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Abstract 

Corneal avascularity is maintained by angiogenic privilege, an active process involving the 

production of higher level of angiostatic factors to offset the effect of angiogenic factors. A 

wide range of pathological insults to the cornea can disrupt this intricate equilibrium and 

promote angiogenesis and corneal neovascularization with resultant visual impairment. 

Corneal neovascularization is also a major risk factor for graft failure post-keratoplasty. 

Current treatment options for corneal neovascularization are restricted by limited efficacy, 

adverse effects, and a short duration of action. The unique anatomical position and relative 

immune-privilege of cornea make it an ideal tissue for gene-based therapies. Gene transfer 

vectors have been used to deliver or target genes involved in the pathogenesis of corneal 

neovascularization in animal models. Several pro-angiogenic and anti-angiogenic factors 

have been targeted and assessed in experimentally- induced corneal neovascularization. 

Antisense oligonucleotides targeting corneal neovascularization have entered human clinical 

trials and have not required vector delivery systems. The emergence of these RNA-based 

strategies heralds a new era in the management of corneal neovascularization and ocular 

therapeutics.   
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I. Introduction 

The healthy cornea is avascular and nourished by diffusion from the aqueous humor and tear 

film-supported circular pericorneal plexus derived from the anterior ciliary arteries that 

surrounds the cornea in the limbal region. The maintenance of corneal avascularity is termed 

‘angiogenic privilege,’13 and in its resting state, this is an active process of homeostasis 

between the low level of angiogenic and high level of antiangiogenic factors87.  

 

A wide range of external insults to the cornea can disturb the delicate equilibrium required 

for angiogenic privilege by increasing the production of angiogenic factors, which lead to 

corneal neovascularization with resultant loss in corneal transparency and visual acuity from 

scarring, stromal edema, lipid deposition, and inflammation. Currently there is no 

epidemiological study that provide an accurate estimate of the incidence and prevalence of 

corneal neovascularization in the general population164. Many of the conditions resulting in 

corneal neovascularization eventually require a penetrating or lamellar keratoplasty to restore 

vision; however, graft rejection rates are higher in vascularized corneal beds even with 

systemic immunosuppression , and post-transplant vision is often compromised44,64,73. Many 

risk factors for corneal graft rejection are recognized, such as recipient age, previous rejection 

episodes, previous grafts, gender matching, and timing of the graft116,263,278. Corneal 

neovascularization, however, also develops in 41% of eyes after penetrating keratoplasty, 

even without pre-existing corneal angiogenesis73. Corneal neovascularization is therefore a 

risk factor for graft failure post-keratoplasty and also a major complication following the 

surgical procedure itself. Successful keratoplasty is attributed to corneal ‘immune privilege’, 

the suppressed corneal inflammation induced by the lack of afferent lymphatic and efferent 

blood vessels in the recipient cornea, lack of major histocompatibility antigens class II, and 

the anterior chamber associated immune deviation266,288. Lymphatic vessels and associated 

blood vessels are found in neovascularized cornea65. The presence of corneal 

neovascularization, therefore, enables access of antigenic material to regional lymph node, 

completes the ‘immune reflex arc’ in cornea, and compromises its immune privilege.  

 

Current treatment options for corneal neovascularization include topical application of 

steroids25,36,44,220 or surgical interventions: laser ablation14,49,203,234, photodynamic therapy4,94 

and fine-needle diathermy221,238,240,261. Targeting pro-angiogenic molecules with topical or 
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subconjunctival use of vascular endothelial growth factor (VEGF) inhibitors such as 

bevacizumab has been reported45. Despite some degree of success, the current treatment 

options are restricted by adverse effects23,143,146,175,236,279. Gene-based therapy might be able to 

circumvent these shortcomings and improve the duration of therapeutic effect. The unique 

anatomical and immune characteristics of the cornea along with the relative ease of access 

make it an ideal candidate for gene-based therapy; however, gene-based therapies for corneal 

neovascularization are still largely at the preclinical stage 98,162,244,287,308. Herein, we provide a 

comprehensive review on therapeutic target genes and potential vectors available to treat 

corneal neovascularization. 

 

II. Pathophysiology of Corneal Angiogenesis 

Clinically, corneal neovascularization is subdivided into three groups based on the pattern of 

angiogenic invasion: 1) superficial neovascularization, new vessels that invade just below the 

corneal epithelium into the stroma; this is commonly seen in stromal keratitis, 2) vascular 

pannus involves both the extension of vessels and fibrous tissue onto the peripheral cornea 

and is mainly seen in ocular surface disorders, and 3) interstitial and deep neovascularization 

consists of lamina of new vessels in stroma as seen in herpetic and luetic interstitial keratitis. 

Deep neovascularization is a specific interstitial neovascularization in which there is 

angiogenesis between the stroma and Descemet membrane55,69. 

 

The progression of corneal neovascularization is broadly divided into three phases: a latent 

pre-vascular phase, an active neovascularization phase, and lastly a maturation phase248 

(Figure 1). Upon exposure to a stimulus such as injury or hypoxia, the corneal epithelium, 

leukocytes, pericorneal blood vessels and extracellular matrix (ECM) release angiogenic 

growth factors which bind to receptors on the vascular endothelial cells of pericorneal 

vessels150. These vessels dilate, their permeability increases, and leukocytes migrate into the 

surrounding corneal stroma, resulting in inflammatory edema and opacification95. 

Subsequently, these endothelial cells are “activated”, characterized by decreased cell junction 

integrity and degradation of the endothelial lamina136,172,245. Matrix metalloproteinases 

(MMP) released by endothelial cells and migrating leukocytes  degrade the surrounding 

ECM, paving the way for invasion and proliferation of vascular endothelial cells172.  This is 

followed by the endothelial cell migration toward the angiogenic stimulus source150. The 

endothelial migration and proliferation from parent vascular structures is facilitated by altered 
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expression of adhesive proteins, such as integrins and selectins, and cytoskeletal 

reorganization225. Finally, the formation of vascular lumen and anastomosis ensues as 

supporting pericytes are recruited, marking the maturation of vessels do not require the 

stimulus of pro-angiogenic factors for survival. 

 

III. Cause of Corneal Neovascularization 

A wide range of clinical conditions can cause corneal neovascularization. Most of these 

conditions induce corneal neovascularization via three broad pathological mechanisms:  

hypoxia, inflammation, and limbal barrier dysfunction181. Hypoxia, one of the pathological 

mechanisms that drives corneal neovascularization, is commonly seen in contact lens use47. 

Contact lens use is the leading cause of corneal neovascularization in the USA164; and 20% of 

contact lens users suffer from corneal neovascularization168. Contact lenses reduce by 8-14% 

the oxygen delivered to the cornea, and this hypoxic condition leads to the downregulation of 

antiangiogenic factors (e.g., pigment epithelium-derived factor) and an upregulation of 

angiogenic factors (principally VEGF, mediated by hypoxia-inducible factor 1-alpha252), 

initiating the neovascularization process to deliver oxygen to the hypoxic cornea168,230.  

Infections, inflammation, and corneal transplant can all cause corneal neovascularization via 

upregulation of inflammatory cytokines, which attract myeloid cells into the cornea230. These 

myeloid cells establish a cycle of cytokine secretion and further myeloid cell recruitment in 

the cornea230. There are significant alterations in multiple cytokines which increase the 

inflammatory status of cornea and lead to corneal neovascularization54,230. In human herpes 

simplex-1 (HSV-1) infection, the HSV-1 virus migrates from initial infection site of cornea to 

the trigeminal ganglia where it lies dormant298. The virus replication cycle is reactivated upon 

stress and immunosuppression, during which the virus travels back to the corneal epithelial 

surfaces via the trigeminal nerve, which leads the elevation of VEGF-A and MMPs levels, 

and reduced expression of anti-angiogenic soluble VEGF receptor-1 (sFlt-1)139,298. MMPs are 

secreted by the neutrophils recruited through inflammatory cytokines, and they contribute to 

corneal neovascularization by degrading the remaining little amount of sFlt-1 produced270.  

 

IV. Clinical Assessment of Corneal Neovascularization 

An essential requirement for evaluating the efficacy of any potential treatment for corneal 

neovascularization and performing clinical trials is the ability to grade and quantify corneal 
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neovascularization before and after intervention (Figure 2). Numerous modalities have been 

employed to evaluate corneal neovascularization. Historically the most common method is to 

examine photographic images of corneas taken by slit lamp biomicroscopy35,66,90,91, but more 

advanced imaging techniques have been developed75,83,94,169. 

Biomicroscopic examination of corneal neovascularization is limited by inconsistent vessel 

delineation from frequently coexisting corneal opacification, poor standardization and the 

inability to perform quantitative measurements9 (Figure 2). Additionally, it  is difficult to 

distinguish afferent from efferent vessels visually even with the aid of the patient’s pulse59,240. 

Therefore, ancillary techniques were needed for the clinical characterization of corneal 

neovascularization83.  This was recognized by Bron and Easty, who, in the 1970s, used 

angiography to study corneal neovascularization in more than 250 patients83. As 

acknowledged by these authors, relying solely on clinical assessment with biomicroscopic 

photography to estimate vessel leakage is unreliable;83 therefore, improved imaging 

techniques that makes identification of small vessels more evident are essential.  

Angiography using fluorescein and indocyanine green is an objective tool to measure corneal 

neovascularization9,148. Both techniques allow the characterization of corneal 

neovascularization (Figure 2) based on the assessment of both morphological parameters 

(such as diameter, length tortuosity, area etc.) and functional parameters (such as flow and 

time to leakage) that are indicators of vessel maturity and disease activity9,238,261,264. With 

angiography, the anatomy of the marginal corneal and limbal vascular arcades can be 

elucidated, which is important for assessing progression of corneal neovascularization and 

limbal disorders9. Angiography, even in the presence of exudate and scarring, allows precise 

detection of the afferent stems of the vessel, which is helpful for guiding surgical treatment of 

corneal neovascularization261,264. Therefore, angiography provides an objective evaluation of 

corneal neovascularization to plan surgical treatment and monitor treatment responses. In 

addition, digital subtraction analysis of corneal angiograms depicts and characterizes 

clinically invisible corneal lymphatic new vessels241. The in vivo depiction of corneal 

lymphatic vessels is of great importance, as it has been shown that lymphatic rather than 

hematic corneal new vessels are the primary mediators of immunological graft rejection in 

vascularized corneas80,118.  

 Optical coherence tomography angiography (OCTA) is another promising method for the 

assessment of corneal neovascularization8. This relatively new modality is not yet widely 
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used in part because of current limitations in the definition of images produced, lack of 

functional information, and inability to detect vessels without red-cell flow. In vivo confocal 

microscopy (IVCM) has been used to visualize presumed lymph vessels in a case of corneal 

transplantation217, and a novel non-invasive in vivo technique for the quantification of 

leukocyte rolling and extravasation at sites of inflammation in human patients has been 

reported147. More recently, IVCM has been used to demonstrate acellular perfusion of ghost 

vessels, intravascular cellular traffic and corneal lymphatic new vessels241. The emerging 

IVCM and OCTA techniques have the advantage of being non-invasive, but refinement of 

these imaging techniques is still needed. Regardless of the modalities used, further 

development of a standardized measurement procedure is still necessary to allow consensus 

in measuring and comparing efficacy of new treatments for corneal neovascularization. 

  

V. Current treatments of Corneal Neovascularization 

Many treatment options for the management of corneal neovascularization are currently 

available, and various degrees of success have been reported. These therapeutic interventions 

are either medical or surgical.  We present an overview of these modalities to place in context 

the emergence of gene-based anti-angiogenic applications for corneal neovascularization.  

A. Pharmacologic Treatment 
Glucocorticosteroids (also called glucocorticoids, corticosteroids, or steroids) have 

traditionally been the mainstay of managing corneal neovascularization; however, the 

complete suppression of corneal neovascularization with topical steroids is not possible, as 

glucocorticosteroids do not cause established corneal neovascularization to regress163,166. 

Topical steroid treatment also has side effects such as glaucoma, cataracts, super-infection, 

and herpes simplex recurrence, which further hamper the clinical utility  of steroid 

treatment236. Moreover, despite the widespread use of topical steroids, the mechanism of their 

anti-angiogenic action is not fully understood197. The antiangiogenic effect of steroid is 

proposed to result from their anti-inflammatory properties, via inhibition of neutrophilic cell 

chemotaxis95,194,220,237,246, modulation of the proteolytic activities of vascular endothelial cells 
25,36,180,194, inhibition of pro-inflammatory cytokines28,29,84,117,260,284, inhibition of plasminogen 

activator (PA) including the stimulation of PA inhibitors180 and altered prostaglandin 

synthesis130,237. Non-steroidal anti-inflammatory agents have been used clinically to treat 

corneal neovascularization because of their ability to target prostaglandins synthesis, but they 

are not considered sufficiently effective79,203,271. Given the known side effects and variable 
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clinical effects of these anti-inflammatory agents, more targeted treatments have been 

evaluated. 

Anti-VEGF agents (e.g. bevacizumab; Avastin®) have been utilized to treat corneal 

neovascularization19,174. Bevacizumab has been delivered topically (dose range: 5–25 mg/mL, 

2–5 times per day)34,75,78,280, by subconjunctival injection (dose range: 1.25 mg/0.05 mL to 5 

mg/0.2 mL)12,15,16,72,82,89,99,145,173,231,303, or using pre-soaked corneal collagen shields (1.25 

mg/0.05 mL for 20 minutes for 11 weeks173. Most of the anti-VEGF trials were uncontrolled 

studies conducted with small sample size, and the reported reduction in corneal 

neovascularization appeared to be only transient and incomplete12,75,303. Ultimately, anti-

VEGF therapies may be safer than steroid-based approaches, but prospective multi-center 

clinical trials are required to prove the efficacy of anti-VEGF treatments in corneal 

neovascularization. 

Thus far, studies that investigated the efficacy of anti-VEGF agents only achieved incomplete 

regression of corneal neovascularization45. This can be attributed to the fact that anti-VEGF 

therapy is only effective against newer, actively growing blood vessels. These new vessels go 

through a period when vascular endothelial cell survival depends on the presence of pro-

angiogenic factors, like VEGF. After two weeks, most of these vessels are covered by 

pericytes, which marks the end of the pro-angiogenic factors dependence period for 

endothelial cells, and treating these mature vessels with anti-VEGF agents is often less than 

satisfactory67. Targeting VEGF in isolation may also be ineffective because of redundancy in 

the pro-angiogenic cascade, with other pro-angionic factors driving corneal 

neovascularization1,140,141.   Acquired resistance to anti-VEGF and anti-angiogenic drugs 

represents a further mechanism limiting the efficacy of anti-VEGF therapies178,222,299.  

 

 

B. Surgical Treatments for Corneal Neovascularization 
Argon laser photocoagulation is an established treatment for retinal neovascularization259. 

Hemoglobin has a high absorption rate of argon energy, and laser treatment can coagulate 

hemoglobin-filled corneal vessels234.  Yellow laser and neodymium-doped yttrium aluminum 

garnet laser were also suggested for the treatment of corneal neovascularization, but neither 

are routinely used clinically154,202. Despite successful outcomes with argon laser treatment of 

lipid keratopathy104, several reasons have restricted argon laser usage for corneal 
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neovascularization.  Specifically, the procedure is technically difficult to perform as corneal 

vessels are difficult to visualize and have a rapid pulsatile flow.221 The occlusive effect was 

shown to be transient.49,256 The laser-induced thermal damage to the vessels might lead to 

upregulation of inflammatory mediators and VEGF in the surrounding stroma, which may 

paradoxically lead to more neovascularization99. In addition, high laser energy predisposes to 

complications such as iris atrophy, corneal thinning, pupillary ectasia, peripheral corneal 

hemorrhage,88,104,203 and necrotizing scleritis211. Because of these technical difficulties and 

related side effects, laser ablation of corneal neovascularization has not gained widespread 

acceptance.  

Photodynamic therapy (PDT) has also been used as a treatment for corneal 

neovascularization4. The effect of PDT is based on the combination of a photosensitizing 

compound (verteporfin), light, and oxygen, which together produce cytotoxic free radicals 

that cause vascular endothelial damage and intravascular thrombosis likely involving both 

apoptosis and necrosis102,114,204,233,235. The photo-oxidative effect of PDT is confined within 

the blood vessels in a non-inflamed cornea; however, the higher permeability of blood vessels 

in an inflamed cornea results in dye leakage that extends the photo-oxidative damage into 

stroma60. The collateral damage of stromal tissues may exacerbate an inflammatory reaction 

increasing the risk of reperfusion and angiogenesis60. PDT has not been widely used for the 

treatment of corneal neovascularization because of the aforementioned potential 

complications221. 

Fine needle diathermy (FND) occlusion of corneal neovascularization is a technique that 

involves a stainless steel 3/8 circle side-cutting, single-armed needle inserted into the limbus 

at the level of the blood vessel to be occluded or into the vessels lumen directly if the vessel 

is large. A unipolar diathermy unit set to coagulation mode is then connected with the needle 

at the cornea to start the occlusion process221. FND has been reported as an effective and 

relatively easy procedure to perform;221,261however, diathermy should only be applied to the 

afferent vessels (selective FND), and the potential adverse effects of FND should be taken 

into account238–240,261. There may be collagen shrinkage and damage to the adjacent stroma of 

the diathermy site .20 Heat applied to cornea also alters corneal curvature20,85. Long-term 

effects of FND to the cornea are not yet clear. Moreover, FND itself may stimulate further 

corneal neovascularization by triggering secondary release of pro-angiogenic factors33.  It 

would, therefore, be reasonable to minimize the application of FND and to selective FND on 

the afferent vessels, as arterioles only comprise less than 1% of total corneal 
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neovascularization67. Combining angiographic guidance to target the afferent vessels, FND is 

a promising procedure in reducing the area of corneal neovascularization238,261.  

VI. Gene Delivery to the Cornea 

Gene therapy refers to the transfer of nucleic acids into cells using viral and non-viral vectors 

to correct cellular dysfunction or restore cellular function188,192. As such, gene therapy is a 

type of molecular medicine that targets the underlying molecular basis of disease. Compared 

to drug or antibody-based treatments for corneal neovascularization that only provide short-

term benefits and require repeated applications, a gene-based approach offers targeted 

treatments providing long term therapeutic correction149,185,188. The cornea has properties that 

makes it an attractive target for gene-based manipulations: relative immune-privilege and 

ease of access 131,149,185,188. Corneal transparency allows live tracking of labelled molecules in 

animal studies149,185. The cornea is easily accessible to administer gene therapy reagents, and 

the ability to maintain the cornea in culture for several weeks permits ex vivo gene therapy 

approaches185,216.  A variety of vectors have been used forgene-based therapies for corneal 

angiogenesis, including viral vectors, lipid-based vectors, nanoparticles, polymers or naked 

plasmid--each with their own advantages and limitations57,110. Viral-based vectors are well-

established and effective, but can induce immune responses, whereas non-viral delivery 

methods are less likely to induce an immune response, but only produce short-term gene 

expression57,103,274. These vectors are normally delivered to the cornea by subconjunctival, 

intrastromal, or intracameral injection188,228. In some cases, topical application or ex vivo 

incubation of cornea buttons were also employed71,216. 

 

A. Adenoviral Vector 
The adenoviral vector, the first viral vector used for direct gene transfer to the cornea, is 

capable of infecting both mitotically active and mitotically quiescence cells and can carry 

large gene inserts with no risk of insertional mutagenesis 176. The use of adenoviral vector for 

corneal gene transfer has been tested extensively in animal and ex vivo studies10,39,232,277. 

Recombinant adenovirus encoding vasohinbin-1 was injected was subconjunctivally into 

mouse to suppress corneal neovascularization308. Adenovirus is a 35kb double-stranded DNA 

virus, and the wild type virus causes a benign respiratory tract infection in humans. Over 40 

serotypes of wild-type adenovirus have been discovered,283 and the recombinant vector 

commonly employs adenovirus serotype 2 and 5 genetically engineered to remove their 

replicating ability283. Later generations of adenovirus vector have been modified by deleting 
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its entire viral genome, leaving only the inverted terminal repeats and packaging genes 

behind, thus reducing its immune response and enabling it to carry larger gene inserts151. As a 

result of this extensive deletion, a helper virus is required for adenoviral vectors to be 

propagated, and there is a risk that helper virus contamination could induce a strong 

inflammatory reaction, limiting their clinical use and safety. The adenoviral vector enters 

cells through coxsackie-adenovirus receptors and integrin-mediated endocytosis 293. Once 

inside the cytoplasm, the virus undergoes endosomal lysis and releases its genome. As there 

is no integration into the host genome, transgene expression is usually only short-term. This 

caveat necessitates repeat treatment if a sustained effect is to be achieved, which can limit 

clinical utility and result in higher cumulative risks of immune responses. 

B. Lentiviral Vectors 

Lentivirus belongs to the retroviridae family with its single-stranded viral mRNA, which 

possesses the enzyme reverse transcriptase that transcribes its RNA into double-stranded 

DNA53. Lentiviral vectors have been able to transduce a gene of interest to corneal 

epithelium, stroma and endothelium in both animal and ex vivo studies17,215,290. Upon 

association with specific surface receptors of the host cell, the viral envelope fuses with the 

cytoplasmic membrane and ejects its cylindrical core into the cytoplasm184. DNA is generated 

from mRNA by viral reverse transcriptase, and the DNA subsequently migrates into the 

nucleus. At this point, wild-type lentiviral DNA usually integrates into the host genome61. 

Lentivirus vectors are mostly derived from equine infectious anemia virus and the human 

immunodeficiency virus 1281. Unlike other retroviruses, lentivirus is able to infect non-

dividing cells,228 and compared to adenovirus, lentiviruses also appears to be less 

immunogenic294. To generate the lentiviral vector, the viral genome is engineered to remove 

its self-replicating capabilities188. As lentiviral vectors integrate into the host genome, 

sustained transgene expression is achieved; however, the risk of insertional mutagenesis 

remains prohibitive for testing of lentiviral vectors in clinical trials108,295. To combat this 

limitation, non-integrating lentiviral vectors are being developed201.  

 

C. Adeno-Associated Viral (AAV) Vectors 
AAV is a small single-stranded DNA virus belonging to the parvoviridae family that is non-

pathogenic to humans, making AAV a safe option for gene delivery188. AAV-based gene 

delivery has been able to transfect corneal stroma and endothelium in both in vivo and ex vivo 

studies without apparent toxicity119,186,276. Subconjunctival injection of AAV vector carrying 
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endostatin and angiostatin genes to the corneal epithelium inhibits corneal 

neovascularization48,161. Owing to its simple genomic structure, the presence of a helper virus 

such as adenovirus or herpes simplex virus is necessary for replication. Upon binding to 

primary cell surface and integrin, AAV is internalized, 282and its single stranded DNA is 

released. This single-stranded DNA anneals to a complementary strand from another AAV or 

through host DNA polymerase. On reaching the nucleus, the therapeutic gene is integrated 

into the host genome247. The first generation of recombinant AAV lacked the genes needed 

for replication because they were replaced with the therapeutic gene; therefore, co-infection 

with adenoviral and AAV helper plasmids carrying genes encoding for replication were 

necessary196. In order to avoid helper virus contamination, AAV- and adenoviral-helper genes 

were subsequently combined into a single plasmid in newer generation AAVs 106.   

To further dampen immune response, hybrid vectors have been developed by combining the 

genome of one serotype and the capsid of another serotype retrieved from the Rhesus 

monkey96. Another breakthrough was the development of self-complimentary AAV, which 

allows for more rapid gene transfection as, under normal conditions, there is a delay in the 

single stranded viral genome to spontaneously anneal to its complimentary strand179. A 

further development is the generation of tyrosine mutant AAV vector resistant to proteasome-

mediated degradation, allowing more efficient gene delivery with reduced loading titers219. 

AAV is an attractive option as a viral vector for gene-based therapies for corneal 

neovascularization because of its safety profile and sustained longer-term gene expression 253. 

One limitation, however, is its incapability to incorporate large DNA constructs. Nonetheless, 

AAV has been used clinically in the gene therapy for Leber congenital amaurosis to restore 

RPE65 function124,258.  

 

D. Nanoparticles  
Cationic polymers have been widely used as non-viral vectors in vitro as they can form 

association with DNA and promote induction of the DNA into cells210,285. The positively 

charged surface of cationic polymers, however, are potentially cytotoxic, and the clinical 

application of these molecules might therefore be limited206,209. Development of 

biocompatible polymeric micelles from newly designed cationic block polymer resolves this 

issue2. Polymeric micelles are nanoparticles that self-assemble as a result of amphiphilic 

interaction133. One example is polyethyleneglyco -b-P[Asp(DET)], which has a hydrophilic 

polyethylene glycol segment that forms the non-cationic shell of a micelle183,269. As a vector, 
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polymeric micelles form a hydrophobic core containing the therapeutic gene and a 

hydrophilic shell which interacts with solvent. The unique core-shell architecture of 

polymeric micelles allows therapeutic genes to be protected and therefore making delivery 

more efficient112. Nanoparticles have a large vector-carrying capacity and are able to exhibit 

sustained gene expression after transfection 92,109. Subconjunctival and intrastromal injection 

of nanoparticles-based vector carrying a sFlt-1 plasmid and shRNA against VEGF-A 

respectively were able to suppress corneal neovascularization123,229. Further development of 

more biocompatible nanovectors could lead to widespread use of polymeric micelles for gene 

delivery. 

 

Another non-cationic nanovector, polylactic-co-glycolic acid (PLGA), is a biodegradable 

copolymer used as a therapeutic device for many FDA-approved drug delivery systems103. 

Previously PLGA nanoparticles were shown to increase delivery of plasmids into cells or the 

cornea in a non-toxic fashion, with enhanced uptake at the site of administration11,125. 

Sustained release of small interfering RNAs or pharmacologic agents were also 

observed18,56,97. The non-cationic properties of PLGA nanoparticles also avoid the toxicity 

issues associated with cationic polymers. These biologically desirable properties make PLGA 

a promising vector system for the delivery of genes to the cornea. Liposomes are composed 

of a lipid bilayer and an aqueous compartment, forming vesicles that are able to encapsulate 

both hydrophilic and lipophilic therapeutic agents275. They have shown stability and good 

capacity for transfection in vitro and in vivo275. In a recent modification of the vector 

construct, dextran and protamine were added to improve cellular uptake of the vector and aid 

translocation of the plasmid DNA into the nucleus respectively227. As the cornea is negatively 

charged, positively charged liposomes enhance the absorption and transfection of the 

encapsulated agents. Short storage time and limited carrying capacity, however, pose 

challenges for the clinical application of liposomes103. 

 

Albumin is a naturally nano-sized biodegradable particles that allow drugs or plasmids to be 

encapsulated and released in a sustained manner11,153. This common serum protein forms 

dimer with the drug and facilitate entrance into cells via a vesicle-forming process called 

transcytosis, therefore increasing the efficacy of the drugs77,105.  In the context of corneal 

gene delivery, plasmid-linked to albumin nanoparticles persist in the stromal space for 

extended period of time125. As a non-viral, non-immunogenic and biodegradable 
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nanoparticle, albumin appears to have the attributes required for delivering therapeutic genes 

to the cornea. 

E. Gene Silencing Methods 

Gene silencing methods such as antisense oligonucleotides, morpholino oligomers, small 

interfering RNAs (siRNAs), or short hairpin RNA (shRNA) can be useful for targeting pro-

angiogenic factors in the cornea. Antisense oligonucleotides are single-stranded RNA or 

DNA that can prevent protein translation by specific binding to a complementary RNA 

sequence. Morpholino oligomers are synthetically produced antisense reagents similar to 

DNA oligonucleotides, but possess morpholine ring backbones191. They are effective in 

blocking mRNA translation and alternative splicing without causing it to degrade. siRNAs 

are double-stranded RNA that can initiate RNA-induced silencing complex-mediated binding 

to specific RNA and induce nonsense mediated decay107. Rather than directly targeting the 

transcribed RNA, shRNA integrates into the host nucleus where the host machinery produces 

the encoded siRNA189. The silencing effect of siRNA is transient owing to intra-cellular 

degradation, whereas shRNA that is constantly produced by the host provides a continuous 

silencing effect.  Further improvements on the safety and efficacy of gene silencing 

techniques are likely to maximize its application for the treatment of corneal 

neovascularization.  

F. Alternative Delivery Methods 

Other methods  for transferring therapeutic genes to the cornea include the injection of naked 

DNA or plasmid302, electroporation208, iontophoresis27 and the use of a gene gun272. These 

modalities have had various degree of success for corneal gene delivery. Injection of naked 

plasmid is not associated with risk of immune response, but produces only transient transgene 

expression.262 Electroporation alone to deliver genes into the cornea was considered  

ineffective, and there are potential risks of tissue injury from the electric current32,111. 

Iontophoresis performed under correct electric current conditions with short-duration is 

considered to be safe, but is unable to deliver larger molecules such as plasmid DNA.27,120,300 

Transfection using gene guns is restricted to the corneal epithelium and produces mild 

corneal inflammation22,272.   
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VII. Target Genes and Therapeutic Application 

Our increasing understanding of the mechanisms underlying angiogenic privilege in the 

cornea has facilitated the development of gene therapy approaches for corneal 

neovascularization (Table 1). Two therapeutic approaches are described: either transgenic 

expression of an anti-angiogenic factor or inactivation of a pro-angiogenic factor via gene 

silencing.  

A. Vascular Endothelial Growth Factor (VEGF)  

VEGFs production is increased in pro-angiogenic environments such as hypoxia, 

inflammation, and tumor cell proliferation42,43,307. VEGF is the most common therapeutic 

target in corneal neovascularization45. Specifically, VEGF-A is expressed in embryonic, 

physiological and pathologic neovascularization and is considered to be the major factor 

involved in angiogenesis37,95. There is upregulation expression of  VEGF-A in vascularized 

corneas45. Upon binding to the cell surface membrane-bound VEGF receptor 1(VEGFR1; 

mbFlt-1), VEGF-A is activated and promotes proteolysis of ECM, vascular endothelial cell 

proliferation, migration and tube formation218; all of which are essential steps of 

angiogenesis. Other VEGF isoform bind to different VEGF receptors and have different 

functions. VEGF-C and D, for example, were implicated as mediators of lymphangiogenesis 

- the growth of new lymphatic vessels in the cornea62.  

Paradoxically, VEGF-A, a potent pro-angiogenic molecule, is also found in the avascular 

cornea under normal conditions5. It is proposed that the angiogenic effect of VEGF-A in the 

corneal stroma is antagonized by sFlt-1, an alternatively spliced isoform of mbFlt-1, which 

can act as an endogenous VEGF-A “trap” 5. sFlt-1 is present extracellularly in the cornea, and 

a reduction of sFlt-1 leads to corneal vascularization5,6. There is strong evidence that sFlt-1 

plays an angiogenic role in the normal cornea, and it is therefore a popular target for gene-

based therapies for corneal neovascularization. In one study, only 18% of mouse eyes 

injected with complimentary DNA (cDNA) of sFlt-1 in adenoviral vectors intracamerally 

developed corneal neovascularization after silver nitrate cauterization, as compared to 100% 

of the untreated mouse158. Intracameral injection of an AAV sFlt-1 expressing vector into 

mice eyes reduced silver nitrate-induced corneal neovascularization by 36% compared to 

controls162. The non-viral vectors, PLGA51 and polymeric micelles123, were also able to 

deliver a plasmid DNA encoding sFlt-1 or Flt23K (a recombinant construct of sFlt-1 domains 

2 and 3 and endoplasmic reticulum-retaining peptide) to the mouse cornea via 

subconjunctival injection and achieve prolonged expression51,123. Injecting naked plasmid-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 | P a g e  
 

containing sFlt-1 cDNA to rabbit corneal stroma also reduced angiogenesis by 23.6% 

compared to controls, although tissue specificity is questionable as gene expression was also 

observed in the posterior segment262. A Flt-1 specific morpholino oligomers targeting the 

exon 13/intron 13 junction of the murine Flt-1 transcript was also successful in modulating 

the alternative splicing process and promoting the production of sFlt-1 instead of mbFlt-1, 

and thus showed 22.78% less angiogenesis compared to controls in murine cornea associated 

with penetrating keratoplasty52.  

As well as acting through VEGFR-1, VEGF-A can bind and activate VEGFR-2 promoting 

angiogenesis257. A soluble form of VEGFR2 prevents lymphangiogenesis in the cornea5 and 

has immunosuppressive effects after corneal transplantation3. Administratation of sVEGFR-2 

in murine models (corneal suture or transplantation) reduced lymphangiogensis but not 

hemangiogenesis suggesting sVEGFR2 is not a major contributor to corneal 

neovascularization3. However, subsequent studies have reported that a soluble VEGFR2/Fc 

chimera protein has a significant inhibitory effect on angiogenesis and lymphangiogenesis113.  

RNA interference-mediated silencing of VEGF-A is an alternative approach . 

Subconjunctival injection of synthetic siRNAs were able to silence VEGF-A sequences and 

inhibit mouse corneal angiogenesis induced by alkali burn, showing 2.34mm2 less 

neovascularised area than the uninjected controls310. Utilizing a similar approach, shRNA or 

antisense oligonucleotides-mediated silencing of VEGF-A also effectively supressed corneal 

neovascularization in murine models159,229. Although clinical trials of VEGF siRNA for 

corneal neovascularization have not been reported, this approach is currently undergoing 

clinical evaluation to treat age-related macular degeneration132,198,199. Silencing VEGF may 

also affect cell death, however, as some studies have shown that VEGF can be 

neuroprotective for corneal innervation212,265,304.   

Vascular endothelial cell growth inhibitor (VEGI), an endothelial cell-specific tumor necrosis 

factor, inhibits endothelial cell growth and induces apoptosis305. Using a positively charged 

lipid vector, VEGFI cDNA was successfully delivered into all layers of the cornea and 

produced 13.8mm2 less rabbit corneal neovascularization after a silk suture was placed, 

compared to controls287. Another family member of VEGF, placental growth factor (PlGF), 

shares biochemical similarities with VEGF-A. In addition to having the same receptor of Flt-

1, PlGF can also form a heterodimer with VEGF-A. These similarities were utilized to 

generate a PlGF variant, termed PlGF1-DE, that is unable to bind Flt-1, but is still able to 
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hetero-dimerize with VEGF-A273. Heterodimerized VEGF-A is unable to bind and activate 

mbFlt-1, and hence the angiogenic effect of VEGF-A is suppressed273. Injection of PlGF1-DE 

cDNA carried by AAV vectors into the corneal stroma immediately after suture placement 

every three days for 14 days in a murine model resulted in 37% reduction of neovascularised 

area, which was significant273.  

B. Vasohibin 

Vasohibin-1 is a novel endothelium-specific negative feedback mediator of angiogenesis that 

is upregulated when VEGFs are present291. The anti-angiogenic role of the vasohibin-1 

protein was demonstrated by its ability to block neovascularization in the retina and the 

cornea (murine bFGF micropocket-induced corneal angiogenesis model)254,291. Vasohibin-1 

acts as a negative feedback mediator of angiogenesis since its expression is usually low in 

vascular endothelial cells, but increased when stimulated by VEGF and FGF during 

neovascularization. It was able to inhibit VEGF- and FGF-driven proliferation, migration, 

and tube formation by vascular endothelial cells142,291. In murine models subjected to alkali 

burns , subconjunctival injection of vasohibin-1 cDNA incorporated within an adenovirus 

vector was able to reduce neovascularised area to 45.2% of the cornea on day 9 after the 

alkali burn, in contrast to 66.24% in controls, though the therapeutic effect was delayed and 

transgene expression was transient308.  

C. Angiostatin and Endostatin 

Endostatin, a cleavage fragment in the NC1 domain of type XVIII collagen, and angiostatin, 

a proteolytic fragment in the kringle domains 1-4 of plasminogen, were identified as potent 

anti-angiogenic factors via their inhibition of VEGF- and bFGF-mediated vascular 

endothelial cell proliferation and migration40,41,81; their anti-angiogenic effect in tumor 

suppression had also been investigated in clinical trials.115,157. Kringle 5 of plasminogen (K5), 

a relative of angiostatin,has been shown to inhibit vascular endothelial cell activities171. 

Electroporation combined with injection of naked plasmid containing K5 cDNA reduced 

corneal neovascularization induced by alkali burns in the rat cornea306. Wild-type endostatin 

and modified RGDRGF-endostatin (mutated native sequence of RGIRGAD into RGDRGD) 

gene have also been evaluated for their anti-angiogenic effect on corneal neovascularization 

induced by alkaline burn in the rabbit cornea98. Subconjunctival injection of both genes 

resulted in suppression of corneal neovascularization; however, the modified endostatin gene 

was more effective, resulting in a 58% reduction in corneal new vessels compared to the wild 

type98.   
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Several studies have assessed the efficacy of multigene-based therapy involving endostatin 

and angiostatin. Two studies investigated the possibility of preventing transplant-induced 

corneal neovascularization, a common sign of graft rejection, by transferring a fusion of 

endostatin and angiostatin or K5 cDNA via lentiviral vector to corneal buttons in a rabbit in 

vivo model195,216. In both studies, the transgenes were stably expressed after incubating the 

corneal buttons ex vivo with the cDNA-lentivirus before transplantation195,216. Subsequent 

examination and immunostaining showed that corneal neovascularization was suppressed and 

vessels did not cross the donor-recipient margin after gene transfer. Another multigene-based 

therapy for corneal neovascularization comprised of endostatin, sFlt-2 and sTie2 (a soluble 

“sink” for angiopoietin, another vascular growth factor) was shown to be therapeutically 

superior in inhibiting vascular endothelial cell proliferation in vitro, as compared to mono-

gene modulation46. 

D. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) 

PPARγ is a nuclear receptor involved in modulation of adipose metabolism, inflammatory 

cell function, and cell proliferation50. The PPARγ signal can suppress inflammation-mediated 

neovascularization by negatively regulating pro-inflammatory responses from macrophages50. 

Topical application of a solution of adenoviral construct carrying the PPARγ gene on murine 

corneas caused overexpression of PPARγ and substantially reduced corneal 

neovascularization induced by alkaline burn244. The upregulation of inflammation-related 

growth factors related to the insult was also suppressed. These results demonstrated the 

therapeutic potential of PPARγ gene delivery in treating corneal neovascularization by 

manipulating the inflammation pathway127,244. 

E. Decorin 

Decorin is a small leucine-rich proteoglycan expressed in the cornea that plays a major role in 

angiogenesis regulation by suppressing endothelial cell migration and tube formation76. 

Topical application of decorin cDNA in the AAV5 vector on the corneal stroma after removal 

of epithelium was an effective genetic modulation for inhibiting neovascularization in a 

rabbit model187. In this study, implantation of a VEGF micro-pocket was performed on rabbit 

corneas to induce neovascularization. Compared to controls, the decorin-delivered corneas 

showed over 60% less neovascularization. Moreover, on an mRNA level, expression of 

angiogenic factors such as VEGF and angiopoietin were downregulated while anti-

angiogenic factors were upregulated187.  
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F. Brain-Specific Angiogenesis Inhibitor 1 (BAI1) 

BAI1 is a transmembrane protein that has an anti-proliferative function by blocking αvβ5 

integrin in vascular endothelial cells. Its middle extracellular region contains five 

thrombospondin-1 repeats152. As thrombospondin-1 is known to play a potent anti-angiogenic 

role in some tumor cells251, the anti-angiogenic effect of BAI1 is mediated by its 

thrombospondin-1 functional domain152. Injection of BAI1 gene mixed with a non-liposomal 

lipid and delivered subconjunctively in a rabbit model reduces corneal neovascularization 

induced by epithelial debridement with heptanol by 51.1%, compared to the untreated eyes 
301. The reduction in the area of corneal neovascularization in the BAI1 gene-delivered eyes 

was comparable to corneas treated with anti-VEGF antibody301. Despite effective anti-

angiogenic function reported by this study, further research investigating the translational 

potential and safety profile of BAI1 gene-based therapies for corneal neovascularization is 

required. 

G. Cannabinoid Receptor Type 1 (CB1) Receptor 

The endocannabinoid system is a well-established regulator in a range of neurologic and 

psychiatric diseases 122.Pharmacological blockade of the CB1 receptor, a component of the 

endocannabinoid system, can inhibit tumor angiogenesis by interrupting the VEGF signaling 

pathway and inducing endothelial cell apoptosis226. siRNA-mediated silencing of the CB1 

gene can inhibit bFGF and VEGF-stimulated vascular endothelial proliferation, migration 

and tube formation223. Utilizing an in vivo rabbit and mouse model, bFGF micropocket-

induced corneal neovascularization and hypoxia-induced retinal neovascularization were also 

effectively inhibited by a CB1 antagonist223. Moreover, the in vitro inhibition of endothelial 

cells proliferation only occurs in the presence of pro-angiogenic factors, which suggests a low 

risk of non-specific cytotoxic effects223. Given its specific anti-angiogenic effect, the CB1 

receptor might have high translational potential as an interesting target of gene therapy in 

corneal neovascularization. 

H. Cytochrome P450 4B1 (CYP4B1) 

CYP4B1 expression is markedly increased in the cornea and tear film in the presence of 

ocular inflammation58. Its metabolite was shown to have pro-angiogenic effects in a VEGF-

dependent manner177. Gene silencing of CYP4B1 by subconjunctival injection of its siRNA 

reduces VEGF mRNA and silk suture-induced corneal neovascularization by more than 50% 

compared to controls in the rabbit cornea249. This supports a role for  CYP4B1 in the  
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inflammatory and neovascularization cascade and that gene silencing of CYP4B1 gene might 

be a useful approach for inhibiting corneal neovascularization in vivo249.  

I. GA-Binding Protein (GABP) 

GABP is a nuclear transcription factor that has 3 subunits: α, β and γ242. The  α subunit of 

GABP forms a heterodimer with the subunit β  to suppress VEGF transcription126. In vivo 

subconjunctival injection of a plasmid DNA-encoding GABP in a lipid-based vector 

decreased VEGF gene expression after a mouse cornea was subjected to an alkaline insult302. 

Roundabout 4 (Robo4), a well-established guidance receptor in the nervous system144,170, is 

also involved in pathological angiogenesis and transcriptionally regulated by GABP207. 

Robo4 is expressed in the endothelial cells of blood vessels of tissues with angiogenic 

process, such as tumors250, placenta121, heart214 and developing embryos214. Slit is a family of 

neuronal guidance cues that regulate monodirectionally in nervous system267, which interacts 

with Robo4 to mediate axonal repulsion38, leukocyte migration296 and neovascularization24. 

Slit also inhibited neovascularization and vascular leakage in mice with oxygen-induced 

retinal and laser-induced choroidal vascular disease, whereas deletion of Robo4 enhanced 

these pathologic processes129. More recently, Robo4 knockout mice were shown to produce 

more corneal neovascularization after HSV-1 ocular infection, compared to infected wild 

type controls101. Despite present evidence, the roles of Robo4 in neovascularization remain ill 

defined137,214,250,268,286. Transgene overexpression of GABP in the mouse cornea suppressed 

Robo4 mRNA expression and subsequent microscopic and histologic examination also 

showed 20.3% less neovascularised corneal area than did experimental control eyes302. 

However, the anti-angiogenic effect of GABP gene delivery only lasted for two weeks in this 

model and , this relatively short-term transgene expression is not ideal for clinical 

application302.  

J. Pigment Epithelium-Derived Factor (PEDF)  

PEDF, a 50 kDa glycoprotein, is a potent anti-angiogenic factor, inhibiting vascular 

endothelial cell proliferation and migration mediated by the VEGF and bFGF pathways182. 

Subconjunctival transplantation of transfected retinal pigment epithelial cells that secret 

PEDF inhibited corneal neovascularization elicited by alkaline burn in a rabbit model 155. 

Similarly, subconjunctival injection of SAINT-18 (a cationic synthetic vector) carrying 

plasmid DNA of PEDF was capable of inhibiting corneal neovascularization induced by 

stromal implantation of micropocket containing bFGF in vivo in a murine model, with 

3001×10-4mm2 less neovascularised areas than the control group156. In this model transgene 
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expression commenced on day 3 after gene transfer and lasted for 3 months. The delivery 

vehicle used, SAINT-18, is safe, low toxicity and efficient for in vivo gene delivery. This 

study indicates the clinical feasibility of this gene-based therapy for corneal 

neovascularization by overexpressing PEDF via the SAINT-18 vector to provide a sustained 

anti-angiogenic effect. 

K. Insulin Receptor Substrate-1 (IRS-1) 

To date, the only gene therapy option for corneal angiogenesis that has reached the clinical 

trial stage is aganirsen (GS-101, Gene Signal), an antisense oligonucleotide targeting insulin 

receptor substrate-1(IRS-1)63,71. IRS-1 is a cytosolic adapter protein that plays an important 

role in ocular neovascularization by regulating VEGF and other proangiogenic cytokines, as 

well as interacting with integrins128,292. Using a rat in vivo model, with corneal 

neovascularization induced by the removal of the limbus strip, silencing  the IRS-1 gene with 

specific antisense oligonucleotides was able to reduce IRS-1 production and regress corneal 

neovascularization26. Subsequently, these experimental findings were translated into 

application on human subjects63. In randomized clinical trials, a solution of GS-101 was 

administered topically on the corneas of patients with ongoing keratitis-related corneal 

neovascularization63,71. After treatment, twice a day for 90 days, GS-101 significantly 

reduced corneal neovascularization by 26.2% and the therapeutic effect lasted more than 180 

days71. Other benefits included the lowered need of transplantation for patients with viral 

keratitis and central neovascularization and improved quality of life71. Moreover, the eye 

drops were safe and well tolerated. GS-101 is the first clinical trial-tested gene therapy for 

corneal neovascularization and has shown promising results. 

L. MicroRNA (miRNA) 

miRNAs are naturally occurring, 21-25-nucleotide, non-coding molecules that regulate gene 

expression at the post-transcriptional level7,160. Mature miRNAs are derived from a one arm 

of a larger imperfect stem-loop precursor hairpin, and are released by ribonuclease-III 

enzymes21,160,165. Thereafter, miRNAs form RNA-induced silencing complexes to repress 

translation by imperfect base-pairing with the three-prime untranslated region of messenger 

RNA (mRNA) promoting RNA degradation21,297.  Several miRNAs have been associated 

with angiogenic processes, some are pro-angiogenic93,100,200,289, while the others are anti-

angiogenic134,193,213,224,255. The levels of miRNA-31, -150 and -184 are reduced during the 

formation of choroidal neovascularization induced by retinal ischemia, while their levels are 

high in cornea and lens, suggesting these miRNAs maintain the avascularity of these tissues 
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and are as such antiangiogenic 255. The target genes for these three miRNAs were identified 

as genes encoding for pro-angiogenic proteins: platelet-derived growth factor-B (PDGF-B) 

and hypoxia-inducible factor 1- α for miRNA-31, VEGF and PDGF-B for miRNA-150, and 

Frizzled4 for miR-184255. Moreover, intraocular injection of miRNA-31, -150, and -184 

significantly reduced retinal and choroidal neovascularization in mice.255 This approach could 

also be applied to corneal neovascularization.  

A few miRNAs are potential targets for gene silencing as their expression is upregulated in 

corneal neovascularization. miRNA-132 triggers vascular endothelial cells to undergo 

vasculogenesis, and antagomir nanomolecules targeting miRNA-132 can inhibit tumor 

angiogenesis. In the cornea miRNA-132 showed different levels of augmented expression 

across different time points after  herpes simplex virus-1 (HSV-1) infection193. 

Subconjunctival injection of antagomir-132 nanoparticles (a single-stranded small RNA 

targeting miRNA-132) to mice effectively controlled corneal neovascularization induced by 

HSV-1193. This antiangiogenic effect was evident even if the treatment was administered 7 

days post-infection193. The expression of miRNA-155, a molecule known to be involved in 

inflammatory processes30,205, was also upregulated after corneal HSV-1 infection, mainly in 

macrophages and CD4+ cells31. Similarly, silencing of miRNA-155 by subconjunctival 

injection of antagomir-155 nanoparticles in mice with HSV-1 infection diminished stromal 

keratitis and corneal neovascularization31. Another non-coding miRNA expressed in the 

cornea, miRNA-206, was upregulated after chemical injury167. Intrastromal injection of 

oligonucleotides inhibitor targeting miRNA-206 one hour after alkali burn in mice 

significantly reduced corneal neovascularization167. The molecular target of miRNA-206 was 

identified to be the gene for connexin43 (Cx43)167, a trans-membrane protein that facilitate 

wound healing in damaged cornea190. Inhibition of miRNA-206 therefore upregulated the 

expression of Cx43, thus augmenting the wound healing process in chemically-injured 

cornea. Two miRNAs have been implicated as specifically involved in anti-angiogenesis and 

using the mimic of these miRNAs may suppress corneal neovascularization.  

miRNA-184 is most abundantly expressed in the corneal epithelium243. miRNA-184 was 

shown to negatively regulate pro-angiogenic factors such as VEGF, PDGF and MMPs.213 

Transfection of miRNA-184 also suppressed the proliferation, migration, and tube formation 

of both macro- and micro- vascular endothelial cells213. The expression of miRNA-184 was 

reduced in the cornea of rats with suture-induced neovascularization, but topical 

administration of miRNA-184 reduced the neovascularization on day 7 after suture309. miR-
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204 has also been studied in corneal neovascularization. The expression of angiopoietin-1 (a 

pro-angiogenic factor) increased during the neovascularization in the dystrophic corneas of 

KLEIP-/- mice, while the level of miRNA-204 was strongly downregulated134. Angiopoietin-1 

was identified as a molecular target of miRNA-204, and endothelial cells transfected with 

miRNA-204 mimic produced less angiopoietin-1 protein134. Based on the above evidence, 

miRNAs are important regulatory factors in corneal neovascularization. The therapeutic 

strategies utilizing miRNAs with either antagomirs (inhibition) or miRNA mimics to 

suppress or augment the expression of miRNA could be used as therapeutic strategies to 

modulate corneal neovascularization. Further studies are required to investigate miRNA-

based therapies for corneal neovascularization. 

To date, most studies of gene therapy for corneal neovascularization are still in the pre-

clinical experimental stages using trauma-induced neovascularization in animal models. 

Corneal neovascularization induced by external injury is generally linked to an inflammatory 

process74. Recently, genetically-engineered mice that develop spontaneous corneal 

neovascularization were used for studying pathologic angiogenesis135. While the traditional 

trauma-induced approach initiates a cascade of healing process whose involvement in corneal 

neovascularization is not well understood, the corneal neovascularization in transgenic 

models  takes place as part of a clear pathological pathway68,70,134,138  In the future, transgenic 

corneal neovascularization models will complement the existing models for investigating the 

mechanisms of corneal neovascularization.  

 

VIII. Conclusion 

Corneal neovascularization is a vision-impairing condition and a leading risk factor for 

corneal graft rejection. Current therapeutic options may be associated with significant side 

effects, limited efficacy, and a short duration of action. The immune-privileged nature and 

accessibility of the cornea makes it an attractive target for gene therapy, an alternative to 

pharmacological treatment that could provide non-toxic and long-term benefits. Additionally, 

progress of gene therapy to the cornea can be monitored visually and using several imaging 

modalities. Gene therapy seems to be effective in animal studies, although safety issues 

arising from the vectors, and transgenic overexpression may limit clinical utility. In addition, 

the mode of delivery requires further refinement. The success of gene therapy seen in some 

animal studies is accomplished by early and frequent administration, which is far from ideal 
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for treating on-going corneal neovascularization. As clinical trials of GS-101 have recently 

approached the phase III stage71, however, the first non-invasive gene therapy that can 

provide a sustained anti-angiogenic effect is about to be applied clinically. With more target 

genes and biocompatible vectors being developed, more studies are needed to develop safe 

gene therapy that can not only prevent, but also regress, on-going corneal neovascularization 

without the need of frequent and invasive administration. Failing this approach, using ex vivo 

incubation of the donor cornea button with therapeutic genes has been successful 

experimentally in both animal and human models to limit post-corneal transplant 

angiogenesis. Clinically, this may be a novel and safe approach to treat donor button in eye 

banks before transplantation into a high risk vascularized corneal bed86,195.  

IX. Method of Literature Search 

All studies included in this review were collated through online databases PubMed using the 

search terms “cornea”, “gene therapy”, “angiogenesis”, “neovascularizaiton” and “vectors”. 

Promising studies listed in selected publications were also reviewed for potential inclusion in 

our article. Inclusion criteria includes availability in English full text, relevancy to genetic 

therapy and its application in corneal neovascularization, quality of the source published and 

whether the articles has been cited by other studies. 
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Figure 1. Angiogenic process leading to neovascularization. (A) At quiescent state, 

angiogenic privilege is maintained in pre-existing blood vessels. After being exposed to 

hypoxic injury or inflammation, endothelial cells are activated by pro-angiogenic factors such 

as VEGF and bFGF; (B) extracellular matrix and basement membrane are destabilize by 

MMPs.  (C) Endothelial cells are converted into tip cells which invade the surrounding 

environment in the form of endothelial sprout. (D) Endothelial cells continue to migrate, 

proliferate and form vascular tube following the tip cells. (E) Newly formed vessels are 

stabilized by pericyte coverage, marking the maturation of these new vessels.  

*VEGF inhibitors: sFlt, heparan sulfate proteoglycan, placental growth factor, decorin, 

cannabinoid receptor type-1. 

 

Figure 2. Corneal neovascularization under different imaging modalities. (A) 

Biomicroscopic photography. (B) Indocyanine green angiography. (C) Fluorescein 

angiography. 

 

Table 1. Gene therapy approaches for corneal neovascularization.  

Abbreviations: AAV, adeno-associated virus; BAI1-ECR, brain-specific angiogenesis 
inhibitor 1 – extracellular region; bFGF, basic fibroblast growth factor; CB1, Cannabinoid 
Receptor; CMV, Cytomegalovirus; CYP4B1, Cytochrome P450 4B1; IRS-1, insulin receptor 
substrate-1; K5, kringle 5 of plasminogen; PEDF, pigment epithelium-derived factor; PFU, 
plaque-forming units; PLGA, poly(lactic-co-glycolic acid); PlGF1-DE, placental growth 
factor 1-DE; PPARγ, peroxisome proliferator-activated receptor gamma; RGDRGD, 
arginine-glycin-aspartic-arginine-glycin-aspartic; sFlt-1, soluble Flt-1; shRNA, short hairpin 
RNA; siRNA, small interfering RNA;TU, Transducing Units; VEGF, vascular endothelial 
growth factor; VEGI, vascular endothelial cell growth inhibitor; vg, vector genomes. 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 | P a g e  
 

References 

1.  Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-
angiogenic cancer therapy. Drug Resist Updat Rev Comment Antimicrob Anticancer 

Chemother. 2010;13(1-2):16-28. doi:10.1016/j.drup.2009.12.001. 

2.  Akagi D, Oba M, Koyama H, et al. Biocompatible micellar nanovectors achieve efficient gene 
transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther. 
2007;14(13):1029-1038. doi:10.1038/sj.gt.3302945. 

3.  Albuquerque RJC, Hayashi T, Cho WG, et al. Alternatively spliced vascular endothelial growth 
factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 
2009;15(9):1023-1030. doi:10.1038/nm.2018. 

4.  Al-Torbak AA. Photodynamic Therapy with Verteporfin for Corneal Neovascularization. Middle 

East Afr J Ophthalmol. 2012;19(2):185-189. doi:10.4103/0974-9233.95246. 

5.  Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. 
Nature. 2006;443(7114):993-997. doi:10.1038/nature05249. 

6.  Ambati BK, Patterson E, Jani P, et al. Soluble vascular endothelial growth factor receptor-1 
contributes to the corneal antiangiogenic barrier. Br J Ophthalmol. 2007;91(4):505-508. 
doi:10.1136/bjo.2006.107417. 

7.  Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 
2003;113(6):673-676. 

8.  Ang M, Cai Y, Shahipasand S, et al. En face optical coherence tomography angiography for 
corneal neovascularisation. Br J Ophthalmol. 2016;100(5):616-621. 
doi:10.1136/bjophthalmol-2015-307338. 

9.  Anijeet DR, Zheng Y, Tey A, Hodson M, Sueke H, Kaye SB. Imaging and Evaluation of Corneal 
Vascularization Using Fluorescein and Indocyanine Green Angiography. Investig Opthalmology 

Vis Sci. 2012;53(2):650. doi:10.1167/iovs.11-8014. 

10.  Araki-Sasaki K, Ohashi Y, Sasabe T, et al. An SV40-immortalized human corneal epithelial cell 
line and its characterization. Invest Ophthalmol Vis Sci. 1995;36(3):614-621. 

11.  Aukunuru JV, Ayalasomayajula SP, Kompella UB. Nanoparticle formulation enhances the 
delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in 
human retinal pigment epithelial cells. J Pharm Pharmacol. 2003;55(9):1199-1206. 
doi:10.1211/0022357021701. 

12.  Awadein A. Subconjunctival bevacizumab for vascularized rejected corneal grafts. J Cataract 

Refract Surg. 2007;33(11):1991-1993. doi:10.1016/j.jcrs.2007.07.012. 

13.  Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal 
avascularity, vasculogenesis, and wound healing (an American Ophthalmological Soceity 
thesis). Trans Am Ophthalmol Soc. 2006;104:264-302. 

14.  Baer JC, Foster CS. Corneal laser photocoagulation for treatment of neovascularization. 
Efficacy of 577 nm yellow dye laser. Ophthalmology. 1992;99(2):173-179. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 | P a g e  
 

15.  Bahar I, Kaiserman I, McAllum P, Rootman D, Slomovic A. Subconjunctival Bevacizumab 
Injection for Corneal Neovascularization: Cornea. 2008;27(2):142-147. 
doi:10.1097/ICO.0b013e318159019f. 

16.  Bahar I, Kaiserman I, McAllum P, Rootman D, Slomovic A. Subconjunctival Bevacizumab 
Injection for Corneal Neovascularization in Recurrent Pterygium. Curr Eye Res. 2008;33(1):23-
28. doi:10.1080/02713680701799101. 

17.  Bainbridge JW, Stephens C, Parsley K, et al. In vivo gene transfer to the mouse eye using an 
HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and 
retinal pigment epithelium. Gene Ther. 2001;8(21):1665-1668. doi:10.1038/sj.gt.3301574. 

18.  Bala I, Hariharan S, Kumar MNVR. PLGA nanoparticles in drug delivery: the state of the art. 
Crit Rev Ther Drug Carrier Syst. 2004;21(5):387-422. 

19.  Barros LFM, Belfort R. The effects of the subconjunctival injection of bevacizumab (Avastin) 
on angiogenesis in the rat cornea. An Acad Bras Ciênc. 2007;79(3):389-394. 

20.  Barsam A, Patmore A, Muller D, Marshall J. Keratorefractive effect of microwave keratoplasty 
on human corneas. J Cataract Refract Surg. 2010;36(3):472-476. 
doi:10.1016/j.jcrs.2009.10.032. 

21.  Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-
297. 

22.  Bauer D, Lu M, Wasmuth S, et al. Immunomodulation by topical particle-mediated 
administration of cytokine plasmid DNA suppresses herpetic stromal keratitis without 
impairment of antiviral defense. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch 

Für Klin Exp Ophthalmol. 2006;244(2):216-225. doi:10.1007/s00417-005-0070-z. 

23.  Bayar SA, Altinors DD, Kucukerdonmez C, Akova YA. Severe corneal changes following 
intravitreal injection of bevacizumab. Ocul Immunol Inflamm. 2010;18(4):268-274. 
doi:10.3109/09273948.2010.490630. 

24.  Bedell VM, Yeo S-Y, Park KW, et al. roundabout4 is essential for angiogenesis in vivo. Proc 

Natl Acad Sci U S A. 2005;102(18):6373-6378. doi:10.1073/pnas.0408318102. 

25.  BenEzra D, Griffin BW, Maftzir G, Sharif NA, Clark AF. Topical formulations of novel angiostatic 
steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci. 
1997;38(10):1954-1962. 

26.  Berdugo M, Andrieu-Soler C, Doat M, Courtois Y, BenEzra D, Behar-Cohen F. Downregulation 
of IRS-1 Expression Causes Inhibition of Corneal Angiogenesis. Investig Opthalmology Vis Sci. 
2005;46(11):4072. doi:10.1167/iovs.05-0105. 

27.  Berdugo M, Valamanesh F, Andrieu C, et al. Delivery of antisense oligonucleotide to the 
cornea by iontophoresis. Antisense Nucleic Acid Drug Dev. 2003;13(2):107-114. 
doi:10.1089/108729003321629647. 

28.  Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between 
interleukin-1 and glucocorticoid hormones. Science. 1986;233(4764):652-654. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 | P a g e  
 

29.  Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A. Control of cachectin (tumor necrosis 
factor) synthesis: mechanisms of endotoxin resistance. Science. 1986;232(4753):977-980. 

30.  Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 Promotes 
Inflammation in Cystic Fibrosis by Driving Hyperexpression of Interleukin-8. J Biol Chem. 
2011;286(13):11604-11615. doi:10.1074/jbc.M110.198390. 

31.  Bhela S, Mulik S, Gimenez F, et al. Role of miR-155 in the Pathogenesis of Herpetic Stromal 
Keratitis. Am J Pathol. 2015;185(4):1073-1084. doi:10.1016/j.ajpath.2014.12.021. 

32.  Blair-Parks K, Weston BC, Dean DA. High-level gene transfer to the cornea using 
electroporation. J Gene Med. 2002;4(1):92-100. 

33.  Bm J, Hb C. The limbal vascular response to corneal injury. An autoradiographic study. Cornea. 
1988;8(2):141-149. 

34.  Bock F, König Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit 
corneal neovascularization. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für 

Klin Exp Ophthalmol. 2008;246(2):281-284. doi:10.1007/s00417-007-0684-4. 

35.  Bock F, Matthaei M, Reinhard T, et al. High-dose subconjunctival cyclosporine a implants do 
not affect corneal neovascularization after high-risk keratoplasty. Ophthalmology. 
2014;121(9):1677-1682. doi:10.1016/j.ophtha.2014.03.016. 

36.  Boneham GC, Collin HB. Steroid inhibition of limbal blood and lymphatic vascular cell growth. 
Curr Eye Res. 1995;14(1):1-10. 

37.  Breier G. Angiogenesis in embryonic development--a review. Placenta. 2000;21 Suppl A:S11-
15. 

38.  Brose K, Tessier-Lavigne M. Slit proteins: key regulators of axon guidance, axonal branching, 
and cell migration. Curr Opin Neurobiol. 2000;10(1):95-102. 

39.  Budenz DL, Bennett J, Alonso L, Maguire A. In vivo gene transfer into murine corneal 
endothelial and trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1995;36(11):2211-2215. 

40.  Cao Y, Chen A, An SSA, et al. Kringle 5 of Plasminogen is a Novel Inhibitor of Endothelial Cell 
Growth. J Biol Chem. 1997;272(36):22924-22928. doi:10.1074/jbc.272.36.22924. 

41.  Cao Y, Ji RW, Davidson D, et al. Kringle Domains of Human Angiostatin CHARACTERIZATION 
OF THE ANTI-PROLIFERATIVE ACTIVITY ON ENDOTHELIAL CELLS. J Biol Chem. 
1996;271(46):29461-29467. doi:10.1074/jbc.271.46.29461. 

42.  Cao Y, Linden P, Shima D, Browne F, Folkman J. In vivo angiogenic activity and hypoxia 
induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin 

Invest. 1996;98(11):2507-2511. doi:10.1172/JCI119069. 

43.  Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4-
10. doi:10.1159/000088478. 

44.  Chang J-H, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 
2001;12(4):242–249. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 | P a g e  
 

45.  Chang J-H, Garg NK, Lunde E, Han K-Y, Jain S, Azar DT. Corneal Neovascularization: An Anti-
VEGF Therapy Review. Surv Ophthalmol. 2012;57(5):415-429. 
doi:10.1016/j.survophthal.2012.01.007. 

46.  Chen P, Yin H, Wang Y, et al. Multi-gene targeted antiangiogenic therapies for experimental 
corneal neovascularization. Mol Vis. 2010;16:310-319. 

47.  Chen P, Yin H, Wang Y, Wang Y, Xie L. Inhibition of VEGF expression and corneal 
neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens 
wear. Mol Vis. 2012;18:864-873. 

48.  Cheng H-C, Yeh S-I, Tsao Y-P, Kuo P-C. Subconjunctival injection of recombinant AAV-
angiostatin ameliorates alkali burn induced corneal angiogenesis. Mol Vis. 2007;13:2344-2352. 

49.  Cherry PM, Garner A. Corneal neovascularization treated with argon laser. Br J Ophthalmol. 
1976;60(6):464-472. 

50.  Chinetti G, Griglio S, Antonucci M, et al. Activation of Proliferator-activated Receptors α and γ 
Induces Apoptosis of Human Monocyte-derived Macrophages. J Biol Chem. 
1998;273(40):25573-25580. doi:10.1074/jbc.273.40.25573. 

51.  Cho YK, Uehara H, Young JR, et al. Flt23k Nanoparticles Offer Additive Benefit in Graft Survival 
and Anti-Angiogenic Effects When Combined with Triamcinolone. Invest Ophthalmol Vis Sci. 
2012;53(4):2328-2336. doi:10.1167/iovs.11-8393. 

52.  Cho YK, Zhang X, Uehara H, Young JR, Archer B, Ambati B. Vascular Endothelial Growth Factor 
Receptor 1 Morpholino Increases Graft Survival in a Murine Penetrating Keratoplasty Model. 
Invest Ophthalmol Vis Sci. 2012;53(13):8458-8471. doi:10.1167/iovs.12-10408. 

53.  Clements JE, Zink MC. Molecular biology and pathogenesis of animal lentivirus infections. Clin 

Microbiol Rev. 1996;9(1):100-117. 

54.  Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis. Semin 

Ophthalmol. 2011;26(4-5):235-245. doi:10.3109/08820538.2011.588652. 

55.  Cogan DG. Corneal Vascularization. Invest Ophthalmol Vis Sci. 1962;1(2):253-261. 

56.  Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in 
polymeric nanoparticles. Gene Ther. 2000;7(22):1896-1905. doi:10.1038/sj.gt.3301318. 

57.  Conley SM, Cai X, Naash MI. Non-Viral Ocular Gene Therapy: Assessment and Future 
Directions. Curr Opin Mol Ther. 2008;10(5):456-463. 

58.  Conners MS, Stoltz RA, Davis KL, et al. A closed eye contact lens model of corneal 
inflammation. Part 2: Inhibition of cytochrome P450 arachidonic acid metabolism alleviates 
inflammatory sequelae. Invest Ophthalmol Vis Sci. 1995;36(5):841-850. 

59.  Conrad TJ, Chandler DB, Corless JM, Klintworth GK. In vivo measurement of corneal 
angiogenesis with video data acquisition and computerized image analysis. Lab Investig J Tech 

Methods Pathol. 1994;70(3):426-434. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 | P a g e  
 

60.  Corrent G, Roussel TJ, Tseng SG, Watson BD. Promotion of graft survival by photothrombotic 
occlusion of corneal neovascularization. Arch Ophthalmol. 1989;107(10):1501-1506. 
doi:10.1001/archopht.1989.01070020575043. 

61.  Craigie R, Bushman FD. HIV DNA Integration. Cold Spring Harb Perspect Med. 2012;2(7). 
doi:10.1101/cshperspect.a006890. 

62.  Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 
2007;92:50-57. doi:10.1159/000099253. 

63.  Cursiefen C, Bock F, Horn FK, et al. GS-101 Antisense Oligonucleotide Eye Drops Inhibit 
Corneal Neovascularization. Ophthalmology. 2009;116(9):1630-1637. 
doi:10.1016/j.ophtha.2009.04.016. 

64.  Cursiefen C, Cao J, Chen L, et al. Inhibition of hemangiogenesis and lymphangiogenesis after 
normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest 

Ophthalmol Vis Sci. 2004;45(8):2666-2673. doi:10.1167/iovs.03-1380. 

65.  Cursiefen C, Chen L, Dana MR, Streilein JW. Corneal lymphangiogenesis: evidence, 
mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22(3):273-
281. 

66.  Cursiefen C, Colin J, Dana R, et al. Consensus statement on indications for anti-angiogenic 
therapy in the management of corneal diseases associated with neovascularisation: outcome 
of an expert roundtable. Br J Ophthalmol. 2012;96(1):3-9. doi:10.1136/bjo.2011.204701. 

67.  Cursiefen C, Hofmann-Rummelt C, Küchle M, Schlötzer-Schrehardt U. Pericyte recruitment in 
human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J 

Ophthalmol. 2003;87(1):101-106. 

68.  Cursiefen C, Ikeda S, Nishina PM, et al. Spontaneous corneal hem- and lymphangiogenesis in 
mice with destrin-mutation depend on VEGFR3 signaling. Am J Pathol. 2005;166(5):1367-
1377. doi:10.1016/S0002-9440(10)62355-3. 

69.  Cursiefen C, Küchle M, Naumann GO. Angiogenesis in corneal diseases: histopathologic 
evaluation of 254 human corneal buttons with neovascularization. Cornea. 1998;17(6):611-
613. 

70.  Cursiefen C, Maruyama K, Bock F, et al. Thrombospondin 1 inhibits inflammatory 
lymphangiogenesis by CD36 ligation on monocytes. J Exp Med. 2011;208(5):1083-1092. 
doi:10.1084/jem.20092277. 

71.  Cursiefen C, Viaud E, Bock F, et al. Aganirsen Antisense Oligonucleotide Eye Drops Inhibit 
Keratitis-Induced Corneal Neovascularization and Reduce Need for Transplantation: The I-
CAN Study. Ophthalmology. 2014;121(9):1683-1692. doi:10.1016/j.ophtha.2014.03.038. 

72.  Dalal RP, MacPhail C, Mqhayi M, et al. Characteristics and Outcomes of Adult Patients Lost to 
Follow-Up at an Antiretroviral Treatment Clinic in Johannesburg, South Africa: JAIDS J Acquir 

Immune Defic Syndr. 2008;47(1):101-107. doi:10.1097/QAI.0b013e31815b833a. 

73.  Dana MR, Schaumberg DA, Kowal VO, et al. Corneal neovascularization after penetrating 
keratoplasty. Cornea. 1995;14(6):604-609. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32 | P a g e  
 

74.  Dana R. Comparison of topical interleukin-1 vs tumor necrosis factor-alpha blockade with 
corticosteroid therapy on murine corneal inflammation, neovascularization, and transplant 
survival (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 
2007;105:330-343. 

75.  Dastjerdi MH. Topical Bevacizumab in the Treatment of Corneal Neovascularization: Results 
of a Prospective, Open-Label, Noncomparative Study. Arch Ophthalmol. 2009;127(4):381. 
doi:10.1001/archophthalmol.2009.18. 

76.  Davies C de L, Melder RJ, Munn LL, Mouta-Carreira C, Jain RK, Boucher Y. Decorin inhibits 
endothelial migration and tube-like structure formation: role of thrombospondin-1. 
Microvasc Res. 2001;62(1):26-42. doi:10.1006/mvre.2001.2311. 

77.  Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel 
concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, 
ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317-1324. 
doi:10.1158/1078-0432.CCR-05-1634. 

78.  DeStafeno JJ, Kim T. TOpical bevacizumab therapy for corneal neovascularization. Arch 

Ophthalmol. 2007;125(6):834-836. doi:10.1001/archopht.125.6.834. 

79.  Deutsch TA, Hughes WF. Suppressive effects of indomethacin on thermally induced 
neovascularization of rabbit corneas. Am J Ophthalmol. 1979;87(4):536-540. 

80.  Dietrich T, Bock F, Yuen D, et al. Cutting edge: lymphatic vessels, not blood vessels, primarily 
mediate immune rejections after transplantation. J Immunol Baltim Md 1950. 
2010;184(2):535-539. doi:10.4049/jimmunol.0903180. 

81.  Dkhissi F, Lu H, Soria C, et al. Endostatin exhibits a direct antitumor effect in addition to its 
antiangiogenic activity in colon cancer cells. Hum Gene Ther. 2003;14(10):997-1008. 
doi:10.1089/104303403766682250. 

82.  Doctor PP, Bhat PV, Foster CS. Subconjunctival Bevacizumab for Corneal Neovascularization: 
Cornea. 2008;27(9):992-995. doi:10.1097/ICO.0b013e31817786ad. 

83.  Easty DL, Bron AJ. Fluorescein angiography of the anterior segment. Its value in corneal 
disease. Br J Ophthalmol. 1971;55(10):671-682. 

84.  Ebrahem Q, Minamoto A, Hoppe G, Anand-Apte B, Sears JE. Triamcinolone acetonide inhibits 
IL-6- and VEGF-induced angiogenesis downstream of the IL-6 and VEGF receptors. Invest 

Ophthalmol Vis Sci. 2006;47(11):4935-4941. doi:10.1167/iovs.05-1651. 

85.  Ehrlich JS, Manche EE. Regression of effect over long-term follow-up of conductive 
keratoplasty to correct mild to moderate hyperopia. J Cataract Refract Surg. 2009;35(9):1591-
1596. doi:10.1016/j.jcrs.2009.05.010. 

86.  Elbadawy HM, Gailledrat M, Desseaux C, et al. Gene transfer of integration defective anti-
HSV-1 meganuclease to human corneas ex vivo. Gene Ther. 2014;21(3):272-281. 
doi:10.1038/gt.2013.82. 

87.  Ellenberg D, Azar DT, Hallak JA, et al. Novel aspects of corneal angiogenic and 
lymphangiogenic privilege. Prog Retin Eye Res. 2010;29(3):208-248. 
doi:10.1016/j.preteyeres.2010.01.002. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

33 | P a g e  
 

88.  Epstein RJ, Stulting RD, Hendricks RL, Harris DM. Corneal neovascularization. Pathogenesis 
and inhibition. Cornea. 1987;6(4):250-257. 

89.  Erdurmus M, Totan Y. Subconjunctival bevacizumab for corneal neovascularization. Graefes 

Arch Clin Exp Ophthalmol. 2007;245(10):1577-1579. doi:10.1007/s00417-007-0587-4. 

90.  Faraj LA, Said DG, Al-Aqaba M, Otri AM, Dua HS. Clinical evaluation and characterisation of 
corneal vascularisation. Br J Ophthalmol. 2016;100(3):315-322. doi:10.1136/bjophthalmol-
2015-306686. 

91.  Faraj LA, Said DG, Dua HS. Evaluation of corneal neovascularisation. Br J Ophthalmol. 
2011;95(10):1343-1344. doi:10.1136/bjophthalmol-2011-300856. 

92.  Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient Non-Viral Ocular Gene 
Transfer with Compacted DNA Nanoparticles. PLOS ONE. 2006;1(1):e38. 
doi:10.1371/journal.pone.0000038. 

93.  Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell 
response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 
2008;283(23):15878-15883. doi:10.1074/jbc.M800731200. 

94.  Fossarello M, Peiretti E, Zucca I, Serra A. Photodynamic therapy of corneal neovascularization 
with verteporfin. Cornea. 2003;22(5):485-488. 

95.  Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of 
experimentally induced corneal vascularization. II. Studies on the effect of leukocytic 
elimination on corneal vascularization. Am J Pathol. 1975;81(3):531-544. 

96.  Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated 
viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 
2002;99(18):11854-11859. doi:10.1073/pnas.182412299. 

97.  Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm. 2009;6(3):651-658. 
doi:10.1021/mp800134q. 

98.  Ge H, Xiao N, Yin X, et al. Comparison of the antiangiogenic activity of modified RGDRGD-
endostatin to endostatin delivered by gene transfer in vivo rabbit neovascularization model. 
Mol Vis. 2011;17:1918-1928. 

99.  Gerten G. Bevacizumab (Avastin) and Argon Laser to Treat Neovascularization in Corneal 
Transplant Surgery: Cornea. 2008;27(10):1195-1199. doi:10.1097/ICO.0b013e318180e50f. 

100.  Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced microRNA-424 expression in 
human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest. 
2010;120(11):4141-4154. doi:10.1172/JCI42980. 

101.  Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT. Robo 4 Counteracts Angiogenesis in 
Herpetic Stromal Keratitis. PLoS ONE. 2015;10(12). doi:10.1371/journal.pone.0141925. 

102.  Gomer CJ, Ferrario A, Hayashi N, Rucker N, Szirth BC, Murphree AL. Molecular, cellular, and 
tissue responses following photodynamic therapy. Lasers Surg Med. 1988;8(5):450-463. 
doi:10.1002/lsm.1900080503. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

34 | P a g e  
 

103.  Gonzalez L, Loza RJ, Han K-Y, et al. Nanotechnology in Corneal Neovascularization Therapy—A 
Review. J Ocul Pharmacol Ther. 2013;29(2):124-134. doi:10.1089/jop.2012.0158. 

104.  Goodman D. Argon laser treatment of lipid keratopathy. Surv Ophthalmol. 1989;34(1):69-70. 
doi:10.1016/0039-6257(89)90136-7. 

105.  Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin 

Pharmacother. 2006;7(8):1041-1053. doi:10.1517/14656566.7.8.1041. 

106.  Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-
based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther J Am Soc 

Gene Ther. 2003;7(6):839-850. 

107.  Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for 
ocular therapy. Br J Pharmacol. 2013;170(4):730-747. doi:10.1111/bph.12330. 

108.  Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation 
in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415-419. 
doi:10.1126/science.1088547. 

109.  Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative Analysis of DNA 
Nanoparticles and AAVs for Ocular Gene Delivery. PLOS ONE. 2012;7(12):e52189. 
doi:10.1371/journal.pone.0052189. 

110.  Hao J, Li SK, Kao WWY, Liu C-Y. Gene delivery to cornea. Brain Res Bull. 2010;81(2-3):256-261. 
doi:10.1016/j.brainresbull.2009.06.011. 

111.  Hao J, Li SK, Liu C-Y, Kao WWY. Electrically assisted delivery of macromolecules into the 
corneal epithelium. Exp Eye Res. 2009;89(6):934-941. doi:10.1016/j.exer.2009.08.001. 

112.  Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K. Polyion 
complex micelles as vectors in gene therapy--pharmacokinetics and in vivo gene transfer. 
Gene Ther. 2002;9(6):407-414. doi:10.1038/sj.gt.3301665. 

113.  Hayashi T, Usui T, Yamagami S. Suppression of Allograft Rejection with Soluble VEGF Receptor 
2 Chimeric Protein in a Mouse Model of Corneal Transplantation. Tohoku J Exp Med. 
2016;239(1):81-88. doi:10.1620/tjem.239.81. 

114.  Henderson BW, Dougherty TJ. How Does Photodynamic Therapy Work? Photochem Photobiol. 
1992;55(1):145-157. doi:10.1111/j.1751-1097.1992.tb04222.x. 

115.  Herbst RS, Mullani NA, Davis DW, et al. Development of biologic markers of response and 
assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J 
Clin Oncol Off J Am Soc Clin Oncol. 2002;20(18):3804-3814. 

116.  Hopkinson CL, Romano V, Kaye RA, et al. The Influence of Donor and Recipient Gender 
Incompatibility on Corneal Transplant Rejection and Failure. Am J Transplant Off J Am Soc 

Transplant Am Soc Transpl Surg. July 2016. doi:10.1111/ajt.13926. 

117.  Hori Y, Hu DE, Yasui K, Smither RL, Gresham GA, Fan TP. Differential effects of angiostatic 
steroids and dexamethasone on angiogenesis and cytokine levels in rat sponge implants. Br J 

Pharmacol. 1996;118(7):1584-1591. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

35 | P a g e  
 

118.  Hos D, Bock F, Dietrich T, et al. Inflammatory corneal (lymph)angiogenesis is blocked by 
VEGFR-tyrosine kinase inhibitor ZK 261991, resulting in improved graft survival after corneal 
transplantation. Invest Ophthalmol Vis Sci. 2008;49(5):1836-1842. doi:10.1167/iovs.07-1314. 

119.  Hudde T, Rayner SA, De Alwis M, et al. Adeno-associated and herpes simplex viruses as 
vectors for gene transfer to the corneal endothelium. Cornea. 2000;19(3):369-373. 

120.  Hughes L, Maurice DM. A fresh look at iontophoresis. Arch Ophthalmol Chic Ill 1960. 
1984;102(12):1825-1829. 

121.  Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic Roundabout Is a New Member 
of the Roundabout Receptor Family That Is Endothelial Specific and Expressed at Sites of 
Active Angiogenesis. Genomics. 2002;79(4):547-552. doi:10.1006/geno.2002.6745. 

122.  Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related 
mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res. 
2016;62:107-128. doi:10.1016/j.plipres.2016.02.002. 

123.  Iriyama A, Usui T, Yanagi Y, et al. Gene Transfer Using Micellar Nanovectors Inhibits Corneal 
Neovascularization In Vivo: Cornea. 2011;30(12):1423-1427. 
doi:10.1097/ICO.0b013e318206c893. 

124.  Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis 
caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 
years. Arch Ophthalmol Chic Ill 1960. 2012;130(1):9-24. 
doi:10.1001/archophthalmol.2011.298. 

125.  Jani PD, Singh N, Jenkins C, et al. Nanoparticles Sustain Expression of Flt Intraceptors in the 
Cornea and Inhibit Injury-Induced Corneal Angiogenesis. Investig Opthalmology Vis Sci. 
2007;48(5):2030. doi:10.1167/iovs.06-0853. 

126.  Jeong BC, Kim M-Y, Lee JH, et al. Brain-specific angiogenesis inhibitor 2 regulates VEGF 
through GABP that acts as a transcriptional repressor. FEBS Lett. 2006;580(2):669-676. 
doi:10.1016/j.febslet.2005.12.086. 

127.  Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory 
cytokines. Nature. 1998;391(6662):82-86. doi:10.1038/34184. 

128.  Jiang ZY, He Z, King BL, et al. Characterization of multiple signaling pathways of insulin in the 
regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. 
J Biol Chem. 2003;278(34):31964-31971. doi:10.1074/jbc.M303314200. 

129.  Jones CA, London NR, Chen H, et al. Robo4 stabilizes the vascular network by inhibiting 
pathologic angiogenesis and endothelial hyperpermeability. Nat Med. 2008;14(4):448-453. 
doi:10.1038/nm1742. 

130.  Jørgensen KA, Stoffersen E. Hydrocortisone inhibits platelet prostaglandin and endothelial 
prostacyclin production. Pharmacol Res Commun. 1981;13(6):579-586. 

131.  Jun AS, Larkin DFP. Prospects for gene therapy in corneal disease. Eye Lond Engl. 
2003;17(8):906-911. doi:10.1038/sj.eye.6700565. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

36 | P a g e  
 

132.  Kaiser PK, Symons RCA, Shah SM, et al. RNAi-based treatment for neovascular age-related 
macular degeneration by Sirna-027. Am J Ophthalmol. 2010;150(1):33-39.e2. 
doi:10.1016/j.ajo.2010.02.006. 

133.  Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, 
characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113-131. 
doi:10.1016/S0169-409X(00)00124-1. 

134.  Kather JN, Friedrich J, Woik N, et al. Angiopoietin-1 Is Regulated by miR-204 and Contributes 
to Corneal Neovascularization in KLEIP-Deficient Mice. Investig Opthalmology Vis Sci. 
2014;55(7):4295. doi:10.1167/iovs.13-13619. 

135.  Kather JN, Kroll J. Transgenic Mouse Models of Corneal Neovascularization: New Perspectives 
for Angiogenesis Research. Investig Opthalmology Vis Sci. 2014;55(11):7637. 
doi:10.1167/iovs.14-15430. 

136.  Kato T, Kure T, Chang J-H, et al. Diminished corneal angiogenesis in gelatinase A-deficient 
mice. FEBS Lett. 2001;508(2):187-190. doi:10.1016/S0014-5793(01)02897-6. 

137.  Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R. Robo4 signaling in 
endothelial cells implies attraction guidance mechanisms. J Biol Chem. 2006;281(16):11347-
11356. doi:10.1074/jbc.M508853200. 

138.  Kawakami-Schulz SV, Sattler SG, Doebley A-L, Ikeda A, Ikeda S. Genetic modification of 
corneal neovascularization in Dstn (corn1) mice. Mamm Genome Off J Int Mamm Genome Soc. 
2013;24(9-10):349-357. doi:10.1007/s00335-013-9468-9. 

139.  Kaye S, Choudhary A. Herpes simplex keratitis. Prog Retin Eye Res. 2006;25(4):355-380. 
doi:10.1016/j.preteyeres.2006.05.001. 

140.  Kerbel RS. Therapeutic implications of intrinsic or induced angiogenic growth factor 
redundancy in tumors revealed. Cancer Cell. 2005;8(4):269-271. 
doi:10.1016/j.ccr.2005.09.016. 

141.  Kerbel RS, Yu J, Tran J, et al. Possible mechanisms of acquired resistance to anti-angiogenic 
drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 
2001;20(1-2):79-86. 

142.  Kern J, Bauer M, Rychli K, et al. Alternative splicing of vasohibin-1 generates an inhibitor of 
endothelial cell proliferation, migration, and capillary tube formation. Arterioscler Thromb 

Vasc Biol. 2008;28(3):478-484. doi:10.1161/ATVBAHA.107.160432. 

143.  Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the literature. Eye. 
2005;20(4):407-416. doi:10.1038/sj.eye.6701895. 

144.  Kidd T, Brose K, Mitchell KJ, et al. Roundabout controls axon crossing of the CNS midline and 
defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 
1998;92(2):205-215. 

145.  Kim SW, Ha BJ, Kim EK, Tchah H, Kim T. The Effect of Topical Bevacizumab on Corneal 
Neovascularization. Ophthalmology. 2008;115(6):e33-e38. doi:10.1016/j.ophtha.2008.02.013. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

37 | P a g e  
 

146.  Kim T, Chung JL, Hong JP, Min K, Seo KY, Kim EK. Bevacizumab application delays epithelial 
healing in rabbit cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4653-4659. 
doi:10.1167/iovs.08-2805. 

147.  Kirveskari J, Vesaluoma MH, Moilanen JA, et al. A novel non-invasive, in vivo technique for the 
quantification of leukocyte rolling and extravasation at sites of inflammation in human 
patients. Nat Med. 2001;7(3):376-379. doi:10.1038/85538. 

148.  Kirwan RP, Zheng Y, Tey A, Anijeet D, Sueke H, Kaye SB. Quantifying Changes in Corneal 
Neovascularization Using Fluorescein and Indocyanine Green Angiography. Am J Ophthalmol. 
2012;154(5):850-858.e2. doi:10.1016/j.ajo.2012.04.021. 

149.  Klausner EA, Peer D, Chapman RL, Multack RF, Andurkar SV. Corneal gene therapy. J Control 

Release Off J Control Release Soc. 2007;124(3):107-133. doi:10.1016/j.jconrel.2007.05.041. 

150.  Klintworth GK. Corneal Angiogenesis. New York, NY: Springer New York; 1991. 
http://link.springer.com/10.1007/978-1-4612-3076-2. Accessed February 15, 2016. 

151.  Kochanek S. High-Capacity Adenoviral Vectors for Gene Transfer and Somatic Gene Therapy. 
Hum Gene Ther. 1999;10(15):2451-2459. doi:10.1089/10430349950016807. 

152.  Koh JT, Kook H, Kee HJ, et al. Extracellular fragment of brain-specific angiogenesis inhibitor 1 
suppresses endothelial cell proliferation by blocking αvβ5 integrin. Exp Cell Res. 
2004;294(1):172-184. doi:10.1016/j.yexcr.2003.11.008. 

153.  Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain 
retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest 

Ophthalmol Vis Sci. 2003;44(3):1192-1201. 

154.  Krasnick NM, Spigelman AV. Comparison of yellow dye, continuous wave Nd:YAG, and argon 
green laser on experimentally induced corneal neovascularization. J Refract Surg Thorofare NJ 

1995. 1995;11(1):45-49. 

155.  Kuerten D, Johnen S, Harmening N, Souteyrand G, Walter P, Thumann G. Transplantation of 
PEDF-transfected pigment epithelial cells inhibits corneal neovascularization in a rabbit model. 
Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 
2015;253(7):1061-1069. doi:10.1007/s00417-015-2954-x. 

156.  Kuo C-N, Yang L-C, Yang C-T, et al. Inhibition of corneal neovascularization with plasmid 
pigment epithelium-derived factor (p-PEDF) delivered by synthetic amphiphile INTeraction-18 
(SAINT-18) vector in an experimental model of rat corneal angiogenesis. Exp Eye Res. 
2009;89(5):678-685. doi:10.1016/j.exer.2009.06.021. 

157.  Kurup A, Lin C-W, Murry DJ, et al. Recombinant human angiostatin (rhAngiostatin) in 
combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung 
cancer: a phase II study from Indiana University. Ann Oncol. 2006;17(1):97-103. 
doi:10.1093/annonc/mdj055. 

158.  Lai C-M, Brankov M, Zaknich T, et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 
expression in a rat model of corneal neovascularization. Hum Gene Ther. 2001;12(10):1299–
1310. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

38 | P a g e  
 

159.  Lai C-M, Spilsbury K, Brankov M, Zaknich T, Rakoczy PE. Inhibition of Corneal 
Neovascularization by Recombinant Adenovirus Mediated Antisense VEGF RNA. Exp Eye Res. 
2002;75(6):625-634. doi:10.1006/exer.2002.2075. 

160.  Lai EC. microRNAs: runts of the genome assert themselves. Curr Biol CB. 2003;13(23):R925-
936. 

161.  Lai L-J, Xiao X, Wu JH. Inhibition of corneal neovascularization with endostatin delivered by 
adeno-associated viral (AAV) vector in a mouse corneal injury model. J Biomed Sci. 
2007;14(3):313-322. doi:10.1007/s11373-007-9153-7. 

162.  Lai YKY, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE. Potential long-term inhibition 
of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene 
therapy. Gene Ther. 2002;9(12):804-813. doi:10.1038/sj.gt.3301695. 

163.  Lavergne G, Colmant IA. COMPARATIVE STUDY OF THE ACTION OF THIOTEPA AND 
TRIAMCINOLONE ON CORNEAL VASCULARIZATION IN RABBITS. Br J Ophthalmol. 1964;48:416-
422. 

164.  Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv 

Ophthalmol. 1998;43(3):245-269. 

165.  Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 
2003;425(6956):415-419. doi:10.1038/nature01957. 

166.  Leopold IH, Purnell JE, Cannon EJ, Steinmetz CG, McDONALD PR. Local and systemic cortisone 
in ocular disease. Am J Ophthalmol. 1951;34(3):361-371. 

167.  Li X, Zhou H, Tang W, Guo Q, Zhang Y. Transient downregulation of microRNA-206 protects 
alkali burn injury in mouse cornea by regulating connexin 43. Int J Clin Exp Pathol. 
2015;8(3):2719-2727. 

168.  Liesegang TJ. Physiologic changes of the cornea with contact lens wear. CLAO J Off Publ 

Contact Lens Assoc Ophthalmol Inc. 2002;28(1):12-27. 

169.  Lin C-T, Hu F-R, Kuo K-T, et al. The different effects of early and late bevacizumab (Avastin) 
injection on inhibiting corneal neovascularization and conjunctivalization in rabbit limbal 
insufficiency. Invest Ophthalmol Vis Sci. 2010;51(12):6277-6285. doi:10.1167/iovs.09-4571. 

170.  Long H, Sabatier C, Ma L, et al. Conserved roles for Slit and Robo proteins in midline 
commissural axon guidance. Neuron. 2004;42(2):213-223. 

171.  Lu H, Dhanabal M, Volk R, et al. Kringle 5 Causes Cell Cycle Arrest and Apoptosis of 
Endothelial Cells. Biochem Biophys Res Commun. 1999;258(3):668-673. 
doi:10.1006/bbrc.1999.0612. 

172.  Ma DH, Chen JK, Kim WS, et al. Expression of matrix metalloproteinases 2 and 9 and tissue 
inhibitors of metalloproteinase 1 and 2 in inflammation-induced corneal neovascularization. 
Ophthalmic Res. 2001;33(6):353-362. 

173.  Mackenzie SE, Tucker WR, Poole TRG. Bevacizumab (Avastin) for Corneal Neovascularization-
Corneal Light Shield Soaked Application: Cornea. 2009;28(2):246-247. 
doi:10.1097/ICO.0b013e3181861cc9. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

39 | P a g e  
 

174.  Manzano RPA, Peyman GA, Khan P, et al. Inhibition of experimental corneal 
neovascularisation by bevacizumab (Avastin). Br J Ophthalmol. 2007;91(6):804-807. 
doi:10.1136/bjo.2006.107912. 

175.  Marsh RJ. Argon laser treatment of lipid keratopathy. Br J Ophthalmol. 1988;72(12):900-904. 

176.  Mashhour B, Couton D, Perricaudet M, Briand P. In vivo adenovirus-mediated gene transfer 
into ocular tissues. Gene Ther. 1994;1(2):122-126. 

177.  Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Schwartzman ML. Corneal epithelial VEGF and 
cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye 

Res. 2001;23(1):1-10. 

178.  Masuda C, Yanagisawa M, Yorozu K, et al. Bevacizumab counteracts VEGF-dependent 
resistance to erlotinib in an EGFR-mutated NSCLC xenograft model. Int J Oncol. 
2017;51(2):425-434. doi:10.3892/ijo.2017.4036. 

179.  McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther J Am Soc 

Gene Ther. 2008;16(10):1648-1656. doi:10.1038/mt.2008.171. 

180.  McNatt LG, Weimer L, Yanni J, Clark AF. Angiostatic activity of steroids in the chick embryo 
CAM and rabbit cornea models of neovascularization. J Ocul Pharmacol Ther Off J Assoc Ocul 

Pharmacol Ther. 1999;15(5):413-423. doi:10.1089/jop.1999.15.413. 

181.  Menzel-Severing J. Emerging techniques to treat corneal neovascularisation. Eye. 
2012;26(1):2-12. doi:10.1038/eye.2011.246. 

182.  Mirochnik Y, Aurora A, Schulze-Hoepfner FT, et al. Short pigment epithelial-derived factor-
derived peptide inhibits angiogenesis and tumor growth. Clin Cancer Res Off J Am Assoc 

Cancer Res. 2009;15(5):1655-1663. doi:10.1158/1078-0432.CCR-08-2113. 

183.  Miyata K, Fukushima S, Nishiyama N, Yamasaki Y, Kataoka K. PEG-based block catiomers 
possessing DNA anchoring and endosomal escaping functions to form polyplex micelles with 
improved stability and high transfection efficacy. J Control Release Off J Control Release Soc. 
2007;122(3):252-260. doi:10.1016/j.jconrel.2007.06.020. 

184.  Miyoshi H, Blömer U, Takahashi M, Gage FH, Verma IM. Development of a self-inactivating 
lentivirus vector. J Virol. 1998;72(10):8150-8157. 

185.  Mohan RR, Rodier JT, Sharma A. Corneal Gene Therapy: Basic Science and Translational 
Perspective. Ocul Surf. 2013;11(3):150-164. doi:10.1016/j.jtos.2012.10.004. 

186.  Mohan RR, Schultz GS, Hong JW, Mohan RR, Wilson SE. Gene transfer into rabbit keratocytes 
using AAV and lipid-mediated plasmid DNA vectors with a lamellar flap for stromal access. Exp 

Eye Res. 2003;76(3):373-383. 

187.  Mohan RR, Tovey JCK, Sharma A, Schultz GS, Cowden JW, Tandon A. Targeted Decorin Gene 
Therapy Delivered with Adeno-Associated Virus Effectively Retards Corneal 
Neovascularization In Vivo. PLoS ONE. 2011;6(10). doi:10.1371/journal.pone.0026432. 

188.  Mohan RR, Tovey JCK, Sharma A, Tandon A. Gene Therapy in the Cornea: 2005-present. Prog 

Retin Eye Res. 2012;31(1):43-64. doi:10.1016/j.preteyeres.2011.09.001. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

40 | P a g e  
 

189.  Moore CB, Guthrie EH, Huang MT-H, Taxman DJ. Short Hairpin RNA (shRNA): Design, Delivery, 
and Assessment of Gene Knockdown. Methods Mol Biol Clifton NJ. 2010;629:141-158. 
doi:10.1007/978-1-60761-657-3_10. 

190.  Moore K, Bryant ZJ, Ghatnekar G, Singh UP, Gourdie RG, Potts JD. A synthetic connexin 43 
mimetic peptide augments corneal wound healing. Exp Eye Res. 2013;115:178-188. 
doi:10.1016/j.exer.2013.07.001. 

191.  Morcos P, Li Y, Jiang S. Vivo-Morpholinos: A non-peptide transporter delivers Morpholinos 
into a wide array of mouse tissues. BioTechniques. 2008;45(6):613-623. 
doi:10.2144/000113005. 

192.  Mountain A. Gene therapy: the first decade. Trends Biotechnol. 2000;18(3):119-128. 

193.  Mulik S, Xu J, Reddy PBJ, et al. Role of miR-132 in Angiogenesis after Ocular Infection with 
Herpes Simplex Virus. Am J Pathol. 2012;181(2):525-534. doi:10.1016/j.ajpath.2012.04.014. 

194.  Murata M, Shimizu S, Horiuchi S, Taira M. Inhibitory effect of triamcinolone acetonide on 
corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2005;244(2):205-209. 
doi:10.1007/s00417-005-0036-1. 

195.  Murthy RC, McFarland TJ, Yoken J, et al. Corneal Transduction to Inhibit Angiogenesis and 
Graft Failure. Investig Opthalmology Vis Sci. 2003;44(5):1837. doi:10.1167/iovs.02-0853. 

196.  Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian 
cells. Curr Top Microbiol Immunol. 1992;158:97-129. 

197.  Nakao S, Hata Y, Miura M, et al. Dexamethasone Inhibits Interleukin-1β-Induced Corneal 
Neovascularization. Am J Pathol. 2007;171(3):1058-1065. doi:10.2353/ajpath.2007.070172. 

198.  Nguyen QD, Schachar RA, Nduaka CI, et al. Evaluation of the siRNA PF-04523655 versus 
Ranibizumab for the Treatment of Neovascular Age-related Macular Degeneration (MONET 
Study). Ophthalmology. 2012;119(9):1867-1873. doi:10.1016/j.ophtha.2012.03.043. 

199.  Nguyen QD, Schachar RA, Nduaka CI, et al. Phase 1 dose-escalation study of a siRNA targeting 
the RTP801 gene in age-related macular degeneration patients. Eye Lond Engl. 
2012;26(8):1099-1105. doi:10.1038/eye.2012.106. 

200.  Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated 
integration of haemodynamics and Vegf signalling during angiogenesis. Nature. 
2010;464(7292):1196-1200. doi:10.1038/nature08889. 

201.  Nightingale SJ, Hollis RP, Pepper KA, et al. Transient Gene Expression by Nonintegrating 
Lentiviral Vectors. Mol Ther. 2006;13(6):1121-1132. doi:10.1016/j.ymthe.2006.01.008. 

202.  Nirankari VS. Laser photocoagulation for corneal stromal vascularization. Trans Am 

Ophthalmol Soc. 1992;90:595-669. 

203.  Nirankari VS, Baer JC. Corneal argon laser photocoagulation for neovascularization in 
penetrating keratoplasty. Ophthalmology. 1986;93(10):1304-1309. 

204.  Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of 
tumours. J Photochem Photobiol B. 1997;39(1):1-18. doi:10.1016/S1011-1344(96)07428-3. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

41 | P a g e  
 

205.  O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced 
during the macrophage inflammatory response. Proc Natl Acad Sci. 2007;104(5):1604-1609. 
doi:10.1073/pnas.0610731104. 

206.  Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI 
complexes: reduced interaction with blood components, extended circulation in blood and 
potential for systemic gene delivery. Gene Ther. 1999;6(4):595-605. 
doi:10.1038/sj.gt.3300900. 

207.  Okada Y, Yano K, Jin E, et al. A three-kilobase fragment of the human Robo4 promoter directs 
cell type-specific expression in endothelium. Circ Res. 2007;100(12):1712-1722. 
doi:10.1161/01.RES.0000269779.10644.dc. 

208.  Oshima Y, Sakamoto T, Hisatomi T, et al. Targeted gene transfer to corneal stroma in vivo by 
electric pulses. Exp Eye Res. 2002;74(2):191-198. doi:10.1006/exer.2001.1117. 

209.  Oupický D, Konák C, Dash PR, Seymour LW, Ulbrich K. Effect of albumin and polyanion on the 
structure of DNA complexes with polycation containing hydrophilic nonionic block. Bioconjug 

Chem. 1999;10(5):764-772. 

210.  Oupický D, Konák C, Ulbrich K, Wolfert MA, Seymour LW. DNA delivery systems based on 
complexes of DNA with synthetic polycations and their copolymers. J Control Release Off J 

Control Release Soc. 2000;65(1-2):149-171. 

211.  Pai VH, Handary SVB. Necrotizing scleritis following laser therapy for corneal vascularization. 
Ann Ophthalmol Skokie Ill. 2009;41(1):50-51. 

212.  Pan Z, Fukuoka S, Karagianni N, Guaiquil VH, Rosenblatt MI. Vascular endothelial growth 
factor promotes anatomical and functional recovery of injured peripheral nerves in the 
avascular cornea. FASEB J Off Publ Fed Am Soc Exp Biol. 2013;27(7):2756-2767. 
doi:10.1096/fj.12-225185. 

213.  Park JK, Peng H, Yang W, Katsnelson J, Volpert O, Lavker RM. miR-184 exhibits angiostatic 
properties via regulation of Akt and VEGF signaling pathways. FASEB J. 2017;31(1):256-265. 
doi:10.1096/fj.201600746R. 

214.  Park KW, Morrison CM, Sorensen LK, et al. Robo4 is a vascular-specific receptor that inhibits 
endothelial migration. Dev Biol. 2003;261(1):251-267. doi:10.1016/S0012-1606(03)00258-6. 

215.  Parker DG, Coster DJ, Brereton HM, et al. Lentivirus-mediated gene transfer of interleukin 10 
to the ovine and human cornea. Clin Experiment Ophthalmol. 2010;38(4):405-413. 
doi:10.1111/j.1442-9071.2010.02261.x. 

216.  Parker M, Bellec J, McFarland T, et al. Suppression of Neovascularization of Donor Corneas by 
Transduction with Equine Infectious Anemia Virus-Based Lentiviral Vectors Expressing 
Endostatin and Angiostatin. Hum Gene Ther. 2014;25(5):408-418. doi:10.1089/hum.2013.079. 

217.  Peebo BB, Fagerholm P, Lagali N. In vivo confocal microscopy visualization of presumed lymph 
vessels in a case of corneal transplant rejection. Clin Experiment Ophthalmol. 2011;39(8):832-
834. doi:10.1111/j.1442-9071.2011.02557.x. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

42 | P a g e  
 

218.  Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial 
growth factor in eye disease. Prog Retin Eye Res. 2008;27(4):331-371. 
doi:10.1016/j.preteyeres.2008.05.001. 

219.  Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by 
tyrosine-mutant AAV serotype vectors. Mol Ther J Am Soc Gene Ther. 2009;17(3):463-471. 
doi:10.1038/mt.2008.269. 

220.  Phillips K, Arffa R, Cintron C, et al. EFfects of prednisolone and medroxyprogesterone on 
corneal wound healing, ulceration, and neovascularization. Arch Ophthalmol. 
1983;101(4):640-643. doi:10.1001/archopht.1983.01040010640024. 

221.  Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest 

Ophthalmol Vis Sci. 2000;41(8):2148–2153. 

222.  Pineda E, Salud A, Vila-Navarro E, et al. Dynamic soluble changes in sVEGFR1, HGF, and VEGF 
promote chemotherapy and bevacizumab resistance: A prospective translational study in the 
BECOX (GEMCAD 09-01) trial. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 
2017;39(6):1010428317705509. doi:10.1177/1010428317705509. 

223.  Pisanti S, Picardi P, Prota L, et al. Genetic and pharmacologic inactivation of cannabinoid CB1 
receptor inhibits angiogenesis. Blood. 2011;117(20):5541-5550. doi:10.1182/blood-2010-09-
307355. 

224.  Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of 
HUVECs. Blood. 2006;108(9):3068-3071. doi:10.1182/blood-2006-01-012369. 

225.  Polverini PJ. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med Off Publ Am Assoc 

Oral Biol. 1995;6(3):230-247. 

226.  Portella G, Laezza C, Laccetti P, Petrocellis LD, Marzo VD, Bifulco M. Inhibitory effects of 
cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on 
signals involved in angiogenesis and metastasis. FASEB J. July 2003. doi:10.1096/fj.02-1129fje. 

227.  del Pozo-Rodríguez A, Delgado D, Gascón AR, Solinís MÁ. Lipid Nanoparticles as Drug/Gene 
Delivery Systems to the Retina. J Ocul Pharmacol Ther. 2013;29(2):173-188. 
doi:10.1089/jop.2012.0128. 

228.  Qazi Y, Hamrah P. Gene Therapy in Corneal Transplantation. Semin Ophthalmol. 
2013;28(0):287-300. doi:10.3109/08820538.2013.825297. 

229.  Qazi Y, Stagg B, Singh N, et al. Nanoparticle-Mediated Delivery of shRNA.VEGF-A Plasmids 
Regresses Corneal Neovascularization. Invest Ophthalmol Vis Sci. 2012;53(6):2837-2844. 
doi:10.1167/iovs.11-9139. 

230.  Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, 
maintenance and dysfunction. Brain Res Bull. 2010;81(2-3):198-210. 
doi:10.1016/j.brainresbull.2009.05.019. 

231.  Qian CX, Bahar I, Levinger E, Rootman D. Combined Use of Superficial Keratectomy and 
Subconjunctival Bevacizumab Injection for Corneal Neovascularization: Cornea. 
2008;27(9):1090-1092. doi:10.1097/ICO.0b013e31817c41e3. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

43 | P a g e  
 

232.  Qian Y, Leong F-L, Kazlauskas A, Dana MR. Ex vivo adenovirus-mediated gene transfer to 
corneal graft endothelial cells in mice. Invest Ophthalmol Vis Sci. 2004;45(7):2187-2193. 

233.  Randleman JB, Stulting RD. Prevention and Treatment of Corneal Graft Rejection: Current 
Practice Patterns (2004). Cornea. 2006;25(3):286-290. 
doi:10.1097/01.ico.0000178731.42187.46. 

234.  Reed JW, Fromer C, Klintworth GK. INduced corneal vascularization remission with argon laser 
therapy. Arch Ophthalmol. 1975;93(10):1017-1019. 
doi:10.1001/archopht.1975.01010020797012. 

235.  Reed MWR, Miller FN, Wieman TJ, Tseng MT, Pietsch CG. The effect of photodynamic therapy 
on the microcirculation. J Surg Res. 1988;45(5):452-459. doi:10.1016/0022-4804(88)90195-3. 

236.  Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 
1992;10(3):505-512. 

237.  Robin JB, Regis-Pacheco LF, Kash RL, Schanzlin DJ. The histopathology of corneal 
neovascularization: Inhibitor effects. Arch Ophthalmol. 1985;103(2):284-287. 
doi:10.1001/archopht.1985.01050020136037. 

238.  Romano V, Spiteri N, Kaye SB. ANgiographic-guided treatment of corneal neovascularization. 
JAMA Ophthalmol. 2015;133(3):e143544. doi:10.1001/jamaophthalmol.2014.3544. 

239.  Romano V, Steger B, Brunner M, Ahmad S, Willoughby CE, Kaye SB. Method for 
Angiographically Guided Fine-Needle Diathermy in the Treatment of Corneal 
Neovascularization: Cornea. 2016;35(7):1029-1032. doi:10.1097/ICO.0000000000000865. 

240.  Romano V, Steger B, Kaye SB. Fine-Needle Diathermy Guided by Angiography. Cornea. 
2015;34(9):e29-e30. doi:10.1097/ICO.0000000000000546. 

241.  Romano V, Steger B, Zheng Y, Ahmad S, Willoughby CE, Kaye SB. Angiographic and In Vivo 
Confocal Microscopic Characterization of Human Corneal Blood and Presumed Lymphatic 
Neovascularization: A Pilot Study. Cornea. 2015;34(11):1459-1465. 
doi:10.1097/ICO.0000000000000609. 

242.  Rosmarin AG, Resendes KK, Yang Z, McMillan JN, Fleming SL. GA-binding protein transcription 
factor: a review of GABP as an integrator of intracellular signaling and protein-protein 
interactions. Blood Cells Mol Dis. 2004;32(1):143-154. 

243.  Ryan DG, Oliveira-Fernandes M, Lavker RM. MicroRNAs of the mammalian eye display distinct 
and overlapping tissue specificity. Mol Vis. 2006;12:1175-1184. 

244.  Saika S, Yamanaka O, Okada Y, et al. Effect of overexpression of pparγ on the healing process 
of corneal alkali burn in mice. Am J Physiol - Cell Physiol. 2007;293(1):C75-C86. 
doi:10.1152/ajpcell.00332.2006. 

245.  Samolov B, Steen B, Seregard S, van der Ploeg I, Montan P, Kvanta A. Delayed inflammation-
associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res. 2005;80(2):159-
166. doi:10.1016/j.exer.2004.08.023. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

44 | P a g e  
 

246.  Schleimer RP, Freeland HS, Peters SP, Brown KE, Derse CP. An assessment of the effects of 
glucocorticoids on degranulation, chemotaxis, binding to vascular endothelium and formation 
of leukotriene B4 by purified human neutrophils. J Pharmacol Exp Ther. 1989;250(2):598-605. 

247.  Schultz BR, Chamberlain JS. Recombinant Adeno-associated Virus Transduction and 
Integration. Mol Ther J Am Soc Gene Ther. 2008;16(7):1189-1199. doi:10.1038/mt.2008.103. 

248.  Scroggs MW, Proia AD, Smith CF, Halperin EC, Klintworth GK. The effect of total-body 
irradiation on corneal neovascularization in the Fischer 344 rat after chemical cauterization. 
Invest Ophthalmol Vis Sci. 1991;32(7):2105-2111. 

249.  Seta F, Patil K, Bellner L, et al. Inhibition of VEGF Expression and Corneal Neovascularization 
by siRNA Targeting Cytochrome P450 4B1. Prostaglandins Other Lipid Mediat. 2007;84(3-
4):116-127. doi:10.1016/j.prostaglandins.2007.05.001. 

250.  Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP. Magic roundabout, a tumor 
endothelial marker: Expression and signaling. Biochem Biophys Res Commun. 
2005;332(2):533-541. doi:10.1016/j.bbrc.2005.03.250. 

251.  Shafiee A, Penn JS, Krutzsch HC, Inman JK, Roberts DD, Blake DA. Inhibition of retinal 
angiogenesis by peptides derived from thrombospondin-1. Invest Ophthalmol Vis Sci. 
2000;41(8):2378-2388. 

252.  Shakiba Y, Mansouri K, Arshadi D, Rezaei N. Corneal neovascularization: molecular events and 
therapeutic options. Recent Pat Inflamm Allergy Drug Discov. 2009;3(3):221-231. 

253.  Sharma A, Ghosh A, Hansen ET, Newman JM, Mohan RR. Transduction efficiency of AAV 2/6, 
2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts. Brain Res Bull. 
2010;81(2-3):273-278. doi:10.1016/j.brainresbull.2009.07.005. 

254.  Shen J, Yang X, Xiao W-H, Hackett SF, Sato Y, Campochiaro PA. Vasohibin is up-regulated by 
VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J Off 

Publ Fed Am Soc Exp Biol. 2006;20(6):723-725. doi:10.1096/fj.05-5046fje. 

255.  Shen J, Yang X, Xie B, et al. MicroRNAs Regulate Ocular Neovascularization. Mol Ther J Am Soc 

Gene Ther. 2008;16(7):1208-1216. doi:10.1038/mt.2008.104. 

256.  Sheppard JD, Epstein RJ, Lattanzio FA, Marcantonio D, Williams PB. Argon laser photodynamic 
therapy of human corneal neovascularization after intravenous administration of 
dihematoporphyrin ether. Am J Ophthalmol. 2006;141(3):524-529. 
doi:10.1016/j.ajo.2005.11.003. 

257.  Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in 
Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 
2011;2(12):1097-1105. doi:10.1177/1947601911423031. 

258.  Simonelli F, Maguire AM, Testa F, et al. Gene Therapy for Leber’s Congenital Amaurosis is Safe 
and Effective Through 1.5 Years After Vector Administration. Mol Ther. 2010;18(3):643-650. 
doi:10.1038/mt.2009.277. 

259.  Singerman LJ. Current management of choroidal neovascularization. Ann Ophthalmol. 
1988;20(11):415-420, 423. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

45 | P a g e  
 

260.  Snyder DS, Unanue ER. Corticosteroids inhibit murine macrophage Ia expression and 
interleukin 1 production. J Immunol Baltim Md 1950. 1982;129(5):1803-1805. 

261.  Spiteri N, Romano V, Zheng Y, et al. Corneal angiography for guiding and evaluating fine-
needle diathermy treatment of corneal neovascularization. Ophthalmology. 
2015;122(6):1079-1084. doi:10.1016/j.ophtha.2015.02.012. 

262.  Stechschulte SU, Joussen AM, Recum HA von, et al. Rapid Ocular Angiogenic Control via 
Naked DNA Delivery to Cornea. Invest Ophthalmol Vis Sci. 2001;42(9):1975-1979. 

263.  Steger B, Curnow E, Cheeseman R, et al. Sequential bilateral corneal transplantation and graft 
survival. Am J Ophthalmol. doi:10.1016/j.ajo.2016.07.019. 

264.  Steger B, Romano V, Kaye SB. Corneal Indocyanine Green Angiography to Guide Medical and 
Surgical Management of Corneal Neovascularization. Cornea. 2016;35(1):41-45. 
doi:10.1097/ICO.0000000000000683. 

265.  Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, 
now implicated in neuroprotection. BioEssays News Rev Mol Cell Dev Biol. 2004;26(9):943-
954. doi:10.1002/bies.20092. 

266.  Streilein JW, Yamada J, Dana MR, Ksander BR. Anterior chamber-associated immune 
deviation, ocular immune privilege, and orthotopic corneal allografts. Transplant Proc. 
1999;31(3):1472-1475. 

267.  Suchting S, Bicknell R, Eichmann A. Neuronal clues to vascular guidance. Exp Cell Res. 
2006;312(5):668-675. doi:10.1016/j.yexcr.2005.11.009. 

268.  Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R. Soluble Robo4 receptor inhibits in vivo 
angiogenesis and endothelial cell migration. FASEB J Off Publ Fed Am Soc Exp Biol. 
2005;19(1):121-123. doi:10.1096/fj.04-1991fje. 

269.  Sugisaki K, Usui T, Nishiyama N, et al. Photodynamic Therapy for Corneal Neovascularization 
Using Polymeric Micelles Encapsulating Dendrimer Porphyrins. Investig Opthalmology Vis Sci. 
2008;49(3):894. doi:10.1167/iovs.07-0389. 

270.  Suryawanshi A, Mulik S, Sharma S, Reddy PBJ, Sehrawat S, Rouse BT. Ocular 
neovascularization caused by herpes simplex virus type 1 infection results from breakdown of 
binding between vascular endothelial growth factor A and its soluble receptor. J Immunol 

Baltim Md 1950. 2011;186(6):3653-3665. doi:10.4049/jimmunol.1003239. 

271.  Takahashi K, Saishin Y, Saishin Y, et al. Topical nepafenac inhibits ocular neovascularization. 
Invest Ophthalmol Vis Sci. 2003;44(1):409-415. 

272.  Tanelian DL, Barry MA, Johnston SA, Le T, Smith G. Controlled gene gun delivery and 
expression of DNA within the cornea. BioTechniques. 1997;23(3):484-488. 

273.  Tarallo V, Bogdanovich S, Hirano Y, et al. Inhibition of Choroidal and Corneal Pathologic 
Neovascularization by Plgf1-de Gene Transfer. Invest Ophthalmol Vis Sci. 2012;53(13):7989-
7996. doi:10.1167/iovs.12-10658. 

274.  Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene 
therapy. Nat Rev Genet. 2003;4(5):346-358. doi:10.1038/nrg1066. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

46 | P a g e  
 

275.  Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 
2005;4(2):145-160. doi:10.1038/nrd1632. 

276.  Tsai M-L, Chen S-L, Chou P-I, Wen L-Y, Tsai RJ-F, Tsao Y-P. Inducible adeno-associated virus 
vector-delivered transgene expression in corneal endothelium. Invest Ophthalmol Vis Sci. 
2002;43(3):751-757. 

277.  Tsubota K, Inoue H, Ando K, Ono M, Yoshino K, Saito I. Adenovirus-mediated gene transfer to 
the ocular surface epithelium. Exp Eye Res. 1998;67(5):531-538. doi:10.1006/exer.1998.0557. 

278.  Tuft SJ, Gregory WM, Davison CR. Bilateral penetrating keratoplasty for keratoconus. 
Ophthalmology. 1995;102(3):462-468. 

279.  Urban RC, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102-110. 

280.  Uy HS, Chan PS, Ang RE. Topical bevacizumab and ocular surface neovascularization in 
patients with stevens-johnson syndrome. Cornea. 2008;27(1):70-73. 
doi:10.1097/ICO.0b013e318158f6ad. 

281.  Valori CF, Ning K, Wyles M, Azzouz M. Development and applications of non-HIV-based 
lentiviral vectors in neurological disorders. Curr Gene Ther. 2008;8(6):406-418. 

282.  Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-
associated virus capsid in gene transfer. Methods Mol Biol Clifton NJ. 2008;437:51-91. 
doi:10.1007/978-1-59745-210-6_2. 

283.  Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med. 2004;6 
Suppl 1:S164-171. doi:10.1002/jgm.496. 

284.  Waage A, Slupphaug G, Shalaby R. Glucocorticoids inhibit the production of IL6 from 
monocytes, endothelial cells and fibroblasts. Eur J Immunol. 1990;20(11):2439-2443. 
doi:10.1002/eji.1830201112. 

285.  Wagner  null, Ogris  null, Zauner  null. Polylysine-based transfection systems utilizing 
receptor-mediated delivery. Adv Drug Deliv Rev. 1998;30(1-3):97-113. 

286.  Wang B, Xiao Y, Ding BB, et al. Induction of tumor angiogenesis by Slit-Robo signaling and 
inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4(1):19-29. 

287.  Wang H, Wang B. Inhibition of corneal neovascularization by vascular endothelia growth 
inhibitor gene. Int J Ophthalmol. 2010;3(4):295-298. doi:10.3980/j.issn.2222-3959.2010.04.04. 

288.  Wang HM, Kaplan HJ, Chan WC, Johnson M. The distribution and ontogeny of MHC antigens 
in murine ocular tissue. Invest Ophthalmol Vis Sci. 1987;28(8):1383-1389. 

289.  Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs 
vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261-271. 
doi:10.1016/j.devcel.2008.07.002. 

290.  Wang X, Appukuttan B, Ott S, et al. Efficient and sustained transgene expression in human 
corneal cells mediated by a lentiviral vector. Gene Ther. 2000;7(3):196-200. 
doi:10.1038/sj.gt.3301075. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

47 | P a g e  
 

291.  Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium-derived negative 
feedback regulator of angiogenesis. J Clin Invest. 2004;114(7):898-907. doi:10.1172/JCI21152. 

292.  White MF. The IRS-signaling system: a network of docking proteins that mediate insulin and 
cytokine action. Recent Prog Horm Res. 1998;53:119-138. 

293.  Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 
promote adenovirus internalization but not virus attachment. Cell. 1993;73(2):309-319. 

294.  Williams KA, Coster DJ. Gene therapy for diseases of the cornea – a review. Clin Experiment 

Ophthalmol. 2010;38(2):93-103. doi:10.1111/j.1442-9071.2009.02179.x. 

295.  Woods N-B, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene 
causing lymphoma. Nature. 2006;440(7088):1123. doi:10.1038/4401123a. 

296.  Wu JY, Feng L, Park HT, et al. The neuronal repellent Slit inhibits leukocyte chemotaxis 
induced by chemotactic factors. Nature. 2001;410(6831):948-952. doi:10.1038/35073616. 

297.  Wu L, Belasco JG. Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and 
siRNAs. Mol Cell. 2008;29(1):1-7. doi:10.1016/j.molcel.2007.12.010. 

298.  Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJJ. The Herpes Simplex Virus-1 
Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization. PLOS 

Pathog. 2011;7(10):e1002278. doi:10.1371/journal.ppat.1002278. 

299.  Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular 
degeneration: a comprehensive review. Drug Des Devel Ther. 2016;10:1857-1867. 
doi:10.2147/DDDT.S97653. 

300.  Yoo SH, Dursun D, Dubovy S, et al. Lontophoresis for the treatment of paecilomyces keratitis. 
Cornea. 2002;21(1):131-132. 

301.  Yoon KC, Ahn KY, Lee JH, et al. Lipid-mediated delivery of brain-specific angiogenesis inhibitor 
1 gene reduces corneal neovascularization in an in vivo rabbit model. Gene Ther. 
2005;12(7):617-624. doi:10.1038/sj.gt.3302442. 

302.  Yoon KC, Bae JA, Park HJ, et al. Subconjunctival gene delivery of the transcription factor GA-
binding protein delays corneal neovascularization in a mouse model. Gene Ther. 
2009;16(8):973-981. doi:10.1038/gt.2009.50. 

303.  You I-C, Kang I-S, Lee S-H, Yoon K-C. Therapeutic effect of subconjunctival injection of 
bevacizumab in the treatment of corneal neovascularization. Acta Ophthalmol (Copenh). 
2009;87(6):653-658. doi:10.1111/j.1755-3768.2008.01399.x. 

304.  Yu CQ, Zhang M, Matis KI, Kim C, Rosenblatt MI. Vascular endothelial growth factor mediates 
corneal nerve repair. Invest Ophthalmol Vis Sci. 2008;49(9):3870-3878. doi:10.1167/iovs.07-
1418. 

305.  Yu J, Tian S, Metheny-Barlow L, et al. Modulation of endothelial cell growth arrest and 
apoptosis by vascular endothelial growth inhibitor. Circ Res. 2001;89(12):1161-1167. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

48 | P a g e  
 

306.  Yu W-Z, Li X-X, She H-C, et al. Gene Transfer of Kringle 5 of Plasminogen by Electroporation 
Inhibits Corneal Neovascularization. Ophthalmic Res. 2003;35(5):239-246. 
doi:10.1159/000072143. 

307.  Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT. Contribution of vascular endothelial 
growth factor in the neovascularization process during the pathogenesis of herpetic stromal 
keratitis. J Virol. 2001;75(20):9828-9835. doi:10.1128/JVI.75.20.9828-9835.2001. 

308.  Zhou S, Xie Z, Xiao O, Yang X, Heng BC, Sato Y. Inhibition of mouse alkali burn induced-corneal 
neovascularization by recombinant adenovirus encoding human vasohibin-1. Mol Vis. 
2010;16:1389-1398. 

309.  Zong R, Zhou T, Lin Z, et al. Down-Regulation of MicroRNA-184 Is Associated With Corneal 
NeovascularizationMicroRNA-184 and Corneal Neovascularization. Invest Ophthalmol Vis Sci. 
2016;57(3):1398-1407. doi:10.1167/iovs.15-17417. 

310.  Zuo L, Fan Y, Wang F, Gu Q, Xu X. A SiRNA Targeting Vascular Endothelial Growth Factor-A 
Inhibiting Experimental Corneal Neovascularization. Curr Eye Res. 2010;35(5):375-384. 
doi:10.3109/02713681003597230. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
Abbreviations: AAV, adeno-associated virus; BAI1-ECR, brain-specific angiogenesis inhibitor 1 – extracellular region; bFGF, basic fibroblast 
growth factor; CB1, Cannabinoid Receptor; CMV, Cytomegalovirus; CYP4B1, Cytochrome P450 4B1; IRS-1, insulin receptor substrate-1; K5, 
kringle 5 of plasminogen; PEDF, pigment epithelium-derived factor; PFU, plaque-forming units; PLGA, poly(lactic-co-glycolic acid); PlGF1-DE, 
placental growth factor 1-DE; PPARγ, peroxisome proliferator-activated receptor gamma; RGDRGD, arginine-glycin-aspartic-arginine-glycin-
aspartic; sFlt-1, soluble Flt-1; shRNA, short hairpin RNA; siRNA, small interfering RNA;TU, Transducing Units; VEGF, vascular endothelial growth 
factor; VEGI, vascular endothelial cell growth inhibitor; vg, vector genomes. 

Target gene Vector Delivery Subjects Models Dose Result Reference 

IRS-1 mRNA 
Antisense 

oligonucleotide 
topical Human Keratitis 86µg/day for 90 days 

Reduced corneal neovascularization by 
26.2% 

 
71 

Endostatin and 
Angiostatin 

Lentivirus Ex vivo incubation Rabbit Transplant 
2.106 TU/ml overnight 

for 37°C 

Neovascularization failed to cross the 
donor-recipient margin in 50% of treated 

cornea 
216 

PlGF1-DE Adeno-associated virus 
Sub-retinal 
injection 

Mouse Nylon suture 
5ng in 5µL of PBS 

post-insult, then every 3 
days for 14 days 

Reduced corneal neovascularization by 
37.2% 

273 

Flt-1 Morpholino 
Sub-conjunctival 

injection 
Mouse Transplant 

 
15µL(40 ng/µL) post-
transplant weekly for 7 

weeks 

Reduced corneal neovascularization by 
22.8% 

52 

VEGF-A PLGA Stromal injection Mouse Alkaline 
2µg plasmid 4 weeks 

post-injury 
Reduced corneal neovascularization by 

43.0% 
229 

Flt23k PLGA 
Sub-conjunctival 

injection 
Mouse Transplant 

10µL of plasmid 
(0.1µg/µL) at day 0 and 
4 weeks post-transplant 

Reduced corneal neovascularization by 
71.0% 

51 

Flt-1 
PEG-b-P[Asp(DET)] 

polyplex micelle 
Sub-conjunctival 

injection 
Mouse Nylon suture 1mg in 5µL post-insult 

Reduced corneal neovascularization by 
45.0% 

123 

Decorin Adeno-associated virus Topical-stromal Rabbit Pocket pellet 
100µl(5x1012vg/ml) 1-

day post-pellet 
implantation 

Reduced corneal neovascularization by 
60.0% 

187 

RGDRGD 
endostatin 

CMV 
Sub-conjunctival 

injection 
Rabbit Alkaline 

5µg twice a week for 
two weeks post-insult 

Reduced corneal neovascularization by 
58.0% 

 
98 

CB1 receptor siRNA KD 
Endothelial cell 

transfection 
In vitro bFGF 100nM 

Inhibition of endothelial proliferation, 
migration, tube-formation 

 
223 

VEGI Lipofectine 
Sub-conjunctival 

injection 
Rabbit Suture 20µl post-insult 

Reduced corneal neovascularization by 
13.8mm2 

 
287 

VEGF-A siRNA KD 
Sub-conjunctival 

injection 
Mouse Alkaline 

10µl(10µg/10µl) days 1, 
3, 5 post-insult 

Reduced corneal neovascularization by 
2.34mm2 

310 

Vasohibin-1 Adenovirus 
Sub-conjunctival 

injection 
Mouse Alkaline 

 
5µl containing 109 viral 

particles 5 days pre-
insult 

Reduced corneal neovascularization by 
21.22% 

308 

PEDF SAINT-18 
Sub-conjunctival 

injection 
Mouse Pocket pellet 10µg post-insult 

Reduced corneal neovascularization by 
3001x10-4mm2 

 
156 

GA-binding 
protein 

Lipoplexes 
Sub-conjunctival 

injection 
Mouse Alkaline 2µg in 20µl post-insult 

Reduced corneal neovascularization by 
20.3% 

302 

CYP4B1 siRNA 
Sub-conjunctival 

injection 
Rabbit Suture 

20µl (200µM) day 2, 4 
post-insult 

Reduced corneal neovascularization by 
50% 

249 

PPARγ Adenovirus Topical Mouse Alkaline 
 

1.0x107PFU/µL day 1, 
5, 10 post-insult 

Reduced corneal neovascularization 244 

BAI1-ECR CMV 
Sub-conjunctival 

injection 
Rabbit 

Epithelial 
removal 

5 mg(0.4 ml) twice post-
insult at 1 week interval 

Reduced corneal neovascularization by 
51.1% 

301 

Endostatin K5 Lentivirus Ex vivo incubation Rabbit Transplant 
50µL for 18hours at 

37°C 
Neovascularization failed to cross the 

donor-recipient margin in all treated cornea 
195 

K5 Electroporation 
Sub-conjunctival 

injection 
Mouse Alkaline 50µg 

Neovascularization score of treated eyes 
was lower than controls 

306 

VEGF Adenovirus 
Sub-conjunctival 

injection Mouse Cautery 
2µL(2x108PFU/µL) 24 

hours pre-insult 
Less treated eyes developed 

neovascularization than controls 159 

Flt-1 AAV-CMV Intra-cameral Mouse Cautery 
 

2µL(1011PFU/ml) 3 
weeks pre-insult 

Reduced corneal neovascularization by 
36% 

162 

Flt-1 Naked plasmids Stromal injection Mouse Pocket pellet 
 

2µL 24 hours pre-insult 
Reduced corneal neovascularization by 

23.6% 
262 

Flt-1 Adenovirus Intra-cameral Mouse Cautery 
2µL(1011PFU/ml) 24 

hours pre-insult 

18% of treated eyes developed 
neovascularization compared to 100% in 

controls 
158 
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