconstructions were used to examine the 

genealogical relationships between haplotypes, including signals of demographic 

processes. 

2.2.5.3 Testing for reproductive isolation, panmixia and independent gene assortment 
Random association of alleles within gametes were investigated to conclude that 

P. ariasi originates from a single random-mating population, not reproductively isolated 

groups (biological species). Adherence to Hardy-Weinberg equilibrium (HWE) at a 

single locus (ARLEQUIN v3.11; Excoffier et al., 2005) and linkage disequilibrium 

(LD) across multiple unlinked loci (GENEPOP v4.0; Raymond and Rousset, 1995) 

were tested: assuming no evolutionary factors (e. g. selection, migration etc) influencing 

gametic frequencies. LD in GENEPOP tested for cyto-nuclear and nuclear-nuclear 
disequilibria. For estimating the standard error (Raymond and Rousset, 1995) and the 

probability of rejecting the null (no allele differentiation), Markov chain parameters 
included: dememorization = 10,000; batches = 10,000; iterations per batch = 5,000. 

2.2.5.4 Testing for positive selection on molecular markers of P. ariasi 
Based on the sequence information used, two classes of tests were implemented 

to detect positive directional or balancing selection. The first assessed the ratios or 

numbers of nonsynonymous to synonymous substitutions, which are powerful statistical 

methods for detecting molecular natural selection in protein-coding regions as they are 

often robust against demographic population processes. Whilst the third considered the 

allele frequency spectrum. 
A species divergence approach was implemented in the CODEML program of 

Phylogenetic Analysis by Maximum Likelihood (PAML v4.2; Yang, 2007) that used 
the nonsynonymous/synonymous substitution rate ratio (dNIds, denoted w) as a measure 

of selective pressure at the protein level. Selection on the P. ariasi branch was tested for 

using a one-ratio null model which assumed a single co across all branches versus a two- 

ratio model assuming a different wa for the P. ariasi branch free from the background 
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%,. Positive selection was inferred when wa > 1, and model comparison showed 

significant heterogeneity in selection pressure by the likelihood (1) ratio test (LRT) 

where 201 = 2(lwa-Icoo), compared to a x2 distribution with df =1 at P<0.05. 

Practically, the branch lengths of input gene trees (Bayesian derived) were re-estimated 

under ML in CODEML (model = 0; NSsites = 0, for the number of nucleotide 

substitutions per codon), and then used as initial values in further PAML analyses. In 

the control file transition/transversion rate ratio (k) was estimated; alpha was fixed at a 

constant rate. Anonymous nuclear markers AAm20 and AAm24 were not tested. 

Divergence with polymorphism information was combined to conclude against 

selection within the P. ariasi branch. Here the McDonald-Kreitman (MK) (1991) 

population test for selection was implemented in DNASP (v4.90.1; Rozas et al., 2003), 

whose neutral model predicts that the proportions of nonsynonymous (Pn) to 

synonymous (Ps) polymorphisms within a species are linearly related to the proportions 

of nonsynonymous (D�) to synonymous (D$) divergence between two species. Selection 

was inferred by significant departure from neutrality using a 2x2 contingency table of a 

two-tailed Fisher's exact test, and direction of selection indicated using the Neutrality 

Index (NI) (Rand and Kann, 1996); under neutrality NI = 1, where D�IDS = Pn/Ps; 

positive selection elevates Dn so that NI < 1; weak purifying and balancing selection 

suppress D. but allow deleterious mutations to be found as polymorphisms so that NI > 

1. Sensitivity of the MK test relies on the correct choice of outgroup (Wayne and 

Simonsen, 1998; Bellgard and Gojobori, 1999; Garrigan and Hedrick, 2003), which 

were selected based on dN and ds saturation levels estimated by an approximate per site 

model of Nei and Gojobori (1986) with a Jukes-Cantor correction (DNASP v4.90.1), 

and a more accurate (when substitution rate is close to saturation) ML method which 

incorporates an evolution model of substitution rates between codons (Goldman and 
Yang, 1994) [PAML CODEML: parameter settings: runmode -2; seqtype = 1; 

CodonFreq = 2; icode =4 (insect mitochondrial) or icode =0 (universal code); 
fix kappa = 0; fix_omega = 0]. Per locus, an outgroup representative of each subgenus 

and species complex was compared with two P. ariasi alleles, the geographically most 

widespread and one distant from this. 

Selection within P. ariasi at all loci was also investigated by neutrality tests (in 

ARLEQUIN v3.1 1) based on deviations from neutral expectation of the allele frequency 

spectrum using nucleotide data. Presence and direction of selection were detected using 
Tajima's D statistic (1989) based on the difference between estimators of 0,, and Os. 
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However, caution should be taken as demographic processes can reject the null 

hypothesis of population equilibrium and mimic selection. Balancing selection, 

population decrease, a recent bottle-neck and sub-division generate a positive D, by 

increasing 0,, (maintaining intermediate alleles) relative to Os. Directional selection 

(positive or purifying), selective sweep, expanding populations and a less recent bottle- 

neck generate a negative D, by raising the level of singletons (excess of low frequency 

alleles) which inflates Os relative to 0,, (Schmidt and Pool, 2002). Fu's Fs test (Fu, 

1997), is more sensitive than Tajima's D for detecting population expansion and so was 

used to help distinguish between alternative conclusions. It uses a neutral coalescence 

model to estimate 0n, and then calculates the probability of the number of haplotypes or 

alleles being greater than that observed in a sample of n. Negative Fs values arise from 

recent population expansions (or genetic hitchhiking) that produce an excess of low- 

frequency alleles. For all neutrality tests, significance from a null of neutrality was 

calculated using 16,000 coalescence simulations, and significant P-values of multiple 

tests (Rice, 1989) were manually corrected for familywise Type 1 errors by applying a 

sequential Bonferroni correction (a = 0.05) (Holm, 1979). As neutrality statistics can be 

affected not only by selection but also recombination, the latter was estimated as the 

minimum number of recombination events (Rm) using the four gamete model (Hudson 

and Kaplan, 1985) in DNASP (v4.90.1). Mismatch distributions based on information 

from the distribution of the pairwise sequence differences was also implemented to 

detect the alternative of population expansion (see next section for full description). 

2.2.5.5 Population genetic analyses 

Descriptive population statistics 
ARLEQUIN (v3.11) was used to estimate number of segregating sites (S), 

number of haplotypes (h), haplotype diversity (Hd; Nei, 1987), nucleotide diversity (it; 

Nei, 1987), and departure of genotype distributions from HWE (exact test; method of 
Guo and Thomson, 1992). Demographic processes e. g. population bottle-necks and 

expansions, can be inferred from such statistics. 

Population structure 
Pairwise FsT. Estimates of the pairwise population parameter FsT (Wright, 1951) 

were used to measure the extent of genetic differentiation, by deviations in observed 
heterozygosity, between populations based only on haplotype or allele frequencies: 

obtained for each nuclear locus according to the exact test of Weir and Cockerham 
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(1984) in FSTAT v2.9.3.2 (Goudet, 2002) which is unaffected by sampling scheme, 

deriving significance levels through 1,000 permutations and a sequential Bonferroni 

correction; for cyt b conventional FST was estimated in ARLEQUIN (v3.11) 

significance generated using 1,000 permutations. Among interbreeding populations FsT 

reflects the opposing processes of random genetic drift (population differentiation) and 

gene flow (population homogenization): FST values close to zero support migration 

between populations, whereas near to one indicates no migration and the increasing 

divergence effects of drift. Crudely according to Wright (1978) extent of genetic 

differentiation between population gene pools can be categorized into four F5T value 

classes: F5T 0-0.05, "little"; F5T 0.05-0.15, "moderate"; FST 0.15-0.25, "great"; and FST 

> 0.25 "very great". 
Analysis of Molecular Variance. Support for a priori and post-hoc population 

sub-division was tested using hierarchical AMOVA (ARELQUIN v3.11; Excoffier et 

al., 1992), AMOVA estimates (D-statistics and variance components, which reflect the 

proportion of molecular variability of haplotypes at different levels of sub-division 

(hierarchies): among regions, among populations within regions, and within populations 

of regions. Probability of having more extreme (D-statistics and variance component 

than observed by chance alone (a null of global panmixia at the different hierarchical 

levels) was tested under 16,000 random permutations. 
Isolation-by-distance (IBD). As the dispersal capability of P. ariasi is limited 

(Killick-Kendrick et al., 1984) dependence between genetic distances with geographical 

proximity between population pairs per locus was sought, using the principle of 
isolation-by-distance (IBD) (Wright, 1943). Regression of genetic distance was fitted to 

estimates of geographical distances according to the method of Rousset (1997), and 

non-parametric significance of association between the distance matrices was 
implemented within the ISOLDE suboption of GENEPOP (v4.0): 1,000 permutations 
for a Mantel test where the null states a regression line of zero or independence between 

the two distance matrices. Genetic distance was based on FsT values (calculated as 
detailed above), and straight-line geographical distances between populations were 

measured from a digital map using the Distance and Azimuth Matrix v2.1 extension 
(Jenness, 2005) within ARCVIEW (v3.2; ESRI). No assumptions on the dimension of 
dispersal were made which can affect the correlation between genetic and geographical 
distance (Kimura and Weiss, 1964). Results were therefore reported for both FsT/(1-FsT) 

against geographical distance (one-dimensional habitats) or logarithm of geographical 
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distance (two-dimensional habitats) (Rousset, 1997). Regression outliers were 

identified, using a z-test, as those falling more than three standard deviations from the 

mean (PASW Statistics v18). 

Distance-based redundancy analysis (dbRDA). Multiple regression analysis was 

implemented in DISTLM (v5.0; Anderson, 2004) to test the affect on genetic distance 

of geographical distance and of geographical region. Marginal tests were implemented 

for each of the predictor variables, and conditional tests were performed in which 

geographical distance was included as a covariate in the model. The latter allowed the 

examination of the extent to which regionality explained the variation in genetic 

distance beyond that of IBD, to identify the presence of barriers to dispersal or 

fragmentation. Significance was obtained using 999 unrestricted permutations of rows 

and columns of the matrices for all variables. 

Identifying and dating demographic events 

Mismatch distribution of cyt b haplogroups. Evidence of sudden demographic 

population expansion of haplogroups, and haplogroups by geographical regions, were 

investigated using mismatch distributions; the plot of the number of pairwise 

differences between haplotypes based on estimated inter-haplotypic distances as 

calculated in ARLEQUIN (v3.1 1) using the pairwise distance option. The mismatch 

distribution is unimodel or multimodal during demographic expansion or population 

size equilibrium, respectively, the latter reflecting the highly stochastic shape of a 

haplotype gene tree (Slatkin and Hudson, 1991; Rogers and Harpending, 1992). The 

Raggedness index (Harpending, 1994) was used to test for statistical support of sudden 

demographic expansion using 10,000 bootstrap replicates under the null model of 

expansion. This study is aware that mismatch distribution can be a conservative method 

to detect sudden population expansion (Ramos-Onsins and Rozas, 2002), however, it 

was considered useful to implement as expansion events are not only detected but dated. 

Estimates of time since the beginning of sudden demographic expansion events used the 

mode of an observed Poisson mismatch distribution as expressed by the parameter T= 
tut. For DNA sequence data u is the mutation rate per generation for the whole 

sequence and t is the number of generations elapsed since the beginning of the 

expansion event (Rogers, 1995). 95% confidence intervals of T were estimated around 

two mutation rates, 2.3% and 1%, at a=0.05 (see below). 
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MDIV analysis of cyt b haplogroups. One aim was to date the demographic 

events that produced the founders of current cyt b haplogroups of P. ariasi. The basic 

isolation with migration coalescence model in MDIV (Nielsen and Wakely, 2001; 

http: //cbsuapps. tc. cornell. edu/mdiv. aspx) implements both likelihood and Bayesian 

methods that were used to jointly estimate posterior distributions of 0 (scaled parameter 

for nucleotide heterozygosity, 2N&, u), M (scaled migration rate), T (scaled gene 

divergence time, t/Nfe) and TMRCA (estimated Time to the Most Recent Common 

Ancestor or gene coalescence time, tMRCA/Nfe) among pairs of cyt b haplogroups. As 

MDIV can estimate migration rates, it was also used as an indirect method to confirm 

demographically independent/genetically (not reproductively) isolated cyt b 

haplogroups (e. g. Smith and Farrell, 2005), inferred when the mode of the posterior 
distribution of migration rate intersected the Y-axis (was zero). 

A Markov chain length of 3x106 with a burn-in of 10% was used. Model priors 
included: nucleotide substitution according to the finite site model to account for 

multiple hits (HKY, Hasegawa et al., 1985), and preliminary Mm"' and Tm. were set at 

various values to select the final optimal priors for each haplogroup pairwise 

comparison. Optimal values of the priors Mm. and Tn,, and the shortest credibility 
intervals were determined as those values that generated a bell-shaped posterior 
distribution with the minimum number of estimators on the right-hand tail of the 
distribution. A minimum of three replicate Markov chains using different random seeds 

were run with the optimal values of Mmm, and Tm , to check for convergence and 

consistency of the parameter estimates, and their outputs were averaged and plotted, 
from which estimators of the parameters 0, M and T were determined based on the 

maximum posterior probability/highest likelihood values - read as the mode of the 

estimator's posterior probability distribution. The estimators of T and TMRCA (given 

by MDIV) were converted to years (for a haploid genome) according to Nielsen and 
Wakely (2001); t= (7O/2µ), and tMRCA = TMRCA 0/2N); where p is the mutation rate 
for the whole cyt b sequence per year per generation. 

Rates of cyt b divergence. Dating used two rates of pairwise divergence of cyt b: 
1% per million years (p. m. y. ) upper limit (Esseghir et al., 2000) and 2.3% p. m. y. lower 
limit (Brower, 1994). Two generation times for P. ariasi were used: 1 generation per 
annum (p. a. ) lower limit and 3 generations p. a. upper limit (Ready and Croset, 1980). 
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2.3 Results 

2.3.1 Phylogenetic reconstruction 

2.3.1.1 Cyt b 

In addition to P. ariasi, haplotypes were isolated from other species: I 

Phlebotomus (Transphlebotomus) mascittii, 1 Phlebotomus (Adlerius) brevis, 3 

Phlebotomus (Adlerius) halepensis, 1 Phlebotomus (Larroussius) neglectus and 1 

Phlebotomus (Larroussius) major. Phylogenies used the cyt b coding region only; 714 

bp (no indels) starting on base position 10,918 of Drosophila melanogaster (NCBI 

Reference Sequence: NC_001709.1). 

With single species of the subgenera Phlebotomus and Paraphlebotomus as the 

outgroup, the Bayesian phylogeny (Figure 2.2) of both new and GenBank haplotypes of 

cyt b gave strong support (posterior probability, pp, 0.7-1) for: the monophyly of all 

taxonomic species; two subgenera Transphlebotomus and Adlerius as outgroups to 

Larroussius, where the former shared a more recent common ancestor to Larroussius; 

the monophyly of subgenus Larroussius with a branching order of P. ariasi complex, P. 

major complex, and P. perfiliewi sister to the P. perniciosus complex. Within the P. 

perniciosus complex P. orientalis, P. perniciosus and P. longicuspis formed a basal 

polytomy, support only being given to P. tobbi and P. langeroni as sister taxa (pp 0.84). 

P. ariasi was monophyletic (pp 1) with the female near P. ariasi - GenBank accession 
AF 161196, likely to be P. (Lr. ) chad/li based on the location in Tunisia (Esseghir et al., 
2000) and the large genetic distance between its cyt b haplotype and those of both males 

and females of P. ariasi - as its sister species which branched first in Larroussius. 

Phylogeny reconstruction using ML was not strictly concordant with the 

Bayesian topology, discrepancies identified as: the P. major complex unresolved 

position within Larroussius (60%), and the unresolved phylogenetic relationship of 
individual species of the P. perniciosus complex (node bootstrap <- 70%; ML bootstrap 

values are given after Bayesian pp, on Figure 2.2). For MP a pruned dataset of 15 

species, a single haplotype per species containing 201 parsimoniously informative sites, 
was concordant with the Bayesian phylogeny except for low support for the monophyly 
of Larroussius (60%) and not resolving the P. perniciosus complex within it. 

Evidence supporting cryptic speciation was recorded within P. ariasi, for which 
a pruned dataset of haplotypes showed a well supported primary bifurcation of a basal 
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Figure 2.2 Bayesian phylogeny of the haplotypes of the 3' end of cyt b (714 bp) from 
Phlebotomus species. Branches for subgenera, species complexes, some species, and the 
haplogroups of P. ariasi (aria) are labelled. Haplotypes obtained from GenBank contain 
the accession number in their code. Codes for unlabelled species: papa: P. papatasi; 
cauc: P. caucasicus; masc: P. mascittii; brev: P. brevis; hale: P. halepensis; ariacf: P. 
chadlii; negl: P. neglectus; majo: P. major; lang: P. langeroni; tobb: P. tobbi; penn: P. 
perniciosus; long: P. longicuspis; orie: P. orientalis; perf. P. perfiliewi. Cyt b was 
partitioned by each codon position, each with an independent substitution model 
selected by MRMODELTEST v2.3. Node values and to the right of haplogroups A, C, 
E, represent posterior probabilities/ML % bootstrap values, support for node when > 
0.7/70%. Scale bar = substitutions per site. 
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European haplotype B (pp 0.95) from a macrohaplogroup' A (pp 0.77). The latter 

contained three supported European haplogroups, C (pp 0.88), A (pp 0.81) and E (pp 1) 

but a poorly supported branching order (pp < 0.7) and one unsupported haplogroup F 

(pp 0.28), which represented the entire population from Morocco (AGH). ML showed 

concordant primary grouping within P. ariasi. 
The above described Bayesian phylogeny was statistically supported as using 

the `best' model to fit the data based on Bayes factor values >6 units (Appendix 2.4): 

when partitioning the data by Is`, 2nd and 3rd position (Cyt b bayes1; Appendix 2.4) 

versus 1st + 2nd # 3rd (Cyt b bayes2) or no partition (Cyt b_bayes3) [harmonic means, 

-4262.10, -4349.48 and -4553.92, respectively]; and model selection by 

MRMODELTEST (Cyt b bayes 1) favoured against overparameterizing with the 

GTR+I+G model (Cyt b_bayes6), Bayes factor 21.78 units. Outgroup choice affected 

topology, but only with respect to the sister subgenus to Larroussius: inclusion of both 

Phlebotomus and Paraphlebotomus is described above; P. caucasicus 
(Paraphlebotomus) only, supported (pp 0.99) Transphlebotomus as the sister to 

Larroussius (Cyt b bayes5); P. papatasi (Phlebotomus) only, supported neither 
Transphlebotomus nor Adlerius (Cyt b bayes4). Within Larroussius all outgroup 

combinations listed above supported the basal position of P. ariasi complex in 

Larroussius, followed by the P. major complex in the cyt b gene tree. 

2.3.1.2 EF-la 

A Bayesian phylogeny based on a short fragment of the nuclear EF-la gene 
(453 bp; 3 subgenera; 14 species), showed (genealogical) discordance with the 

mitochondrial cyt b gene tree: EF-la did not support either Transphlebotomus or 
Adlerius as sister to Larroussius (Figure 2.3a); P. major complex as the basal group 

within the Larroussius; no support for the sister status of P. perfiliewi to the P. 

perniciosus complex, instead nesting the former within the latter (pp 1); branching order 

within the P. perniciosus complex differed. The EF-la short fragment did maximally 

support (pp 1) the monophyly of the P. ariasi complex, but failed to resolve P. ariasi 
from near P. ariasi or any intra-specific groups (pp < 0.7). To partition the data by 1st, 

2nd and 3rd position using different nucleotide substitution models given by 

MRMODELTEST for each position was given as the best model to fit the data through 

1 "Macrohaplogroup: a group of haplogroups that are closely related and share a recent common 
ancestor". Shriver and Kitties, 2004. 
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the Bayes factor approach. ML (bootstrap values given in Figure 2.3a) and MP (82 

parsimoniously informative sites) were less resolved than the Bayesian topology but not 

discordant, and neither supported discrete intra-specific grouping within P. ariasi. With 

respect to outgroup choice: when Adlerius was the outgroup to Larroussius the P. major 

complex was not supported within Larroussius, also observed for both ML and MP 

methods. Where P. mascittii was the only outgroup, P. major complex grouped within 

Larroussius but as a basal polytomy (not P. ariasi, as consistently seen in cyt b). The P. 

major complex was supported as the outgroup to all other Larroussius when it was so 

designated (pp 0.97), within which the P. ariasi and P. perniciosus complexes were 

monophyletic (pp 1) and sister to one another, however, P. perfiliewi nested within the 

latter. 

Phylogenetic reconstruction using the long EF-la fragment (720 bp), was 

obtained for 9 Larroussius species (Figure 2.3b), where P. neglectus and near P. 

neglectus (likely to be P. (Lr. ) syriacus) were not rejected as the outgroup to all other 

Larroussius (pp 1). This study showed that the longer EF-la sequence is necessary to 

resolved the monophyly of the P. perniciosus complex with P. perfiliewi as its sister 

group (pp 1), but no intra-specific groups for P. ariasi were observed, and near P. ariasi 

remained unsolved from P. ariasi. ML and MP gave concordant support to this 

Bayesian tree. 

2.3.1.3 AAm20 and AAm24 

For both anonymous nucleotide phylogenies, P. mascittii was designated as the 

outgroup, where phylogenies were based on manually inferred inter-species alignments: 
AAm20 149 bp Appendix 2.5 AAm24 175 bp Appendix 2.6). Both loci were 

phylogenetically uninformative inter-specifically and intra-specifically, a consequence 

of either limited outgroup choice or low sequence variation in their short sequences 
(phylogenies not shown). For locus AAm20 Bayesian estimation using a non- 
partitioned codon model supported P. ariasi as a single monophyletic group (pp 0.82), 
but not Larroussius, and ML and MP were unresolved phylogenies (all nodes < 70%). 
For locus AAm24 only MP (not Bayesian or ML) supported the monophyly of P. ariasi 
(bootstrap 80%), but it failed to support Larroussius as an ingroup to P. mascittii. 
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Figure 2.3 Bayesian phylogeny from Phlebotomus species of the haplotypes of 
elongation factor-1 alpha (a) short (453 bp) and (b) long (720 bp) fragment. Branches 
for subgenera, species complexes, some species, and the haplogroups of P. ariasi (aria) 
are labelled. Haplotypes obtained from GenBank contain the accession number in their 
code. Codes for unlabelled species: hale: P. halepensis; masc: P. mascittii; nraria: P. 
chadlii; negl: P. neglectus; nrnegl: P. syriacus; majo: P. major; long: P. longicuspis; orie: 
P. orientalis; tobb: P. tobbi; pern: P. perniciosus; lang: P. langeroni; perf. P. perfiliewi. 
EF-la was partitioned by 1St, 2nd, 3rd codon position, each with an independent 
substitution model selected by MRMODELTEST (v2.3). Node values represent 
posterior probabilities/ML % bootstrap values, support for node when > 0.7/70%. Scale 
bar = substitutions per site. 
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2.3.1.4 Phylogenetic inference using statistical parsimony networks 
Species-specific TCS networks were reconstructed based in the 95% parsimony 

connection limit for cyt b (714 bp), EF-la (long 720 bp), AAm20 (149 bp) and AAm24 

(175 bp), which supported the monophyly of P. ariasi and the absence of cryptic 

speciation. The EF-la short fragment (453 bp) failed to distinguish near P. ariasi (P. 

chadlii) from P. ariasi these connected by a minimum of nine mutational steps in a 

single network, confirming this marker as unsuitable to resolve cryptic species of 
Phlebotomus. 

2.3.2 Intra-specific locus description 

2.3.2.1 Cyt b 

The 745 bp (excluding primers) fragment was sequenced for 452 P. ariasi from 

all 19 populations: 01-715 bp cyt b; 716-718 bp stop TAA; 719-725 bp IgS; 726-745 bp 

tRNA. For population genetic analyses, missing data at the 5' terminus putatively 
lacking segregating sites) were excluded reducing the sequence length analyzed to 738 

bp. Pairwise-distance analysis identified 94 unique haplotypes defined by 89 

segregating sites (Appendix 2.7); 76 transitions and 13 transversions and an overall 

relative nucleotide composition of C: 16.96%, T: 41.26%, A: 31.93%, and G: 9.85%. 

Two base positions (one in each of the IgS and tRNA) showed degeneracy of more than 

two alternative nucleotides; a `D' ambiguity (G, T or A nucleotide) among two or more 
flies. The uninterrupted ORF of cyt b and the lack of heteroplasmy indicated the 

absence of pseudogenes. 

2.3.2.2 EF-la 

The 817 bp (excluding primers) fragment of EF-la was sequenced for 403 P. 

ariasi from 18 (out of 19) populations (not ROQ). PCR amplification was not 
successful for P. (Tr. ) mascittii therefore to reconstruct an EF-la short fragment 

phylogeny a nested PCR amplified a 454 bp fragment using primers EF-F05/EF-R08 
(Parvizi and Assmar, 2007). For population analyses missing data were excluded (5' 22 
bp and 3' 18 bp), reducing the long fragment analyzed to 777 bp with the putative loss 

of no segregating sites. Based on 29 segregating sites, 22 transitions and 7 
transversions, 45 alleles (Appendix 2.8) and 65 genotypes (Appendix 2.9) were scored. 
39 genotypes were resolved through the PASA method, and only 4 alleles [Morocco (2), 
Pyrenean France (2)] and 7 individuals' genotypes [Morocco (4), Pyrenean France (3); 
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1.7%], were inferred using the allele scoring algorithm described in section 2.2.4. 

Relative nucleotide compositions were C: 24.53%; T: 22.38%; A: 22.54%; G: 30.55%. 

In P. ariasi no nonsynonymous changes were observed for EF-la in a single intronless 

ORF, confirming that the conserved primer pair amplified a single-copy orthologue 

gene sequence. 

2.3.2.3 AAm20 

A ca. 146 bp (excluding primers) fragment was sequenced from 396 P. ariasi 
from 18 populations (not ROQ), and 2 P. mascittii. Reading from the conserved forward 

primer, size variation was recorded in only 12 P. ariasi that were always either within 

[France, Pyrenees 8 flies and Massif Central 2 flies] or flanking the microsatellite 

region [1 fly each from outgroup population Portugal and Morocco] identified for P. 

perniciosus (Aransay et al., 2001). Using the entire sequence fragment 13 P. ariasi 

alleles were scored - 146 bp not including size variants - whose alignment with the P. 

mascittii, showed their nesting within the 395 bp clone isolated from P. perniciosus 

(AJ303377) starting at 110 bp. This inter-species alignment (Appendix 2.5) required 

gap insertions in all three species to maintain a single ORF. BLAST searches (BLASTp, 

BLASTn and BLASTx; http: //blast. ncbi. nlm. nih. gov/Blast. cai) with P. ariasi and P. 

mascittii alleles found only GenBank sequence AJ303377 P. perniciosus with 

significant homology (E-value > e'5). 

90 bp of locus AAm20 was used for population genetic analyses of P. ariasi; 5' 

44 bp containing size variant indels (eliminating two low frequency segregating sites in 

three P. ariasi only) and 12 bp of missing data at the invariable 3' terminus were 

excluded. 13 sites were segregating, 10 transitions and 3 transversions, and a relative 

nucleotide composition of C: 44.36%, T: 20.07%, A: 14.95%, and G: 20.61%. 14 alleles 
(Appendix 2.10. ) paired to score 19 genotypes, 4 alleles [NW Spain 1, Pyrenean France 

2, S Massif Central 1] and 5 genotypes had to be inferred for 7 individual's (1.8%) 

(Appendix 2.11). 

2.3.2.4 AAm24 

The 130 bp (excluding primers) fragment of locus AAm24 was sequenced from 

all 398 P. ariasi from 18 populations (not ROQ) and 2 P. mascittii. Manual gap 
insertion permitted the alignment of P. ariasi alleles with a new one of P. mascittii and 
that of P. perniciosus (GenBank sequence AJ303378), to produce a 175 bp ORF 
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(Appendix 2.6). Four nonsynonymous and three synonymous changes upstream of the 

microsatellite and 15 synonymous sites downstream (nucleotides 110-175) were 

observed. A BLAST search of GenBank detected 13 continuous amino acids matched 

100% the "Jumonji domain containing 1B" of Nasonia vitripennis (LOC100120387), 

and up to 15 amino acids (with indels) matching the "Jumonji domain containing 1B" of 

both Nasonia vitripennis and Apis mellifera (LOC408944). The Jumonji protein belongs 

to a family of transcription factors with homologues in mouse and Drosophila (Jung et 

al., 2005; Sasai et al., 2007). 

For P. ariasi size variation of alleles was not recorded. Paired combinations of 

11 deduced alleles (Appendix 2.12) scored the 21 genotypes recorded (Appendix 2.13), 

of which only a single genotype required inference constituted by two known alleles [3 

P. ariasi from Pyrenean France and 1 fly from NW Spain; 1%]. Exclusion of missing 
data, invariable 5' 9 bp, reduced the fragment analyzed to 121 bp in population genetic 

analyses of P. ariasi. 5 segregating sites were recorded, 4 transitions, I transversion and 

a relative nucleotide composition of, C: 26.43%, T: 17.36%, A: 32.04%, G: 24.17%. 

2.3.3 Haplogroups, gene networks and geographical variation of P. ariasi 
The cyt b parsimony network (Figure 2.4) showed five clusters of haplotypes, 

four of which matched those phylogenetically supported (A-C, E pp > 0.81), and the 

remaining haplotypes were those of unsupported haplogroup F (Morocco P. ariasi). 
Only haplogroup B had no reticulate loops with any other haplogroup, the others had 

multiple most parsimonious pathways connecting them confirming the polytomy 

observed in the Bayesian phylogeny of macrohaplogroup A. The designation of the five 

haplogroups was strengthened by pairwise distance values, estimated using the 
Maximum Composite Likelihood approach in MEGA (v4.0; Tamura et al., 2007); all 

means of within-haplogroup distances (0.000952-0.002918) were less than those of 
between-haplogroup distances (0.008758-0.021846). 

To maximize intra-specific evaluation, networks for nuclear genes used 
population datasets: EF-la 777 bp; AAm20 90 bp; AAm24 121 bp (Figures 2.5 to 2.7). 
No nuclear marker showed discrete lineages in their genealogical networks. EF-la 

showed a web-like network linking all alleles, with numerous reticulate loops around 
two high frequency central modes in Europe (alleles 01,03) and others in Morocco 
(allele 29). Loci AAm20 and AAm24 each had fewer haplotypes, simpler networks (0-1 
loops), and two modes with shallow radiations except in Portugal (AAm20) or Morocco 
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Figure 2.4 Parsimony network (TCS vl. 21) showing the genealogical relationships 
between the 92 cyt b (length 714 bp) haplotypes from 452 P. ariasi, with aI1 step 95% 
connection limit. These haplotypes are shown as coloured circles with sizes 
proportional to their frequency of occurrence, which is given if > 5. Black filled circles 
denote missing haplotypes. The six lettered haplogroups or sub-haplogroups (B) are 
followed by the code of their modal haplotype (CBNN) along with their geographical 
distributions. All most parsimonious pathways are shown. 

NE Spain (n = 2) 

Massif Central (n = 3) 

Haplogroup A (CB25) 
All populations except Morocco 

NE Spain (2 steps, n= 4) 
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roup E (CB 104) 
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Massif Central (S) 1 Portugal 

Haplogroup F (CB 110) 
Morocco only 

Haplogroup B (CB05) 
NW Spain, NE Spain, C. Pyrenees, E Pyrennes, 
Massif Central (S) 

Haplogroup B (CB04) 
E Pyrenees only 
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Figure 2.5 Parsimony network (TCS vl. 21) showing the genealogical relationships 
between the 45 EF-la alleles (length 777 bp) from 403 P. ariasi, with a 12 step 95% 
connection limit. Haplotypes are shown as black filled circles with sizes proportional to 
their frequency of occurrence, which is given by the number after the allele code 
(aria_NN). Alleles in boxes and ellipses private to Portugal and Morocco, respectively. 
*Alleles found in Morocco, Portugal and others; + alleles found in Portugal and others, 
but absent in Morocco. 
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showed some geographical structure, with all alleles from Morocco and most from 

Portugal being associated with just one of the two modal alleles from Europe. 

The cyt b network showed most population structure. Haplogroups A-C and F 

showed `star-burst' patterns -a central common modal haplotype (darker shades) with 

rarer haplotypes (lighter shades) derived from it by 1 to 4 mutational steps. This shallow 

radiation is a signal of recent haplogroup expansion from a small or modest number of 

founders. Only haplogroup B had sub-haplogroups - two central modes that may reflect 

two separate histories; CB05 showed a greater expansion pattern than CB04. 

Furthermore, haplogroup B may have diverged earlier evidenced by 10-14 mutational 

steps from haplogroups A, E and F, concurring with its basal branch position in the 

Bayesian phylogeny. 

Geographical variation was mapped on the gene networks, and haplogroup 

phylogeographic structure was observed. Haplogroup F was found in only Morocco 

where all P. ariasi contained it, whereas Haplogroup A was geographically most 

widespread predominating in all Iberian and French populations (80% of European 

flies) (Table 2.2; Figure2.4) and except in NW Spain the modal haplotype (CB25) 

predominated in each population (69% overall). Haplogroup C was uncommon (3.4% of 
European flies) but geographically widespread in Iberia and France; whilst haplogroup 

E was rare (0.7% of European flies) and only found in the central Pyrenees and NE 

Spain. Haplogroup B was less abundant (15.9% of European flies), omnipresent in the 

French Pyrenees (11.1-48.1%), but absent in Portugal, Morocco and the northern Massif 

Central, the latter a leading-edge effect where haplogroup A was at fixation and 

suggesting population sub-division between this region and the French Pyrenees. 

Haplogroup B was present in low frequencies in NE and NW Spain and the southern 
Massif Central (4.2-12.5%). The unique demographic history of P. ariasi in the French 

eastern (E) Pyrenees was indicated by the presence of two cyt b sub-haplogroups B and 
their nearly disjunct distributions. Modal haplotype CB04 and its derived haplotypes 

were restricted to the French E Pyrenees, east of the Ariege valley to the northeastern 
edge of the French Pyrenees; where they were omnipresent at low-moderate frequency 
(0.063-0.318) and constituted 61.4% of haplogroup B. In contrast, modal haplotype 
CB05 had a contiguous distribution only in geographically bordering central Pyrenees, 

southern Massif Central and northern Spain. Population PAS at the western Ariege 
border was represented by both modal haplotypes. 
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Haplotype/allele distribution showed geographical regional grouping (restricted 

gene flow) within France: cyt b alleles CB75, CB50, CB68 were localized to the Massif 

Central, E Pyrenees (CB24 and CB04), or Pyrenees only (CB18) (Table 2.2). 

Distinction between the French Pyrenees and the northern Massif Central with Lot was 

observed for EF-la (predominant EFO1 and EF03, respectively), locus AAm20 (20m02 

with near non-overlapping frequencies of 0.259-0.354 and 0.283-0.614, respectively), 

and locus AAm24 (24m08 found only in E Pyrenees) (Tables 2.3 to 2.5). The E 

Pyrenees showed distinction from its bordering regions (C Pyrenees and NE Spain) by 

the absence of allele EF 11. NW Spain was recorded to be distinct (different 

predominating alleles at all nuclear loci) from NE Spain and France, whose similar 

frequencies at nuclear loci indicated contemporary gene flow. 

2.3.4 No reproductive isolation between P. ariasi populations defined by cyt b 

haplogroups, within populations or overall between locus pairs 

A biological species is a group of interbreeding natural populations that are 

reproductively isolated from other such groups. Two populations of P. ariasi in the E 

Pyrenees (PAS, ARQ - the latter pooled for two collection years, valid as each nuclear 

locus remained in HWE) contained sufficient flies with cyt b haplogroups A or B to test 

for reproductive isolation, therefore cryptic speciation. No evidence of haplogroup 

associated biological speciation was found. Observed genotype frequencies did not 

differ from those expected in a single randomly-mating population in each location: no 

significant deviation from HWE was found (P > 0.05) (Table 2.6). No linkage 

disequilibrium between haplotypes or alleles at different loci (cyto-nuclear and nuclear- 

nuclear) occurred: pairwise comparisons of LD showed no significant difference from 

the null hypothesis of independent haplotype/allele association between loci (P > 0.05) 

(Table 2.7). 

An assessment of all populations independently concluded against biological 

speciation irrespective of cyt b haplogroup content. HWE was supported at each nuclear 
locus (Table 2.13), except population of NE Spain at EF-1 a whose significantly reduced 
heterozygosity might have resulted from mixing sub-populations on a short 

evolutionary time-scale. Four out of 108 Fisher exact probability tests undertaken (per 

population for each locus pair) statistically supported LD (P < 0.05), however these 

were randomly scattered among populations and locus pairs. Overall, for both the 
haplogroup and individual population tests, no locus pair showed LD (P > 0.185). 
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Table 2.6 Panmixis in two populations of P. ariasi indicated by non-significant Hardy- 

Weinberg (HW) tests (P > 0.05) at three nuclear loci (EF-la, AAm20, AAm24) for 

sandflies associated with three cyt b haplogroups. 

No. P. ariasi with each 
Population N cyt b haplogroup 

ABC Other 
Locus HW P-value 

PAS 23 12 10 01 EF-1a 0.70039 
AAm20 0.39035 
AAm24 0.40498 

ARQ 37 22 11 40 EF-1a 0.16438 
AAm20 0.65122 
AAm24 0.48627 

Table 2.7 No linkage disequilibrium between haplotypes or alleles between pairs of 
different loci (cyto-nuclear and nuclear-nuclear), according to a model of linkage 
disequilibrium with a null hypothesis of independent haplotype/allele association 
between loci (non-significant P>0.05). 

Population Locus 1 Locus 2 P-value (± S. E. ) 
PAS EF-1 a AAm20 0.913189 ± 0.000214 

EF-1 a AAm24 0.072994 ± 0.00063 
AAm20 AAm24 0.361535 ± 0.000393 
EF-1 a cyt b 0.376315 ± 0.001537 
AAm20 cyt b 0.171733 ± 0.000419 
AAm24 cyt b 0.087596 ± 0.000781 

ARQ EF-la AAm20 0.821059 ± 0.000472 
EF-la AAm24 0.768402 ± 0.000893 
AAm20 AAm24 0.430054 ± 0.00062 
EF-1 a cyt b 0.488901 ± 0.002063 
AAm20 cyt b 0.764847 ± 0.000883 
AAm24 cvt b 0.311091 ± 0.001693 

Table 2.8 Absence of selection at two loci of P. ariasi indicated by non-significant 
McDonald-Kreitman tests (Fisher's exact two-tailed test, significant when P<0.05). 

Locus P. ariasi with Ds Ps On Pn Fisher's NI 
outgroup exact P-value 
species 

Cyt b near P. ariasit 14 66 2 18 0.5162 1.909 
EF-1 a near P. ariasit 7 21 1 0 0.2759 NA 
EF-1 a P. neglectus 31 21 1 0 1.0 NA 

Legend Ds, Ps, Dn and Pn, correspond to the number synonymous (s) and nonsynonymous (n) 
substitutions per site that are polymorphic (P) in P. ariasi, or fixed (D) between P. ariasi and a 
selected outgroup per locus. NI = Neutrality Index. Strict neutrality has an index of 1.0; NI <I 
indicates positive selection; NI >I indicates purifying selection. Test conducted in DNASP (v. 
4.90.1). ' Likely to be P. chadlii. 
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2.3.5 Neutral evolution of cyt b and the three nuclear loci 

Directional or balancing selection was not detected at any of the four loci using 

two sorts of tests. PAML CODEML and MK investigate polymorphism in codons 

relative to divergence with other Phlebotomus and were appropriate for analysing the 

relatively long protein-coding fragments for cyt b and EF-la. Tajima's D is an allele 

frequency-based test and, therefore, additionally appropriate for the anonymous loci 

AAm20 and AAm24. It is more sensitive than the former analyses for detecting recent 

selection, but significant results can arise from either selection, demography or 

recombination. 

CODEML using species divergence data concluded against positive directional 

or diversifying selection (w < 1) along the P. ariasi branch (co,, ) against the background 

branches (co. ) for three phylogenies re-estimated from their Bayesian topology's: cyt b 

Figure 2.2; short EF-la Figure 2.3a, and long EF-la Figure 2.3b. The LRT supported 

significant heterogeneity in purifying selection pressure between branches in cyt b only 

(201= 2(-4118.35 - (-4120.55)) = 4.4 at x2 df = 1; 0.01< P<0.05), where P. ariasi was 

shown to be under greater purifying selection pressure compared to background 

branches (wa = 0.0084, and (wt, = 0.0202, respectively). 
CODEML has low power for detecting intra-specific selection (Anisimova et 

al., 2002). The more sensitive MK population test for protein-coding regions, showed 

no significant departures from neutral expectation in the number of polymorphic versus 
fixed substitutions for both loci of P. ariasi (P = 0.2759-1.0, two-tailed Fisher's exact 

test; Table 2.8). The associated NI values indicated the direction of selection of cyt b 

tended towards purifying selection, signalled by few fixed nonsynonymous 

substitutions. For EF-la the NI could not perform well with none to one fixed 

differences (NI = 0.0). Confidence in the power of MK test was achieved through 

appropriate outgroup selection where ds was not approaching saturation (< 0.5): near P. 

ariasi was the suitable outgroup for cyt b (ds 0.2686-0.2702); for EF-la both near P. 

ariasi (ds 0.0721) and P. neglectus (ds 0.4723) were assessed (ds values quoted 

according to the ML model of Goldman and Yang (1994); Appendix 2.14)). 

Both PAML and MK test for selection at the protein level, which may not be 

applicable for anonymous nuclear loci AAm20 and AAm24, or have insufficient power 

when there are few polymorphic nonsynonymous changes. Therefore, allele frequency 

spectrum population based neutrality tests were implemented to test for recent selection 
(Table 2.13). Tajima's D was significant (P < 0.05; none after sequential Bonferroni 

82 



correction) and negative only for: cyt b, Morocco, NE Spain, southern Massif Central 

and Massif Central (ROQ, DRAz4); and EF-la, NE Spain and central Pyrenees (HP 1). 

Negative D values signal directional selection or population expansions by reflecting an 

excess of low frequency haplotypes/alleles, the latter the more likely interpretation as all 

but one (NE Spain) showed a corresponding significant and negative Fu's FS value. It is 

recognised that recombination tends to reduce the variance of Tajima's D leading to 

conservative estimates (e. g. Ramirez-Soriano et al., 2008). This is unlikely to have 

affected the results presented here because, considering the longer gene fragments, the 

estimated minimum number of recombination events (Rm) was low for cyt b, as 

expected for mitochondrial DNA (0 for 14 populations, and 1-3 for four populations), 

and for EF-la (0 for nine populations, 1-2 for nine populations). 

2.3.6 Genetic diversity and population structure of P. ariasi 

The cyt b network showed haplogroups to not correspond directly to current 

geographical populations, indicating these mtDNA lineages to probably have had 

distinct and separate demographic histories. Coalescent modelling in MDIV jointly 

estimates migration rates and divergence times to distinguish the retention of ancestral 

polymorphisms from ongoing gene flow. The highest likelihood value for M in all 

haplogroup pairwise comparisons was found to be very close to zero, showing little to 

no evidence of ongoing migrant exchange, which combined with estimated divergence 

times > 100,000 years before present (conservatively, the end of the previous 

interglacial), allowed haplogroups to be considered as demographically independent 

with respect to climate change since the LGM (e. g. Smith and Farrell, 2005). In part, the 

aim of this chapter was to investigate the historical population structure of P. ariasi i. e. 

the impact of the glacial cycles on species distribution. Therefore, to avoid errors in 

estimates of demographic parameters through the effects of mixed ancestry in 

contemporary populations, some tests were assessed using cyt b haplogroups of P. 

ariasi as populations. 

2.3.6.1 Demographic history of cyt b haplogroups 

Percentage specimen representation of the five assigned cyt b haplogroups 

observed by Bayesian phylogenetic and clustered by the network reconstruction were A 

(76.99%), B (15.26%), C (3.32%), E (0.66%), and F (3.76%). Diversity statistics 
indicated haplogroup A having gone through a prolonged or severe bottle-neck (or 
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selective sweep): lowest Hd (0.517±0.0334) and 7t values (0.000947±0.000794) (Table 

2.9). Assuming each haplogroup has the same mutation rate, overlapping t values 

(degree of polymorphism) amongst cyt b haplogroups would indicate relatively 

contemporaneous divergence times. Haplogroups C and F showed the highest absolute 

averages of 7t and relatively high Hd a signal of a large and stable long-term Ne (or an 

admixed population of historically divided populations), reflected in the network by 

relatively larger number of mutational steps (1-4, as opposed to 1-2) from the modal 

haplotype within their haplogroups (Figure 2.4; Table 2.2). 

Two mutation rates (µ = 2.3% or 1%) were used to bound confidence intervals 

for dating. Using generation time of 1 year, more common of P. ariasi in colder climes, 

gene coalescence times (tMRCA = 949,771-658,380 or 2,182,175-1,514,275 years ago 

(y. a. )) and divergence times (t = 545,997-376,757 or 1,168,761-866,541 y. a. ) (Table 

2.10) between all haplogroup pairs dated to within the Pleistocene epoch (2,588,000- 

10,000 y. a. ). If three generations was credible in the warmest places during the 

interglacials, estimates would be reduced by two-thirds and gene coalescence time 

would remain before the last interglacial (Eemian, 125-110 k. y. a. ) and both coalescence 

and divergence not more recently during the Holocene. Dating methods allowed this 

study to conclude against the opening of the Gibraltar Straits (5.5-4.9 m. y. a.; Pliocene 

epoch) as the vicariance event causing the differentiation of Moroccan haplogroup F: 

pairwise comparisons with this haplogroup showed both tMRCA and t to date within 
the Pleistocene (maximum tMRCA, 1,983,128 y. a. ). To lend support to these dates, 

tMRCAs calculated by MDIV were consistent with the branching order obtained by 

Bayesian reconstruction and the parsimony network structure: Haplogroup B showed 

the most ancient divergences from the common ancestor of haplogroups C, A and F 

(tMRCA 2,182,175-1,546,729 y. a. ). 

Evidence for past sudden demographic expansion of unstructured mtDNA 

populations (haplogroups or sub-haplogroups) was supported by mismatch distribution 

of pairwise nucleotide differences among individuals. This confirmed that the star- 
bursts observed in the cyt b genealogy statistically fitted a model of sudden 
demographic expansion. This type of expansion was supported for haplogroups A, F 
(unimodal mismatch distribution) and C (Raggedness index P>0.05, under a null 
hypothesis of sudden expansion). Haplogroup B gave a unimodal mismatch distribution 
but the hypothesis of expansion was rejected; Raggedness index P<0.05. Expansion 

was supported for sub-haplogroup B CB04, which occurred only in E Pyrenees, but not 
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Table 2.9 Descriptive population statistics for each cyt b haplogroup found in 

populations of P. ariasi. 

Haplo- No. P. ariasi No. 
group (% of total) pops Sh Hd (t SD) a (t SD) 
A 348 (76.99%) 18 

B 69 (15.26%) 11 

C 15 (3.32%) 7 

E 3 (0.66%) 2 

53 54 0.517±0.0334 
16 18 0.720±0.0429 

12 9 0.84810.0878 

231.000 

0.000947±0.000794 

0.001391±0.001044 

0.002891±0.001908 

0.001807±0.001856 

F 17 (3.76%) 1 13 10 0.794±0.1035 0.002630±0.001756 

Legend S= number of segregating sites, h= number of haplotypes. All statistics estimates in 
ARLEQUIN (v3.11). Hd = Haplotype (gene) diversity and x= Nucleotide diversity (Nei, 1987). 

Table 2.10 Isolation with migration coalescence model in MDIV: to estimate gene 
coalescence and divergence times for pairs of cyt b haplogroups found in populations of 
P. ariasi. Confidence intervals estimated with two mutation rates 2.3% and 1%. 
Generation time =1 per annum. 

tMRCA tMRCA 
Cyt b (y. a. ) (y a. ) t (y. a. ) t (y. a. ) 
haplogroup 0 T TMRCA (p 2.3%) (p 1%) (p 2.3%) (p 1%) 
B+A 5.444 1.644 2.862 949,771 2,182,175 545,997 1,254,492 
B+C 2.079 2.976 5.312 672,491 1,546,729 376,757 866,541 
B+F 2.507 3.312 5.648 862,230 1,983,128 505,613 1,162,911 
A+C 5.787 1.272 2.074 730,989 1,681,276 448,321 1,031,139 
A+ F 6.479 1.288 2.026 799,321 1,838,439 508,156 1,168,761 
C+F 2.408 2.72 4.49 658,380 1,514,275 399,840 917,333 

Legend 0= scaled parameter for nucleotide heterozygosity; T= scaled gene divergence time; 
TMRCA = expected time to the most recent common ancestor; tMRCA = gene coalescence 
time; t= gene divergence time; y. a. = years ago. 

Table 2.11 Mismatch distribution statistics for P. ariasi cyt b haplogroups and sub- 
haplogroups. Sudden demographic expansion detected when significance of Raggedness 
index P>0.05. Time elapsed since beginning of expansion event (t) calculated by r= 
2ut. 95% confidence intervals of i were estimated around mutation rates 2.3% and 1% 
at a=0.05. Generation time =1 per annum; y. a. = years ago. 

(Sub-)haplogroup CB A CB B CB C CB F CB B05 CB B04 
Raggedness 
index 0.07941 0.11236 0.09959 0.0157 0.1656 0.36789 
Raggedness P 0.4784 0.0229 0.3379 0.996 0.0292 0.6405 
Tau (t) 0.73 1.199 2.826 2.168 1.020 3.000 

(0.60- (0.86- (0.79- (0.53- (0.36- (0.42- 
0.92) 1.69) 5.01) 4.68) 1.65) 3.00) 

t 2.3% (y. a. ) 44,453 NA 172,086 132,018 NA 182,682 
(36,869- (48,406- (32,350- (25,452- 
55,780) 305,302) 284,965) 182,682) 

t 1% (y. a. ) 102,240 NA 395,798 303,641 NA 420,168 
(84,800- (111,333- (74,405- (58,539- 
128,294) 702,195) 655,419) 420,168) 
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for sub-haplogroup B CB05 (Table 2.11). 

Where demographic expansion was supported the time since the beginning of 

these expansions was approximated given the estimates of parameter T (Table 2.11) and 

its 95% confidence intervals. Two divergence rates were used [per nucleotide per 

generation time of 1: 0.0115 (2.3%) and 0.005 (1%) see Materials and methods]. 

Estimates since the beginning of cyt b (sub-)haplogroup demographic expansion were 

dated to within the Pleistocene epoch: predating the LGM (18,000 y. a. ) and therefore 

were not rapid/recent expansions during the Holocene warm interglacial, using either 

divergence rate: t range 44,453-420,168 y. a.; 95% CI range 21,884-702,195 y. a. Large 

overlapping intervals around expansion dates did not allow for definitive distinctions 

between (sub-)haplogroup expansions, but it might be hypothesized based on the mean 

estimates of T, that haplogroup A expanded most recently (102,240-44,453 y. a.; other 

haplogroups between 420,168-132,018 y. a. ), and represents the most extensive 

population expansion evidenced by the largest star-burst in the network; contained the 

greatest number of radiating haplotypes (54). 

To understand patterns of historical gene flow and random genetic drift of 
European P. ariasi, dependence between genetic and geographical distance was 

modelled using flies associated with predominating cyt b haplogroup A to eliminate the 

effects of multiple haplogroup histories. Pairwise F5T estimates for genetic 
differentiation had "very great" values (> 0.25; Wright, 1978) signalling high levels of 
inter-population genetic variance in: cyt b-A, -0.0340 to 0.5642; EF-la-A, -0.0247 to 

0.7300; AAm20-A, -0.0296 to 0.5401; and AAm24-A, -0.0302 to 0.7678. 

Genetic differentiation was observed between Portugal, NW Spain and N Massif 

Central (including Lot and Rhone valleys reflecting their leading-edge effect) compared 

with all other populations: defined by "great" (0.15 < Fsr < 0.25) and "very great" (> 

0.25) Fsr estimates. Conversely populations in the French Pyrenees with NE Spain 

showed gene flow across this region: genetic differentiation was rarely 
"great"/significant. 

To summarize, FsT > 0.25 with P<0.05: cyt b-A [NW Spain vs. all populations 
except NE Spain, E Pyrenees (CAT), Massif Central (CTU, ROQ); Lot vs. Massif 
Central (SPV, SAM 13)], EF-Ia-A [Portugal vs. C Pyrenees (HP2), E. Pyrenees (PAS), 
N Massif Central (SAM13), Lot; NW Spain vs. E Pyrenees (PAS); N Massif Central 
(SAM13) vs. all but NW Spain, E Pyrenees (IRL07), S. Massif Central (SPV); Lot vs. 
all except NW Spain, E Pyrenees (IRL07), N Massif Central (SAM13)], AAm20-A 
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[Portugal vs. all populations; NW Spain vs. Central Pyrenees and 6/13 other locations], 

and AAm24-A [Portugal vs. all populations but NW Spain; NW Spain vs. 9/14 French 

populations; plus Lot vs. all except Central Pyrenees (HP2), E Pyrenees (PAS, ARQ), S 

Massif Central, N Massif Central (SAM13)] (Appendix 2.15). 

Globally there was no relationship between genetic and geographical distance 

(IBD) at cyt b-A, assessed by a Mantel test fitting FsT/(1-FsT) against distance (P > 

0.05) (Table 2.12), a likely consequence of higher than expected number of shared 

haplotypes between Portugal and other populations in Iberia and France (black oval 

Figure 2.8a; Appendix 2.15a). In contrast, IBD was supported by Mantel tests (P < 

0.05) for each of the three nuclear loci (Figure 2.8b) using haplogroup A flies, however, 

for EF-la only 6.5% of the genetic variation was associated with geographical distance 

(R2 = 0.0648). 

As IBD and population sub-division are not always mutually exclusive, (Mills et 

al., 2007) association of genetic variation by geographical distance was supported for: 

cyt b-A within the Massif Central (R2 = 0.47, Mantel test P=0.008), and all three 

nuclear loci showed positive yet statistically non-significant association (P > 0.05), the 

latter a similar trend in the E Pyrenees (Table 2.12). Yet for cyt b-A, to merge these 

regions gave no support for IBD, linear regression line R2 = 0.0000 (yellow symbols 

and black line in Figure 2.8a), and IBD was also not supported (R2 = 0.0002, P=0.211) 

between the E Pyrenees and the southern Massif Central (Table 2.12). In the latter 

within and between regional geographical distances were comparable, however, 

pairwise genetic distance was relatively higher than expected by geographical distance 

alone - indicative of a step-change/genetic discontinuity between these two regions. In 

contrast to the Massif Central gene flow, not IBD, was demonstrated along the Pyrenees 

at cyt b-A (R2 = 0.1157; P>0.05), nuclear gene analyses being concordant. 
Demographic population structure analysis of genetic variance was implemented 

using hierarchical AMOVA for the more polymorphic cyt b. Support was shown for 

Europe sub-divided from Morocco with further sub-structure between populations 

within regions (percentage variation among regions = 56.0%, P<0.05 and within 

regions = 6.57%, P<0.001). A Mantel test supported the correlation in fitting genetic 
distance ((b51/(1-(DST) to correlate with AMOVA result, FST substituted for (DST) to 

geographical distance (P = 0.006) between pairwise comparisons of flies from Europe 

and Morocco. This result was confirmed by dbRDA analysis, where a marginal test 

showed a significant relationship between genetic distance and geographical distance or 

87 



Table 2.12 Testing the association between genetic and geographical distance between 
P. ariasi populations (flies associated with cyt b haplogroup A only) is according to 
predictions of IBD: fitting estimates of FsT/(1-FsT) to geographical distance (km). 
Significance permuted using a Mantel test; *P<0.05, ** P<0.01 (GENEPOP v4.0). 

Fitting FsT/(1- FST) to distance Fitting FST/(1-FST) to In distance 

Population region; locus a b P (c>o) a b P (c>o) 

Iberia and France; cyt b 0.0513799 0.00013665 0.146 -0.18486 0,05216799 0.146 
Iberia and France; AAm20 -0.1113924 0.00085378 0** -1.04137 0.2289904 0** 
Iberia and France; AAm24 -0.0756238 0.00068608 0.004* -0.82515 0.18440977 0.004* 
Iberia and France; EF-la 0.0943249 0.00016258 0.035* -0.21804 0.06721853 0.035* 

MC; Cyt b -0.0205183 0.00058778 0.008** -0.16966 0.04932542 0.008** 
MC; AAm20 -0.0066951 0.00015263 0.071 -0.03658 0.01155986 0.071 
MC; AAm24 -0.0239628 0.00027105 0.071 -0.08353 0.02186348 0.071 
MC; EF1a 0.0619743 0.00043 0.86 -0.12811 0.05431634 0.86 
EP; cyt b -0.0607589 0.00118921 0.098 -0.21366 0.05613781 0.092 
EP; AAm20 -0.0113186 0.00016905 0.547 -0.02703 0.00649227 0.535 
EP; AAm24 0.110839 -0.0015125 0.921 0.355786 -0.083871 0.916 
EP + SMC; Cyt b 0.0392774 0.000295 0.211 -0.06147 0.0295631 0.211 
EP + SMC; AAm20 -0.0026529 0.00020919 0.644 -0.04186 0.01304208 0.644 
EP + SMC; AAm24 0.0434225 -0.0006295 0.984 0.122729 -0.02974237 0.984 
EP + SMC; EF1a 0.008633 0.00058673 0.356 -0.10714 0.0381856 0.356 

Legend EP = Eastern Pyrenees; MC = Massif Central (including Lot and Rhone valleys); SMC 
= southern Massif Central. 

Figure 2.8 Plots of genetic against geographical distance to test for isolation-by- 
distance: (a) locus cyt b haploýroup A; (b) 3 nuclear loci combined (haplogroup A). 
Extent of correlation given as R` values. 
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geographical region (54.0% variation explained, P=0.001 and 65.1%, P=0.001, 

respectively); the latter categorizing pairwise comparisons between Morocco/Europe 

separate from within Europe. When geographical distance was taken into account as a 

covariate in the multiple regression analysis, geographical region remained correlated to 

genetic distance (11.7%, P=0.001). 

2.3.6.2 Population genetic structure of geographical regions 

Diversity statistics demonstrated that northern Massif Central populations were 

leading-edge (Table 2.13). The fixation of cyt haplogroup A in the north caused 

significantly (non-overlapping) lower Hd (0-0363) for the Lot (LNP and RME) and 

Rhone valleys (DRAz4) compared to all other populations, and lower is (0.00011- 

0.00248) in the Massif Central, Lot and Rhone valleys, as compared to all other 

populations (HdO. 541-0.825 and it 0.00263-0.00839). EF-la was the only nuclear gene 

to show geographical variation in diversity, and this concurred with cyt b: highest in the 

south to lowest in the north [Morocco, Portugal and NW Spain (Hd 0.761-0.881, it 

0.00174-0.0271); NE Spain, French Pyrenees and southern Massif Central (Hd 0.427- 

0.659, it 0.00060-0.00138); and, northern Massif Central, Lot and Rhone valleys (Hd 

0.212-0.552, n 0.00027-0.00077)]. 

In contrast, this study showed P. ariasi from the French Pyrenees and nearby NE 

Spain not to be globally bottle-necked, and moreover a putative regional zone of 

secondary contact for P. ariasi or occupied by flies dispersing from one; evidenced by 

the highest it (0.00524-0.00839) for cyt b, likely a reflection of the sympatry of diverged 

haplogroups (A, B and Q. Central Pyrenees population HP2 was an exception to the 

Pyrenean trend, its low haplotype diversity (Hd 0.314) can be explained by its leading- 

edge location, on a plain distant from the preferred by P. ariasi forest foothills. Of the 

Pyrenean populations, HP2 also had the lowest Hd and it statistics for EF-la (Table 

2.13). 

Considering patterns in mtDNA haplotype distribution, in concert with 
knowledge of environmental determinants controlling P. ariasi distribution and 

abundance (i. e. altitude and habitat preference), led to the implementation of post-hoc 
AMOVA analysis to test support for geographical regional sub-divisions. Table 2.14 

details the sub-divisions tested, namely to seek support that the E Pyrenees and upland 
Massif Central are separated by an unsuitable low land corridor and the uniqueness of 
the E Pyrenees from its bordering regions. For cyt b although within population 
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variance was greatest, significant support for among region variance (P < 0.05) sub- 

divided the E Pyrenees, Massif Central (including Lot and Rhone valleys) and C 

Pyrenees/NE Spain (sub-divisions 1 to 4 Table 2.14). The validity of these regional 

grouping was supported by the homogeneity of within-region variances (P > 0.05) 

except for E Pyrenees from Massif Central (sub-division 2); but homogeneity was 

attained here by analyzing the south and north Massif Central independently (sub- 

divisions 5 and 6). Testing for population sub-division at the most polymorphic nuclear 

locus EF-la showed lower but consistent sub-division resolution than cyt b. Among 

regional variation was supported (P < 0.05) between all three regions, the E Pyrenees 

from N Massif Central, and Massif Central from C Pyrenees/NE Spain, however, all 

comparisons tested supported (P < 0.05) genetic heterogeneity both within regions and 

populations. 
Mismatch distribution was used to investigate the occurrence of sudden 

demographic expansion of cyt b haplogroups in those geographical regions supported 

by AMOVA: only two haplogroups (A and B) were used as these had sufficient 

numbers for these tests. For haplogroup A, the C Pyrenees plus NE Spain, E Pyrenees 

and the N Massif Central showed unimodal mismatch distributions (Figure 2.9) and 

significant signals of sudden expansion (Raggedness index P>0.05) (Table 2.15). 

Using estimates of tr the expansions began mainly during the last glacial period 

(110,000-12,000 y. a. ), except for in the N Massif Central, which dated to the Holocene 

using a 2.3% mutation rate (0-12,849 y. a. ). Haplogroup B was only investigated within 

the E Pyrenees, where sub-haplogroup B05 was not expanding (Raggedness index P< 

0.05), whereas sub-haplogroup B04 (Table 2.11, labelled "CB B04") was and estimates 

of T dated this event over three-fold earlier preceding the last glacial (420,168-182,682 

y. a. ) than any haplogroup A regional expansion (123,389-0 y. a. ), however, confidence 

intervals between haplogroups overlapped. 
Analysing all P. ariasi, following the cyt b result (above), globally IBD was also 

supported at all nuclear loci (P < 0.05 Table 2.16 and Figures 2.10 a, b, c), but for EF- 

Ia and AAm24 less than 32% of the genetic variation was associated with geographical 
distance (R2 = 0.1463 and 0.3213, respectively). Inter-regional comparisons did not 

support the overall results: EF-la showed a considerable amount of variance around the 

regression line between pairs of populations between the Pyrenees and NE Spain with 

the Massif Central including Lot (SAM13, LNP and RME; data points FsT/(1-Fsr) > 

0.25 and < 400 km; Figure 2.10a); and for locus AAm24 statistical outliers (defined by 
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a z-test) included pairwise comparisons between the two Lot populations (LNP and 

RME) with outgroup CHR (Figure 2.10b). Locus AAm20 was monomorphic in 

Morocco, however, non-shared haplotypes still allowed this locus to follow IBD 

predictions (Figure 2.1Oc). 

IBD was also used as an exploatory tools to infer alternative dispersal pathways 

circum-Pyrenees, but there was no greater statistical support for migrations through the 

western vs. eastern coastal foothills. Failure of this result is likely to be of consequence 

of scare sampling south of the Pyrenees. Observation of significance was the same for 

both models of dispersal for all results: one-dimensional or two-dimensional habitats 

estimated by FsT/(1-FsT) against geographical distance or log distance, respectively. 
Tests were conducted to ascertain whether the effects of IBD were sufficient to 

explain AMOVA supported geographical regionality of the E Pyrenees and N Massif 

Central. At cyt b, marginal tests (DISTLM) also supported the correlation between 

genetic distance (bsT/(1- bST) and geographical distance (38% variation explained P= 

0.001) or geographical region (52%, P=0.001), when using data points categorised into 

two discrete classes either within the E Pyrenees/N Massif Central vs. between region 

comparisons. Eliminating geographical distance by taking it as a covariate, a dbRDA 

analysis supported the AMOVA obtained sub-structure; categorization into within or 
between regional comparisons remained significantly (16%, P=0.001) correlated to 

genetic distance. A result which supported the Carcassonne corridor as a habitat barrier 

between these two regions. At EF-la the same comparison showed significant 

correlation between genetic distance and geographical distance (16%, P=0.008), but 

not for categorising regional pairwise comparisons (< 1%, P= 1). This result might be 

explained by the confounding effects of bottle-necked LOT populations on within N 

Massif Central data. Further sampling would be needed to understand fully the observed 

regional effects shown in the AMOVAs. 
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Table 2.14 Testing for geographical regional population sub-structure by hierarchical 
AMOVA using 7a priori sub-divisions. F Indices, percentage variation and P-values 

given for cyt b, P-values only for EF-la. Calculations used P. ariasi associated with all 
cyt b haplogroups. Significant P values after 16,000 permutations: *<0.05, ** < 0.01 
***<0.001 (ARLEQUIN v3.11). 

Sub-division tested 
Cb 
df F Indices % 

variation 
P- value 

F-F-1a 
P- 
value 

1. E Pyrenees vs. 
Massif Central vs. 
C Pyrenees & NE Spain 
Among regions 2 0.18494 18.49 <0.001*** * 
Among pop within regions 13 0.01829 1.49 0.07218 ± 0.0026 *** 
Within pop 371 0.19984 80.02 <0.001*** *** 
2. E Pyrenees vs. 
Massif Central 
Among regions 1 0.25422 25.42 <0.001*** 0.076 
Among pop within regions 11 0.02525 1.88 0.0497 ± 0.0023* *** 
Within DOD 306 0.27305 72.69 <0.001*** *** 
3. E Pyrenees vs. 
C Pyrenees & NE Spain 

Among regions 1 0.08231 8.23 <0.05* 0.170 
Among pop within regions 7 0.01963 1.80 0.11673± 0.0034 *** 
Within pop 234 0.10033 89.97 <0.05* *** 
4. Massif Central vs. 
C Pyrenees & NE Spain 

Among regions 1 0.09306 9.01 <0.001*** * 
Among pop within regions 8 0.00390 0.38 0.22307± 0.0039 *** 
Within pop 202 0.93562 90.61 <0.05* *** 
5. E Pyrenees vs. 
N Massif Central 
Among regions 1 0.24455 24.46 < 0.01** * 
Among pop within regions 9 0.02714 2.05 0.05842 ± 0.0022 *** 
Within pop 260 0.26505 73.49 < 0.001 *** *** 
6. E Pyrenees vs. 
S Massif Central 
Among regions 1 0.18052 18.05 < 0.05* 0.676 
Among pop within regions 6 0.02829 2.32 0.09099 ± 0.0028 *** 
Within pop 215 0.20370 79.63 <0.001*** *** 

Legend Populations in geographical regions: eastern (E) Pyrenees, ARQ, CAT, IRL07, PAS, 
TUL; northern (N) Massif Central, LNP, RME, SAM 13, DRAz4, ROQ; southern (S) Massif 
Central, CTU, SPV; central (C) Pyrenees, HPI, HP2; northeast (NE) Spain, TRJ. P-value 
represents the significance of the variance components and DST statistics tested under a 
permutation approach, whose null is panmixia at the different levels of hierarchy. 
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Table 2.15 Mismatch distribution statistics for P. ariasi cyt b haplogroups A (CB_A) 

and B (CB_BN) by geographical region supported by AMOVA. Sudden demographic 

expansion detected when significance of Raggedness index P>0.05. Time elapsed 
since beginning of expansion event (t) calculated by i= 2ut. 95% confidence intervals 

of ,r were estimated around mutation rates 2.3% and 1% at a=0.05. Generation time = 
1 per annum; y. a. = years ago. 

CB_A 
Geographical NE Spain + CB_A CB 

_A 
CB_B05 

region C Pyrenees E Pyrenees N MC E Pyrenees 
Raggedness 
index 0.08447 0.16437 0.16080 0.19644 
Raggedness P 0.7717 0.4193 0.9995 0.0474 
Tau (t) 0.719 0.482 0.00 1.127 

(0.00-1.43) (0.26-0.76) (0.00-0.211) (0.52-2.02) 
t 2.3% (y. a. ) 43,783 29,351 0.00 

(0-87,078) (15,832-46,279) (0-12,849) NA 

t1% (y. a. ) 100,700 67,507 0.00 NA 
(0-200,280) (36,415-106,443) (0-29,551) 

Table 2.16 Testing the association between genetic and geographical distance between 
P. ariasi populations is according to predictions of IBD: fitting estimates of FsT/(1- Fsr) 
to geographical distance (km). Significance permuted using a Mantel test; *P<0.05, 
** P<0.01 (GENEPOP v4.0). 

Fitting FsT/(l-FST) to distance Fitting FsT/(1-FST) to In distance 

Population region; locus abP (c>o) abP (c>o) 

All populations; Cyt b 0.059483 0.0002576 0.009** -0.28448 0.08250372 0.015* 
All populations; AAm20 -0.1172216 0.00103504 0** -1.32029 0.30024913 0** 
All populations; AAm24 0.0490214 0.00057115 0** -0.75881 0.19218457 0.001** 
All populations; EF1a 0.1795947 0.00018567 0.003** -0.1988 0.08365327 0.003** 
EP + NMC; Cyt b 0.0353954 0.00046752 0.008** -0.10283 0.04502734 0.005** 
EP + NMC; EF-1 a 0.0705571 0.00134991 0.03* -0.24956 0.11510768 0.02* 

Legend EP = Eastern Pyrenees; NMC = northern Massif Central (including Lot and Rhone 
valleys) 
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Figure 2.9 Mismatch distributions for cyt b (sub-)haplogroups A and B by geographical 
region. Bars represent observed number of nucleotide differences between pairs of 
individuals; curves correspond to the mismatch distribution fitted to the data under an 
expected model of sudden demographic expansion (ARLEQUIN v3.11). 

900 
800 
700 

600 

500 

400 
300 

200 

100 

0 

(; Ei A C; f'yiý ncý s+ Nf_ `pain 

5000 
CBANMC 

450C 
4000 
3500 

300( 
250 

200 

1501 
100( 

-r- 
45 

CB 805 F Pyrenees 

iF 

0 

4000 
yrenees 

-- - 

3500 

3000 

2500 

2000 

1500 

1000 

500 

234 

500 
CB B04 F Pyrenees 

450 

400 

35( 
301 

250 
20( 
151 

100 
5(i 

U 23 

Legend Geographical regions: central (C) Pyrenees; northeast (NE) Spain; eastern (E) 
Pyrenees; north (N) Massif Central (MC). 

u145 



Figure 2.10 Plots of genetic against geographical distance between populations of P. 

ariasi. (a) EF-la; (b) AAm24; (c) AAm20. Extent of correlation given as R2 values. 
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2.4 Discussion 

This chapter investigated for the first time the temporal and geographic 

population structure of P. ariasi, for which specimens were sampled from across its 

South-North range. The populations sampled were confirmed to represent a single 

species, using both the phylogenetic and biological species concepts, with sufficient 

genetic diversity for investigating past divergences and population expansions in 

southern France and south of the Pyrenees. Such population genetics were not 

invalidated by using markers under significant positive directional or balancing 

selection or by the presence of cryptic sibling species, which were revealed neither by a 

combination of phylogenetic analyses (Bayesian, ML, MP, MP-networks) of mtDNA 

cyt b and three nuclear loci, nor by testing for reproductive isolation of sympatric 

European populations between the most divergent mtDNA genetic lineages (cyt b 

haplogroups A and B) or overall. The cyt b results resembled the nested 

phylogeography of category V (Avise et al., 1987): some haplogroups widespread 

(haplogroup A), while allied (genetically continuous) haplogroups are localized 

(haplogroups B around the Pyrenees and F in Morocco). Multiple cyt b haplogroup 

genetic divergences (1,254,492-376,757 y. a. ) were revealed to have occurred within the 

Pleistocene epoch (2,588,000-10,000 y. a. ) and, at the species northern leading-edge, 

demographic expansion is likely to have occurred during the warmer Holocene 

interglacial. 

2.4.1 Locus neutrality and clock validity 
Confidence that the population structure investigated described polymorphisms 

at four selectively neutral loci was obtained by phylogenetic and population genetic 

tests (PAML CODEML, MK test and Tajima's D statistic), which sought signals of 

long-term and recent selection. As expected for conserved protein-coding loci, evolution 

was driven by purifying selection pressures (Zhao et al., 2003). However, this would 

not confound population inferences, but rather be of detriment in respect to the level of 

genetic variation accumulated. 
Dates were estimated assuming a `strict' molecular clock for each locus, which 

Drummond et al. (2006) argued to be biologically unrealistic and less appropriate than a 

`relaxed' clock. Moreover, others have argued that it is invalid to extrapolate mutation 

rates across different evolutionary time-scales (Ho et al., 2005; Penny, 2005). However, 

Weir and Schluter (2008) supported the use of a 2.1% mutation rate for cyt b, showing 
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its approximate maintenance over a 12 m. y. interval across numerous avian taxonomic 

orders. As Phlebotomus sandflies lack both outgroup and ingroup fossil records no rate 

curve could be estimated and uses of biogeographical calibration points are 

accompanied by their own confidence error (Esseghir et al., 1997). Although 

Phlebotomus clock calibration was not possible, it was still valuable to estimate 
divergence times. I compensated for the lack of an accurate clock by the utilization of 

two standard mtDNA mutation rates (2.3% and 1%) and two sandfly generation times 

(1 or 3 p. a. ). It follows that such a method for dating is approximate, and thus 

conclusions are discussed in the context of broad time-scales. 

2.4.2 Quaternary genetic divergences and population expansions 
Dating of coalescence and divergence events of P. ariasi by MDIV were 

consistent with the branching order of the Bayesian phylogeny (Figure 2.2) as supported 
by the parsimony network (Figure 2.4): haplogroup B branched first some 1.2 m. y. a- 
377 k. y. a., and the other branch (macrohaplogroup A) showed poor lineage sorting over 

a similar period. Coalescence and divergences were dated to within the Pleistocene: 2.2 

m. y. a. -660 k. y. a. and 1.2 m. y. a-380 k. y. a. for 1% and 2.3% mutation rate, respectively, 

at 1 generation p. a. Dates are one third less for 3 generations p. a. and thus remain within 
the Pleistocene epoch (2,588,000-10,000 y. a.; Gibbard and van Kolfschoten, 2004) 

when speciation has been recorded for other organisms. Avise et al. (1998) calculated 
speciation duration within vertebrates to require at least two million years on average, 

and Ribera and Vogler (2004) showed most phylogenetic species of endemic Iberian 

water beetles to have diverged within the Pleistocene less than 1 m. y. a., with a few 

species pairs corresponding to as little as -80,000 y. a. Both studies were based on a 

standard 2% mtDNA clock, comparable to the lower limit used in this study of 2.3% 
(Brower, 1994). Bayesian and ML cyt b gene trees indicated the presence of cryptic 
speciation in P. ariasi through the support of two primary monophyletic groups, 
haplogroups B and macrohaplogroup A. However, contrary to these results a thorough 
investigation rejected cryptic speciation of P. ariasi: nuclear gene phylogenies showed 
no obvious lineage sorting, although whether these markers are sufficiently 
polymorphic to resolve cryptic species or species complexes is questionable (Esseghir et 
al., 2000; Parvizi and Assmar, 2007); single parsimony networks for each locus were 
reconstructed; and no evidence of reproductive isolation/biological speciation in P. 

ariasi was supported. In fact, biological speciation was not tested among water beetles, 
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and so some might only be `phylogeographic species' with morphology fixed regionally 

by limited dispersal. In summary, P. ariasi supports the argument that although intra- 

specific divergence was initiated during the Pleistocene, which drove changes in 

population structure through species tracking favourable habitats (Coope, 1994; Hewitt, 

1996), it was not a time of significant evolutionary divergence by adaptation (Knowles 

and Richards, 2005). 

P. ariasi offers an intra-specific population history consistent with cold 

intolerant western Palaearctic species, where results revealed support for multiple 

refugia, multiple expansion events, and a zone of post-glacial secondary contact (here, 

north of the Pyrenees), in response to the Pleistocene's cyclical climate changes. The 

Pleistocene is reported to have generated significantly higher numbers of intra-specific 

haplogroups (some in Europe) than either the Pliocene or Miocene (Avise et al., 1998). 

P. ariasi supports this, evidenced by five mtDNA divergence events (haplogroups) 

where the data indicated their restriction in multiple allopatric refugia "a result 

consistent with the refugia-within-refugia scenario (Gomez and Lunt, 2006). 

Five cyt b haplogroups were hypothesized based on Bayesian support for the 

grouping of haplogroups A-C and E, and non-overlapping lower within-haplogroup 

differentiation versus higher between-haplogroup divergence. Avise et al. (1987) 

recognized haplotype grouping (a haplogroup) when the number of mutational steps 

between groups is greater than the maximum differentiation within a group. A similar 

approach of pairwise sequence difference within and between haplogroups was used by 

Naderi et al. (2007) when discussing their standard criteria for defining goat mtDNA 

haplogroups. However, Naderi noted that this threshold may be inadequate, because 

some haplotypes may lie at the boundary between within- and between-haplogroup 

pairwise differences, as observed in P. ariasi. 
It is reported that intra-specific phylogenetic clades can form in a continuously 

distributed and spatially structured species, and not only as a consequence of 

geographical barriers to dispersal, cryptic species boundaries or recent contacts between 

historically allopatric populations (Irwin, 2002). However, at least two of the 

haplogroups reported in this chapter could reasonably be associated with 
biogeographical boundaries that isolate Iberia - the Gibraltar Straits in the south 
(haplogroup F), the Pyrenees in the north (haplogroup B) - and known refugia of 

similarly distributed species (Esseghir et al., 2000; Lumaret et al., 2002). However, as is 

often cited, caution should be taken when inferring a species' history based on a single 
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genealogy, where ideally independent estimates of the species tree should be considered 

in combination within a coalescent statistical framework (Ballard and Whitlock, 2004). 

All cyt b coalescence and divergences were long after the final opening of the 

Gibraltar Straits, 5.5-4.9 m. y. a. (Steininger and Rogl, 1984), and so any vicariant 

evolution was caused by other barriers, probably related to the climate oscillations that 

heightened in the early Pleistocene (Hewitt, 2004a). Moreover, the lack of 

discontinuous genetic variation between haplogroup F (Morocco) from European 

haplogroups (e. g. phylogenetic polytomy and reticulate network loops within 

macrohaplogroup A) argues against the Gibraltar Straits as a long-term zoogeographical 

barrier to gene flow (category 1; Avise et al., 1987). Only more widespread sampling 

might indicate the origins of the Pleistocene "Eve" of P. ariasi and if haplogroup F is 

restricted to the Atlas region where it was found. However, the current phylogeographic 

distribution of European/Moroccan haplogroups is only possible if at least one made an 

intercontinental crossing. Dispersal across the Gibraltar Straits has been identified in 

flying insects (Schmitt et al., 2005; Lozier and Mills, 2009). However, P. ariasi is not a 

strong flier, with wind speeds > 1.5 m/sec and > 4-5 m/sec inhibiting and stopping flight 

(Killick-Kendrick et al., 1984). It is therefore more likely that movement of P. ariasi 

across the Gibraltar Straits occurred during times when Pleistocene climates caused 

short periods of (incomplete) drying, resulting in vegetated islands that permitted 

stepping-stone dispersal (Flemming et al., 2003; Cosson et al., 2005; Carranza et al., 
2006). 

Cyt b haplogroups did not correspond directly to geographical populations. 
Therefore, the approach of O'Loughlin et al. (2007) was followed by constructing 

separate mismatch distributions for unstructured (sub-)haplogroups, in order to infer 

whether there had been expansions experienced by each lineage rather than assessing 

the structure of mixed-ancestry populations. The' modelling of sudden (rapid) 

demographic expansion only, was supported for four cyt b (sub-)haplogroups using the 

predictions of mismatch distribution (haplogroups A, C, F and sub-haplogroup CB_B04 

of haplogroup B; Table 2.11). Despite the large confidence intervals for dating, 

expansions occurred much later than their divergences, and are likely to have occurred 
in the Pleistocene. The oldest population expansion estimate of P. ariasi (CB_B04 ca. 
420 k. y. a. ) related its post-glacial re-colonization in Iberia/France to MIS 12 (some 433 

k. y. a. ), one of the two coldest Pleistocene glacials as evidenced by the highest 8 180 

benthic stack (Lisiecki and Raymo, 2005). Times of haplogroup expansions and their 
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current distributions suggest a later geographical replacement of haplogroups B and C 

by A throughout northern Iberia and France. Haplogroup A predominates to the 

exclusion of all other haplogroups in the uplands of the Massif Central, where the 

species is most unlikely to have survived at the LGM, and this suggests a post-glacial 

spatial expansion northwards in the Holocene. Immigration into France was more likely 

from NE Spain, based on its broad littoral region that has often been warmer than NW 

Spain (Delmas et al., 2008), regional similarities at all loci, and low F5T differentiations 

that grouped NE Spain and southern France apart from those of NW Spain. A similar 

distribution pattern was observed in the phylogeography of Quercus ilex chlorotypes 

(Lumaret et al., 2002), a floral indicator species for P. ariasi (Rioux et al., 1984). 

Although mtDNA detected significant changes to population structure of P. 

ariasi during the Pleistocene, no discrete lineages were resolved at any nuclear loci. The 

unresolved network pattern observed could be explained if the isolation event(s) that 

promoted divergence of fast-evolving mtDNA cyt b were not of sufficient duration to 

cause discrete lineage sorting in slower evolving nuclear markers. Then, secondary 

contact during post-glacial re-colonization would cause genetic homogenization. 

Indeed, IBD was supported for nuclear markers. It was often shallow, with the 

exception of comparisons with leading-edge populations, which is consistent with the 

paradigm of northern purity for temperate species (Hewitt, 2004a). 

2.4.3 Refugial populations north of the Pyrenees during the late glacial period 

Cyt b phylogeographic structure was observed where haplogroup B was found to 

be omnipresent in northern Spain and Pyrenean France, but absent in Morocco, Portugal 

and the northern Massif Central. Sub-haplogroup B CB B04 was limited to the E 

Pyrenees only, and its expansion date (420-183 k. y. a. ) was early enough for it to have 

reached the northern slopes of the Pyrenees before the last glacial period, 110-12 k. y. a. 
(Gibbard and van Kolfschoten, 2004) and to have been an endemic ever since. 
Alternatively, the current endemicity of this sub-haplogroup in the E Pyrenees might be 

explained by its arrival in a phalanx-type mass immigration of all haplogroups (A-C) at 
the start of the current interglacial, probably from NE Spain as previously reasoned. 
However, this is unlikely because of the absence of sub-haplogroup B CB B04 in N 
Spain and its older and disparate expansion time. This study suggests CB B04 is more 
likely to be a marker for a population that survived north of the Pyrenees during one or 
more glacial periods, before its refuge was invaded more recently and rapidly by 
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abundant interglacial dispersers with haplogroup A. Similarly, it is also possible that 

sub-haplogroup CB_B05 and haplogroup C are markers for northern refugial 

populations, but the sampling in this thesis did not allow for their refugia to be inferred. 

As observed for sub-haplogroup B CB_B04, endemic or relict populations have 

not always been the source of major post-glacial re-colonizations (Bilton et al., 1998; 

Petit et al., 2003; Segarra-Moragues et al., 2007). Endemic/relict populations are often 

much older than any other population in their range, because they have often persisted 

longer in isolation (Hampe and Petit, 2005). However, caution must be exercised when 

inferring a refuge in southern France, because of the sparse sampling of P. ariasi in 

Iberia. The ability of P. ariasi to survive in situ north of the Pyrenees during glacial 

periods can only be inferred from its current bioclimate envelope. Its hibernating larvae 

can survive for weeks at 2-7°C (Ready and Croset, 1980), and the oaks characteristic of 

its favoured humid and sub-humid Mediterranean bioclimates (Rioux et al., 1984) left 

pollen traces of their survival in southern France during the last glacial (Beaudouin et 

al., 2007). However, these oaks flourish in colder climes (Deciduous white oak, Q. 

pubescens) and drier climes (Evergreen, Q. ilex) (Jalut et al., 2009) than P. ariasi, and 

there are doubts about the interpretation of the pollen record (Calvet, 2004). The snow- 

line on the northern face of the E Pyrenees is now much higher (2,700-2,800 m. a. s. l. ) 

than it was at the last glacial maximum, 1,400-1,500 m. a. s. l. (Calvet, 2004), when the 

upper bound of P. ariasi abundance could have dropped from the current ca. 1,500 

m. a. s. l. (Rioux and Golvan, 1969) to near sea-level, as it tracked suitable habitats driven 

by the oscillating climates. Also the Pyrenees is a known region of endemics/relicts of 

temperate species, a supported refugium within the Atlantic-Mediterranean 

differentiation centre (e. g. Deffontaine et al., 2009; Gomez and Lunt 2006 and 

references within). The current study suggests this region was a refugium for a sub- 

tropical species. Moreover, the current range of haplogroup B CB_B04 could be limited 

by the local environment, because the Mediterranean climate does not extend far to the 

west of the river Aude (Calvet, 2004). 

2.4.4 Recent post-glacial re-colonizations not blocked by refugial populations 

north of the Pyrenees 

The route or routes of dispersal into France from Iberia could not be ascertained 
through IBD analysis, as sampling in Iberia was insufficient. Hewitt (1996; 1999) 

highlighted the effects of different modes of dispersal on the genetic diversity of re- 
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colonizing populations. This study indicates that the dispersal mode of P. ariasi has 

often been phalanx - along a broad dispersal front, typified by IBD and the mixing of 

cyt b haplogroups. Long-range pioneer dispersal (leptokurtic) often produces small 

fragmented pockets of genetically homogeneous populations with high inter-population 

differentiation (Ibrahim et al., 1996). This was not typical of P. ariasi, which showed 

large geographical regions of homogeneity e. g. no significant genetic differentiation 

(FsT) and shallow IBD or complete gene flow for most loci across the French Pyrenean 

slopes or within the Massif Central. Long-range pioneer dispersal would not be 

expected of P. ariasi because of a flight range limited to 0.1-2 km (Killick-Kendrick et 

al., 1984), and long-distance gene flow has been observed in other sandflies in Europe 

e. g. populations of P. perniciosus sampled over an area of 500 km are genetically 
homogeneous (Aransay et al., 2003). Cyt b haplogroups were sympatric in the northern 
Pyrenees, a zone of secondary contact. Phalanx-like dispersal of P. ariasi is least likely 

to have been blocked by small refugial or relict leading-edge populations that had 

survived glacial periods, and this fits with finding cyt b haplogroup A predominating 

over haplogroups B and C in the E Pyrenees. The re-colonization of P. ariasi could 
have kept pace with that of its associated woodland, which spread at a rate of 50+ m. p. a. 
(Hewitt, 1999), and for holm oaks produced an Iberia-Italy hybrid zone in the Rhone 

valley (Lumaret et al., 2002). 

2.4.5 Monopolization currently blocking the northward spread of Pyrenean 

sandflies and potentially of leishmaniasis 

This study suggests that cyt b haplogroup A is a marker for the most recent 
(128-36.9 k. y. a. ) and dominant expansion of P. ariasi in Europe, and this probably 

originated south of the Pyrenees because of the high frequency of this haplogroup and 
its modal haplotype (CB25) in northern Portugal and Spain. It predominates north of the 
Pyrenees, to the exclusion of all other haplogroups in bottle-necked, leading-edge 

populations (low Hd and n diversity of cyt b and EF-la) in the Massif Central and the 

nearby Lot and Rhone valleys. There was a step change in FST values between the E 
Pyrenees and the Massif Central for cyt b and EF-la, with the rarity of haplogroups B 

and C in the Massif Central being detected by AMOVA. The step-change observed 
between the Pyrenees and Massif Central, which was beyond the affects of IBD as 
shown in a dbRDA and is likely to be explained by the absence of a forest structure 
suitable for P. ariasi dispersal in the lowland corridor between them. 
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It could be hypothesized that the stepping stone dispersal across this corridor is 

being further blocked by the "monopolization" (Loeuille and Leibold, 2008) of the 

Massif Central by sandfly populations characterized by cyt b haplogroup A. Leading 

colonizers are believed to establish the allelic content of a `population', where they can 

act as a barrier to dispersal for later colonizers (Nichols and Hewitt, 1994). If flies of the 

Massif Central were found to be relatively poor dispersers or vectors, this would hinder 

the spread of zoonotic leishmaniasis to northern France. Actually, leishmaniasis foci in 

the Massif Central are distinctive, characterized by low diversity of regional L. infantum 

strains, high disease prevalence in domestic dogs (the reservoir), frequent cutaneous 

lesions but low prevalence of symptomatic visceral leishmaniasis in humans, and a 

preponderance of P. ariasi (Pratlong et al., 2004). Re-forestation of the lowland 

corridor between the two southern uplands might increase gene flow and alter the 

population structure characteristics of P. ariasi. The population differentiation of P. 

ariasi is unlikely to match that of P. perniciosus, because this alternative sympatric 

vector peaks at lower altitudes, in hotter and drier bioclimates (Rioux et al., 1984), and 
has two cyt b lineages (Iberia, Italy-N Africa) mixing in France (Perrotey et al., 2005). 
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CHAPTER 3 

No contemporary arms race involviniz the sandfly salivary peptide apyrase: 

implications for vaccination against Mediterranean zoonotic leishmaniasis 

3.1 Introduction 

The natural mode of Leishmania promastigote transmission is by regurgitation 

of the parasite (Schlein et al., 1992) in the saliva of infected adult female sandflies 

(Diptera: Psychodidae) into host haemorrhagic feeding pools (Shortt and Swaminath, 

1928; Ribeiro, 1987a; 1995). To counteract their host's protective haemostatic, 

inflammatory and immunomodulatory responses to capillary laceration, the female 

sandfly secretes a suite of potent pharmacological substances into her saliva (Ribeiro 

and Francischetti, 2003). In experimental models, these salivary peptides have been 

shown to change the course of Leishmania infection, either having a protective or 

exacerbating effect (e. g. Oliveira et al., 2008), and so might be used for vaccination 

against leishmaniasis (Valenzuela et al., 2001a; Palatnik-de-Sousa, 2008). The 

suitability of a candidate salivary peptide should be based not only on the knowledge of 

its effect on Leishmania, but also on the degree and nature of the evolutionary processes 

driving its natural genetic polymorphism. The aim of this chapter is to investigate the 

systematics and population genetics of the salivary peptide apyrase of P. ariasi and 

other Phlebotomus, which in the former produces a delayed-type hypersensitivity 

(DTH) in a mouse model (Oliveira et al., 2006), a cellular immunity consistent with 

protection against Leishmania (Kamhawi et al., 2000). 

The enzyme apyrase has the most abundant transcript in a salivary gland cDNA 

library of P. ariasi (Oliveira et al., 2006). The apyrases are ubiquitous in vertebrates, 

plants and non-haematophagous arthropods, with a role in nucleotide catabolism (Sarkis 

et al., 1986). However, as a salivary peptide of haematophagous arthropods the apyrases 
(E. C. 3.6.1.5) are adapted to be secreted and function as a potent anti-platelet factor by 

hydrolysing di- and tri-phosphates, e. g. ADP and ATP, the central activators in host 

haemostasis that are released by both injured cells and during platelet aggregation 
(Ribeiro et al., 1987a; Marcus and Safier, 1993; Valenzuela et al., 1996; 1998). Highly 

active in the salivary glands of haematophagous arthropods that have evolved to blood 

feed independently (Grimaldi and Engel, 2005), the apyrase enzymes have been 

acquired by convergent evolution (Sarkis et al., 1986). Consequently the apyrases are 
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classified into three independent protein families (reviewed Champagne and 

Valenzuela, 1996; Hamasaki et al., 2009), the apyrase of sandflies being a member of 

the Cimex family, uniquely dependent on Ca2+ alone (Valenzuela et al., 2001b), and 

with homologues in human and mouse (Valenzuela et al., 1998). 

Experimental models have demonstrated the roles that salivary peptides of 

sandflies play in changing Leishmania pathogenicity. In rodent and dog models, 

immunization with sandfly saliva (or homogenate) or distinct peptides protects against 

Leishmania infections through a Thl-associated cytokine interferon-y (IFN-y) (DTH) 

cell-mediated immunity. Conversely, some peptides exacerbate parasite load and 

subsequently the course of infection and this is correlated with a humoral Th2- 

associated cytokine interleukin-4 response (Belkaid et al., 1998; MBow et al., 1998; 

Kamhawi et al., 2000; Oliveira et al., 2008; Collin et al., 2009). Immunization of rodent 

models by a DNA plasmid expressing apyrase of P. ariasi was mentioned above. 

However, the role of the apyrase of P. ariasi or any other Phlebotomus in such 

protection has not been investigated, perhaps as a consequence of research often 

focusing on peptides associated with a host antibody and TO response (Collin et al., 

2009), the former apyrase of P. ariasi has not been recorded to induce (Oliveira et al., 

2006). How anti-salivary immunity works is not fully understood, so an antibody 

response may not be integral for protection: immunity is suggested to occur through 

creating an unsuitable environment for Leishmania development or acceleration of 

specific anti-Leishmania immunity or a combination of both (Collin et al., 2009). 

Actually, sandfly salivary peptides are receiving attention as a component of 

anti-Leishmania vaccines, because they control pathogenicity and are a permanent 

feature in the natural transmission cycle. Anti-Leishmania vaccines have been 

experimentally developed using species-specific salivary peptides of two sandflies; New 

World Lutzomyia longipalpis and Old World P. papatasi. Anti-L. major peptides 

targeted include anti-MAX (Morris et al., 2001), and an SP15-DNA vaccine 
(Valenzuela et al., 2001a; Oliveira et al., 2008). In visceral leishmaniasis (VL) models, 
immunisation with salivary peptides of L. longipalpis in hamster (anti-LIM19) and dogs 

(anti-LJL143 and -LIM17 in the natural reservoir of VL) conferred protection and 

parasite killing by a TO with DTH response (Gomes et al., 2008; Collin et al., 2009). 

To date no studies have investigated the effects of an anti-apyrase vaccine, or any 

salivary peptide in vectors of Mediterranean ZVL. 
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Apyrase is potentially a broad spectrum vaccine, having been recorded across 

four genera/subgenera: Lutzomyia, Phlebotomus, Euphlebotomus and Larroussius 

(Anderson et al., 2006). However, like many salivary peptides its natural polymorphism 

among sandfly species and their geographical populations has not been well studied. 

The activity levels of salivary peptides can vary geographically (Warburg et al., 1994), 

can have high intra-specific amino acid divergence (Lanzaro et al., 1999) associated 

with differences in antigenicity (Milleron et al., 2004a), and can be weakly cross- 

reactive (Volf and Rohougovä, 2001). 

Two factors inform our understanding of the molecular evolution of salivary 

peptides, firstly their level of sequence evolution and secondly what processes drive 

their rate of change. An evolutionary arms race (presumed genetic) (Dawkins and 

Krebs, 1979) has been postulated between parasitic Leishmania species or strains and 

their mammalian hosts, or natural vectors (Ribeiro, 1987b; Handman, 1999; Beverley 

and Dobson, 2004). Although not proven, arms race scenarios in the sandfly peptide- 

host-Leishmania triad might be expected based on other insect-borne diseases, including 

tsetse fly-borne sleeping sickness caused by antigen-switching Trypanosoma brucei 

(Young et al., 2008) and anopheline mosquito-borne malaria caused by Plasmodium 

species with highly polymorphic surface antigens (Tetteh et al., 2009). 

Immunity genes evolving under a classical arms race model (e. g. Endo et al., 

1996; Jiggins and Kim, 2007) may show positive directional selection driving to 

fixation a succession of adaptive alleles characterized by elevated inter-specific 

nonsynonymous amino acid substitutions but a lack of intra-specific polymorphism 

(Hurst and Smith, 1999; Ford, 2002; Olson, 2002). Alternatively, an arms race driven 

by balancing selection (Spurgin and Richardson, 2010) will favour polymorphism with 

multiple adaptive alleles being maintained within a species' populations and giving rise 

to high heterozygosity and many ancient alleles (e. g. Gilbert et al., 1998; Garrigan and 
Hedrick, 2003). There is some evidence that sandfly salivary peptides are subject to 

selection. The presence of multiple maxadilan peptide alleles maintaining vector antigen 

polymorphisms of L. longipalpis was hypothesized to be driven by [balancing] selection 

as a strategy against host immune system response, but no statistical support for 

selection was presented (Milleron et al., 2004b). In contrast, adaptive evolution was 

rejected for the salivary peptide SP 15 of P. papatasi (Elnaiem et al., 2005), which may 

result from an incomplete analyses. 
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My literature review for this thesis found no studies that had characterized the 

genetic variation in the salivary peptides of a European sandfly species or a vector of L. 

infantum. Furthermore, no study to date has conducted an investigation at both the 

subgenus and population levels, in order to assess the contribution of neutral versus 

selective processes operating on a phlebotomine salivary peptide. The aim of this 

chapter was to investigate the genetic evolution of the salivary peptide apyrase, a 

peptide that could putatively modify parasite transmission. As the interaction between 

sandfly peptide-host-Leishmania may be subject to an evolutionary arms race through 

the adaptive pressures of cyclic antagonistic positive directional, or balancing selection, 

these types of selection were tested for. If apyrase is a potential salivary peptide based 

candidate for an anti-Leishmania vaccine, this study will contribute to the understanding 

of its molecular evolution both across Phlebotomus and within P. ariasi. 

This chapter's aims were: 
1. To design primers to target a fragment of apyrase that contained sites likely to 

be evolving under selection i. e. calcium and nucleotide binding sites (Dai et al., 
2004), ADPase sites (Yang and Kirley, 2004), and putative MHC class II T cell 

epitopes (Kato et al., 2006). 

2. To characterize this fragment of apyrase in nine Phlebotomus species, in 

addition to 20 natural populations of P. ariasi. 
3. To use selection tests, mainly based either on within-gene heterogeneity of 

nonsynonymous versus synonymous substitution rates or the allele frequency 

spectrum, to investigate (a) evidence of long-term evolutionary selection in 

apyrase of distantly related Phlebotomus taxa, and (b) evidence of selection in 

populations of P. ariasi potentially exposed to varying selection pressures 

associated with their differing ecological niches. 
4. To investigate the contribution of demography to the genetic variation of 

apyrase, by additionally characterizing markers cyt b and EF-la, loci that have 

shown no evidence to be subject to positive directional or balancing selection in 
P. ariasi. This was an objective because some statistical tests of selective 
neutrality assume demographic equilibrium, which is often violated in natural 
populations. 
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3.2 Materials and methods 

3.2.1 Specimen sampling and preparation 

The apyrase alignment of Phlebotomus species included: (i) GenBank 

accessions P. (Phlebotomus) papatasi (AF261768); P. (Phlebotomus) duboscqi 

(DQ834331, DQ834335); P. (Euphlebotomus) argentipes (DQ136150); P. (Adlerius) 

arabicus (EZ00063 1, EZ000632, EZ000633); P. (Larroussius) perniciosus (DQ192490, 

DQ192491); P. (Larroussius) ariasi (AY845193); (ii) novel apyrase sequences 

characterized in this thesis from flies or DNA provided by collaborators (see specimen 

donation acknowledgements, page 22), namely P. (Adlerius) brevis (3 flies), P. 

(Adlerius) halepensis (6 flies), and, from the subgenus Larroussius, P. major (3 flies), 

P. neglectus (7 flies), P. kandelakii (4 flies), P. perfiliewi (4 flies) and P. tobbi (4 flies); 

and, (iii) novel apyrase sequences characterized from P. perniciosus (6 flies), P. ariasi 

(471 flies) and P. (Transphlebotomus) mascittii (2 flies) from the collections made for 

this thesis. 

Investigation of population genetic variation of apyrase was evaluated using 

natural populations of P. ariasi collected from 20 locations in one or two summers of 
2005-2008. As well as the populations described in Chapter 2, two further populations 

were characterized: code MLQ (Le Bousquet, Aude, France, 43.0179 N, 1.8424 E) from 

a high altitude location (1114 m. a. s. l. ) in the northeast Pyrenees; and code PLB 

(Limbrassac, Aude, France, 42.7459 N, 2.1672 E) from a low altitude population (385 

m. a. s. l. ) in the northeast Pyrenees. Table 3.1 summarizes the population characteristics 
in relation to their varying natural environments: altitude as a proxy for temperature; 

forest fragmentation as a proxy for density/genetic bottle-necking; and, associations 

with hosts. 
Specimens were caught and stored as detailed in Chapter 2 section 2.2.1. 

3.2.2 Molecular characterization 

DNA extraction of sandflies was carried out according to Chapter 2. 

3.2.2.1 Polymerase Chain Reaction (PCR) amplification, purification and direct 

sequencing 
Loci cyt b and EF-la were characterized as described in Chapter 2. 
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Table 3.1 Population characteristics of P. ariasi molecularly characterized in relation to 
environment and hosts. 

Population 
Code N Location 

Altitude 
(m as I) 

Forest 
fragmentation General habitat host(s) 

AGH 17 Western Atlas, Morocco 1250 High Outside road-side wall 
CHR 24 Northern Portugal 499 High Inside rural dwelling: [poultry near] 
CSP 24 Northwest, Spain 585 - Outside rural dwelling: Canidae, Felidae, poultry 
HP1 27 Central Pyrenees, France 607 - 789 Intermediate Outside road-side wall 
HP2 19 Central Pyrenees, France 307 - 429 High Outside road-side wall 
PAS 54 Eastern Pyrenees, France 647 Low Outside rural garden: Canidae 
PLB 24 Eastern Pyrenees, France 385 High Inside farm: Canidae, Leporidae, poultry, Bovinae 
MLQ 35 Eastern Pyrenees, France 1114 Intermediate Inside farm: Bovines 
TUL 24 Eastern Pyrenees, France 467 Low Inside rural dwelling: Canidae, poultry 
IRL07 22 Eastern Pyrenees, France 421 Low Inside rural dwelling: Canidae 
ARQ06 44 Eastern Pyrenees, France 382 Low Inside/outside farm: Canidae, Bovines, Equidae 
ARQ08 23 Eastern Pyrenees, France 382 Low Inside/outside farm: Canidae, Bovinae, Equidae 
CAT 16 Eastern Pyrenees, France 600 - Outside farm: Bovinae 
TRJ 23 Northeast, Spain 332 High Inside farm: Leporidae [Canidae near] 
CTU 24 Southern Massif Central, France 358 Low Inside rural garden: Poultry [Leporidae near] 
SPV 24 Southern Massif Central, France 351 Low Inside rural dwelling: Canidae, Leproidae, poultry 
SAM13 24 Massif Central, France 510 - Garden wall 
DRAz4 23 Massif Central, France 100 Low - 
LNP 24 Lot, France 316 High Inside farm: poultry [Bovines and Leporidae near] 
RME 13 Lot, France 270 Intermediate Inside/outside farm: Canidae, Bovinae, Leporidae, poultry 

Table 3.2 Novel primers and PCR conditions for the amplification and direct 
sequencing of the apyrase gene fragment of P. ariasi and * other Phlebotomus species. 
(Tm = one-/or two-step annealing temperature. t Starting nucleotide in GenBank 
accession AY845193). 

Primer 
APY 

t 5' 
nt 

Primer sequence 5' - 3' Primer pair 
APY 

Tm 
°C 

MgCI2 
mM 

-1 F 110 CAACMAGATTCATCCCT TTYGC -1 F/ -3R* 52/56 1.5 
-3R 652 CCAATTTACRGCCTCATGCCA -1 FC/ -3R 63 0.7 

-1 FC 199 TATGGCGAATTGAAGGACAAC -1 FT/ -3R 60 0.5 
-1 FT 198 ATATGGCGAATTGAAGGACAAT -1 FC/ -3RCG 63 0.7 
-3RC 582 TTGACTCTTCCAATTGATG -1 FC/ -3RT2 63 0.7 
-3RT2 582 GCTGTATTGACTCTTCCAATTGATA -1 FT/ -3RCG 60 0.5 
-3RCG 564 GTTGGTGACTTCGCCTTCC -1 FT/ -3RT2 60 0.5 
-47G 136 ATCTCCGACTTGGACAAGAAG -47G/ -3R 64/62 1.0 
-161G 248 GTCAAAATCTTCACTACTTCACG -161 G/ -3R 64/62 1.0 
-474C 583 TGTATTGACTCTTCCTATTGAC -1 F/ -474C 64/62 1.0 
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Locus apyrase 
At the start of this thesis, a 1161 bp DNA sequence of P. ariasi (GenBank 

AY845193) had been isolated from a cDNA library constructed from salivary gland 

mRNA (Oliveira et al., 2006). No primers had been published for PCR amplification 

and direct sequencing of this apyrase. Four of the six least divergent sandfly apyrases in 

GenBank (2006) were aligned as ca. 1100 bp DNA sequences (data not shown) and as 

336 deduced amino acids (Figure 3.1): P. argentipes SP03 (GenBank accession 

DQ136150), P. ariasi SPO1 (AY845193), P. perniciosus SPOI (DQ192490) and P. 

perniciosus SPO 1B (DQ 192491). 

A `conserved' primer pair APY-1F with APY-3R was designed to target a 

fragment of apyrase 563 bp in length (including primers) from P. ariasi and P. 

perniciosus, namely amino acids 26-213 (Anderson et al., 2006) (Figure 3.2). The 

forward primer (APY-IF) annealed to the first conserved nucleotide section (22 bases) 

at the 5' of the gene, with 100% nucleotide similarity between the two species. The 3' 

terminus of the reverse primer (APY-3R) was positioned downstream of an insertion - 

codons 202 to 203 in P. argentipes and P. perniciosus but absent in P. ariasi - and 
included four well conserved codons (WHEA) in Old and New World sandflies and in 

Cimex (Anderson et al., 2006). The insertion was included as it might be potentially 
informative for investigating apyrase evolution. 

According to mutagenesis studies of homologues to Phlebotomus apyrases, the 

human calcium activated nucleotidases (CANs), the targeted fragment captured most 

sites essential to apyrases' anti-haemostatic function as a platelet aggregation antagonist 
(Figure 3.1): 9 out of 13 and 3 out of 6 nucleotide and calcium binding sites, 

respectively, (Dai et al., 2004); 3 out of 4 residues essential to nucleotidase activity, a 

single site known for ADPase nucleotidase function [of invertebrates] and 5 out of 5 

point mutations converting human apyrase to a potent anti-platelet aggregation agent 
(Yang and Kirely, 2004). It also contained 4 out of 6 MHC T-cell epitopes inferred for 

P. dubosqci (Kato et al., 2006). 

Nucleotide sequences were aligned and edited as described in Chapter 2 section 
2.2.3. Direct sequencing from the PCR product of conserved primer sequences showed 

genotypes with more than one ambiguous site. Therefore, allele specific primers were 
designed and associated PASA parameters optimized to preferentially amplify one allele 
over another, allowing unambiguous scoring of apyrase genotypes. PCR thermocycling 

parameters for all apyrase primers used a ̀ hot start' at 85°C, and an initial single 3 min 
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Figure 3.1 Amino acid alignment of GenBank apyrases from three Phlebotomus 
sandflies: Phlebotomus argentipes (DQ 136150); Phlebotomus perniciosus (DQ 192490), 
(DQ192491); Phlebotomus ariasi (AY845193). Conserved and similar amino acids 
shaded in black and grey, respectively. x= conserved forward (APY-IF) and reverse 
(APY-3R) primers. Functional sites have been reported for: nucleotide binding (b and 
calcium binding (b in the human homologues (Dai et al., 2004); after in vitro 
mutagenesis of the human homologue, 0 are essential to APDase activity, " single 
residue mutation from Glu to Tyr with high associated ADPase nucleotidase activity; 
and I (carets under sequence alignment) point mutations that convert the wild-type 
human CAN into 100-fold more potent ADPase which abolishes platelet aggregation 
(Yang and Kirely, 2004). [] Brackets enclose putative MHC epitopes in the sandfly P. 
dubosqci (Kato et al., 2006). 
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denaturation step at 94°C, followed by a single set (35 cycles) or two sets (5,35 cycles) 

of denaturation (30 sec at 94°C), annealing (30 sec at specific temperature, see Table 

3.2), and extension step (90 sec 72°C). A final 72°C extension step for 10 min 

terminated the amplification. Concentrations of PCR reagents were standard as 

described for cyt b and EF-la in Chapter 2. However, MgCl2 concentration was 

optimized for individual primer pairs, which in addition to varying annealing 

temperatures and multiplexing different combinations of conserved and allele specific 

primers, aimed to achieve maximum specificity and efficiency of PASA (Table 3.2). 

3.2.2.2 Cloning of apyrase in Phlebotomus 

The conserved apyrase fragment had to be cloned for four Larroussius species 

with duplicate loci: P. kandelakii, P. perfiliewi, P. perniciosus and P. tobbi. Ten clones 

were sequenced from each species' library, built using DNA from two specimens and 

the TOPO TA cloning® kit (InvitrogenTm). Here the manufacturer's protocol was 

followed and DNA plasmids isolated from bacterial colonies by alkaline lysis during 

miniprep purification. The cloned sequences in the purified plasmids were amplified by 

PCR using kit primers T7 and T3 (0.5 µM final concentration) with standard PCR 

concentrations and thermocycling parameters (35 cycles at 47°C annealing temperature) 

as described for apyrase conserved primers (section 3.2.2.1). Sequencing in a single 
direction used 1 pmol of primer T3: primer T3 targets a fragment of the plasmid which 
lies outside of the cloned fragment; this circumvents the need to sequence in both 

directions to gain the full sequence of the PCR product. Full protocols for TOPO TA 

cloning® kit (InvitrogenTM) and minipreps are in Appendix 3.1. 

3.2.3 Data analyses 
3.2.3.1 Inter-species phylogenetic analysis and divergence 

Alignments of Phlebotomus apyrase direct nucleotide sequences were made 

using the automated algorithm in MAFTT [default settings and 2 iterations] (v6 for Mac 
OS X: http: //align. bmr. ky ishu-u. ac. jp/mafft/software/macosx html), and post-processed 

manually in BIOEDIT (Hall, 1999). Phylogenetic relationships among alleles were 
reconstructed by Bayesian estimation (MRBAYES v3.1.2; Ronquist and Huelsenbeck, 

2003), using MRMODELTEST (v2.3; Nylander, 2004) to select nucleotide substitution 
models for each codon position (as described in Chapter 2). Various outgroup species 
sequence combinations were used to ascertain (i) the orthology of apyrase alleles 
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characterized; (ii) the phylogenetic location of gene duplication events if observed; (iii) 

input phylogenies for PAML to test for branch and site based positive selection; (iv) to 

conclude whether apyrase in P. ariasi is single or multilocus; and, (iv) to identify 

cryptic sibling species. 

Divergence was estimated from pairwise alignments of Phlebotomus apyrase 

amino acids by percentage similarity and identity (MATGAT v2.01 for Windows using 

the BLOSUM62 scoring matrix; Campanella et al., 2003), and nucleotide divergence 

(K), based on the average number of nucleotide substitutions per site between species 

(Nei, 1987), using Jukes-Cantor correction (DNASP v4.90.1; Rozas et al., 2003). 

3.2.3.2 Intra-species genealogy 

A parsimony network was reconstructed in TCS (Clement et al., 2000) as 

described in Chapter 2, to show the genealogical relationship between all P. ariasi 

apyrase nucleotide sequences, to identify intra-specific apyrase lineages, 

phylogeographic allele associations and signals of demographic events, i. e. population 

expansions. 

3.2.3.3 Apyrase protein structure assessment 

Protein structural analyses (MACVECTOR v11.0; MacVector, Inc. ) assessed 

whether phylogenetic or genealogical amino acid substitutions at known apyrase 

functional sites (cation binding or ADPase activity) were associated with changes in 

protein secondary structures. Changes in beta sheets, alpha helices and turns according 

to Chou-Fasman, Robson-Garnier and their consensus were plotted. 

3.2.3.4 Detecting selection on branches of the Phlebotomus apyrase phylogeny 
The CODEML program of Phylogenetic Analysis by Maximum Likelihood 

(PAML v4.2; Yang, 2007) tested for heterogeneity in selection pressure and positive 

selection on the apyrase phylogeny, based on nonsynonymous/synonymous substitution 

rate changes (co). Branch lengths of Bayesian topologies were re-estimated based on the 

number of nucleotide substitutions per codon, and a likelihood ratio test (LRT) under a 

chi-squared distribution selected either the use of no clock (unrooted phylogeny, each 
branch having an independent rate) or global clock (rooted phylogeny, all branches 

having the same rate). 
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Branch models were implemented as described in Chapter 2. This method 

avoids averaging o over long periods of time. However, it is a conservative test of 

positive selection, because averaging over the whole gene dilutes the signals of positive 

selection at particular sites with those of strong purifying selection acting on most sites 

of a functionally constrained protein (Yang, 2002). Therefore, heterogeneity of sites 

[codons] was tested using: 

(1) Fixed-site codon models A and E (according to control file of Yang and 

Swanson, (2002)), to test for positive selection in codons partitioned into a priori 

classes of: (i) buried (class 1) and cation binding sites (exposed class 2); (ii) buried and 

known ADPase functional sites; (iii) buried and putative epitope sites. Model A 

assumes a homogeneous model, whereas Model E assumes different 

transition/transversion rate ratio (k), codon frequencies, co, and proportional branch 

lengths, for the two class partitions. 
(2) Random-site models Mla versus M2a, and M7 versus M8, to test for positive 

selection at particular sites assuming no prior knowledge of site partitioning. In null 

model Mla (nearly neutral) two site classes are designated, conserved sites w<I and 

neutral sites w=1. M2a (selection) introduces a third site class CO > 1. Null model M7 

(beta; neutral) allows co to vary among sites according to a beta distribution, that is 

restricted between 0 to 1, whereas model M8 (beta and (o; selection) adds a discrete o 

class that is free to be estimated > 1. Bayes Empirical Bayes (BEB) method was 
implemented for models M2a and M8 (selection) to calculate the posterior probability 

that each site was from a particular site class: sites with high posterior probabilities 
from class w>1 with Pr > 0.95 were inferred as codons to be under positive selection 
(Yang et al., 2005). 

3.2.3.5 Detecting selection on apyrase within the P. ariasi lineage 

Codon usage bias can be indicative of strong selection, estimates obtained using 
DNASP (v4.90.1) included: the Codon Bias Index (CB193) (Morton, 1993); Effective 
Number of Codons (ENC) (Wright, 1990); and, the G+C content at synonymous third 

coding positions (G+C3s) to directly quantify usage bias in the fraction of third 

positions in codons that are G or C. Additionally, selection was investigated using 
population based neutrality tests. The McDonald-Kreitman test (MK) (1991) and the 

associated Neutrality Index (NI) (Rand and Kann, 1996) were implemented to seek 
evidence of, and assign direction to, selection based on estimates of nonsynonymous to 
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synonymous polymorphisms and divergence. Computation in DNASP (v4.90.1) of MK, 

NI and appropriate outgroup choice were described in Chapter 2. To detect weaker and 

more recent signals of selection, three intra-population tests based on skews in the allele 

frequency spectrum from neutral expectation were implemented (ARLEQUIN v3.11; 

Excoffier et al., 2005). The Fu and Li D statistic is the only one to consider the timing 

of selection by incorporating an outgroup sequence. It measures departures from neutral 

expectation using 0 (based on K) derived from the total of singleton mutations on 

derived branches compared with the total on ancient branches in a phylogeny. 

Directional selection increases the number of derived mutations, whereas balancing 

selection causes a deficiency, giving rise to negative and positive D values, respectively. 

Tajima's D measures the difference between estimates of On (based on the average 

pairwise nucleotide differences between sequences) and Os (based on the number of 

segregating sites) relative to their standard errors: positive values arise from an excess 

of alleles at intermediate frequencies and are consistent with balancing selection; and, 

negative values arise when an excess of low frequency alleles which inflates Os and 

indicates directional selection. The Ewans-Watterson (EW) test identifies recent 

selection by assessing the deviation of the observed homozygosity from that expected 

based on sample size and number of alleles: negative values arise from a deficiency of 

homozygosity and indicate balancing selection; whereas positive values arise from an 

excess of homozygosity and signal directional selection. 
Natural populations, such as those being examined here, often violate 

assumptions of the neutral model, where demographic processes can cause changes in 

the expected values of S, K and it leading to neutral deviations from mutation-drift 

equilibrium. It follows that demographic processes can mirror signals of selection, 

leading to false inferences of the latter. In general, selective sweeps and population 

expansion mimic signals of directional selection, and population size decreases and sub- 

division mimic balancing selection. Population expansion was investigated using the Fu 

Fs test (Fu, 1997) (in ARLEQUIN v3.11): significantly large negative deviations from 

neutral expectations arise from an excess of recent singleton mutations and reveal 

recently expanding populations (or selective sweeps). For all tests, significant (P < 0.05) 

departure from neutral expectation was calculated using 16,000 coalescence simulations 

and when significant, multiple tests were manually corrected for familywise Type 1 

errors by applying the sequential Bonferroni correction of Holm (1979) at a 0.05. 
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In addition, deviations from Hardy-Weinberg equilibrium (HWE) were assessed 

to reveal whether selection occurred in the present generation (e. g. balancing selection 

drives an excess of observed heterozygotes, whereas directional selection causes 

deviation towards the fixation and thus excess of homozygotes). LD was tested for non- 

random association of alleles between nuclear-nuclear or cyto-nuclear loci (GENEPOP 

v4.0), which can indicate epistatic selection for gene combinations (Lewontin, 1964), or 

a selective sweep (Kim and Nielsen, 2004). In a simple neutral model effects of 

selection are locus specific, whereas demographic effects are genome wide, therefore 

genetic pressures of neutral versus selective processes on apyrase in P. ariasi 

populations were also distinguished by conducting comparative statistical analyses cyt b 

and EF-1 a which are not under positive directional or balancing selection (Chapter 2). 

3.2.3.6 P. ariasi nucleotide sequence composition & recombination at the apyrase locus 

Extent of intra-population DNA polymorphism for apyrase of P. ariasi was 

measured by haplotype diversity (h) (Nei, 1987) and average pairwise nucleotide 
diversity per site (n) (Nei, 1987), as well as, independently for synonymous (a$) and 

non-synonymous sites (n�). Spearman's rank correlation coefficient was used to 

evaluate whether within gene recombination rate was significantly correlated to 

nucleotide diversity (a). Estimates of recombination parameter R (=4Nr) between 

adjacent sites, where N is the effective population size and r is the recombination rate 

per generation between the most adjacent nucleotide sites, were estimated according to 

Hudson (1987). The minimum number of recombination events to occur along the 

apyrase sequence were identified by the parameter Rm, calculated using the four gamete 

model (Hudson and Kaplan, 1985). All tests were calculated in DNASP (v4.90.1). 

3.2.3.7 Population genetics 
The following were implemented as first described in Chapter 2: F5T estimates 

of genetic distance between population pairs; dependence between genetic distance 
[FsT/(1-FsT)] and geographical proximity of population pairs (Rousset, 1997); Analysis 

of Molecular Variance (AMOVA in ARLEQUIN v3.1 1) to evaluate the amount of 
haplotype diversity correlated with different nested levels of hierarchical population 
sub-division; distance-based redundancy analysis (dbRNA, DISTLM v. 5) to examine 
the extent to which genetic differentiation is correlated to geographical regionality, 
beyond that explained by geographical distance, to identify barriers to gene flow. 
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3.3 Results 

3.3.1 Phlebotomus apyrase gene structure and lineages 

Novel conserved primers APY-1F with APY-3R successfully amplified the 

apyrase fragment from all Phlebotomus species targeted, including clones of species P. 

kandelakii, P. perfiliewi, P. tobbi and P. perniciosus. As only unambiguous alleles were 

included in the species phylogeny, the single ambiguous nucleotide in P. perniciosus 

(DQ192491) (nt 375, Figure 3.2) was inferred as a guanine (G), this being invariant 

across Phlebotomus. An alignment of all unique apyrase amino acid alleles identified in 

this thesis, in addition to Phlebotomus GenBank sequences published up to 01/09/2009 

is given in Appendix 3.2, and an alignment of all unique apyrase nucleotide alleles 

obtained in this thesis is given in Appendix 3.3. 

The initial Bayesian phylogeny was reconstructed based on a multi-species 154- 

amino acid alignment without introns and indels, starting on nucleotide 166 in GenBank 

accession AY845193 (P. ariasi). This phylogeny included GenBank sequences from the 

subgenera Phlebotomus (AF261768, P. papatasi; DQ834331/5, P. duboscqi) and 

Euphlebotomus (DQ136150, P. argentipes), but the absence of congruence with other 

gene trees (Chapter 2) indicated the inappropriateness of these distant outgroups. This 

incongruence may be due to the presence of paralogous apyrases. However, as 

Phlebotomus and Euphlebotomus are distant outgroups in this phylogeny, a resolution 

of orthology versus genetic distance will require a more extensive species' sampling 

than the current one. Therefore, to be conservative these sequences were removed from 

all subsequent analyses. A further conservative choice for all subsequent Bayesian 

reconstructions was the removal of P. brevis, because it's apyrase also showed 

incongruent branching with other gene trees. 

The following Bayesian reconstructions used all the available alleles for each 

species except for P. ariasi, for which 31 out of 47 alleles were selected by pruning 

terminal branches. Strong support (posterior probability, pp, 1) was found for treating 

species of the subgenera Adlerius and Transphlebotomus as outgroups for Larroussius 

(Figure 3.3a). In Larroussius, the monophyly both of P. major and P. neglectus was 

supported (pp 1). P. ariasi was also monophyletic in the Bayesian tree and the 95% 

TCS parsimony criterion reconstruction, this supports the conclusion in Chapter 2 that 

the current samples did not contain cryptic sibling species. A duplicate lineage 

paralogous to that of P. ariasi indicated paraphyly of four species P. kandelakii, P. 
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perfiliewi, P. perniciosus and P. tobbi: each grouping on two well supported 

independent lineages (pp 0.96 and 1). This result suggests the occurrence of a single 

gene duplication event, limited within Larroussius, prior to the speciation of P. 

kandelakii and its sister Glade. The duplicate lineages are consistent with the result of 

Anderson et al. (2006) who characterized two P. perniciosus alleles each of which 

grouped in two independent lineages. Accordingly, these lineages will be referred to as 

either pern490 or pern4912. Taking branch length as a measure of molecular distance 

(mutations per site), an episodic period of rapid evolution was observed immediately 

after the gene duplication event in pern490 lineage (Branch A in Figure 3.3a). 

Many gene relationships remained ambiguous. On branches AB P. perniciosus, 

P. tobbi and P. perfiliewi formed an unresolved tricotomy (pp < 0.7). The basal branch 

of Larroussius was not consistent, dependent on the apyrases included: phylogenies that 

included pro-orthologues [sequences pre-dating the gene duplication event] putative 

orthologues and duplicated lineages (Figure 3.3a), or pro-orthologues and orthologues 

to P. ariasi only (Figure 3.3b), were concordant with the nuclear gene elongation factor- 

la with the P. major complex as basal (Chapter 2) but failed to group the two members 

of the P. perniciosus complex (P. perniciosus and P. tobbi). Conversely, the phylogeny 

reconstructed using pro-orthologues and the putative paralogous pern490 lineage only 

(see next section), supported P. ariasi as being basal within Larroussius followed by the 

P. major complex (Figure 3.3c). This is consistent with the gene tree for mitochondrial 

cyt b (Chapter 2). Concordant apyrase phylogenies were reconstructed excluding 

functional sites, and including or excluding putative epitopes (data not shown). 

3.3.2 Divergence, structure and selection of apyrase lineages of Phlebotomus 

The duplicate lineage paralogous to that of P. ariasi and the three basal species 

was identified as branch A/B (Figure 3.3a), in part based on the lower amino acid 

similarities/identities (81.8-83.8/62.8-64.9%) compared with the orthologous duplicate 

lineage (89.6-91.6/77.3-83.8%; branch Q. Moreover, nucleotide divergence (K) was 

lower between these putative orthologues than with the paralogues, 0.194-0.24 and 

0.296-0.316, respectively (Table 3.3). BLASTx searches were conducted to assess the 

2 The terminology of the two P. perniciosus apyrases of Anderson et al. (2006) of SP01 and SP01 B were 
not followed in this study, as the label of the GenBank sequences given was not consistent with the text 
and phylogeny of their publication. Therefore, the last three numbers of the GenBank accession were 
definitive; P. perniciosus DQ192490 (pern490) and DQ192491 (pern491). 
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Figure 3.3 Bayesian phylogenies of the 462 nucleotide apyrase fragment, including all 
alleles of each Phlebotomus species except P. ariasi (set pruned of APY alleles >1 step 
from modes in TCS network). Species of the subgenera Transphlebotomus and Adlerius 
are sister to the subgenus Larroussius, which contains vectors of L. infantum. (Posterior 
probabilities > 0.7 indicate statistically supported nodes. Solid ellipse marks the gene 
duplication event. Uppercase letters refer to branches tested in PAML models). (a) 
Complete apyrase gene tree including pro-orthologues and post-duplicate lineages, (b) 
putative orthologous apyrases only, and (c) pro-orthologues and the duplicate lineage 
paralogous to P. ariasi. Scale bars are in units of nucleotide substitutions per site. 
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Figure 3.3 Continued. 
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function of all new sandfly apyrase sequences. The top 20 hits (E value < 9e-07) matched 

apyrases [calcium activated nucleotidases, CANs] from Phlebotomus, Hemiptera, 

Coleoptera, humans and mouse amongst others, indicating the conserved function of all 

alleles on the duplicate lineages and of other Phlebotomus species. 
Figure 3.4 shows the position of variable amino acids and functional sites, 

extrapolated from the human CAN, of 44 unique Phlebotomus amino acid alleles. Of 

the 18 single codon functional sites four were conserved across Phlebotomus, codons 

51,59,120 and 138. All but one of the remaining sites varied in one or both duplicate 

lineages, and none varied in P. ariasi. The effect of phylogenetically associated amino 

acid replacements at these functional sites on secondary protein structure was 

investigated using Chou-Fasman + Robson-Garnier prediction methods. Any structural 

changes usually involved only the loss of a single beta-sheet with or without an 

associated loss of a turn. This was also true for the conservative residue replacements at 

the two polymorphic sites with no known apyrase function (codons 32,152) in P. 

ariasi. 

Heterogeneity in selection pressure and its direction was tested in a maximum 
likelihood framework (PAML), where positive selection is assumed when CO >1 and the 

LRT comparing two test models is significant (P < 0.05). After re-estimation of branch 

length based on number of nucleotide substitutions per codon, the first input topology 
(pruned data set of Figure 3.3a) favoured a no clock model (unrooted phylogeny), over a 

global clock (rooted phylogeny): significant LRT (2*(-3073.90)-(-3273.70); df = 42; P 

< 0.001). Apyrase was concluded to be predominantly under purifying selection, not 

positive selection, with co < 1: null model I (w of branch D set to = wC = coB = wA) 
Positive selection was detected along branch A immediately after the duplication event 
(of the paralogous lineage): model I (null) co = 0.218 the average over the phylogeny, 

versus model II single varying branch A co = 999 (infinity, nonsynonymous 

substitutions only), with a significant LRT of P<0.01 (Table 3.4). It followed that a 
significant LRT (P < 0.01) directly supported positive directional selection in branch A, 

when branch A was fixed to co =I (model III) versus model II. However, no evidence 
was found to support positive selection across the paralogous lineage (branches A/B 

Figure 3.3a, model IV Table 3.4), as co <1 indicated purifying selection. A highly 

significant LRT was obtained for this model against the null model I, supporting 
heterogeneity in purifying selection pressures reflecting a two-fold difference in the 
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nonsynonymous/synonymous substitution rate change ((o) on branches A/B () = 0.375) 

(less selectively constrained, presumably due to the paralogous nature of duplicate branch 

A, see discussion) compared to background branches C/D ((o = 0.172). Similar results were 

obtained when testing for positive selection along both duplicate lineages, using a two ratio 

model (IV; col) = wC # wB = wA) versus a three ratio model (V; wD $ (OC : t- (OB = wA). 

Purifying selection was concluded for all branches (co < 1), and a significant LRT (P < 

0.05) indicated heterogeneity in the level of purifying selection pressure between the two 

duplicate lineages, which were less conserved than the pro-orthologue branches (pro- 

orthologues wD = 0.143 < orthologous duplicate pern491 oC=0.255 < paralogous 

duplicate pern490 wB = (A = 0.375). 

PAML branch models were also used to test for evidence of positive selection along 
the P. ariasi lineage using the phylogeny of putative apyrase orthologue sequences (Figure 

3.3b). Again an input no clock model (unrooted phylogeny) was significantly favoured (P < 

0.001) over a global clock for this re-estimated topology (LRT: 2*(-2465.29)-(-2311.11); df 

= 28). A non-significant LRT showed no heterogeneity in selection pressures in the P. 

ariasi branch (F) compared with the background branches (E) (P > 0.05) and, as it was 

accompanied by w<1 on all branches in both models, selection was concluded to be 

purifying not positive (models VI and VII Table 3.4). A further branch test was 
implemented to detect selection on P. perniciosus branch (G), a sympatric vector to P. 

ariasi. Again no significant heterogeneity in selection was supported (LRT P>0.05) and co 

<1 indicated purifying selection (model VIII). 

Random-site and Fixed-site models were implemented to assess heterogeneity in 

selection pressures and positive selection among sites, which may have been masked by 

averaging codons over branches. For the phylogeny in Figure 3.3a and using model 

selection M2a versus nearly neutral Mla [see Materials and methods], no sites were found 

to be under positive selection; proportion of sites p2 = 0.00 at freely estimated cot = 11.224 

(Table 3.5). The beta neutral M7 null model showed apyrase to have an exponential beta 

distribution, most of the sites having co closer to zero, under purifying selection. The LRT 

statistic between the models M7 and beta selection M8 whose discrete CO class was free to 
be estimated > 1, was significant (0.01 <P<0.05; df = 2), suggesting co to be variable 
among random-sites. Following, model M8 indicated 3% of sites to be under positive 
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Table 3.4 PAML parameter estimates and likelihood ratio test statistics, for detecting 
selection on branches (uppercase letters as given in Figures 3.3a and b) of Phlebotomus 
apyrase phylogenies. * Significant heterogeneity in selection pressure between models. 

Model Parameter estimates InL 

1.1 ratio wD = wC = wB = wA = 0.218 -3073.90 
II. 2 ratio wD = wC = wB = 0.182, it wA = 999 -3051.104 
III. 2 ratio coD = wC = wB # (AA =1 -3056.45 
IV. 2 ratio wD = wC = 0.172,0 wB = wA = 0.375 -3067.17 
V. 3 ratio wD = 0.143, # wC = 0.255, # wB = wA = 0.375 -3064.55 
VI. 1 ratio wE = wF = wG = 0.1640 -2311.11 
VII. 2 ratio coE = wG = 0.170, # coF = 0.127 -2310.81 
V111.2 ratio wE = coF 0.157, * wG = 0.286 -2309.93 

Model compared 2AInL df x2 P 

1. and II. 2*((-3051.10}(-3073.90)) 1 < 0.001* 
1. and III. 2*((-3051.10)-(-3056.45)) 1 < 0.01* 

1. and IV. 2*((-3067.17}(-3073.90)) 1 <0.001* 
IV. and V. 2*((-3064.55) ( 3067.17)) 1 < 0.05* 
VI. and VII. 2*((-2310.81 }(-2311.11)) 1 > 0.05 

VI. and VIII. 2*((-2310.81)-(-2309.93)) 1 > 0.05 

Table 3.5 PAML parameter estimates and likelihood ratio test statistics, for detecting 
selection of Phlebotomus apyrase under the Random-sites models. 

Model compared Parameter estimates InL dN/ds PSS 

Pro-orthologues and both post-duplicate lineages (Figure 3.3a) 

Ml a Po = 0.860, pi = 0.140: wo = 0.147, co, =1 -3043.76 0.267 N/A 

po = 0.860, pi = 0.140, pZ = 0.000 
M2a wo=0.147,0)1=1,0)2=11.225 

M7 p=0.651 , q=2.113 

po = 0.970, p, = 0.030, 
M8 p=0.908, q=3.555, w=1.452 
Orthologues (Figure 3.3b) 

M1a po=0.845, pa=0.155: coo=0.08, x1=1 

po = 0.844, pl = 0.150, p2 = 0.006 
M2a wo=0.08, W1=1, W2=2.625 
M7 p=0.260, q=1.155 

-3043.76 0.267 131 

-3042.06 0.233 N/A 

-3039.02 0.239 131,132,145 

-2272.74 0.222 N/A 

-2273.01 0.234 131,132 

-2266.57 0.181 N/A 

po = 0.976, p, = 0.021, 
M8 p=0.339, q =1.852, o=2.087 -2264.55 0.193 131 132,145 

PSS = Positive Selected Sites, where Pr (co > 1) < 0.95, so not significant. (Yang et al., 2005) 
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selection with uo = 1.452. Similar results were obtained on the orthologous apyrase 

phylogeny (Figure 3.3b): LRT non-significant (P > 0.05) comparing models M1a and M2a 

or M7 and M8, with less than 1% and 2.1 % of sites with w>1 (positive selection), 

respectively. For both phylogenies, although M8 supported some sites under positive 

selection, BEB did not identify any specific site [Pr ((> > 1) < 0.95]. One interpretation of 

this result is that BEB is confident that positive selection among sites exists, but cannot 

identify their position. The three sites that were inferred to be under positive selection, but 

not statistically supported, included codons 131,132, and 145, these were not functionally 

important. 

For both phylogenies being tested, the results for Fixed-site models indicated no 

codon usage differences or heterogeneity in selection pressure between buried versus 

exposed site classes (binding sites, ADPase sites and epitopes). Model E partitioned various 

exposed sites independently from buried site classes, where it did not give a significantly 

different log likelihood value from the null homogeneous model A (P > 0.05). Furthermore, 

positive selection was not supported for any site class because Co <1 (purifying selection). 

It was observed that the binding site class (o») had a near two-fold increase in the 

nonsynonymous/synonymous substitution rate change and a lower transition/transversion 

rate (k2) relative to buried sites (co, and k1, respectively) that was attributed to the presence 

of the paralogous lineage (Table 3.6). 

Table 3.6 PAML parameter estimates and likelihood ratio test statistics, for detecting 

selection of Phlebotomus apyrase under the Fixed-sites models. 

Model compared InL w k r2 

Pro-orthologues and both post-duplicate lineages (Figure 3.3a) 

MA - null model -3073.90 0.218 k=2.036 1 

ME - binding sites -3079.32 w, = 0.211, w2 = 0.3843 k, = 1.983, k2 = 0.211 0.885 

ME - activity sites -3067.00 co, = 0.216, w2 = 0.112 k1 = 2.155, k2 = 0.926 1.908 

ME - epitope -3082.22 wl = 0.230,0)2 = 0.135 k, = 1.969, k2 = 0.974 0.765 

Orthologues (Figure 3.3b) 

MA - null model -2311.11 0.164 k=1.837 1 

ME - binding sites -2314.60 wi = 0.165,0)2 = 0.152 ki = 1.836, k2 = 1.923 0.909 

ME - activity sites -2301.24 wl = 0.162, w2 = 0.096 ki = 1.923, k2 = 1.097 2.137 

ME - epitope -2309.00 WI = 0.180, w2 = 0.109 k1 = 1.787, k2 = 1.746 0.660 

Legend k= transition/transversion rate; r2 = the substitution rate of the second site partition relative 
to the rate of the first partition (r1=1). 
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3.3.3 Scoring apyrase genotypes of individual P. ariasi 

459 (out of 471) P. ariasi were successfully amplified and directly sequenced using 

conserved primers APY-1F with APY-3R (520 bp) from 20 spatio-temporal natural 

populations. As no prior knowledge of the allelic variation in apyrase of P. ariasi was 

known, extensive PCR optimization experiments using the PASA method were 

implemented to accurately score genotypes. This study found, concurring with the literature 

(Kwok et al., 1990) that T 3' terminating oligonucleotides were the only allele specific 

primers to misprime. However, misprimed alleles were of lower amplitude than the target 

alleles in sequence chromatograms, so correct genotypes were confidently scored. For P. 

ariasi, 47 nucleotide alleles (Table 3.7) and 86 nucleotide genotypes (Table 3.8) were 

recorded, which gave 15 deduced amino acid alleles (Table 3.9). In total, 4 novel alleles [16 

flies from north Africa, NE Spain and France] had to be inferred using the algorithm 

described in Chapter 2, section 2.2.4. They showed no more than two mutational steps from 

a modal allele (allele with more than one derived allele or a frequency over 10) in a TCS 

network. 

3.3.4 P. ariasi apyrase genealogy and recombination 
35 base positions segregated in P. ariasi apyrase alleles, of which 22 and 13 

substitutions were synonymous and nonsynonymous, respectively, and each had a single 

open reading frame. Nineteen segregating sites were singletons and four base positions (88, 

100,430,451) had a transition rate between 25-45% among alleles (Figure 3.5). The 

network (Figure 3.6) showed reticulate loops (alternative most parsimonious pathways) 

caused either by recurrent mutations or recombination between the predominating P. ariasi 

apyrase alleles in Europe (modes APYaO1,02 and 03). These loops were mainly attributed 

to mutations at nucleotides 88,100,430,451 in addition to bases 306 and 433. The four 

gamete test (Rm) identified no recombination events in nine populations, one to two events 

in 11 populations and four recombination events occurring in the history of the samples 

between nucleotides 100-139,139-352,433-451,451-475. Population recombination 

parameter R between adjacent sites ranged between 0-0.0301, and nucleotide diversity (it) 

between 0.00078-0.00663, and in populations where R>0, showed positive significant 

correlation (r, = 0.69, P two-tailed < 0.01, df = 12). For comparison, no such correlation 

was found between R and it at nuclear EF-la, (rs = 0.50, P two-tailed 0.08, df = 12). 
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Figure 3.5 35 variable nucleotide positions in the 520 bp fragment of apyrase [starting 
on nucleotide of GenBank starting nucleotide 110 in GenBank accession AY8451931, 
observed in 47 unique alleles characterized from 20 populations of P. ariasi. 

111222223333333344"4444455 
258 9 39013480003345600355677801 
550 4 9866575171674672134"2345151 

APYa01 CCCTGGGGCGGACACT GGCGCG G 
APYa13 ........ I 
APYa44 ................ .................. 
APYa28 ................................... 
APYa14 .......................... " ........ 
APYa19 ...................... A... G...... 
APYa36 ...... 

C ................ . 

'....... 

APYa02 ....................... ......... 
APYa29 ......... T ............. ......... 
APYa49i .......... ............ ......... 
APYa20 ............... C ................ 
APYa47i ...................... ....... A. 
APYa15 ....................... ....... A. 
APYa46i .................... T ......... A. 
APYa16 ....................... ........ 
APYaO8 ....................... ...... 
APYa07 ....................... ...... 
APYa31 ...... 

C 
................ ...... 

APYa11 ................. :...... G...... 
APYa05 ....................... G...... 
APYa38 .................. .. TC.. 
APYa21 .................. ......... 
APYa23 .................. ......... 
APYa22 .. .T............. ... i,...... 
APYa17 .. .T............. ......... 
APYa12 ........... C........ 

.......... 
APYa45 .............. ... ...... T.. 
APYa18 .. T................ A.... 

...... 
APYa32 .. TC................... 

...... 
APYa35 .. TC................... 

...... 
APYa40 .. T................ 

...... 
APYa03 .................. ...... 
APYa27 ................ ...... 
APYa51 

.............. '.... 
APYa06 T ................ C 
APYa30 .. TC................ 

...... 
APYa48i 

.. TC................ 
� TA,. 

APYa37 
.. TC................ 

... A.. 
APYa25 

... T C..... 
........... ....... 

APYa39 
... T C...... 1......... ...... 

APYa26 
... TC............. T.. ....... 

APYa24 
..... ............. ...... 

APYa33 ... T .... ........ T.. 
....... 

APYa10 ... T 
................ C ...... 

APYa34 
... T ................ .. TC. T 

APYa09 
.................. ...... 

APYa04 .................. 

Legend Nucleotide one begins on the 3`d base position of codon 28 in Figure 3.1. Bold typeface 
highlights the three most common (modal) alleles in P. ariasi; grey highlights the four common 
varying base positions; i, denotes an inferred allele. 19 singleton mutations are indicated by a lighter font. 
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Figure 3.6 Parsimony network (TCS v l. 21) showing the genealogical relationships 
between the 47 apyrase alleles (APYaNN) from 459 P. ariasi, with a9 step 95% 

connection limit. These alleles are shown as filled circles with sizes proportional to their 
frequency of occurrence. Open circles denote missing alleles. Figures in parentheses = 
number of flies, followed by numbers in bold = associated amino acid allele. Nucleotide 
allele geographical distributions are coded as given in the key. 
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3.3.5 Types of selection within the P. ariasi apyrase 

Maintenance of diversity of nucleotide alleles was observed in North Africa, 

Iberia and France (four allele frequencies > 0.05) (Table 3.7). A similar pattern was 

seen in amino acid allele frequency in populations from Morocco (two allele 

frequencies > 0.15) and Portugal (three allele frequencies > 0.15), in contrast to those 

populations from northern Spain and southern France where allele AA02 predominated 

(frequency > 0.87) (Table 3.9). No strong selection for codon usage was shown by three 

measures: low values of the Codon Bias Index (0.32-0.35; where 0= unbiased, I= 

extreme bias), high values of the Effective Number of Codons (57.7-59.0, where 61 = 

unbiased, 20 extreme bias) and 51.4-54.0% GC at synonymous third codon positions. A 

global test pooling all P. ariasi (N = 459), and a separate test pooling flies from Spain 

and France (N = 419), supported selective neutrality using the MK test as measured by 

relative rates of divergence and polymorphism of nonsynonymous/synonymous 

estimates (Fisher's exact test P= 1) and associated NI value (0.951-1.069; where NI of 

1= neutrality): these tests were conducted using a single P. major and two P. neglectus 

apyrase alleles as outgroups. Furthermore, irrespective of environment, no P. ariasi 

population showed significant departure from neutral expectation using the MK test (P 

> 0.05) (Table 3.10). This test was considered valid for intra-specific populations of P. 

ariasi, as no paralogous genes were identified by the apyrase phylogeny in this ingroup 

and the outgroup to P. ariasi, P. major, was an appropriate choice for neutrality based 

tests, as ds was unsaturated (< 0.5) (see Appendix 3.4). 

After correcting probability values for familywise Type I errors by 

implementing a sequential Bonferroni procedure, no neutrality statistic based on the 

mutation frequency spectrum (Fu and Li's D and Tajima's D), showed a deviation from 

neutral expectation (when a=0.05) (Table 3.10). This result allowed the rejection of 

the alternative hypothesis of recent selection pressures acting on the apyrase of P. 

ariasi. Only population AGH from Morocco showed a demographic signal, where the 

Fu Fs was significant (after Bonferroni correction), indicating the occurrence of a 

population expansion (or selective sweep). This concurred with the result found for both 

cyt b and EF-la (Table 3.11). 

Furthermore, no support for current generation/recent selection at the apyrase 
locus was obtained. All populations showed no statistical deviation from HWE (P > 
0.15), and there was adherence to neutral expectation in allele frequencies for the 
Ewans-Watterson test (P > 0.17; Table 3.10). LD was investigated in two geographical 
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Table 3.11 Neutrality based population genetic tests (without an outgroup) and 
recombination estimates for 20 natural populations of P. ariasi for neutral loci 
mitochondrial cyt b and EF-la. N= sample size. S= number of segregating sites. h= 
number of alleles. EW = Ewans-Watterson test. # Significant deviation from neutral 
expectations when P<0.05, after sequential Bonferroni correction in bold. Rm = 
number of recombination events as revealed by the four gamete model (Hudson and 
Kaplan, 1985). 

Locus Population N S h EW 
(P-value) Tajima D TaýP-jima 

value 
D) Fu FS Fu 

(P- 
Fs 
value) 

Rm 

EF-1a AGH 17 10 14 0.957 -0.427 0.3792 -7.269 0.0004 2 
CHR 23 9 14 0.521 -0.018 0.5428 -6.086 0.0042* 2 
CSP 21 7 8 0.533 -0.461 0.3603 -2.093 0.1207 2 
HP1 25 9 8 0.964 -1.722 0.0201* -4.128 0.0086* 0 
HP2 18 2 3 0.516 -0.057 0.4386 0.047 0.4176 0 
PAS 48 7 10 0.988 -1.260 0.0957 -6.771 0.0015' 2 
PLB 21 5 5 0.702 -0.597 0.3226 -0.607 0.3611 1 
IRL07 22 4 5 0.410 -0.268 0.4356 -0.791 0.2985 0 
TUL 23 4 5 0.487 -0.108 0.4897 -0.579 0.3694 1 
ARQ06 14 4 5 0.644 -0.758 0.2522 -1.534 0.1071 0 
ARQ08 23 4 5 0.376 0.157 0.6152 -0.272 0.4526 0 
MLQ 24 6 8 0.926 -0.904 0.2065 -3.638 0.0159' 1 
CAT 16 6 7 0.847 -0.793 0.2425 -2.397 0.0617 1 
TRJ 23 9 11 0.979 -1.459 0.0543 -7.098 0.0001" 2 
CTU 24 3 4 0.212 0.811 0.801 0.670 0.6640 1 
SPV 23 4 6 0.652 -0.086 0.5046 -1.529 0.1905 1 
SAM13 24 2 3 0.444 0.109 0.6466 0.258 0.4915 0 
DRAz4 22 3 4 0.467 -0.282 0.4161 -0.505 0.3394 0 
LNP 24 2 3 0.780 -0.873 0.1997 -1.118 0.1436 0 
RME 23 1 2 0.593 -0.311 0.292 0.162 0.2853 0 

Cyt b AGH 17 13 10 1.000 -1.877 0.0159* -5.557 0.0002' 1 
CHR 24 14 8 0.980 -0.971 0.1734 -0.738 0.3726 0 
CSP 24 13 4 0.384 -0.368 0.3915 3.784 0.9461 0 
HP1 27 23 11 0.998 -0.958 0.1725 -1.087 0.3237 2 
HP2 18 13 4 1.000 -1.240 0.9229 2.332 0.8806 0 
PAS 52 18 12 0.882 1.732 0.9656 1.642 0.7621 1 
PLB 20 17 20 0.996 -2.344 0.0006* -1.547 0.1688 0 
IRL07 22 14 4 0.681 1.672 0.9655 6.731 0.9889 0 
TUL 24 17 7 0.971 -0.138 0.4998 1.700 0.7892 0 
AR006 38 26 15 0.993 0.116 0.6096 -1.056 0.3705 3 
ARQ08 23 17 7 0.936 1.064 0.882 2.830 0.8805 0 
MLQ 35 12 8 0.997 -1.185 0.1201 -1.326 0.2578 0 
CAT 16 21 10 1.000 -1.369 0.0776 -2.432 0.0991 0 
TRJ 23 28 13 1.000 -1.856 0.0172* -4.216 0.0250' 0 
CTU 24 15 10 0.975 -2.029 0.0065* -4.662 0.0030' 0 
SPV 24 16 7 0.693 -2.037 0.0065' -1.112 0.2585 0 
SAM13 24 4 4 0.247 0.457 0.7084 0.733 0.6898 0 
DRAz4 20 4 4 0.961 -1.638 0.0324' -1.613 0.0441' 0 
LNP 24 1 2 1.000 -1.159 0.1512 -1.028 0.0706 0 
RME 13 0 1 - - - - - - 
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populations with larger sample sizes (PAS, ARQ) and multiple cyt b haplogroups. No 

evidence of within population LD was shown between all locus pairs (P > 0.05), 

providing some evidence for an absence of epistatic selection or selective sweeps. The 

exception to this pattern was between apyrase and EF-1 a in population PAS, where 0.01 

<P<0.05. 
Assuming an absence of recombination can lead to conservative inferences from 

tests for LD, haplotype distribution (Fu's Fs) and to a lesser extent allele frequency 

spectra (D statistics) (Ramirez-Soriano et al., 2008). Therefore, the support for up to 

two recombination events at apyrase within some populations may have masked 

significant and generally positive D statistics (Table 3.10), namely balancing selection. 

This is contrary to the result for the conserved nuclear EF-1 a for which populations 

with one or more recombination events mostly showed negative D values (Table 3.11). 

This would have indicated directional selection (most likely purifying) if the tests had 

been significant. 

3.3.6 Phylogeography and population genetics at apyrase of P. ariasi support 
inferences made at other characterized loci 

The parsimony network (Figure 3.6) supported no intra-specific lineages in 

apyrase of P. ariasi, consistent with patterns of other nuclear sequences characterized in 

this thesis (Chapter 2). The network showed no obvious signal of positive selection e. g. 

a single extensive star-burst structure indicating a selective sweep of a favoured apyrase 

allele and its near derivatives. This result, together with tests directly concluding against 

selection, demonstrate that demographic processes might better explain the distinctive 

patterns of diversity and frequency patterns in the 20 natural P. ariasi populations. 
Apyrase showed a population genetic structure in western Europe consistent 

with that given by other loci of P. ariasi. Both nucleotide and amino acid allele 
distribution and frequencies differentiated the Morocco and Portugal populations from 

each other and the rest of Iberia and France: the two modal nucleotide alleles with the 
highest frequencies in Spain and France (APYaOI and APYa03) were absent in Portugal 

and Morocco. In the latter, 10 out of 15 alleles were derivatives of the modal allele 
APYa30 that, like its deduced amino acid (allele AAO1), is absent in Europe, and in 
Portugal the predominant amino acid allele (AA08) was also private. Pyrenean France 

and NE Spain were distinct from NW Spain and the Massif Central France, in the 
following ways: absence of common nucleotide alleles APYaOI and APYa02 in NW 
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Spain and Lot France, respectively; moderate frequency of APYa08 in NW Spain, but 

low frequencies elsewhere; low frequencies of APYa03 and complementary increase of 

APY01 (towards fixation) in the Massif Central, Rhone and Lot valleys, with both 

alleles found in moderate frequencies in Pyrenean France (Tables 3.7 and 3.9). Overall 

gene nucleotide diversity (it) in apyrase was not significantly different (overlapping 

standard deviations) compared to mitochondrial cyt b, but more polymorphic although 

not always significantly so than that in EF-1 a (Figure 3.7). Diversity at nonsynonymous 

sites (it�) was lower than at synonymous sites (its) at all loci (Figure 3.8). The global 

means were not significantly different between APY and cyt b (its t=0.5186 ± 0.003, df 

= 38, P=0.6070; it, t =1.5669, df = 38, P=0.1254), but were significantly higher for 

APY compared to nuclear EF-la (its t=8.4841 ± 0.002, df = 38, P=0.0001): 71,, was 

not calculated for EF-la as no nonsynonymous changes were observed. At both types of 

site and overall, there was a loss of diversity at apyrase at the leading-edge of the 

species range, as shown for cyt b (and EF-la where applicable). 
F5T estimates of genetic differentiation were also informative. They showed 

`very great' levels of differentiation between populations, ranging from -0.0169 to 

0.5822. Consistent with Chapter 2 results, significant pairwise FsT values were found 

between populations from Morocco, Portugal and NW Spain or leading-edge 

populations (Lot, France) and all other populations. There was no significant genetic 
differentiation among populations in the Pyrenees (Appendix 3.5). Hierarchical 

AMOVA did support the same regional clustering in France and NE Spain as found for 

neutral loci (Chapter 2), and like other nuclear loci (but not mitochondrial) within- 

regions variation was also statistically significant (Table 3.12). 

Globally, there was a significant positive correlation between apyrase genetic 

and geographical distance supporting a model of isolation-by-distance by a Mantel Test, 

in one or two dimensions, fitting FsT/(1-FsT) to distance (a = 0.1247, b=0.000242; P< 

0.001) or to In distance (a = -0.3027, b= 0.0981; P< 0.001), respectively. In this single 

regression model the sample correlation was weak (R2 = 0.1714), and as observed in 

other nuclear loci (Chapter 2), relatively high variance and statistical outliers were 

restricted to pairwise comparisons with two leading-edge (putatively bottle-necked) 

populations from Lot France (triangles Figure 3.9). For further investigation these two 

populations were excluded, and the remaining populations continued to follow an IBD 

model but with improved correlation: 56.5% of genetic distance was significantly (P < 
0.001) correlated with geographical distance. All pairwise comparisons between 
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populations north of the Pyrenees (France) and those between south and north of the 

Pyrenees supported IBD (R2= 0.126, Mantel test P=0.024 and R2 = 0.234, P=0.001, 

respectively). Yet no IBD was supported between the outgroup populations (R2 = 0.111, 

P=0.273): a result that might be supported with higher resolution sampling. Marginal 

tests in a distance-based redundancy analysis supported a significant relationship 

between genetic distance (FsT/(1-FsT) for both geographical distance (57% variation 

explained, P=0.001) or geographical region (59%, P=0.001); in the latter data points 

were categorised as within south/north of the Pyrenees or across the Pyrenees. 

Furthermore, a conditional test taking into account geographical distance as a covariate 

in a multiple regression analysis significantly correlated this pairwise categorisation to 

genetic distance (15%, P=0.001), a result that suggests the Pyrenees is or was recently 

a barrier to gene flow. 

Table 3.12 Hierarchical AMOVA statistics for the apyrase of P. ariasi, to demonstrate 
that the regional clustering of its populations is concordant with neutral locus cyt b. 
* Significant P-values for 16,000 permutations (implemented in ARLEQUIN v3.11). 

Sub-division tested df F Indices % variation P-value 
1. E Pyrenees vs. Massif Central 

vs. C Pyrenees and NE Spain 
Among regions 2 0.07725 7.73 <0.001 * 
Among pops within regions 14 0.03390 3.13 <0.001 * 
Within pops 775 0.10853 89.15 <0.001 * 
2. E Pyrenees vs. Massif Central 
Among regions 1 0.06287 6.29 <0.001* 
Among pops within regions 12 0.04173 3.91 <0.001* 
Within pops 642 0.10198 89.80 <0.001* 
3. E Pyrenees vs. C Pyrenees 
and NE Spain 
Among regions 1 0.03266 3.27 <0.05* 
Among pops within regions 9 0.01459 1.41 <0.05* 
Within pops 527 0.04678 95.32 <0.05* 
4. Massif Central vs. 
C Pyrenees and NE Spain 
Among regions 1 0.19329 19.33 <0.001 * 
Among pops within regions 7 0.05501 4.44 <0.001 * 
Within pops 381 0.23767 76.23 <0.001 * 
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Figure 3.7 Plots of nucleotide diversity (Mean a with standard deviation bars) for three 
loci characterized from populations of P. ariasi. Scale equal on all graphs. Zero 
diversity of cyt b in population RME was not plotted. 
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Figure 3.8 Plots of nucleotide diversity it (Pi) for synonymous sites [Pi(s)] and 
nonsynonymous sites [Pi(n)] for three loci characterized from populations of P. ariasi. 
No nonsynonymous changes were observed in EF-1 a. 
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Figure 3.9 Plot showing the association between genetic distance [FST/(1-FST)] and 
straight-line geographical distance for pairs of populations of P. ariasi. An isolation-by- 
distance (IBD) model was supported for pairwise population comparisons whether 
supported (z-test) regression outliers (circled data points), attributed to comparisons 
with bottle-necked Lot France, were included or excluded. Pairwise comparison 
symbols; triangles: Lot with all other populations; squares: within France (excluding 
Lot); circles: within outgroups; crosses: across the Pyrenees (between France excluding 
Lot, and outgroups). (See Table 3.1 for location information). Explained correlation 
given by R2 values. With the removal of these bottle-necked populations, a dbRDA 
conditional test supported regionality to predict genetic distance beyond that explained 
by geographical distance (covariate), identifying a barrier between populations N and S 
of the Pyrenees (see text). 

16- 

1.4- 

12- 

" "' 

08- 
LL 

! 

LL 
. 

06 

14º. 

0 4- &. 
% , 

x _Ix % R2 = 0.2344 
% 

02 
    ö &M 

" 
 "  %%%" R1=0.1112 

% 

  
R2 = 0.1257 

0 Pmm6 mkFP 
'. -1 200 400 600 800 1000 1200 1400 1600 1800 2000 

-0.2 

Geographical distance (km) 

145 



3.4 Discussion 

This study offered the most detailed evaluation to date of the natural genetic 

variation of a sandfly salivary peptide. The results were the first to record phylogenetic 

support for the occurrence of a gene duplication event in a Phlebotomus salivary peptide 

based on direct DNA sequencing of wild sandflies. This study found that the targeted 

fragment of the salivary peptide apyrase is predominantly under purifying selection 

across Phlebotomus, including the P. ariasi lineage. Testing for selection on different 

taxonomic levels allowed an investigation of the processes affecting apyrase evolution 

at several evolutionary time-scales. The results did not statistically support persistent or 

contemporary positive or balancing selection and, therefore, contest the hypothesis of a 

sandfly peptide-host-parasite meditated arms race on apyrase, a salivary peptide that can 

putatively protect against L. infantum in the western Mediterranean. This study 

practically presented a molecular protocol for PCR amplification and accurate sequence 

genotyping of an apyrase fragment for Phlebotomus species, which for P. ariasi 

involved an optimized PASA system using a limited number of allele-specific primers. 

3.4.1 Evolutionary significance of apyrase gene duplicates in some Phlebotomus 

This study presented the most extensive Phlebotomus phylogeny for apyrase, 

identifying at least two Phlebotomus apyrases, in part by species paraphyly in a 

Bayesian phylogeny (Figure 3.3a). Orthologous sequences reconstructing the true (e. g. 

species) phylogeny included the pern491 lineage (Anderson et al., 2006) and identified 

a paralogous pern490 lineage. The timing of this supported a gene duplication event that 

included the common ancestor to P. kandelakii and the P. perniciosus complex, but not 

earlier within Larroussius or its sister subgenera, Adlerius and Transphlebotomus. This 

is a result contrary to Anderson et al. (2006) who hypothesized, without support, a 

duplication event in P. perniciosus with a subsequent loss in P. ariasi. Kato et al. 
(2006) showed the apyrase of two Phlebotomus species, P. duboscqi and P. papatasi, to 

be closely related and apart from other sandfly apyrases. Along with P. 

(Euphlebotomus) argentipes, my apyrase phylogenies that included these species were 
incongruent with both taxonomic and other gene trees, which could be further support 
for other apyrase paralogues. However, alternative explanations cannot be ruled out, 
namely the confounding effects of genetic distance (to resolve would require more 
taxon sampling than the current study), or the low resolving power of the short apyrase 
fragment utilized (as seen for the gene tree of elongation factor-la in Chapter 2). 
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Gene duplication events could be widespread in salivary peptides, having been 

identified by the phylogenetic analysis of the cDNAs of some multicopy salivary 

peptides of Phlebotomus, e. g. the D7 and SP15 like protein families (Anderson et al., 

2006; Elnaiem et al., 2005). Duplicated genes are commonly assumed to evolve under 

weaker selection than nonduplicated genes, and are fundamental to the process of 

adaptive evolution (Ohno, 1970; Hurles, 2004). In accordance with previous 

observations (Lynch and Conery, 2000), acceleration in the evolution of the apyrase 

paralogue (pern490 lineage) occurred immediately after duplication. Relaxed selective 

constraints and/or positive selection can cause asymmetric evolutionary rates by 

accelerated nonsynonymous changes in one duplicate (Zhang et al., 2003; Moore and 

Purugganan, 2003), leading to a new active site being fixed by drift or selection. This 

was observed in apyrase: immediately post-duplication positive selection (co 

significantly > 1) was supported in the paralogous lineage (Table 3.4), consisting of 

only nonsynonymous changes, a pattern found in other duplicate systems (Emes and 

Yang, 2008; Jia et al., 2003). However, this period of adaptation appeared to be a single 

episode and not persistent, because purifying selection predominated across the entire 

lineage (co = 0.375) and in terminal branches. Random site models also supported some 

3% of sites under selection, although no specific site could be statistically identified. 

Increased taxon sampling might permit a clearer conclusion. 

The maintenance of an apyrase duplicate over time, in this case in multiple taxa, 

might indicate a conferred fitness advantage. Although episodic adaptive selection 
(positive directional) was detected, overall each apyrase was found to be subject to 

purifying selection maintaining both the apyrases as calcium-activated nucleotidases 
(CANs) as revealed by BLAST. However, a considerable proportion of amino acid 

replacements occurred between duplicate lineages, so strict gene functional 

conservation is unlikely, suggesting possible subfunctionalization (partitioning of 

ancestral function), which relevant activity experiments would need to confirm. 
Evolutionarily, the maintenance of duplicates may benefit the sandfly by increasing the 

expression level or enzyme efficiency of apyrase, to further aid abrogation of host ADP 
induced platelet aggregation, or by the adaptive improvement of the ancestral apyrase 
function (Hahn, 2009). There are no reports suggesting that those Phlebotomus species 
with apyrase duplicates are better blood feeders than flies with only a single apyrase. 
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3.4.2 No supported sandfly peptide-host-Leishmania arms race or ecologically 

meditated adaptive selection in apyrase 

When testing for selection, erroneous conclusions result from comparisons of 

paralogous genes, the presence of cryptic species, non-randomly mating populations, 

linkage disequilibrium, and demography. To control for these variables: orthologous 

genes were identified by cloning and optimized PASA systems, as well as genetic 

models (e. g. phylogenies congruent with other taxonomic and gene trees), and 

similarity, identity and divergence estimates. Population genetic models assessed 

samples of P. ariasi known to comprise a single phylogenetic and biological species 

(Chapter 2), used outgroup sequences proven to be orthologous, and disentangled 

demography versus selection by comparisons with other loci. LD showed ambiguous 

results, where non-random association of alleles was detected in one of two populations 
between apyrase and nuclear EF-la. Through natural selection, LD results either from 

epistatic selection for gene combinations (Lewontin, 1964) or from selective sweeps 

involving sites down- or up-stream of the targeted fragment (Kim and Nielsen, 2004). 

Either selection process is unlikely, as this association was not observed in the other 

population tested. The alternative of neutral admixture of genetically differentiated 

populations is more likely (e. g. Stephens et al., 1994), as the population showing LD 

was composed of equal proportions of two mitochondrially divergent haplogroups 

(Chapter 2). 

Selection was tested for within a maximum likelihood framework, which used 
the nonsynonymous/synonymous substitution rate ratio (co) as a measure of selective 

pressure at the protein level on a Phlebotomus phylogeny. At this long time-scale, 

apyrase was shown to be under predominantly purifying selection, with selection 

pressure being heterogeneous among branches and orthologues more selectively 

constrained. Although I cannot reject adaptation common to sandflies, because the 

analyses did not test across families, Fixed-site tests revealed no evidence of positive 

selection in codons considered to be functionally important and hypothesized to be 

evolving under adaptive evolution in sandfly apyrase (Anderson et al., 2006). 
Moreover, Random-site models failed to identify functional divergence by positive 
selection in one or a few amino acids, although a low number of sites (-I% to 3%, none 
with known apyrase associated function), were found to be under such positive selection 
by BEB. The lack of power of BEB adds further evidence to support the absence of 
persistent selection on apyrase, because the method fails to detect site-specific positive 
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selection unless multiple substitutions occur at the same codon position throughout the 

phylogeny (Yang et al., 2005). However, the method is not robust against intragenic 

recombination (Anisimova et al., 2003), which was detected in the intra-specific 

analysis. The implication of a few adaptive sites occurring in apyrase is unclear. In 

comparison, the tick salivary peptide Salp15 used by the pathogen Borrelia burgdorferi 

to infect their host showed 29% to 54% of sites under positive selection (Schwalie and 

Schultz, 2009). 

The molecular evolution of P. ariasi apyrase, sampled from a range of spatio- 

temporal populations representing different geographical environments that originated 
from across the species' South-North range, is most likely not to be under positive 
directional or balancing selection, as tested at different evolutionary time-scales. At the 

longest-time scale, the PAML analysis using the orthologous Phlebotomus apyrase 

phylogeny revealed purifying selection. No support for adaptive selection was revealed 
between sister species or among P. ariasi populations, which were investigated using 

population genetic models aimed at detecting longer-term (MK test) or recent selection 
(D statistics after multiple comparison corrections) within P. ariasi. This latter 

conclusion is noted with caution, as I accept the assumption of the absence of 

recombination may be incorrect, which can lead to conservative inferences of 

population genetic statistics. Accepting the effects of recombination, an alternative 

scenario could be proffered for the evolutionary forces acting within P. ariasi 
populations. Per population, but not globally, MK results showed a trend towards 
longer-term positive selection. Whereas a trend in positive D statistics suggested a 

signal of balancing selection. The latter may have occurred through local 

recombination, as up to two recombination events were detected in P. ariasi populations 

and estimates of population recombination parameter R were positively correlated with 

nucleotide diversity. However, balancing selection has not been detected for any 
dipteran immune peptide and perhaps it should not be expected to act on salivary 
peptides, because it is usually associated only with parasite-mammal interactions for 
diseases such as tsetse fly-borne sleeping sickness caused by the antigen-switching 
Trypanosoma brucei (Young et al. 2008) and anopheline mosquito-borne malaria 
caused by Plasmodium species with highly polymorphic surface antigens (Tetteh et al. 
2009). 

Phylogeographic variation was observed at both the nucleotide and amino acid 
levels of diversity, a population genetic structure consistent with that given by other loci 
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(Chapter 2), which identified plausible biographical barriers to gene flow, proposing the 

use of apyrase as a neutral population genetic marker for P. ariasi. 

3.4.3 Apyrase for vaccination against Mediterranean ZVL 

My analyses did not support persistent positive directional or balancing selection 

on apyrase across Phlebotomus or within the P. ariasi lineage, indicating the absence of 

an arms race model of molecular evolution driven by sandfly peptide-host-Leishmania 

antagonism. Actually, an arms race between sandfly salivary peptides, Leishmania and 

their vertebrate hosts should not be expected for most transmission cycles, especially for 

the one involving P. ariasi. Amongst others, P. ariasi (Guy et al., 1984), P. perniciosus 
(De Colmenares et al., 1995), P. perfiliewi (Bongiorno et al., 2003), P. argentipes (Palit 

et al., 2005) and P. papatasi (Javadian et al., 1977) are all vectors found to be 

opportunistic feeders. They take blood meals from whichever host is nearby (e. g. dogs, 

rodents and birds), with some species ingesting multiple blood meals in a single 

gonotropic cycle (Guy et al., 1984; De Colmenares et al., 1995; Svobodovä et al., 
2003). In addition, the mean life expectancy of female P. ariasi is only 1.54 ovarian 

cycles (Dye et al., 1987) and with potentially hundreds of flies biting a single host each 
day, this makes it unlikely that an arms race will be initiated by any one sandfly- 

parasite-host system. 
VL is usually a zoonosis in the Mediterranean Basin, where dogs are the main 

reservoirs, and thus is considered both a public and veterinary health problem (Dujardin 

et al., 2008). With the sandfly being a permanent component in the current transmission 

cycle, anti-Leishmania vaccines targeting vector salivary components with 
immunomodulatory activities are promising third-generation candidates (Titus et al., 
2006; Palatnik-de-Sousa, 2008). Recently, Collin et al. (2009) reported that 
immunization with two salivary peptide-specific DNA plasmids of L. longipalpis 

conferred protection against L. infantum chagasi in the natural dog reservoir. This 
immunization study, like the few others investigating these peptides, involved antibody 
and Thl responses (e. g. Morris et al., 2001; Valenzuela et al., 2001a; Gomes et al., 
2008; Oliveira et al., 2008; Collin et al., 2009). By-passing the humoral system 
response, as apyrase does, may prove advantageous for vaccine development, if the 
involvement of an antibody response is more likely to lead to an arms race, e. g. 
maxadilan (Milleron et al., 2004b). 
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The results of this study suggest caution is required when considering the use of 

apyrase as a broad-spectrum vaccine candidate, because of the presence of duplicate 

lineages in some Phlebotomus. Findings on intra-specific polymorphism should not be 

extrapolated to other sandflies, but the methodologies presented are a "proof of 

principle" indicating how a population genetics approach can distinguish between 

adaptive and neutral evolution of a salivary peptide. Caution is also required, because 

the effects of a cell mediated DTH response on Leishmania pathogenicity can be 

contradictory (Oliveira et al., 2008). 
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CHAPTER 4 

Fine-scale spatial genetic structure of Phlebotomus ariasi in southwest France: 

effects of landscape fragmentation on gene flow 

4.1 Introduction 

The South-North distribution of Phlebotomus ariasi, a vector of Leishmania 

infantum, goes from North Africa to 450 N in central France. Phylogeographic 

inferences and a high diversity of mitochondrial haplotypes (including multiple cyt b 

haplogroups) indicated southwest (SW) France as a putative zone of secondary contact 

or a region occupied by flies dispersing from one (Chapter 2). The lower slopes of the 

northeast (NE) Pyrenees offered a gateway for P. ariasi migrating from Iberia into 

southwest (SW) France, and/or a springboard for its northward spread, at the end of the 

last 1-2 glacial periods. In France the distribution of P. ariasi and zoonotic visceral 

leishmaniasis (ZVL) are associated with land cover types suitable for this vector (Rioux 

et al., 1980). The aim of the current chapter is to determine if landscape heterogeneity 

in SW France affects the gene flow of P. ariasi using fine-scale spatial genetics. An 

understanding of the landscape genetics (Holderegger and Wagner, 2008) of P. ariasi 

" could be informative for modelling the risk of ZVL spread in the changing 

environments of western Mediterranean Europe (Ready, 2008). 

Habitat fragmentation divides continuous populations into smaller isolated 

remnants (Foley et al., 2005). The differing levels of connectivity between population 

clusters (the metapopulation dynamic) in part depends on dispersal capabilities through 

the landscape (Baguette and Dyck, 2007; Saunders et al., 1991), and in part on the 

spatial attributes of the landscape including fragment area, its coincidence with edge 

effects, fragment shape, fragment isolation and matrix structure (Ewers and Didham, 

2006). Dispersal is a fundamental process determining the response of a species to 
landscape changes (Dieckmann et al., 1999), which can be assessed using population 

genetic tools founded on Wright's (1931; 1943) principles. These are dependent on two 

main components, neighbourhood size and isolation-by-distance. Addressing the latter 

permits one to distinguish between two population processes, namely the sub- 

structuring of populations or individuals into homogeneous gene pools, or the 
dependence of genetic distance on geographical separation (Guillot et al., 2009; Slatkin, 

1995). In the context of habitat fragmentation, landscape genetics (sensu lato 
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Holderegger and Wagner, 2008) aims to resolve the degree to which landscapes 

facilitate the movement of organisms (landscape connectivity) by relating gene flow 

patterns to landscape structure. In addition to Wright's classical FST method to estimate 

gene flow, developments in population genetics have allowed recent and contemporary 

barriers to gene flow to be identified, and quantification of their geographical scale (e. g. 

spatial autocorrelation (Smouse and Peakall, 1999) and the STRUCTURE assignment 

test (Pritchard et al., 2000)). Indirect (genetic) measures of gene flow tend to be 

underestimated and difficult to measure in long distance dispersers (Peakall et al., 
2003). For P. ariasi, however, gene flow should be both detectable and congruent with 

spatial genetic structure, because of its phalanx or stepping stone geographical spread 
(Chapter 2) and its restricted local dispersal - mark-release-recapture experiments 

showed its dispersal distance commonly to be around 1 km, with a maximum of 2.2 km 

(Killick-Kendrick et al., 1984). 

The evolutionary consequences of habitat fragmentation have their principles in 

island biogeography theory (MacArthur and Wilson, 1967), where decreasing fragment 

size is accompanied by a decline in species abundance and richness. Genetic content is 

also affected. Fragmentation can isolate small populations, leading to restricted gene 
flow and reduced levels of genetic diversity - the likelihood of inbreeding is increased 

through the accumulation of related individuals within the fragments. Consequently 

evolutionary potential is lowered, reproductive fitness compromised, and extinction risk 
is elevated (Couvet, 2002; Spielman et al., 2004). In addition to genetic 
impoverishment, restricted gene flow with fragmentation alters metapopulation 
dynamics. It can increase the rate of population differentiation between fragments by 

genetic drift, and can also affect population or individual behaviour, for example 

encourage longer-distance dispersers (Dyck and Baguette, 2005). It follows that 
fragmented landscapes could significantly affect disease epidemiology through vector 
persistence, creation of new environments that change vector-host encounters and 
vectorial traits. As estimates of gene flow made using direct measurements of sandfly 
dispersal are inefficient and labour intensive, fine-scale spatial genetics provides a 
tractable alternative. 

The current study region lies in SW France, including the NE Pyrenees and 
southern foothills of the Massif Central (SMC), France (Figure 4.1). This is composed 
of a heterogeneous landscape, the presence of oak or broadleaf forest (Rioux and 
Golvan, 1969; Ready et al., in prep) is favourable to P. ariasi, but is fragmented by 
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natural features such as rivers and low mountain passes. In addition anthropogenic land 

cover changes have occurred at specific altitudes, resulting in a matrix of forestry, 

pastures, orchards, arable crops and vineyards, all associated with scattered small 

villages, isolated farms and commuter dwellings (Martinez et al., 2007; EDEN project 
field environmental databasing). In the study area, the contemporary spatial distribution 

of P. ariasi was investigated based on a systematic sampling field strategy unbiased to 

landscape type. To date, analyses have been conducted using remote sensed data within 

a Geographical Information System (GIS), with particular focus on the effects of 

landscape composition and configuration based on vector absence/presence (Martinez et 

al., 2007) or relative abundances (P. D. Ready, S. S. Mahamdallie and B. Pesson, 

unpublished observations). In the study area, Martinez et al. (2007) confirmed a 

significant positive association between P. ariasi presence and broadleaf forest, and a 

negative association with the proportion of vineyards, of complex cultivation patterns 

and other crop types. Furthermore, altitude also contributes to this species' patchy 
distribution: in the NE Pyrenean foothills P. ariasi has an overall range between 120- 

1,300 m. a. s. l., is relatively more abundant at mid-slope, but found in low numbers (or 

absent) below 300 m. a. s. 1., where unsuitable land covers predominate (urban or 

agricultural) that fragment the forest (P. D. Ready, S. S. Mahamdallie and B. Pesson, 

unpublished observations). 
Insects are highly susceptible to forest fragmentation (Didham et al., 1996). In 

Europe, those forests that share a high proportion of their borders with anthropogenic 

uses are at higher risk of further degradation (Wade et al., 2003), especially where 

agriculture predominates (Jennersten et al., 1997). In SW France, agricultural policy has 

caused a change in land use away from traditional cattle farming (blood meal source for 

sandfly populations) towards the cultivation of maize and sunflowers accompanied by 

soil drainage changes and increased overgrown fallows (Balent and Coutiade, 1992). 
Specifically in the study region, Martinez et al. (2007) found that broadleaf forest 

configuration was evolving by an increase in the number of patches over the past 20 

years. Only a single study has assessed the population genetic structure of P. ariasi in 
SW France (Chapter 2). Low resolution sampling provided some support for restricted 
gene flow between populations north of the Pyrenees and Massif Central uplands, as 
well as, between populations from forested hillsides either side of the Carcassonne 

corridor (ca. 20 km) -a zone of unsuitable habitat for this species i. e. low-altitude (< 
300 m. a. s. l. ), deforested, urban and with major road and rail transport routes. 
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The author is not aware of any published hypervariable microsatellite loci for P. 

ariasi, the preferred markers to characterize population structure (Sunnucks, 2000). 

Therefore, this investigation characterized the DNA sequences of five loci of P. ariasi 

(Those of Chapters 2 and 3), which at the population level are both polymorphic and not 

subject to adaptive selection. DNA sequence data offer an advantage over genotyped 

markers as their assessment can include both divergence and frequency parameters, and 

moreover, current population structure can be distinguished from historical events 

through molecular phylogenies (Sunnucks, 2000). Both mitochondrial (cyt b) and 

nuclear loci (EF-la and apyrase [protein coding], AAm20 and AAm24 [anonymous 

loci]) were characterized, which provided independent tests of hypotheses. This study 

evaluated the fine-scale spatial genetics by two categories of assessment: (i) combining 

multilocus nuclear genotypes which are labile -a single generation of sexual 

recombination can destroy a genotype - to infer recent and contemporary 

metapopulation dynamics and relatedness between individuals; and (ii) using single 

locus allele frequencies and divergence for longer time-scales, to assess the population 

neutral processes of genetic drift, gene flow and founder effects (Sunnucks, 2000). 

The aim of this chapter was to determine, by exploring patterns of gene flow, the 

presence and causes of non-random population structure of P. ariasi in a study region 

composed of fragmented forest patches inter-dispersed with other land cover and 
landscape features. 

This chapter's aims were: 

1. To estimate diversity and relatedness in geographical populations/sub-regions 

and determine whether the levels observed can be associated with specific 

spatial attributes of the landscape. 

2. To quantify the spatial scale of genetic connectivity between individual P. ariasi 
in this study region. 

3. To infer barriers to gene flow across the study region by modelling the statistical 
dependence between genetic and geographical distance. 

4. To assess if population structure supported the recognition of geographical sub- 
regions, defined a priori by their association with forest separated by the 
landscape. 

5. To use the individual as an operational unit in an assignment test to identify 

contemporary population clusters. 
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4.2 Materials and methods 

4.2.1 Field sampling information 

547 P. ariasi from 23 spatio-temporal populations where sampled at relatively 

high density within a high resolution 70 x 70 km field area in SW France, including the 

NE Pyrenees (bordered to the west and east by the Ariege and Aude rivers, respectively) 

and the southern Massif Central in the north. The decimal degree coordinates of the 

boundaries were: north 43.37426333, east 2.541408333, south 42.745900, and west 

1.66310000 (measured at sample site using a TomTom Palm GPS system) (Table 4.1). 

Figure 4.1 shows sampling locations superimposed over a CORINE land cover data 

layer (processed by Dr J. Cox, LSHTM). The sample region comprised various levels of 

broadleaf forest fragmentation amongst a matrix of rural land cover types including 

urbanization. Peri-domestic sandfly populations (each with 11-52 P. ariasi) were 

sampled by CDC miniature light traps in the same month each year (July), during the 

season of adult activity. Where practically possible, rural houses/farms were chosen 

with similar domestic fauna, because this might influence local population size at 

sampling locations: < 10 dogs and only a few large mammals were present in a few 

small holdings (Table 4.1). 

To investigate landscape features that might restrict P. ariasi gene flow, 

populations in the study region were sub-divided into four a priori sub-regions of 
broadleaf forest separated by other land covers and/or the Aude river: Sub-region 1: two 

sites in the southern foothills of the Montagne Noire of the Massif Central ("SMC") 

were grouped apart from all other populations, this divided populations based on their 

position north or south of the low-altitude, deforested "Carcassonne corridor", a 

transport route between the Mediterranean and the Atlantic coast (Figure 4.1). South of 
this corridor: Sub-region 2; populations West of the Aude river ("West Other"), but 

outside of Sub-region 3; the Föret de la Malepere ("FDM"), an isolated broadleaf forest 

patch surrounded predominantly by a matrix of vineyards and other crops unsuitable for 

P. ariasi; and Sub-region 4; "East Aude", to the east of the river, this was chosen 
following the results of isoenzyme studies that showed disparate allele frequencies for 

one population on either side of the R. Aude (B. Pesson, unpublished data). 

To optimize the genetic information for population structure analyses, it was 
aimed to collect field samples separated by similar distances: locations were targeted 

where straight-line geographical distances were comparable within and between sub- 
regions, i. e. -10 km within the FDM, and -11 km between FDM and West Other; 

156 



Figure 4.1 Map detailing the location of P. ariasi sampling sites from southwest 
France, including temporal capture information, the 2 km buffer zones around sites, and 
the position of the low altitude and deforested Carcassonne corridor. Upper figure 

shows a digital elevation map with pie charts representing the proportion of cyt b 
haplogroups (A-D) within populations; lower figure superimposes a CORINE land 

cover map for category 311, the distribution of broadleaf forest (green), and shows the 
clustering of populations of four a priori sub-regions. 
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and greater distances within West Other, comparable to across the Carcassonne 

corridor, -25-50 km (Figure 4.1). 

On a finer-scale, populations were also independently assigned to two categories 

of broadleaf forest structure, "fragmented" or "continuous", defined by their immediate 

proximity to a broadleaf forest patch estimated in ARCVIEW (v3.2) from the CORINE 

land cover map, and field observations. Two proximity measures were considered. 

Firstly, straight-line distance from a location coordinate centroid to the nearest 

neighbouring (NN) forest patch. Secondly, by quantifying the extent of forest 

surrounding a location coordinate centroid by averaging the distance to forest over the 

four 90° axes within a2 km buffer zone (automated in ARCVIEW v3.2) (If the nearest 

forest patch fell outside the buffer, then the maximum distance of 2 km was recorded) 

(Table 4.1). Only a single study has directly measured the dispersal capability P. ariasi, 

with mark-release-recapture experiments showing fewer than 4% of flies to be 

recaptured > 700 in from the release points and two thirds of females being recaptured 

within 250 in (Killick-Kendrick et al., 1984). Accordingly, collection sites were 

categorized as having: fragmented forest (N = 5), where the nearest forest patch was > 

400 in and/or the average distance to forest was > 700 m; and continuous forest (N = 

18), where the nearest forest patch was < 400 m and/or the average distance to forest 

was < 700 m) (Table 4.2). Field studies `ground truthed' CORINE categories. 

Consequently, population ARQ was classified as having continuous forest based on 

field observations that recorded the site to be in close proximity to dense patches of 

coniferous forest mixed with broadleaf trees - the CORINE map recorded no nearby 

forest (NN = 860 m). 
The contribution of temporal population processes on the level of P. ariasi 

genetic variation was assessed at three sampling locations, one in each southern sub- 

region: ARQ in 2006 and 2008 (East Aude); IRL in 2007 and 2008 (West Other); and 

RUL in 2006 and 2008 (FDM). For the repeat collections, CDC traps were placed in 

identical locations during a similar period in the sandfly season, to minimise the 

confounding effects of local sampling variables. For some fine-scale analyses nine 

populations were considered to be outliers if they were separated by moderate 

geographical distance or associated with changes in bioclimate: populations CTU, SPV, 

PYR, PLB, PAS, MLQ, ARQ06/08, VRA (Figure 4.1). 
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4.2.2 Specimen field collection and preparation 

Sandflies were collected, preserved and identified as described in Chapter 2 

(section 2.2.1). Environmental features surrounding each capture site were recorded in a 

standardized PALM database (designed by P. D. Ready, J. Cox, C. Davies and the 

author), or paper questionnaires (designed by P. D. Ready and the author). This 

extensive database is not presented as many of the records are not pertinent to this 

study, but some environmental attributes of sampling locations that are relevant to 

explain results are referred to herein. 

4.2.3 Molecular characterization of known neutral loci 

DNA extraction methodology from whole or partial sandflies was described in 

Chapter 2 (section 2.2.2), and protocols to generate direct sequence data from four 

nuclear loci (17 populations; AAm20, AAm24, apyrase (APY), elongation factor-1 

alpha (EF-1 a)), and a single mtDNA locus (23 populations; cytochrome b (cyt b)) were 

described in Chapter 2 (section 2.2.2) and Chapter 3 (section 3.2.2.1). 

4.2.4 Data analyses to assess the fine-scale spatial genetic structure of P. ariasi 

4.2.4.1 Locus genealogies 
To disentangle current population structure from historical demographics, 

parsimony gene networks were reconstructed for each locus, as implemented in TCS 

(Clement et al., 2000; see Chapter 2, section 2.2.5.2). 

4.2.4.2 Description and visualization of the genetic landscape 

The Genetic Landscape Shape (GLS) interpolation procedure of Alleles in Space 

(AlS; Miller, 2005) was used to help visualize population differentiation across the 

region. Cyt b (nucleotide sequence) and combined nuclear genotypes were analyzed 
independently in GLS: the program does not handle differences in ploidy or combined 

nuclear locus sequence data (M. Miller pers. comm. ). In all genotype based analyses, 
binary codes were assigned to unique DNA alleles. The GLS method creates a three 
dimensional landscape where the X- and Y-axes represent geographical coordinates 
(UTM, converted from decimal degrees as collected on the field TomTom GPS system) 

and the Z-axis defines genetic distance whose peak's infer areas of high genetic 
distance. GLS interpolation proceeds by constructing a Delauney triangulation 

connectivity matrix between sample sites from whose mid-points inter-individual 
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genetic distances are calculated and plotted. A 100 x 100 landscape grid was overlaid 

over the sample sites, and genetic distances between locations estimated (inverse 

distance-weighted interpolation; using residual genetic distances; distance weight value 

1). Repetitions of various grid sizes and distance weight values were investigated to 

ensure interpolation parameters did not influence the graphical depiction of the genetic 

landscape. 

4.2.4.3 Estimating genetic diversity and relatedness within populations and a priori sub- 

regions 
Concordance with Hardy-Weinberg expectation (HWE) (10,000 permutations, 

ARLEQUIN v3.11; Excoffier et al., 2005) and testing linkage disequilibrium (LD) 

across multiple unlinked loci (GENEPOP v4.0; Raymond and Rousset, 1995) were 

implemented to investigate whether there was panmixia in each population and within a 

priori sub-regions. Significant P-values of multiple tests were manually corrected for 

familywise Type I errors by applying a sequential Bonferroni correction (a = 0.05) 

(Holm, 1979). 

Relative levels of genetic diversity were estimated by: allelic richness (A) 

correcting for sample size variation (FSTAT v2.9.3.2; Goudet, 2002); gene diversity 

(ARLEQUIN v3.11) as haplotype diversity (Hd) for cyt b and expected heterozygosity 

(He) in the diploid nuclear loci. The availability of direct sequence data also allowed the 

molecular index of nucleotide diversity to be calculated (tt, with Jukes-Cantor 

correction in DNASP v4.90.1; Rozas et al., 2003). For each nuclear locus the 

coefficient Fis measured inbreeding relative to the global population, where positive and 

negative values represented decreased heterozygosity (inbreeding), and increased 

heterozygosity (outbreeding), respectively (FSTAT v2.9.3.2). 
Significant relatedness was assessed by estimating the mean pairwise relatedness 

estimator (R) (Queller and Goodnight, 1989) in GENALEX (v6, Peakall and Smouse, 

2006), using combined nuclear genotype data. 95% confidence intervals were used to 

evaluate the significance of R from the expected null distribution of random 

reproduction across the sample area (999 random genotype permutations). In addition, 
95% Cl error bars were derived by 999 bootstrap resampling. When error bars fail to 

overlap the permuted null, population processes are assumed to increase relatedness 
("reproductive skew", e. g. inbreeding or genetic drift). 
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4.2.4.4 Testing for statistical support for regional genetic discontinuity based on a priori 

sub-divisions 
Hierarchical Analysis of Molecular Variance (AMOVA) was applied to single 

locus data or combined nuclear genotypes to test for the support of genetic variance 

partitioning between a priori defined geographical sub-regions. Practically, a standard 

AMOVA approach was taken using pairwise distances, and statistical significance for 

each grouping was calculated using 16,000 permutations (ARLEQUIN v3.11). 

4.2.4.5 Between population genetic differentiation and testing for statistical dependence 

between genetic and geographic distances 

Restrictions to gene flow across the study region were tested by estimates of 

population pairwise genetic differentiation as measured by (DST estimated in 

ARLEQUIN v3.11. Statistical dependence between distance matrices supports can 

either gene flow according to dispersal ability under an isolation-by-distance model 

(IBD) or the presence of landscape barriers which limit gene flow (Guillot et al., 2009). 

A Mantel test (GENEPOP v4.0) or marginal tests (DISTLM v5; Anderson, 2004) (See 

Chapter 2) were implemented to assess whether predictor variables were correlated with 

genetic distance. Predictor variables included: geographical distance estimated as either 

straight-line distance or distance along a broadleaf forest line as assessed from a 
CORINE land cover data layer (ARCVIEW v3.2); and classification of populations 

according to geographical subregions. Conditional tests (i. e. distance-based redundancy 

analysis, dbRNA; Anderson, 2004) were implemented to eliminate the effect of IBD on 

genetic distance, by treating geographical distance as a covariate. 
The spatial scale of genetic connectivity as a function of geographical distance 

was also inferred by the regression of inter-individual pairwise relatedness coefficients 

on spatial distance as implemented in GENALEX (v6). Spatial autocorrelation is a 

combined nuclear genotype approach which has been proposed to have greater power 

and less variance than a single locus assessment (Smouse and Peakall, 1999). It has 

been applied to animal taxa with restricted dispersal to quantify dispersal behaviour, 

when gene flow is restricted and selection absent. The latter is applicable to the loci 

characterized (Chapters 2 and 3). For investigating spatial autocorrelation, estimated 
inter-individual pairwise genetic distances were transformed to the autocorrelation 

coefficient r, a measure of genetic similarity between pairs of individuals in 

cumulatively increasing geographical distance classes. As the value at which positive 
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spatial genetic structure is detected is affected by the distance class chosen, increasing 

distance classes were chosen as recommended by Peakall et al. (2003), namely starting 

with the maximum dispersal distance of P. ariasi (2 km) and going up to the maximum 

distance of sampling. Individuals are expected to show positive spatial genetic 

autocorrelation at short distance classes, but values should decline through zero to 

become negative, preceded by stochastic oscillations of positive and negative values 

(Smouse and Peakall, 1999; Peakall et al., 2003). Tests for statistical significance 

included: 999 permutations of randomly shuffled individual genotypes among 

geographical locations to recompute a null distribution for r assuming no genetic 

structure (from which 95% CIs define the range about null r), and 999 bootstrap 

resampling to estimate 95% CIs around mean r by drawing replacements from within 

relevant pairwise comparisons within each distance class. Following Peakall et al. 

(2003), the null hypothesis of no spatial genetic structure was rejected only when r 

exceeded the 95% CI derived from the among-population permutation test, and when 

the 95% CI about r (estimated from bootstrap resampling) do not intercept the X-axis of 

r=0. If positive spatial genetic structure is found, the first X-intercept provides a 

quantitative estimate of the spatial limit of non-random (positive) genetic structure. 

4.2.4.6 Identifying disruption to gene flow based on a Bayesian clustering approach 
A Bayesian clustering model (STRUCTURE v2.3.1; Pritchard et al., 2000) was 

used to infer if individuals belonged to one or more populations (K clusters). All five 

loci were included in the analysis, where the second allele of haploid data was coded as 

missing (J. Pritchard pers. comm. ). A cluster is characterized by a set of allele 
frequencies at each locus attributed to random drift and restricted gene flow, and 
therefore a cluster represents homogeneous spatial domains. STRUCTURE proceeds by 

assigning each individual to its appropriate cluster, the number of which is user defined. 

For each K the log probability of the data (1nP(D)) is estimated that best describes the fit 

of the data to its respective K. To infer the `true' cluster number of the data, a series of 
K clusters was evaluated (1-5), with 100,000 bum-in steps before 1,000,000 MCMC 

repeats. 10 randomized replicates were made for each K cluster, to ensure stability of 
posterior probability. Key summary statistics were checked for convergence and 
therefore a suitable bum-in value, as recommended by Pritchard et al. (2009). Evanno et 
al. (2005) reported that, in most cases, the highest estimated lnP(D) does not provide a 
correct estimation of cluster number. Instead they estimated the true K through an ad 
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hoc statistic, OK, based on the rate of change in lnP(D) between successive K-values. 

Both approaches were taken to infer the true K, where CLUMPP (Jakobson and 

Rosenberg, 2007) was then used to summarize and align multiple replicates from this 

optimal K, to estimate the membership coefficient (Q) of individuals to a cluster, which 

was then visualized as a box plot. 

Two ancestry models were implemented, as recommended by Pritchard et al. 

(2009). The admixture model (setting ADMIXTURE = 1) makes no a priori 

assumptions about population clustering, and therefore was initially implemented to 

learn about population structure using only genetic information. Secondly, sampling 

location (not spatial) information was used to modify the prior, in order to prefer 

clustering solutions that correlate with the locations (setting LOCPRIOR = 1; Hubisz et 

al., 2009). This is recommended to improve STRUCTURE performance in detecting 

subtle population structure or when data are less informative. This model was 

considered justified as each ̀ population' of flies was taken from one or two traps placed 

in a single property. Because populations may have been connected before forest 

fragmentation arose, both models implemented the F model for correlated allele 
frequencies (FREQSCORR = 1; Falush et al., 2003), and alpha (degree of admixture) 

was estimated independently per population. Other model priors were left as default, i. e. 

the parameter for distribution of allele sequences, lambda, was fixed at one. 
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4.3 Results 

4.3.1 Locus polymorphism 
Individual P. ariasi were characterized by direct sequencing at cyt b (N = 533), 

AAm20 (N = 374), AAm24 (N = 377), apyrase (APY; N= 394) and EF-la (N = 382). 

All five loci were polymorphic and thus potentially informative at this geographical 

scale, where the number of alleles ranged between 68 (cyt b) and 6 (AAm20). Three 

estimates for genetic diversity were used to assess marker polymorphism per se: allelic 

richness (A), gene diversity (He, Hd) and nucleotide diversity (n). Table 4.2 shows that 

cyt b was observed as one of the most diverse markers with the highest A (0.8701, 

corrected for sample size), and the second highest gene and it diversities (0.646 and 

0.00552, respectively; the latter corrected for sequence length as a per site calculation). 

The two anonymous nuclear loci showed the lowest A (AAm20 = 2.278 and AAm24 = 

3.827) and gene diversity (AAm20 = 0.432 and AAm24 = 0.504), which may be an 

indirect result of their short fragment length, because their it diversity was high amongst 

the nuclear loci (e. g. 0.00492,0.00629,0.00440,0.00114, for AAm20, AAm24, APY 

and EF-1 a, respectively). 

4.3.2 Evidence of lineages in cyt b only 

Parsimony gene networks showed reconstructions concordant with those 

reported in Chapter 2 (cyt b, AAm20, AAm24, EF-1 a), and Chapter 3 (APY). All 

nuclear networks showed shallow genealogies, with low frequency alleles derived from 

three or fewer modal haplotypes (allele with more than one derived haplotype or a 

frequency over 10) with five or fewer mutational steps between them. Summarising: 

AAm20 connection limit 3, mode 20m01 with four one-step radiations including a 

second mode 20m02 with a single radiation; AAm24 connection limit 4, three modes 

24m06 with five one-step radiations, including mode 24m01 with two one-step 

radiations including mode 24m07; APY connection limit 9, three modes APYaO1,02, 

03 with four to seven one-step radiations and a maximum derived haplotype at five 

mutational steps from any one mode; and, EF-la connection limit 12, three modes 

EFO1,02,03 with three to seven one-step radiations and a maximum derived haplotype 

at four mutational steps from any one mode. Cyt b was the only locus to show evidence 

of lineages, where four haplogroups (A-D) occurred in the study region. Lineage/ 
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haplogroup D was novel, found in a single fly having 10 mutational steps from the 

predominating haplogroup A, which had the most extensive radiation as observed in 

Chapter 2. Haplogroup B and C were 14 and 5 mutational steps from haplogroup A, 

where only these latter two haplogroups were connected by multiple (3) most 

parsimonious pathways. 

4.3.3 Tests supporting within population and sub-region panmixia and linkage 

equilibrium 
Each population at each locus adhered to HWE, after a sequential Bonferroni 

correction was applied (only SJL was significant before correction, P=0.01 for higher 

than expected heterozygosity). Nine out of 170 Fisher exact probability tests undertaken 

(per population for each locus pair) statistically supported linkage disequilibrium (LD) 

(P < 0.05), but none after sequential correction. Moreover, LD was not supported 

overall between any locus pair (Fisher's exact test P>0.05). A study of a priori sub- 

regions supported panmixia according to HWE and random association of alleles by LD 

for all loci (P > 0.05, after correction). It was therefore considered valid to use all 

markers for both population and a priori sub-region analyses to assess P. ariasi 

statistical spatial genetic structure. 

4.3.4 No statistical support for temporal genetic structure in P. ariasi 
There were three pairs of temporal population repeats and, in two of them each 

pair shared the same set of common alleles and some rare alleles, both with comparable 
frequencies. The exception was location RUL, where for cyt b the most common 
haplotype in haplogroup A (CB25) varied in its frequency between the two years 
(0.5000 and 0.8824), and the two common alleles in haplogroups B and C were absent 
in one of the temporal populations. However, temporal genetic structure was not 

statistically supported for any repeat: for each locus pairwise bsT was non-significant (P 

> 0.05) and estimated at <_ 0.04209 - low genetic differentiation. The spurious result for 

RUL may be a sampling artefact (N = 12-17); N was not so low in the two other 
temporal populations (ARQ and IRL with > 22 flies each year). 

4.3.5 Some genetic impoverishment associated with fragmented forest 
Diversity statistics are informative tools for inferring population structure. For 

example, allelic richness (A) can decline rapidly in isolated populations because of the 
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loss of rare alleles through chance events, and gene diversity (Hd, He) declines in small 

populations as a consequence of random genetic drift. Analyses by a priori sub-regions 

revealed neither significant genetic impoverishment at any locus in the putatively 

isolated FDM sub-region nor higher mean diversity in the main continuous forest West 

Other sub-region (Figure 4.2a). The FDM was shown only to have a significantly lower 

mean nucleotide diversity at cyt b than East Aude (t = 4.1735 ± 0.001, df = 7, P= 

0.0042), which could be explained by the former's lack of haplogroup B (Table 4.3). 

Comparing continuous forest populations only, although the isolated FDM populations 

often had the lowest diversity values compared to like populations from other sub- 

regions (Table 4.2), their highest diversity values were comparable, e. g. among 

continuous populations at cyt b: FDM A=1.923-5.986, Hd = 1.59-0.561,7t = 0.0002- 

0.00345; Others A=2.765-7.902, Hd = 0.42-0.788, a=0.00232-0.00868. Furthermore, 

an evaluation of Fis did not show an inbreeding effect in the FDM (absence of 

consistent positive values), suggesting its forest patch size is sufficient to maintain an 

outbreeding population of P. ariasi. 

An intra-forest analysis within West Other confirmed nucleotide diversity at cyt 

b was significantly higher in its continuous (N = 4) compared with fragmented (N = 8) 

forest populations (t = 3.558, df = 10, P=0.005; P=0.0061 after Welch correction), 

the latter reflecting the near fixation of predominating haplogroup A (Figure 4.2b). 

Queller and Goodnight's (QG) relatedness estimator for individuals within a 

population are expected to be >_0.5 for full sibs, -0.25 for half sibs, and close to zero for 

unrelated individuals. In this study, mean pairwise relatedness within each population 

was low (< 0.25), ranging between -0.101 and 0.177. This evidence did not generally 

support increased (current) relatedness within populations associated with fragmented 

forest compared with those from continuous forest. Members of most populations were 

not more significantly related than expected from the null hypothesis, where genotypes 

are independently drawn from a panmictic population created across all sample 
locations -a result expected when migration between populations is sufficiently high 

and mating is random, which offsets increased relatedness. Two exceptions were: 

outlier PAS showed significantly more relatedness than expected (R = 0.136, P= 

0.015), a result that could be explained by its semi-isolation and lack of migrant 

exchange from the global mean. Isolation from a forest patch could explain the 

significant reproductive skew (R = 0.177, P=0.006) observed in MQT, where 
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Figure 4.2a Plotting allelic richness, gene diversity and nucleotide diversity for five 
loci for each of the four a priori sub-regions. Midpoint = mean; boxes = standard error; 
whiskers = standard deviation. (A comparison of Pyrenean sub-regions revealed FDM 
to have a significantly lower nucleotide diversity than East Aude; t-test P=0.0042). 
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Figure 4.2b Plotting (left to right) allelic richness, gene diversity and nucleotide 
diversity at locus cyt b, to compare diversity in fragmented (Frag. ) and continuous 
(Cont. ) forest populations in sub-region West Other. (t-test showed a significantly 
higher nucleotide diversity in continuous compared with fragmented forest; P=0.005). 
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Figure 4.3 Queller and Goodnight's (1989) relatedness estimator (R) for individuals: 

(a) within P. ariasi populations, and (b) within a priori sub-regions. 

al 

bl 

Legend Within population estimates of relatedness are based on the mean inter-individual 
relatedness (blue lines). (a) Mean relatedness of populations PAS and MQT differed 
significantly from expectations under a null of population panmixia (P = 0.015 and 0.006, 
respectively; red bars are upper and lower 95% confidence limits of this null). However, only 
population MQT showed a population mean relatedness whose 95% CI error bars (from 
bootstrap resampling) fell above the null permuted expectation, indicative of reproductive skew 
e. g. by inbreeding or random genetic drift. (b) No sub-region showed deviation for 
relatedness from the global null of panmixia. 
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Figure 4.2b Plotting (left to right) allelic richness, gene diversity and nucleotide 
diversity at locus cyt b, to compare diversity in fragmented (Frag. ) and continuous 
(Cont. ) forest populations in sub-region West Other. (t-test showed a significantly 
higher nucleotide diversity in continuous compared with fragmented forest; P=0.005). 
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relatedness (blue lines). (a) Mean relatedness of populations PAS and MQT differed 
significantly from expectations under a null of population panmixia (P = 0.015 and 0.006, 
respectively; red bars are upper and lower 95% confidence limits of this null). However, only 
population MQT showed a population mean relatedness whose 95% CI error bars (from 
bootstrap resampling) fell above the null permuted expectation, indicative of reproductive skew 
e. g. by inbreeding or random genetic drift. (b) No sub-region showed deviation for 

relatedness from the global null of panmixia. 
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inbreeding or genetic drift due to population isolation was supported: 95% Cl error bars 

around the population mean relatedness failed to overlap the permuted null (Figure 

4.3a). No evidence of increased relatedness from the global null of panmixia was 

supported within a priori sub-regions (Figure 4.3b) (above). 

4.3.6 Allele and haplotype distribution patterns match those of forested sub- 

regions and bottle-necked populations isolated from continuous forest 

Restricted gene flow and a genetic bottle-neck were suggested north of the 

Carcassonne corridor (SMC) by: a high interpolated genetic distance (elevated peaks) 

geographically positioned at the Carcassonne corridor for the combined nuclear 

genotype analysis, and to a lesser extent for cyt b (Figure 4.4); the northward loss of 

haplotypes, with the near fixation of cyt b haplogroup A (Table 4.3; Figure 4.1 pie 

charts); the absence of private and rare alleles at locus AAm24 (Table 4.5); and the 

general loss of rare alleles at all loci compared with the main forested West Other sub- 

region (Tables 4.3-4.7). 

A moderate frequency of cyt b haplotype CB04 was found ubiquitously across 

the Pyrenees in Chapter 2. With the addition of more populations in the NE Pyrenees, it 

remained present in all continuous forest populations with the exception of two outlier 

populations, but was lost in four out of five fragmented forest populations and absent in 

the entire FDM (Table 4.3). This provides some support for the latter's isolation, despite 

only a -5-10 km separation from the West Other or East Aude sub-regions. 

Interpolation of the landscape (using combined nuclear genotype data), showed the 

FDM to be a region of low genetic distance, indicating few barriers to gene flow within 

this region (Figure 4.4). 

Distinct regional patterns of allele frequencies were not evident south of the 
Carcassonne corridor at any locus. Genotype distributions/frequencies can reflect short- 

term population processes (Cornuet et al., 1999) and therefore, their analyses can be 

informative at this time-scale. However, these were not obviously spatially structured 
(Appendices 4.1-4.4). 
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Table 4.4 Allele frequencies of locus AAm20 for P. ariasi originating from southwest 
France. 

Pop Code PAST PLBT MZE MTD IRL07 IRL08 TUL MLQT MDT RUL06 RUL08 SA SHL ARQ08T ARQ08T CTUT SPVT 
N 24 23 17 24 22 23 24 24 23 16 12 23 24 24 23 24 24 
Fra . cat 0 Cont. Frag Frag Cont Cont Cont. Cont. Cont Fra Cont. Cont. Cont Cont. Cont Cont. Cont Cont. 
Allele code 
20m02 0.354 0.348 0.118 0.229 0.227 0.217 0.313 0.271 0.152 0.281 0.333 0.239 o333 0.313 0.328 0.417 0.458 
20m01 0.646 0.63 0.882 0.771 0.727 0.761 0.667 0.729 0.848 0.688 0.667 0.739 0.667 0.688 0.652 0.583 0.521 
20m03 0.022 0.022 0.021 0.022 0.022 
20m14 0.023 0.031 
20m15 0.023 
20m16 III0,021 

Legend [Forest] Frag. category: Cont. = continuous forest; Frag. = fragmented forest. I Outlier 
populations as defined by their geographical distance from another population or bioclimate 
(see Materials and methods). 

Table 4.5 Allele frequencies of locus AAm24 for P. ariasi originating from southwest 
France. For Table annotations see legend of Table 4.4. 

Pop Code 
N 
Fra eat 

PAS' PLBT MZE MTD IRL07 IRL08 TUL MLQ' MQT RULO6 RUL08 SJL 
24 24 17 24 22 24 24 23 23 17 12 24 
Cont Fra Fra Con t. Cont Cont. Cont Cont Fra Cont. Cont. Cont. 

SHL 
24 
Cont. 

ARQO6T ARQ08' CTUT 
24 23 24 
Cont. Cont. Cont. 

SPVT 
24 
Cont. 

Allele Code 
24m06 0.729 0.708 0.588 0.625 0.477 0.604 0.648 0.739 0.739 0.818 0.5 0.708 0.75 0.813 0.63 0.75 0.729 
24m01 0.104 0.083 0.059 0.208 0.159 0.229 0.208 0.13 0.087 0.294 0.125 0.021 0.125 0.063 0.196 0.104 0.125 
24m07 0.083 0.146 0.265 0.125 0.295 0.146 0.104 0.043 0.152 0.088 0.333 0.208 0.042 0.104 0.109 0.148 0.146 
24m09 0 063 0.042 0.088 0.021 0.045 0.021 0.021 0.087 0.022 0.083 0.022 
24m08 0.023 0.021 0.042 0.063 0.021 0.043 
24m11 0.021 
24m13 0.021 
24m12 0021 

Table 4.6 Allele frequencies of locus APY for P. ariasi originating from southwest 
France. For Table annotations see legend of Table 4.4. 

Pop Code 
N 
Fran cate o 

PAS" 
48 
Cont. 

PLBT MZE MTD 
24 17 23 
Frag Frag Cont 

IRL07 IRLO8 TUL 
22 23 24 
Cont Cont. Cont. 

MLQT MQT 
24 23 
Cont. Fra 

RUL06 RUL08 SJL 
17 12 23 
Cont. Cont. Cont. 

SHL ARQ06 ARQ08 
24 22 23 
Cont. Cont. Cont. 

CTU 
24 
Coot 

SPVý 
23 
Cont 

Allele Code 
APYaO2 0.391 0.398 0.353 0.281 0.114 0.217 0.229 0.229 0.152 0.382 0.375 0.043 0.25 0.138 0.217 0.229 0.37 
APYe03 0.239 0.313 0.235 0.391 0.25 0.281 0.208 0.313 0.239 0.208 0.083 0.283 0.104 0.159 0.283 0.25 0.152 
APYa01 0.163 0.208 0.412 0.217 0.523 0.5 0.521 0.313 0.609 0.382 0.458 0.543 0.521 0.614 0.391 0.458 0.435 
APYa08 0.033 0.021 0.065 0.021 0.063 0.042 0.043 0.042 0.022 
APYa15 0.054 0.042 0.045 0.043 0.045 0.022 0.022 
APYa23 0.011 0.021 0.022 0.021 
APYa21 0.043 0.021 0.021 0.021 
APYaO5 0.011 0.021 0.022 0.021 
APYa20 0.033 0.023 0.023 
APYa29 0.023 0.023 
APYa19 0.022 0.023 
APYa17 0.029 0.021 
APYa28 0.021 0.022 
APYa51 0.021 
APYa42 0.043 
APYa5O 0.022 
APYa43 0.022 
APYa44 0.042 
APYaO4 0.042 
APYa41 0.022 
APYa27 0.022 
APYa47 0.022 
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Table 4.7 Allele frequencies of locus EF-1 a for P. ariasi originating from southwest 
France. 

Pop Code 
N 
Fra cat o 

PAST 
48 
Cont. 

PLBT 
21 
Frag 

MZE MTD IRLO7 IRLO8 TUL MLQT 
17 21 22 24 23 24 
Fra Cont. Cont. Cont. Cont. Cont. 

MQT RUL06 RUL08 SJL 
24 15 12 23 
Fra Cont. Cont. Cont. 

SHL ARQ06T ARQ08T 
24 14 23 
Cont. Cont Cont. 

CTUT 
24 
Cont. 

SPVT 
23 
Cont. 

Allele Code 
EF03 0.146 0.214 0.265 0.167 0.364 0.375 0.304 0.146 0.188 0.3 0.25 0.174 0.333 0.429 0.196 0.229 0.326 
EF01 0.74 0.643 0588 0.548 0.477 0.5 0.543 0.625 0.563 0.6 0.625 0.478 0.521 0.464 0.543 0.542 0.522 

EFO2 0.031 0.071 0.059 0.071 0.091 0.021 0.083 0.146 0.083 0.087 0.083 0.036 0.152 0.188 0.065 
EF05 0.024 0.024 0.045 0.021 0.087 0.042 0.042 0.033 0.152 0.063 0.036 0.087 0.043 
EF06 0.021 0.029 0.063 0.043 0.042 0.087 0.042 
EF38 0.021 0.022 

EFIO 0.01 0.029 0.024 0.021 0.021 
EF 12 0.01 0.071 0.022 0.042 

EF14 0.01 0.024 0.023 
EFOB 0.01 0.021 

EF13 0.01 0.048 
EF15 0.01 

EF49 0 029 
EF50 0.024 
EF51 0.024 
EF47 0.033 
EF46 0.033 
EF42 0.022 
EF39 0.036 
EF16 0.022 
EF41 0.022 

Legend [Forest] Frag. category: Cont. = continuous forest; Frag. = fragmented forest. 
I Outlier populations as defined by their geographical distance from another population or 
bioclimate (see Materials and methods). 

175 



-a v ^1 (/ J 

CC 
= 

- U 

E- 3 

73 -- 
0 Cý 

clý 

G030 on 

°'. - uE 
.v 

öý 
c 

mean tumo 
9. ei u 

Zg 'b 

Eöý? Y3 
aý vö Mio ö 

cc 
b. 2 F- to 4 ä. N c"n -c .E-. Cäb0ý tu "v 

V V. -- 

1 

", 

J 
a 

f. 
" :. 

'y, 

s 

A 

ýý ý 
T= 

9. 

ýc 



4.3.7 Modelling longer-term gene flow using tST for single loci 

The presence of genetic divergence caused by drift in isolated populations was 

assessed by pairwise bsT estimates for each locus independently. Levels of 

differentiation were low in EF-la (< 0.12966) and moderate to very great in all other 

loci (range -0.03473 to 0.22661) (Appendix 4.5). Cyt b showed the highest bST values 

(0.06357 to 0.36248) and, therefore, was the most informative marker for detecting 

population differentiation. Inter-population pairwise (DST estimates did not statistically 

support differentiation according to a priori sub-regions. Alternative explanatory causes 

for significant results were hypothesized as: (i) environmental, between fragmented 

forest or outlier populations with others; or (ii) historical ancestry, with only some 

populations having cyt b haplotypes of mixed ancestry, i. e. from two or more 

haplogroups (Figure 4.1). 

Population pairwise comparisons with any marker categorized as having very 

great ((DST > 0.25) differentiation included: PAS#t with PLB*, PYR*, MZE*, MQT*, 

MLQ"t, RUL, MUL, and the SMC; RVCt with MZE*, MQT*, MUL and CTU; MUL 

with ARQ06#t and IRL07t [" = fragmented forest; *= outlier populations; t= mixed cyt 
b ancestry]. Inter-population estimates which had significant (P < 0.05) and great (bsT 

> 0.15) differentiation at cyt b (Table 4.8): PASO with all populations of the FDM and 
SMC, and 6 out of 11 West Other populations; ARQ06*t/ARQ08#t with 4 out of 5 

FDM, SMC, and MLQ#t, MZE*, PYR*, PLB*; IRL07t and RVCt with SMC, PLBt, 

MZE* and MLQat. For nuclear loci, significant and "great" differentiation was only 
found for APY between MTD and ARQ06#t or SHL; and for AAm20 (Table 4.8) 

between SMC and MZE* or MQT*. After sequential Bonferroni correction 7 out of 9 

remaining significant comparisons involved population PAS (Table 4.8), supporting its 

significant relatedness, revealing a lack of migrant exchange from the global mean for 

combined nuclear loci. 

Gene flow was modelled across the study region by testing for inter-population 

dependence of genetic distance with geographical proximity. At cyt b, consistent with 
the E Pyrenees (N = 6) result of Chapter 2, the 23 populations characterized globally 
supported IBD by a Mantel test fitting DsT/(1- bsT) to (In) geographical distance (P > 
0.05) (Table 4.9). However, the association was shallow: only 11% of the genetic 
variation was associated with geographical distance with extensive variance for both 

within and between sub-region comparisons. This variance was equal to, or greater than, 
comparisons between populations north vs. south of the Carcassonne corridor, 
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which matches the signal of genetic discontinuity observed in Chapter 2 (Figure 4.5a). 

This result suggested that gene flow between populations was similarly 

restricted within the NE Pyrenees to that across the corridor. Therefore, IBD was used 

as an explanatory tool to help investigate the underlying cause(s) of this (Guillot et al., 

2009). The five fragmented forest populations were found to have levels of genetic 

differentiation similar to those attributed to larger-scale geographical barriers, as their 

removal supported IBD (P < 0.001), reduced the variance, and slightly increased the 

level of correlation (by 6%, R2 = 0.171) (Figure 4.5b; Table 4.9). This similarity can be 

explained by fragmented forest populations containing high frequencies of cyt b 

haplogroup A (88-100%), as observed in the SMC north of the Carcassonne corridor. 

The removal of climatic/geographical outlier populations from the NE Pyrenees 

(PAS, MLQ, VRA) also reduced the variance, with only a small increase in the 

correlation supporting IBD (Figure 4.5c, where R2 = 0.2019 and P<0.001). The 

remaining great differentiation between populations in the NE Pyrenees (< 30 km, IST 

> 0.15) mostly involved comparisons with population MUL. Again, this population was 

fixed for cyt b haplogroup A. This sample was not obviously isolated from forest, and 

so its anomalous position resulted either from a sampling artefact or a bottle-neck event 
involving a different population process. After excluding MUL the association between 

genetic and geographic distance matrices was over two-fold greater across the corridor 
(R2 = 0.4216) as that within the NE Pyrenees (0.1903). A marginal test (DISTLM) 

found a significant relationship between genetic distance and categorical data that 

partitioned pairwise comparisons across the corridor apart from those within the NE 

Pyrenees or SMC (23% variation explained, P=0.001). However, a conditional test 

that eliminated the effects of geographical distance by taking it as a covariate, showed 

these categories to be no longer correlated to genetic distance (1%, P=0.36). 

Furthermore, the two genetic/geographical distance regression coefficients were not 

significantly different (t = 1.342, df = 88, P>0.05) (Figure 4.5c). Modelling this data 

set for each nuclear locus (population N= 12), showed only AAm20 supporting IBD (P 

= 0.001); the other loci were not informative, as would be expected from their low 

pairwise genetic distances (Table 4.9). For all IBD Mantel tests, similar results were 

gained when using In geographical distance (two dimensional dispersal model). 
Models of gene flow were not affected by measuring geographical distance by 

straight-line distances compared with following the lower boundary of broadleaf forest. 

Finer-scale analyses used continuous forest populations only to investigate differences 

between the sub-regions West Other and FDM (including SHL). Both models supported 
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(R2 = 0.4216) as that within the NE Pyrenees (0.1903). A marginal test (DISTLM) 

found a significant relationship between genetic distance and categorical data that 

partitioned pairwise comparisons across the corridor apart from those within the NE 

Pyrenees or SMC (23% variation explained, P=0.001). However, a conditional test 

that eliminated the effects of geographical distance by taking it as a covariate, showed 

these categories to be no longer correlated to genetic distance (1%, P=0.36). 

Furthermore, the two genetic/geographical distance regression coefficients were not 

significantly different (t = 1.342, df = 88, P>0.05) (Figure 4.5c). Modelling this data 

set for each nuclear locus (population N= 12), showed only AAm20 supporting IBD (P 

= 0.001); the other loci were not informative, as would be expected from their low 

pairwise genetic distances (Table 4.9). For all IBD Mantel tests, similar results were 
gained when using In geographical distance (two dimensional dispersal model). 

Models of gene flow were not affected by measuring geographical distance by 

straight-line distances compared with following the lower boundary of broadleaf forest. 
Finer-scale analyses used continuous forest populations only to investigate differences 
between the sub-regions West Other and FDM (including SHL). Both models supported 
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Figure 4.5 Plots and regression of genetic distance [Y-axis = (DST/(I-IST)] on straight- 
line geographical distance (X-axis = km) at cyt b: (a) 23 populations, (b) excluding 
fragmented forest populations, (c) further exclusion of 3 outlier populations except 
SMC - the two regression lines represent comparisons within (black) sub-regions 
(excluding bottle-necked MUL), or between (red) north with south of the Carcassonne 
corridor; there was no significant difference between these regression coefficients. 
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Figure 4.6 Testing for fine-scale IBD at cyt b for continuous forest populations by 

comparing two sub-regions in the northeast Pyrenees; West Other and FDM. Plots and 
regressions of genetic distance [ bsT/(1-OsT)] on (a) straight-line geographical distance, 

and (b) an alternative dispersal route following the lower boundary of continuous 
broadleaf forest. 
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IBD (P < 0.05), with similar shallow regression slopes (straight-line route R2 = 0.139, 

forest route R2 = 0.1251) (Figure 4.6; Table 4.9). 

4.3.8 Quantifying the short-term spatial scale of genetic connectivity between 

individual P. ariasi using combined nuclear genotype data 

Spatial autocorrelation, a combined nuclear genotype approach for evaluating 

short-term population processes, was used to investigate the limit of non-random gene 

flow between individual P. ariasi by quantifying their scale of spatial (landscape) 

connectivity (dispersal). Although spatial autocorrelation reveals the scale and pattern 

of correlation, it does not identify specific location of discontinuities. In principle, the 

correlation coefficient (r) between geographical and genetic distances reflects the global 

properties over a sample area, and therefore, only makes sense when the study region is 

homogeneous e. g. in terms of gene flow patterns (Guillot et al., 2009). Following this 

approach, a limited data set was used, including only NE Pyrenees populations from 

continuous forest (excluding the 3 geographically distant outliers on the northern 
Pyrenees slope (PAS, MLQ, VRA) and bottle-necked MUL). 

The pattern in the autocorrelogram was consistent with the signature expected 

under IBD with spatial genetic structure - initial high positive autocorrelation which 
declines through zero followed by subsequent oscillation around zero is typical of a 

restricted gene flow scenario (Peakall et al., 2003). Significant (P = 0.019) positive 

spatial genetic structure (connectivity) was supported for geographically close 
individuals at distance class 2 km (i. e. within samples only), with a second periodic 
increase at 14 m (P = 0.02) and no autocorrelation at distance classes above this (Figure 

4.7). As positive spatial structure was supported, the distance among P. ariasi where 

non-random genetic correlations (gene flow) are expected to cease was estimated at 
3.805 km. Distances below this threshold unite populations that share a higher 

proportion of genes, whereas populations more distant are genetically independent. 
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4.3.9 Population sub-structure supported a priori population sub-division 

As would be expected from the 1ST values, which were modelled to support 

IBD, hierarchical AMOVA based on all 23 populations characterized at cyt b did not 

support geographical sub-divisions according to a priori groupings (Table 4.10): (1) 

testing sub-structure across the test region; (2) testing the Carcassonne corridor as a 

genetic barrier (SMC vs. others); (3) testing whether the agriculture belt isolates FDM 

from West Other; and, (4) testing the Aude river as a genetic barrier (West Other vs. 

East Aude). Tests supported homogeneity among sub-regions (P > 0.05), and 

heterogeneity both among populations within regions and within populations (P < 

0.001). 

This again prompted the exclusion of fragmented forest populations (N = 5) and 

three outlier populations from the northern slopes of the Pyrenees (PAS, MLQ, VRA), 

which were either bottle-necked or distant from the main population clusters sampled. 

Cyt b (population N= 15) was shown to be the most informative population marker, 

with three of the four hypotheses tested supporting among region sub-division (P < 

0.05), where two tests were accompanied by within region homogeneity (P > 0.05) for 

all sub-regions (hypothesis 1) and the isolation of the FDM from West Other 

(hypothesis 3). AAm20 (population N= 12) was the only individual nuclear locus to 

support population sub-structure, among all sub-regions (hypothesis 1) and the sub- 

division either side of the Carcassonne corridor (hypothesis 2). No locus supported the 

hypothesis that the Aude river was a barrier to P. ariasi (hypothesis 4) (Table 4.10). 

Taking into account the preceding results in concert, support for population sub- 

division corresponding to the three independent forest regions was tested: SMC, FDM 

(+ SHL, as the Aude is an unlikely barrier), and West Other (Map Figure 4.1). To avoid 

confounding these putatively distinct regions with genetic variation explained by other 

landscape factors, populations excluded were those from fragmented forest (PLB, PYR, 

MZE, MRG, MQT), one with significant internal relatedness (MQT), one bottle-necked 

(MUL), and those geographically distant from the main population clusters (PAS, PLB, 

MLQ, VRA, ARQ). This left the following populations for analysis: MTD, IRL07/08, 

TUL, RUL06/08, SJL, SHL, CTU and SPV at all loci, and additionally RMD and RVC 

at cyt b. Supporting the hypothesis of unsuitable P. ariasi habitats as barriers to gene 
flow (section introduction): cyt b supported sub-division of the test region as a whole (P 

< 0.01), with homogeneity within sub-regions (P > 0.05) (hypothesis 5); both the SMC 

(north of the Carcassonne corridor; cyt b and nuclear loci hypothesis 7) and FDM (cyt b 
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hypothesis 8) significantly (P < 0.05) differentiated from the main forested region of the 

NE Pyrenees, accompanied by homogeneity within sub-regions (P > 0.05). However, 

the SMC and FDM was not a supported sub-division (among regions P>0.05; 

hypothesis 6). 

Using that same regional definitions, at cyt b, to test whether the supported 

regional effects in AMOVA were generated by barriers to gene flow, the effect of 

geographical distance on genetic distance (IBD) was eliminated by the application of a 
dbRDA approach. Marginal tests showed all comparisons to follow IBD and a 

significant correlation between genetic distance and categorical data for within sub- 

region or between sub-region pairwise comparisons (P < 0.01). However, dbRDA did 

not support the AMOVA population sub-structure (three sub-regions; SMC or FDM vs. 
Main NE Pyrenees) because, when geographical distance was taken as a covariate in a 

multiple regression analysis, categorization into within or between comparisons did not 
leave a correlation with genetic distance (P > 0.09). 
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Table 4.10 Hierarchical AMOVA to test the support for 8a priori hypothesized 

population sub-divisions. Categories of populations included varied (t Excludes PAS, 
MLQ, VRA; see text). F. Indices and their level of significance from a null of panmixia 
given: *P < 0.05; **P < 0.01; ***P<0.001. 

Populations included 
Locus 
Sub-division 
hypothesis tested 
1. SMC vs. FDM vs. 
West Other vs. 
East Aude 
Among regions 
Within regions 

Within pops 
2. SMC vs. others 
Among regions 
Within regions 
Within pops 
3. FDM vs. 
West Other 
Among regions 
Within regions 

4. West Other vs. 
East Aude 
Among regions 
Within regions 
Within pops 

Sub-division 
hvoothesis tested 
5. SMC vs. FDM vs. 
Main NE Pyrenees 
Among regions 
Within regions 

6. SMC vs. FDM 
Among regions 
Within regions 
Within pops 
7. SMC vs. Main NE 
Pyrenees 
Among regions 
Within regions 
Within pops 
8. FDM vs. Main NE 
Pyrenees 
Among regions 
Within regions 
Within coos 

All pops Conti 
CbCb 
F. F. 
Indices Indic( 

nuous forest populations, excluding Pyrenean slopes' 
EF-la APY AAm20 AAm24 
F. F. F. F. 
Indices Indices Indices Indices 

N=23 N=15 N=12 N=12 N=12 N=12 
0.04923 0.09569*** 0.00076 -0.00644 0.02451** 0.00996 

0.09530*** -0.00220 -0.00004 0.02373* -0.01495 0.01291 

0.13984*** 0.09370*** 0.00072 0.01745* 0.00993 0.02274* 

0.04809 
0.11814' 
0.16054*** 

0.07584* 
0.05383** 
0.12559*** 

0.00036 
0.00045 
0.00081 

-0.01009 
0.02188* 
0.01201* 

0.05261 * 

-0.01299 
0.04030 

-0.00520 
0.02243* 
0.01735* 

0.05389 0.08454** -0.00090 -0.00837 -0.00213 -0.00482 
0.12434*** -0.00094 0.00190 0.02481 * -0.01270 0.01872 
0.17153*** 0.08368* 0.00100 0.01665* -0.01486 0.01399 

-0.00450 0.01903 0.00088 0.00382 0.00805 0.02749 
0.10127*** -0.00246 -0.00703 0.02922* -0.01487 0.01008 
0.09723*** 0.01662 -0.00614 0.03293** -0.00670 0.03730* 

Combined 
nuclear 

N=12 N=10 
0.06089** 0.00449 
0.00717 0.01011* 
0.06762** 0.01455** 

N=6 N=6 
0.04919 0.00051 
0.02515 0.01154* 
0.07311 0.01205* 

N=8 N=6 
0.10844* 0.01715* 

-0.00073 0.00499 
0.10779* 0.02205* 

N=10 N=8 
0.02929* -0.00159 
0.00626 0.01308** 
0.03536 0.01150** 
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4.3.10 Bayesian cluster method fails to identify current population sub-division in 

the study region 

The Bayesian assignment test, which combined the genotypes for all loci, did 

not statistically support population clusters in the study region: the area was considered 

to be currently connected as a single genetic deme. The standard admixture model was 

used, which only uses genetic information to cluster populations. It failed to converge 

even when burn-in and subsequent MCMC runs were substantially increased to 500,000 

and 5 million, respectively. To assess whether genuine current population structure 

occurred in the study region, the Hubisz et al. (2009) ancestry model was implemented, 

which modifies the standard admixture model prior to including location information, 

and thus can be more sensitive to population structure when the signal is too weak to be 

detected by the standard model. This model led to virtually the same result for 1-5 K 

clusters: range of mean InP(D) between -4073.1 to -4021.0 and AK 1.50-11.78 (Figure 

4.8). The plot of InP(D) showed no clear peak among these clusters. The magnitude 

change of InP(D) relative to the standard deviation, AK, showed a maximum value at K 

= 2, for which the mean membership plot is presented (averaged over the 10 repeats in 

CLUMPP; Figure 4.9a). The plot shows the membership of individuals was in fact to a 

single cluster; no support for population sub-division. In this plot each individual is 

represented by a single bi-coloured vertical line, the relative lengths of which are 

proportional to membership of one of the two inferred clusters. From this it can be seen 
that each individual predominantly belonged to a single K cluster/population (yellow) 

(Figure 4.9a). Evanno et al. (2005) noted that the highest InP(D) does not always 
indicate the most likely K, and their ad hoc method is based on prior K values and 
therefore only valid when AK > 3. It is therefore not incorrect to conclude the presence 

of a single genetic deme in the sample area. The same result, rejecting population 

structure, was similarly found when including only those populations from the 

continuous forest category (population N= 12), showing this clustering method was not 
improved by the elimination of potentially bottle-necked populations (Figure 4.9b). 
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4.4 Discussion 

There is little known about the population genetic structure of Phlebotomus 

ariasi. This chapter follows on from the low resolution study of Chapter 2, by assessing 

the fine-scale spatial structure of this vector in a 70 x 70 km study area which was 

composed of a landscape of fragmented suitable habitats. The effect of landscape 

structure was quantified with the aim of revealing areas of restricted P. ariasi dispersal 

and the genetic consequences of this restriction, over both the recent past and 

contemporary time-scales. The results provided some evidence of gene flow restricted 

by: (1) moderate geographical distances (ca. 10-50 km) between relatively large forest 

fragments (>/= ca. 96 sq km); and (2) `micro-isolation' in habitats greater than 400-700 

m from the nearest forest fragment. By excluding category (2) and geographically 

distant and/or coincident bioclimate outliers, AMOVA supported population sub- 

structure among three forested regions. However, Bayesian assignment tests supported 

an uninformative shallow likelihood topology and the presence of a single genetic 

deme. Overall, the results of this investigation could not provide conclusive evidence 

supporting contemporary genetic sub-structuring or genetic impoverishment of P. ariasi 

sampled from a fragmented landscape, but the results presented certainly warrant the 

development of prospective studies to do so. 

4.4.1 Can current markers for P. ariasi detect fine-scale population sub-structure 

across a mosaic landscape? 

The distribution of molecular genetic variation is partitioned both in time and 

space and, therefore, inferences made about the biology of individuals through to 

species must consider the level of molecular change in context. Molecular characters 

reveal information at various time-scales (Sunnucks, 2000): at the shortest time-scale 

genotypes assess within population processes or current migration; longer time-scales 

test for between population processes or population history, e. g. expansions or 

contractions, using allele frequency data; and at the longest time-scale, information on 

phylogeography or phylogenetic speciation are understood though DNA sequence 

evolution. The current fine-scale population study followed on from the earlier 
investigation of the low resolution historical population biology of P. arias!, and 
demonstrated that knowledge of the phylogeography and past demographic effects on 

genetic variation is imperative when using markers and tests sensitive to these past 

population processes. 
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Hierarchical AMOVA at cyt b supported the a priori hypothesis of population 

sub-division across the test region and the differentiation of two forest-associated sub- 

regions, the SMC (north of the Carcassonne corridor) and the FDM, from the western 
forest that extends along the northern Pyrenean foothills, but not from each other. 
Additionally a single nuclear locus supported the isolation of the FDM from the western 
forest region, and a combined analysis of nuclear genotypes supported the north versus 

main western forest sub-divisions (Table 4.10). The FDM is a dense broadleaf forest 

patch ca. 12 x8 km, isolated to the north and southwest by -10 km of cultivated crop or 

other non-forest land covers, and in the east by the Aude river and -1.5 km non-forest 
transport route. The AMOVA result supported its isolation (with or without population 
SHL) from southwest forest populations, but not from those to the north. This result 

could be explained if the founding events establishing these two populations from the 

parent populations on the Pyrenean slopes were similar. 

Assessment of the genetic connectivity of individual P. ariasi estimated the limit 

of positive local genetic structure at ca. 4 km, which is consistent with the support given 
by AMOVA for sub-regions which are separated by 5-10 km of unsuitable land covers 
(belts of agriculture or urbanisation). However, at cyt ba dbRDA analysis revealed that 
IBD could actually generate the AMOVA results. Peakall et al. (2003) in their bush rat 
study showed moderate to extensive gene flow, which was over considerably larger 
distances than the scale of per generational dispersal. This disparity was a consequence 
of gene flow measured by evolutionary estimators such as FST that actually reflect past 
interconnection. It is plausible that the foothills of the NE Pyrenees and the Massif 
Central were in the recent past connected by continuous forest that formed no barriers to 
P. arias! dispersal, explaining the IBD results presented. For cyt b, AMOVA and IBD 

modelling used DNA sequence information and, therefore, the statistical support of sub- 
division given by this marker could actually be an artefact of the historical presence and 
distribution of multiple cyt b haplogroups. Haplogroup A was the most frequent of cyt b 
haplogroups and, consistent with this, it was found to be at, or near to, fixation in the 
isolated regions. FDM was found to be mitochondrially indistinguishable from the 
populations north of the Carcassonne corridor, SMC, but both were mitochondrially and 
statistically differentiated from the putative multi-haplogroup parent population of the 
main southern forest. 
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Longer-term interconnection by gene flow and strong local contemporary 

genetic structure are not mutually exclusive (Peakall et al., 2003). In the spatial 

autocorrelogram, the oscillating pattern of r (correlation coefficient) in low 

geographical distance classes mirrors the periodicity patterns expected with 

contemporary spatial patchiness (Elmer et al., 2007). Yet the Bayesian clustering 

assignment analysis, which similarly also used genotype data of the individual to infer 

contemporary population structure, failed to converge without location information as 

priors, and a model that did include this information still failed to recover more than a 

single genetic deme. However, this STRUCTURE result could stem either from the lack 

of suitability of the data inputted or from the real absence of contemporary population 

structure. 

In their literature search (Molecular Ecology publications in 2001), Berry et al. 
(2004) showed that on average eight microsatellites are used to study animal population 

genetics, but noted that the rate of improvement of assignment of additional markers is 

low if levels of genetic differentiation are low. Therefore, the five markers used for P. 

ariasi may have been too few, especially as they were not rapidly evolving 

microsatellites. Alternatively, as proposed by Mank and Avise (2004), the "handful" of 
markers used could have been sufficient for meaningful signals in various frequency- 

based population assessments (i. e. AMOVA), but not in Bayesian searches because of 
uninformatively shallow likelihood topologies. Bayesian assignment tests do not 
perform well for weakly differentiated populations (Mank and Avise, 2004) or when 
there is IBD (Pritchard et al, 2009), so they may not be suitable for this study. Lastly, 

marker polymorphism was low and therefore could have lacked power to detect existing 
local population structure. IsT values for nuclear markers showed only 1% of inter- 

population comparisons to have greater than `moderate' genetic differentiation (> 0.15). 
However, no microsatellite studies of P. ariasi are available for comparison. 
Polymorphism levels are known for five microsatellites that supported regional 
population differentiation of P. perniciosus within Spain (Aransay et al., 2003), and this 
sandfly is sympatric with P. ariasi and in the same subgenus. Comparison of P. ariasi 
nuclear loci with P. pernicious microsatellites showed similar genetic information 

content. Numbers of P. ariasi alleles ranged from six to 23 at each locus, with at least 
two alleles predominating, whereas P. perniciosus had four to nine alleles with one to 
two of these predominating. Ranges for the expected heterozygosity were: P. ariasi loci 
0.214-0.764 and, P. perniciosus loci 0.052-0.683. Both species showed `little' within- 
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region differentiation, with FsT values for P. perniciosus being < 0.0414. Summarizing, 

the absence of local structure for P. ariasi is inconclusive, and should be resolved by 

increasing the number of loci characterized, not only to increase the performance of 

assignment tests but also to heed an oft-quoted note of caution that population 

inferences should not be based on a single locus. 

4.4.2 Limited genetic impoverishment may be explained by sampling or the 

properties of the physical landscape 

On an evolutionary scale restricted gene flow can at one extreme generate local 

genetic structure and at the other cause inbreeding and genetic isolation. Understanding 

the relative contributions of these factors can inform us of the likelihood of a species' 

persistence: reduced population heterozygosity is associated with reduced population 

reproductive fitness, inbreeding depression increases extinction risk, and loss of genetic 

diversity reduces the ability of populations to evolve to cope with environmental change 

(Spielman et al., 2004). Genetic impoverishment of P. ariasi was associated with 

fragmented land covers, with nucleotide diversity declining in populations more distant 

from continuous forest. However, haplotype diversity or allelic richness were not 

reduced, and only a single fragmented forest population showed significant inbreeding. 

Sampling strategy might explain this result. Only five populations were categorized as 

fragmented and two of these populations were not characterized at all nuclear loci. 

Sampling more populations from this category might reveal a negative association 

between increased forest fragmentation and all genetic diversity statistics and 

relatedness estimates. However, this poses a practical problem, because adequate 

sample sizes (15-30 individuals) were only obtained from dwellings or road-side walls 

in forested areas, and these are not always available. Additionally, categorization as a 

fragmented or continuous forest population might be inaccurate in light of the results of 

this study. Categories were delimited based on previous knowledge of direct dispersal 

distances for this species (Killick-Kendrick et al., 1984), an experimental approach that 

can be highly inaccurate. 

Genetic diversity and relatedness were estimated by several statistics, but none 

supported consistent reductions associated with a priori sub-regions. Lack of diversity 

and differentiation associated with regional landscape, together with the shallow IBD 

observed, would be expected of a single genetic population, where gene now maintains 
homogeneity. However, I cannot rule out three alternative hypotheses to explain the 
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limited genetic population differentiation of P. ariasi. Firstly, lack of power of genetic 

markers (previously discussed). Second, fragmentation in the study area may have been 

recent, and time has not been sufficient for genetic differences to accumulate under a 

model of restricted gene flow/dispersal. Conversely, it is reasonable to infer that even 

very recent landscape fragmentation should have restricted dispersal because sexual 

recombination reorganises genotypes in a single generation and P. arias! breeds at I 

generation per year at temperatures equivalent to those in the study region (Ready and 

Crosset, 1980). Martinez et al. (2007) showed broadleaf forest structure to be evolving 

in the study region; comparing Landsat data from 1984 to 1992 to 2003 the number of 

patches has increased. Third, and lastly, gene flow/dispersal might not be restricted by 

the current level of forest fragmentation in the study region. The current results are now 

considered in relation to this hypothesis. We see that although forest patch number has 

increased in the study region, the average shape of patches has remained stable and no 

net decrease in forest cover has occurred over the past 20 years (Martinez et al., 2007). 

Population isolation occurs only when habitat loss breaks connectivity, and the degree 

of connectivity is defined by both the properties of the physical landscape and the 

dispersal ability of individuals through it (Ewers and Didham, 2006). Therefore, it can 

be concluded that the forest is not disconnected sufficiently to impede dispersal of P. 

arias!. This result could be another example indicating that the main determinant of 

population size and viability is the total amount of habitat in a landscape, not the spatial 

configuration of that habitat below a threshold (Prugh et al., 2008). Studies on P. 

perniciosus have supported gene flow between contiguous populations over distances 

up to 500 km (Aransay et al., 2003). 

4.4.3 The genetic landscape of P. ariasi and disease epidemiology 
At the northern limit of Leishmania endemicity in Europe, P. ariasi is both the 

predominant Phlebotomus species and principal disease vector (Ready, 2008) and, 

therefore, an understanding of its population differentiation is potentially important for 

planning intervention strategies and modelling risk of disease spread. Modelling of 

vector-borne disease spread is becoming increasingly popular (Roger and Randolph, 

2000), especially when we acknowledge the potential effects of climate and 

anthropogenic environmental changes (Patz et al., 2000) on their (re-)emergence. This 

study did not discover many contemporary restrictions on the dispersal of P. ariasi. If I 

accept suitable marker sensitivity and that sub-division is generated by IBD, then this 
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study suggests that the landscape matrix north of Pyrenean slopes does not prevent the 

spread of P. ariasi and, therefore, of L. infantum. This study showed that forest 

fragmentation should be considered in the context of net forest reduction and not 

necessarily of increased patch number. Practically therefore, the maintenance of genetic 

diversity, a source of genetic evolution, and ability to disperse, highlights the potential 

for vectorial traits to develop and spread in the NE Pyrenees. However, even with 

unrestricted dispersal potential, the results are consistent with one monopolization 

effect, that the populations in the Massif Central could block the genetic spread of P. 

ariasi northward. Positive local genetic structure was detected, but spatial 

autocorrelation revealed that gene flow through this landscape was restricted to ca. 4 km 

per generation. This indirect estimate of dispersal is twice as much as directly measured 

by mark-release-recapture studies, and this should be considered when modelling the 

spread of leishmaniasis. 
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CHAPTER 5 

General discussion 

5.1 Introduction 

Europe has seen the recent emergence of new diseases or the re-emergence of 

existing ones, and both canine and human leishmaniasis follow this trend (Vorou et al., 

2007; Dujardin et al., 2008). The occurrence and geographical spread of vector-borne 

diseases is often associated with changes in their epidemiology, often by environmental 

change modifying the transmission cycle through the provision of favourable new 

ecological niches for parasite, host and/or vector (Morens et al., 2004; Patz et al., 2000). 

The leishmaniases are considered as indicator diseases, sensitive to environmental 

change, and are the subject of investigations to catalogue European environmental 

conditions that can influence the spatial and temporal distribution and dynamics of 

disease agents (e. g. EDEN project, EU FP6: www. eden-fp6project. net/). Environmental 

change is oft-quoted as affecting the distribution of infectious diseases, but the mode of 

this change is typically not known for leishmaniasis, for which spatial models can be 

specific to a particular geographical region (Ready, 2008). The focus of this thesis was 
the sandfly Phlebotomus ariasi, whose predominance as the leading-edge vector in the 

transmission cycle of zoonotic visceral leishmaniasis (ZVL) makes it an important 

component in modelling the future risk of northwards spread of this disease. This thesis 

characterized genetic variation in P. ariasi at both the phylogenetic and population 
levels, to investigate the effects of environmental change on the molecular evolution 

and spatial distribution of this sandfly in southwest France. 

5.2 Identification of a single vector species 
Vector control remains the primary measure available to prevent much parasite 

transmission (Lambrechts et al., 2009). Identification of vector species has a place in 

this control, as many are members of species complexes of morphologically very 
similar, or indistinguishable, sibling species (Curtis, 1999). Morphologically 
indistinguishable species are known in Phlebotomus, e. g. males of P. longicuspis in the 
Moroccan Rif (Pesson et al., 2004), which may have implications for their role as 
vectors of Leishmania or the landscape epidemiology of this disease. In Tunisia, the 
females of P. ariasi and P. chadlii are indistinguishable (Esseghir et al., 2000) or nearly 
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so (Chamkhi et al., 2006), and female P. ariasi from Morocco (same region as 

characterized in this thesis) have been reported as morphologically atypical (Boussaa et 

al., 2009). GenBank sequences arising from others' research on this species complex 

are few, namely AF 161194, AF 161195 and AF 161196 for cytochrome b (cyt b); and 

AF160803 and AF160804 for elongation factor-la (EF-1a). This thesis contributed 

further DNA sequence accessions at these two loci for morphologically-identified P. 

ariasi from Morocco, Portugal, Spain and France. Furthermore, both phylogenetic and 

parsimony network reconstructions, in addition to population based tests, confirmed the 

absence of cryptic sibling species of P. ariasi characterized across western Europe and 

Morocco. This result has two implications: a vector control program for P. ariasi could 

be generic in Europe and, directly relevant to the approach of this study, most natural 

genetic variation can be attributed to neutral evolution, rather than to reproductive 

barriers. 

5.3 Advances in the molecular tools available for P. ariasi 

Before the current study, few molecular tools were available or optimized to 

investigate the population differentiation of P. ariasi, and none had been applied. In 

addition to those mentioned previously, named nucleotide sequences in GenBank 

include cyt b to 5' NADHI (Esseghir et al., 1997; 2000), 5.8S ribosomal DNA (Di 

Muccio et al., 2000) and various salivary peptide cDNAs (Oliveira et al., 2006). The 

current study was novel in applying two known markers in population genetic analyses 

of P. ariasi (cyt b and EF-1 a), and contributed a further three markers that showed 

concordant demographic patterns: anonymous nuclear loci AAm20 and AAm24 adapted 

from P. perniciosus microsatellites (Aransay et al., 2001), and a protocol for the direct 

sequencing of the salivary peptide apyrase, based on its cDNA (Oliveira et al., 2006). 

All nuclear genes directly sequenced showed multiple genotypes, often with 

more than one polymorphic site. Ambiguous genotypes can be resolved directly through 

cloning, haplotype-specific extraction (HSE) (Nagy et al., 2007), PCR amplification of 

specific alleles (PASA) (Sommer et al., 1992), or indirectly by constructing haplotypes 

from genotypes through statistical programs such as PHASE (Stephens et al., 2001). In 

this thesis, PASA was chosen for genotype scoring, because it provided high efficiency 

and accuracy upon optimization. For example, approximately 49% of flies had to be 

scored using a PASA system for the marker apyrase. This would have been too labour 

intensive to resolve by cloning, and the PASA approach also circumvented the need to 
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include priors for recombination or linkage disequilibrium in statistical algorithms, 

which can lower the accuracy of inference. 

The use of molecular markers to estimate levels of genetic variability in a 

population depends on the assumption that they are selectively neutral. This study 

confirmed this assumption: within P. ariasi, all five loci characterized were shown not 

to be under positive or balancing selection (Chapters 2 and 3). The selection history of 

each marker was assessed at different time-scales, e. g. long-term by MK test, recent and 

current by D statistics, HWE and Ewans-Watterson. This approach made use of 

different genetic characteristics, and so safeguarded against conclusions based on any 

one test. This thesis also identified appropriate outgroups to P. ariasi for phylogenetic 

analyses, namely P. chadlli-like within the P. ariasi complex and species in its sister 

complex, P. major complex, all of which showed sufficient divergence without 

saturation. 

5.4 Vector population genetics elucidate the effects of environmental change 

Population genetic studies furnish information about the level of gene exchange 

between populations, where past effects of environmental change can provide 

information on future tendencies (DeChaine and Martin, 2005). This study searched for 

the existence of genetic signatures associated with environmental change, focusing on 

the low resolution spatial distribution of P. arias! associated with Quaternary climate 

cycles (Chapter 2), and a high resolution spatial assessment on the restrictions to 

contemporary gene flow attributed to changes in local landscape (Chapter 4). Within the 

limitations of the data and analyses conducted, this Mediterranean species followed the 

paradigms for temperate species (Taberlet et al., 1998; Hewitt, 1999) - that oscillating 

climates during the Quaternary caused repeated shifts in its distribution, evidenced by 

multiple isolation and re-colonization events that dated to this period. 
Mitochondrial DNA revealed strong phylogenetic structure, whereas nuclear 

genes were less resolved. Of the conclusions reached, those most informative for the 

vector biology of P. ariasi include: the probable location of a glacial refuge north of the 
Pyrenees; the absence of any strong barrier to gene flow from Iberia into France; and, in 

contrast, the presence of a barrier to gene flow from the French Pyrenees to the Massif 

Central, perhaps as a result of land use patterns or "monopolization" (Loeuille and 
Leibold, 2008) (Chapter 2). Distinct French or northern Iberian mitochondrial lineages 

have not been observed in P. perniciosus, the sympatric vector of L. infantum (Esseghir 
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et al., 2000; Perrotey et al., 2005), perhaps because of its lack of cold tolerance (Rioux 

et al., 1967; Aransay et al., 2004) prevented survival in France during the late glacials 

of the Pleistocene. In the context of the transmission dynamics of Leishmania, P. ariasi 

is likely to be the more persistent vector in France should there be climate cooling, and 

spread northwards first following climate warming. The melting pot of genetic diversity 

in southwest France offers the potential for genetic adaptation, including vectorial traits. 

This study found the potential for spread across the local environment of the northeast 

Pyrenees would not be hindered by the current heterogeneous landscape (Chapter 4). As 

sandflies are currently obligatory vectors for Mediterranean ZVL transmission, the 

spread of leishmaniasis could be curtailed by rendering vectors incapable of 

transmitting parasites (Ito et al., 2002). In this respect, the lack of diversity of leading- 

edge populations in France, which are characterized by the near fixation of a single 

mitochondrial haplogroup (A), could exploit IVolbachia-induced cytoplasmic 

incompatibility as a mechanism to introduce and spread pathogen-blocking genes to 

modify vector competence (hurst and Jiggins, 2000; Benlarbi and Ready, 2003). 

Wolbachia has been detected in Phlebotomus in France (Matsumoto et al., 2008) and in 

P. arias! in the study region (P. D. Ready and A. Cownie, unpublished data). 

5.5 Proposing a vaccine candidate against Mediterranean ZVL 

Control measures for VL include the early diagnosis and treatment of human 

cases, reducing the population of the insect vector by massive application of 
insecticides, and targeting scro-positive dogs (Ready, 2008). Reduction of canine 

susceptibility to leishmaniasis is proposed to be more effective than vector control in 

Europe (Dye, 1996). The frequency of some vector-borne diseases of pets is increasing 

in Europe, CanL among them (Beugnet and Marie, 2009). Therefore, the control of the 

transmission of canine leishmaniasis in southwest Europe has two potential goals: to 

reduce the likelihood of human disease and to protect dogs themselves. Control 

measures include the application of dcltamethrin impregnated collars, which have been 

shown to reduce canine and human ZVL infection incidence by 43-86%. Practically, 

however, the efficiency of collars can be decreased by their loss or damage (Courtenay 

et at, 2009), so vaccines provide a desirable alternative. 

To date the only a licensed vaccine against CanL, Leishmune, comprises an 
antigen for L. donovani in Brazil (Nogucira et al., 2005). Recently, the vaccine LiESAp- 
MDP has shown experimental success, but is not commercially available. It is reported 
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to have an efficacy of 92% in experimentally and naturally infected dogs in France, with 

protection lasting for 24 months (Lemesre et al., 2007). LiESAp-MDP is based on 

antigens of L. infantum in formulation with muramyl dipeptide (MDP) as adjuvant. As 

described in Chapter 3, immune genes may be subject to co-evolutionary arms races 

that can drive the spread of resistant alleles. Salivary peptides are third generation 

vaccine candidates that show protection against leishmaniasis and are already in 

experimental trials (Palatnik-de-Sousa, 2008). Vaccine models predominantly target one 

of two vectors L. longipalpis and P. papatasi in the New and Old World, respectively. 

This thesis presented a study that was a "proof of principle", indicating how a 

population genetics approach can distinguish between adaptive and neutral evolution of 

a salivary peptide. In this example, the salivary peptide apyrase was shown to be 

selectively neutral in P. ariasi. This peptide does not elicit a host antibody response, but 

putatively confers protection against ZVL through a DTH cellular response (Oliveira et 

al., 2006), so has theoretical potential as a vaccine candidate in the Mediterranean 

Leishmania transmission cycle. 

5.6 Prospective studies 

The importance of understanding sandfly population structure has implications 

for detecting clinical pleomorphisms and predicting epidemics (Maingon et al., 2007). 

A knowledge base of the genealogical and phylogeographic relationships among P. 

ariasi populations was produced in this thesis. However, I conclude that the 

identification of further and more polymorphic makers, including single-locus 

microsatellites, would further enhance our understanding of P. ariasi population sub- 

structure (Chapter 4). Microsatellites have the potential to be transferred to closely 

related taxa (Sunnucks, 2000), but this study showed that there is unlikely to be any 

such transfer from P. perniciosus to P. ariasi (Aransay et al., 2001; 2003). It was 
beyond the scope of this thesis to develop these typically hypervariable DNA 

sequences, but their attributes make them powerful markers for a broad range of 

population genetic questions. These markers can be used in a multilocus framework to 

provide information of within-population processes at the shortest time-scale, i. e. 
individual parentage and relatedness, and the identification of migrants (Sunnucks, 

2000). 

The effects of environmental change and ecological disturbance on the (re-) 

emergence of vector-borne diseases (Patz et al., 2000) makes accurate development of 
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models predicting their impact relevant (Lafferty, 2009). Predictions of the shifts in the 

geographical distributions of sandflies, and therefore of Leishmania, have been 

generated using ecological niche and species distribution models (Peterson and Shaw, 

2006; Ready, 2008). Such a methodological approach combines knowledge on both 

ecological requirements and current spatial occurrence of species, to predict the location 

of its fundamental niche -a location which can maintain a population without 

immigrational subsidy (Holt and Gomulkiewicz, 1996). However, a species may not 

occupy the entirety of its fundamental niche, as model assumptions are either inaccurate 

or environmental factors critically influencing species distribution are not modelled, e. g. 

historical or local constraints on dispersal. Furthermore, statistical models are not 

always applicable outside their original geographical region (Ready, 2008), so an 

integrated approach is required. Morin and Lechowicz (2008) have reviewed the factors 

needed to model the evolutionary ecology of a niche at hierarchical spatial scales (i. e. 

regional to landscape to local community), with the aim of building species distribution 

models that are most likely to yield accurate predictions of species occurrence, and thus 

spread. Variables parameterized included abiotic dimensions such as macro- and micro- 

climate, and landscape topography, as well as biotic dimensions such as dispersal ability 

and competition. Such approaches should be used to develop and validate risk models 
for the northward spread and persistence of P. ariasi. In France, at the leading-edge of 
Leishmania distribution, extensive knowledge exists on: the descriptive ecology and 
biology of P. ariasi in relation to the ZVL transmission cycle (publications in the 
Cevennes by Rioux, Killick-Kendrick and colleagues as previously discussed); its 

absence/presence and relative abundance both regionally and locally; and, preferred 
topographical, macro- and micro-environmental data (EDEN partners). This study adds 

a further dimension, for the first time analysing this species' population genetic 

structure, contributing information on both historical and contemporary time-scales, as 
well as providing information on the effects of climate and habitat changes on 
distribution. 
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APPENDICES 

Appendix 2.1 DNA extraction protocol 

Sandfly tissue was ground using the tip of a sterile plastic pipette in 10 µl of l Ox 

Tris grinding buffer (0. IM Tris-HC1 pH 7.5; 0.6M NaCl; 0.1M EDTA; 0.15mM 

spermine; 0.15mM spermidine; 5% (w/v) sucrose). A further 90 µl of lOx Tris grinding 

buffer was added together with 10 µl of 2x sodium SDS buffer (0.3M Tris-HCI pH9.0; 

0.1M EDTA; 5% (w/v) sucrose; 1.22% (w/v) SDS; 0.34% (v/v) diethylpyrocarbonate). 

This solution was mixed by gentle tapping, followed by a pulse vortex and incubated at 

65°C for 45 min to lyse cells and denature proteins. After cooling, 30 µl of ice-cold 8M 

KOAc was added, the solution pulse vortexed and left on ice for 45 min to remove the 

SDS from the solution. Proteins etc were pelletted at 14 Kr. p. m for two min from the 

remaining DNA supernatant. DNA was precipitated overnight from the supernatant at 

-20°C by the addition of 350 µl 96-100% ethanol. The following morning DNA was 

pelleted by centrifugation for 30 min at 14 Kr. p. m and washed three times in 500 µl 

70% ethanol: vortexing and centrifuging for 5 min and decanting off the ethanol 

between each wash. The final cleaned pellet was dried under vacuum for 10 min and the 

DNA re-suspended in 15 to 25 µl of Ix TE. DNA extract was placed at 4°C and -20°C, 
for short- and long-term storage, respectively. 

Appendix 2.2 PCR product purification protocol 

(i) GENFCLEAN® II: submerged agarose gel horizontal electrophoresis was 

used to purify the amplified PCR product by size separation from primer dimers and/or 

secondary non-specific products. The entire PCR reaction volume was loaded with 5 µl 

of 6x Orange G DNA loading buffer, into wells on either a 1.5% (Cyt b and EF-la) or 
2% (AAm20 and AAm24) agarose gel (agarose electrophoresis grade of InvitrogenTM 

Corporation dissolved in lx TBE) and stained with 0.01% ethidium bromide (Fisher 

Scientific Inc. ) for DNA visualization under ultra-violet (UV) light. Electrophoresis was 

conducted at 80 V for 1 hour. An image of the gel exposed to UV light using a 
GeneGenius documentation system allowed the identification of the correct DNA band 

(by size) and an approximate estimation of DNA concentration per specimen, both 
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calibrated against Promega PCR Markers (6 bands between 50 to 1000 bp) or Bioline 

HyperladderTM IV (10 bands between 100 to 1000 bp). 

Excised DNA bands (where the razor blade was cleaned between cutting each 

band to avoid carry-over) where purified by binding to GLASSMILK® 

(GENECLEAN® II Spin Kit, BIOL 101 Qbiogene, Inc). DNA band volume was 

calculated and 0.5x band volume of TBE modifier and 4.5x band volume of Na! where 

added to a 1.5 ml Eppendorf tube containing the band, and incubated at 55°C for 5 min 

or until all the agarose band had dissolved. When DNA band plus Na! total volume was 

< 500 µl or between 500 to 1000 ul, 5 µl or 7.5 µl of GLASSMILK® (from kit), 

respectively, was added to the Eppendorf tube, where the solution was then rotated at 

room temperature for 10 min: DNA is drawn out of the solution and binds to the silica 

matrix of the GLASSMILK®. Samples were then centrifuged at 13.2 Kr. p. m. for 20 sec 

to pellet the GLASSMILK® and bound DNA. Supernatant was discarded. The pellet 

was re-suspended and cleaned by washing three times in 500 µl of NEW Wash solution 

(from kit), between each wash DNA was re-pelletted by centrifugation at 13.2 Kr. p. m. 

for 20 sec. After the final aspiration of supernatant, the pellet was allowed to dry at 

room temperature for approximately 10 min to evaporate all ethanol: ethanol can 

interfere during downstream stages, i. e. sequencing. Finally, the pellet was re-suspended 

by gentle tapping in PCR grade water to give a final DNA concentration of 1-2 ng/100 
bp of target product in 5 µl (accounting for a 20% loss). The solution was incubated at 
55°C for 10 min. The supernatant containing DNA was aspirated from the 

GLASSMILK® pellet following centrifugation at 13.2 Kr. p. m. for 1 min. Purified DNA 

was stored at -20°C for sequencing. 

(ii) Millipore MultiScreen® PCR96 Filter Plates: 4 µl of PCR product was loaded 

onto an agarose gel where horizontal electrophoresis was run at 80 V for 1 hour to 

assess the success of the PCR reaction per specimen. The remaining product was 
purified by the Millipore filter plate method when a single DNA band of the correct 
fragment size and having product yield of at least 2 ng per 100 bp in the remaining 
volume was observed on the gel post-electrophoresis; calibrated against the a PCR 

marker (Promega Corporation PCR Markers or Bioline HyperladderTM IV). 

The manufacturer's protocol of purification by Millipore MultiScreen® PCR96 
Filter Plates was optimized by the author, where adjusted methods for fragment size 
were followed. The following details the protocol for `long' fragments (> 300 bp), 

numbers in square brackets indicate how the protocol was adjusted for `short' fragments 
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(< 300 bp). PCR reaction product was made-up to 100µl [200 µl] with PCR grade water 

(Sigma), and mixed by pipetting up and down before loading into a well of a Millipore 

MultiScreen® PCR96 Filter Plate whose membrane had been previously wetted using 40 

µl of PCR grade water. The filter plate was then placed on a manifold under vacuum at 

500mBar (14.8 inches Hg) [250mBar (7.4 inches Hg). The low pressure ensured that 

small fragment product loss was minimal] until all the solution had filtered through. 

Each well was washed with 200 µl [100 µl] PCR grade water and again place under 

vacuum at 550mBar (16.2 inches Hg) [200mBar (6 inches Hg)] until all the solution had 

filtered through. Samples were reconstituted into 50 µl of PCR grade water and placed 

on to an automatic shaker for 10 min [15 min] which aided to lift the DNA from the 

membrane. For short fragments a 15 min "preincubation" reconstitution step was 

applied where the filter plate was left on the bench at room temperature before placing 

on to an automatic shaker. The DNA solution was recovered by aspiration into clean 

tubes or plate. 
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Appendix 2.4 Table Parameters of models used for Bayesian estimation to reconstruct 
phylogenies using locus cyt b. Bayesian analysis no. is referred to in the main text. 
Outgroup Phlebotomus species codes: papa = P. papatasi; cauc = P. caucasicus. 

Bayesian Out- Codon Substitution model Bayes Hypothesis 
analysis no. group partition (no. variable sites) factor tested 
Cyt b_bayesl papa &1* HKY +1 (65) 0 -4262.10 Testing the 

cauc 20 HKY +I (20) 0 effect of 
3 GTR +I+G (190) partitioning. 

Cyt b_bayes2 papa &1 +2$ GTR +I+G (85) # -4349.48 Models from 
cauc 3 GTR +I+G (190) MRMODELTEST. 

Cyt b_bayes3 papa & None GTR +I+G (275) -4553.92 
cauc 

Cyt b_bayes4 papa 1$ HKY +1 (64) ;k NA Testing the 
2$ HKY+I(19)$ effect of 
3 GTR +I+G (182) outgroup choice. 

Cyt b_bayes5 cauc 1$ HKY +I (64) $ NA Models from 
2$ HKY +1 (17) $ MRMODELTEST. 
3 GTR +I+G (186) 

Cyt b_bayes6 papa &ls GTR +I+G (65); k -4272.99 Testing the 
cauc 2* GTR +I+G (20); k effect of 

3 GTR +I+G (190) substitution 
model. 

Cyt papa &1# GTR +I+G (64) 0 NA Testing the 
bayesl 1 cauc 20 b HKY +1 (17) 0 effect of _ 3 GTR +I+G (189) 'ingroup' data 

level. Models 
from 
MRMODELTEST. 
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EF03 CTCGTCCCGG TGCCCGTGTC GCAGGATCGC G 
EF01 .......... .......... .......... C 
EF02 .......... .......... ........ A. . EF04 .......... .A........ .......... C 
EF05 .... C ..... .......... .......... . 
EF06 .......... C ......... ........ A. C 
EF07 .... C ..... .......... .......... C 
EF08 .. A ....... .......... .......... C 
EF09 .......... .......... ..... CA... C 
EF10 .......... .......... ........ A. C 
EF11 ........ T. ....... A.. .......... C 
EF12 .......... C ......... .......... . EF13 .......... .......... ..... CA. A. C 
EF14 .......... ....... A.. .......... . EF15 .. A ....... .......... .......... . EF16 .... C ..... .......... ........ A. 

. EF17 .......... .... T..... 
.......... C 

EF18 C ........ .......... .......... C 
EF19 .......... .......... ..... CA... 
EF20 .......... C ......... ..... C.... 

. 
EF21 ........ T. ....... A ............ . EF22 .......... .......... ..... C.... . EF23 .......... ..... A. A.. .......... . EF24 ....... A ............ .......... . EF25 .......... C ......... ..... CA... 

. EF26 .......... C...... A ............ . EF27 ... A...... ..... A .... .......... C 
EF28 .......... ........ C. T......... 

. EF29 .......... C ......... .... A..... 

. EF30 .......... C ......... T......... 

. EF31 .......... C ........ T .... A..... 

. EF32 ..... T.... C ......... .... A..... 

. EF33 .......... C.. T...... .... A..... 

. EF34 .......... ......... T .......... . EF35 .......... C..... C... .... A..... 

. EF36 ...... T... C ......... .......... . EF37 .......... ... T...... .......... . EF38 .......... .. T....... .......... C 
EF39 .......... .......... ... A...... 

. EF40 .......... .......... ........ AT C 
EF41 ......... A .......... ........ A. . EF42 .... C ..... .......... ........ A. C 
EF43 .......... C......... 

. T...... A. C 
EF44 .......... C.. T ...... .......... . EF45 T ......... .......... T......... 

. EF46 .... C..... 
...... A ... .......... . EF47 .......... .......... .. C..... C 

EF48 .......... C ......... ....... 
.. 

C 
EF49 .......... .......... ....... AA. 
EF50 .......... .......... ..... CA. A. 
EF51 .... C ..... .......... ..... T.. A. 
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Appendix 2.14 Table Models used to estimate pairwise values of dN and ds for protein 
coding loci cyt b and EF-la, where ds < 0.5 indicates non-saturation of synonymous 
substitutions and an appropriate outgroup of the MK population test for selection. ds 

estimated under the approximate Nei and Gojobori methodd (1986) (with Jukes-Cantor 
correction), and in PAML CODEML runmode -2 according to the maximum likelihood 
method of Goldman and Yang§ (1994). 

Locus Outgroup species Species 2 d v* ds dN§ d5 
Cyt b papa_MD_AF161214 CB05_aria 0.0652 0.8193 0.0385 2.5211 

papa _MD 
AF 161214 CB25_aria 0.0642 0.8319 0.0381 2.7954 

cauc_ME_F3217389 CB05_aria 0.0685 1.2092 0.0441 4.0645 
cauc_ME_FJ217389 CB25_aria 0.0675 1.1998 0.0435 4.7398 

MD CBOT masc CB05_aria 0.0556 0.6776 0.0398 3.4383 
_ 

masc MD CBOI CB25_aria 0.0537 0.68 0.0371 2.9970 
hale MD CB03 CB05_aria 0.0443 0.9939 0.0240 6.9903 
hale MD CB03 CB25_aria 0.0452 1.0357 0.0239 8.5217 

AFI61196 MD nraria CB05_aria 0.0054 0.1712 0.0052 0.2702 
_ _ 

nraria MD AF161196 CB25_aria 0.0036 0.1557 0.0034 0.2686 
negl ER Cß01 CB05_aria 0.0435 0.7097 0.0281 2.7026 

CBOI ER negl CB25_aria 0.0416 0.7122 0.0261 3.0793 
_ _ 

pem_MD_AF161205 CB05_aria 0.0203 0.6183 0.0133 2.5724 
MD_AF161205 pem CB25_aria 0.0184 0.5776 0.0111 2.2427 

_ CB05aria CB25 aria 0.0018 0.053 0.0018 0.0683 
EF-la masc MD_EFO1 EF03_aria 0.0327 0.6189 0.0268 0.7726 

masc_MD_EFOI EF13_aria 0.0327 0.6189 0.0268 0.7726 
hale ME_EF416842 EF03 aria 0.0282 0.5063 0.0238 0.5891 
hale ME_EF416842 EFI3_aria 0.0282 0.5063 0.0238 0.5891 
nraria MD_AF160804 EF03_aria 0.0029 0.0767 0.0031 0.0721 
nraria_MD_AF160804 EFI3_aria 0.0029 0.0767 0.0031 0.0721 
negl MD AF160801 EF03_aria 0.0088 0.4191 0.0030 0.4723 
negl_MD AF160801 EFI3_aria 0.0088 0.4191 0.0030 0.4723 
pem MD AF160807 EF03_aria 0.0088 0.3725 0.0030 0.4092 
pcm MDAF160807 EFI3_aria 0.0088 0.3725 0.0030 0.4092 
EF03 aria EF 13 aria 0 0 0.0000 0.0000 

Legend Species codes denote the first four letters of the formal species name (see Appendix 
2.3). Origins of species indicated by: ER = Europe; MD = Mediterranean; ME = Middle East 
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Appendix 3.1 Cloning of Phlebotomus apyrase 

In general good microbiological practices were carried out: all vessels were kept 

closed, opening only for the minimum time required to introduce or remove materials, 

in order to prevent contamination; to minimize the possibility of producing 

contaminated aerosols, solutions were mixed by gentle rolling and swirling rather than 

vigorous shaking (to avoid frothing); and during pipetting tips were placed into the 

liquid or onto a surface prior to gently ejecting the contents. PCR product (563 bp) 

using conserved primers APY-IF with APY-3R were amplified no more than 24 hours 

in advance of cloning. Amplification used Taq polymerase, causing 3' adenylation the 

PCR product. PCR product was purified using GENECLEAN® II as described in 

Appendix 2.2. 

Ligation reagents were defrosted at room temperature. Vector was mixed by 

flicking then centrifuged, all other reagents were flicked and shaken down, especially 

insert to prevent loss of PCR product `A' tails. Each TOPO® ligation reaction was made 

individually (no master mix). Ligation reaction reagents were added in order of: 1 µ1 

salt solution (from kit); I pl of pCR®4-TOPO® vector (10 ng/pl); 4 µl of apyrase insert 

(0.715 nglpl). The ligation reaction was mixed gently by flicking and tapping down (not 

vortexed or centrifuged), and incubated at room temperature for 5 min. Completed 

ligation was place on ice, and transformation of the TOPO® Cloning reaction (vector 

construct) into chemically competent E. coli (Mach1TM-T1R) cells was carried out 
immediately to ensure the highest cloning and transformation efficiencies. 

Chemically competent E. coli cells were thawed on ice shortly before use 

(approximately 15 min). Cells were mixed by gentle flicking. 2µl of the TOPO® 

Cloning reaction was pipetted into to one vial (50 µl) of chemically competent E. coli 

cells and mixed gently by shaking the tube. The reaction was incubated on ice for 30 

min. Cells were heat shocked in a water bath set at 42°C for 30 secs without shaking, 

and then immediately placed on ice for 2 min. After removal from ice, 250 p. 1 of SOC 

medium (from kit, at room temperature) was added to the tube of transformed cells, and 

shaken horizontally at 200 r. p. m., 37°C, for one hour. 

Transformed cells were plated on LB agar selective plates (0.31 LB Agar: 25 g/1 

of Lauria Broth (LB) medium (Merck); 15 g/l of Agar; 50 µg/µ1 final concentration of 

selective agent kanamycin). LB agar plates (25 ml) were pre-warmed at 37°C 30mins 

before use. Transformed cells were mixed by pipetting, and in a fume-hood 10 µ1 and 
50 pl of each transformation were spread onto separate agar plates. For 10 µl plates, to 
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ensure surface of plate was uniformly covered, 20 pi of SOC medium was pipetted into 

the middle of the plate, to which the 10 µl of transformed cells were added then spread. 
The remainder of the vial of transformed cells was spread onto a third plate. With 

replaced lids, the plates were left to stand for 10 min at room temperature then 
incubated inverted overnight (16-24 hrs) at 37°C. 

Colonies were picked, and placed directly into a sterlin tube containing 5 ml of 
LB medium with kanamycin (concentrations as above): one colony per tube. Colonies 

were grown overnight in a shaking incubator set at 125 r. p. m., 37°C. Following colony 

growth DNA plasmid was isolated from bacterial colonies by alkaline lysis in miniprep 

purification. Part of the LB medium with grown colonies was decanted into a2 ml tube 

and centrifuged at 14 Kr. p. m. for one min, after which the supernatant was discarded. 

The pellet was then re-suspended vortexing in 300 µl of Buffer P1 (15 mM Tris pH8,10 

mM EDTA; 10 pg/ml RNAse). 300 pl of lysis Buffer P2 (0.2 M NaOH; 1% SDS) was 

added and immediately mixed by moderate inversion (5 times) until sample became 

clear. 300 pl of neutralizing Buffer P3 (3 M KOAc), mixed by four inversions then four 

vertical rapid/vigorous shakes. The sample was then left on ice for 30 min (minimum), 

then centrifuged at 14 Kr. p. m. for five min. The supernatant (containing small bacterial 
DNA plasmids) was transferred to a sterile 1.5 ml Eppendorf tube, to which 700 µl of 
isopropanol was added, mixed well, and left at room temperature for up to 30 min. A 30 

min centrifugation step (14 Kr. p. m. ) followed, after which the supernatant was pipetted 
off. The plasmid pellet was then washed with 500 µl of 70% ethanol, respun for five 

min to re-pellet. All ethanol was then removed by pipetting and air drying the sample. 
The plasmid pellet was re-suspended in 100 µl lx TE to which in a fume-hood 100 µl of 
phenol chloroform (to denature and dissolve proteins) was added and vortexed until a 
milky solution was produced. The sample was centrifuged at 14 Kr. p. m. for five min. 
The upper liquid layer was then pipetted off into a sterile tube. 2.5x volume of ethanol 
was added and the sample centrifuged at 14 Kr. p. m. for 15 min. Again all ethanol was 
removed and the dried plasmid pellet re-dissolved in 20 pl of lx TE. 
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Appendix 3.2 Figure Continued. 
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Appendix 3.2 Figure Continued. 
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APYa16 .......... T.. A ...... . ......... . ......... . ......... . ......... . ... 
APYa17 .......... T ......... . ........ . ......... . ......... . ......... . ... 
APYa19 .......... .......... . .... TG... . ......... . ......... . ......... . ... 
APYa20 .......... T ......... . ......... . ......... . ......... . ......... . ... 
APYa21 . ......... .......... . ......... . ......... . ......... . ......... . ... 
APYa22 . ......... T ......... . ......... . .. A...... . ......... . ......... . ... 
APYa23 . ......... T ......... . ......... . ......... . ......... . ......... . ... 
APYa24 . ......... T ......... . .... T.... . ......... . ......... . ......... . ... 
APYa25 . ......... T ......... . .... T.... . ......... . ......... . ......... . ... 
APYa26 . ......... T ......... . .... T.... . ......... . ......... . ......... . ... 
APYa27 . ......... T.. A...... . .... T .... . ......... . ......... . ......... . ... 
APYa28 . ......... .......... . ......... . ......... . ......... . ......... . ... 
APYa29 . ......... T ......... . ......... . ......... . ......... . ......... . ... 
APYa30 . ......... T ......... . .... T.... . ......... .......... . ......... . ... 
APYa31 . ......... T ......... . .... T.... . ......... .......... . ......... . ... 
APYa32 . ......... .......... . .... T.... . ......... .......... . ......... . ... 
APYa33 . ......... T ......... . .... T.... . ......... .......... . ......... . ... 
APYa34 . ......... T ......... . .... T.... .......... . TC....... . ....... T. . ... 
APYa35 . ......... .......... . .... T.... . ......... .......... . ......... . ... 
APYa36 . ......... .......... . .... T.... . ......... .......... . ......... . ... 
APYa37 . ......... T ......... . .... T.... . ......... .. A....... . ......... . ... 
APYa38 . ......... T ......... . .... T.... . ......... . TC....... . ......... . ... 
APYa39 . ......... T ......... . .... T.... .......... .......... . ......... . ... 
APYa40 . ......... .......... ..... T.... .......... .......... . ......... .... 
APYa41 . ......... T ......... ...... G... .......... .......... . ......... .... 
APYa42 .......... T ......... . ......... .......... .......... .......... .... 
APYa43 .......... T.. A...... ..... T .... .......... .......... .......... .... 
APYa44 . ......... .......... .......... .......... .......... .......... .... 
APYa45 .......... T ......... .......... .......... . T........ .......... .... 
APYa46 .......... T ......... .......... .......... .......... ..... A.... .... 
APYa47 .......... T ......... .......... .......... .......... ..... A.... .... APYa48 .......... T ......... ..... T.... .......... . TA....... .......... .... APYa49 .......... T ......... .......... .......... .......... .......... .... APYa50 .......... T ......... ..... TG... .......... .......... .......... .... APYa51 .......... T.. A...... ..... T .... .......... .......... .......... ... * 
majoGla . C.. G. A.. C . GCC.... G. ...... G... C...... G.. ...... CC.. C.. CCAA. C. . T.. 
majoGib . C.. G. A.. C . GCC.... G. ...... G... C...... G.. ...... CC.. C.. CCAA. C. . T.. 
neglGla . C.. G. A.. C . GCC.... G. ........ T. C... A..... ...... CC.. C... C. A. C. . T.. 
neglGlb . C.. G. A.. C . GCC.... G. .......... C...... G.. ...... CC.. C... C. A. T. . T.. 
perfGla CAAG. ATGA ... AA. T... ... TG..... .. G. A ..... AG.. AGCC.. . AGC. T---. .. A. 
perfGlb CAAG. ATGA ... AA. T... ... TG..... .. G. A ..... AG.. AGCC.. . AGC. T---. .. A. 
pernG2a . C.. GTA. GA . C. CA. T... .. A. G..... .. G. A ..... AG.. AGCC.. GAGC. T---. .... 
pernG2b . C.. GTA. GA . C. CA. T... .. A. G..... .. G. A ..... AG.. AGCC.. GAGC. T---. .... 
pernG2c . C.. GTA. GA . C. CA. T... .. A. G..... .. G. A..... AG.. AGCC.. GAGC. T---. ... A 
tobbGla . C.. G. A. GA ... AA. T... ... TG... T. .. G. A.... T AG.. AG. C.. . AGC. T---. .... tobbGlb . C.. G. A. GA ... AA. T... ... TG... T. .. G. A.... T AG.. AG. C.. . AGC. T---. .... tobbGlc . C.. G. A. GA ... AA. T... ... TG... T. .. G. A.... T AG.. AG. C.. . AGC. T---. .... tobbGld . C.. G. A. GA ... AA. T... ... TG... T. . CG. A.... T AG.. AG. C.. 

. AGC. T---. .... tobbGle . C.. G. A. GA ... AA. T... ... TG... T. .. G. A.... T AG.. AG. C.. 

. AGC. T---. 
tobbGlf . C.. G. A. GA ... AA. T... ... TG... T. .. G. A.... T AG.. AG. C.. . AGC. T---. .... kandG2a . C.. G. A. GA ... AA ..... ......... T .. GAA..... AG.... CC.. CA. C. T---. ... kandG2b . C.. G. A. GA ... AA ..... ......... T .. GAA..... AG.... CC.. CA. C. T---. "... . perfG2a . C.. G. A... . G. ATC.. TC CA... T. AGT .. GT.. G... AA. G. GCC. C CTTC.. --- 
perfG2b . C.. G. A... . G. ATC.. TC CA... T. AGT .. GT.. G... AA. G. GCC. C CTTC.. ---. .... perfG2c . C.. G. A... . G. ATC.. TC CA... T. AGT .. GT.. G... AA. G. GCC. C CTTC.. ---. .... perfG2d . C.. G. A... . G. ATC.. TC CA... T. AGT .. GT.. G. C. AA. G. GCC. C CTTC.. ---. .... perfG2e . C.. G..... . G. ATC.. TC CA... T. AGT .. GT.. G... AA. G. GCC. C CTTC.. ---. .... perfG2f . C.. G. A... . G. ATC.. TC CA... T. AGT .. GT.. G... AA. G. GCC. C CTTC.. ---. .... pernGla . C.. G. A... . G. ATCT.. C C.... T. AAT .. GT...... AG. G. GCC. C CGTC.. ---. C.. 
pernGlb . C.. G. A... . G. ATCT.. C C.... T. AAT .. GT...... AG. G. GCC. C CGTC.. ---. .... tobbG2 . C.. G. A... . G. ATC. TTC CA..... AAT .. GTAAG... AA. G. GCC. C CTTC.. ---. .... kandGla 

. C.. G. A... . G. ATC... C CA..... AGT .. GT.. G... AG. G. GCC. C GATC.. ---. . T.. 
kandGib 

. C.. G. A... . G. ATC... C CA ..... AGT .. GT.. G... AG. G. GCC. C GATC.. --- . T.. 
kandGlc 

. C.. G. A... . G. ATC... C CA..... AGT .. GT.. G... AG. G. GCC. C GATC.. ---. . T.. 
kandGld 

. C.. G. A... . G. ATC... C CA ..... AGT .. GT.. G... AG. G. GCC. C GATC.. --- . T.. 
kandGle 

. C.. G. A... . G. ATC... C CA ..... AGT .. GT.. G... AG. G. GCC. C GATC.. ---. . T.. 
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kandGif . C.. G. A... . G. ATC... C CA ..... AGT .. GT.. G... 

kandGig . C.. G. A... . G. ATC... C CA..... AGT .. GT.. G... 

kandGlh . C.. G. A... . G. ATC... C CA..... AGT .. GT.. G... 

4444444444 5555555555 5555 
7788888999 0000001111 1122 
6735679289 1234570136 7902 
AG. G. GCC. C GATC...... . T.. 
AG. G. GCC. C GATC...... . T.. 
AG. G. GCC. C GATC...... . T.. 

Appendix 3.4 Table Models used to estimate pairwise values of dN and ds for protein 
coding locus APY, where ds < 0.5 indicates non-saturation of synonymous substitutions 
and an appropriate outgroup of the MK pojulation test for selection. ds estimated under 
the approximate Nei and Gojobori method (1986) (with Jukes-Cantor correction), and 
in PAML CODEML runmode -2 according to the maximum likelihood method of 
Goldman and Yang§ (1994). 

Outgroup species P. ariasi allele dNV ds dN4 d1 

masca0l APYa01 0.0783 0.9415 0.0781 0.9563 

masca0l APYa3O 0.0752 1.0563 0.0751 1.0755 

haleGla APYaO1 0.0719 0.8634 0.0718 0.8769 

haleGla APYa3O 0.0689 1.0462 0.0688 1.066 

arab632 APYaO 1 0.0702 0.8331 0.0701 0.8425 

arab632 APYa3O 0.0732 1.0099 0.0731 1.0239 

majoGlb APYa01 0.0716 0.4114 0.0715 0.4145 

majoGlb APYa3O 0.0746 0.4475 0.0745 0.4511 

negiGlb APYa01 0.0632 0.4592 0.0631 0.4636 

neglGib APYa3O 0.0602 0.5173 0.0601 0.5227 

pert G la APYaO1 0.1405 0.7646 0.1402 0.7736 

pertiila APYa3O 0.1438 0.8227 0.1435 0.8335 

pemG2a APYa01 0.1461 0.6582 0.1458 0.6648 

pernG2a APYa3O 0.1495 0.7338 0.1492 0.742 

tobbG 1e APYa01 0.1441 0.6794 0.1437 0.6874 
tobbGle APYa3O 0.1474 0.7047 0.1471 0.7136 

kandG2b APYa01 0.1049 0.6338 0.1047 0.6406 

kandG2b APYa3O 0.1081 0.7076 0.1078 0.7162 

perR'i2f APYaO1 0.2114 0.6809 0.2106 0.6946 

perfG2f APYa3O 0.2151 0.6088 0.2142 0.6208 

pernGla APYa01 0.2224 0.7065 0.2215 0.7225 

pernG la APYa3O 0.2261 0.6561 0.2252 0.6707 

tobbG2 APYaO1 0.2353 0.5558 0.2344 0.5662 

tobbG2 APYa3O 0.2391 0.6228 0.2381 0.6356 
kandG 1f APYaO 1 0.2218 0.8012 0.2215 0.8093 
kandG If APYa3O 0.2255 0.8317 0.2251 0.8409 
APYa01 APYa3O 0.0028 0.0524 0.0028 0.0528 

Legend Species codes denote the first four letters of the formal species name (see Appendix 
2.3). 
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