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Abstract

Variational active contour models have become very popular in recent years, especially
global variational models which segment all objects in an image. Given a set of user-de�ned
prior points, selective variational models aim to segment selectively one object only. We
are concerned with fast solution of the latter models. Time marching methods with semi-
implicit schemes (gradient descents) or additive operator splitting are used frequently to
solve the resulting Euler Lagrange equations derived from these models. For images of
moderate size, such methods are e�ective. However, to process images of large size, urgent
need exists in developing fast iterative solvers. Unfortunately geometric multigrid methods
do not converge satisfactorily. Here we propose an optimization based multilevel algorithm
for e�ciently solving a class of selective segmentation models. It also applies to solution
of global segmentation models. In level set function formulation, our �rst variant of the
proposed multilevel algorithm has the expected optimal O(N logN) e�ciency for an image
of size n × n with N = n2. However modi�ed localized models are proposed to exploit the
local nature of segmentation contours and consequently our second variant after modi�cation
is up to practically super-optimal e�ciency O(

√
N logN). Numerical results show that good

segmentation quality is obtained and, as expected, excellent e�ciency is observed in reducing
computational time.

AMS subject classi�cations: 62H35, 65N22, 65N55, 74G65, 74G75
Key words: Active contours, image segmentation, level sets, multilevel, optimization

methods, energy minimization

1 Introduction

Image segmentation can be de�ned as the process of separating objects from their surround-
ings. The principal goal of segmentation is to partition an image into homogenous regions,
which connect spatially groups of pixels called classes, or subsets, with respect to one or more
characteristics or features.

Di�erent models and techniques have been developed so far, including histogram analysis
and thresholding [26, 36], region growing [2], edge detection and active contours [3, 15]. Of all
these techniques, variational techniques [15, 31] are proven to be very e�cient for extracting
homogeneous areas compared with other models such as statistical methods [17, 16, 18] or
wavelet techniques [23, 27].

Segmentation models can be classi�ed into two categories, namely, edge based and region
based models; other models may mix these categories. Edge based models refer to the models
that are able to drive the contours towards image edges by in�uence of an edge detector func-
tion used. The snake algorithm proposed by Kass et al [24] was the �rst edge based variational
models for image segmentation. Further improvement on the algorithm with Geodesic Active
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Contours and the level-set formulation led to e�ective models [10, 37]. Region-based segmenta-
tion techniques try to separate all pixels of an object from its background pixels based on the
intensity and hence �nd image edges between regions satisfying di�erent homogeneity criteria.
Examples of region-based techniques are Region growing [22, 7], Watershed algorithm [22, 8],
Thresholding [22, 40], and Fuzzy clustering [38]. The most celebrated and e�cient variational
model for the images with and without noise is the Mumford-Shah [31] model, reconstructing
the segmented image as a piecewise smooth intensity function. Since the model cannot be im-
plemented directly and easily, it was often approximated. The Chan-Vese (CV) [15] model is
simpli�ed and reduced from [31], without approximation. The simpli�cation is to replace the
piecewise smooth function by a piecewise constant function and, in the case of two phases, the
piecewise constant function divides an image into the foreground and the background.

Segmentation models described above are for global segmentation due to the fact that all
features or objects in an image are to be segmented. In reality, not all objects can be identi�ed
in general because of non-convexity of such models. There exist many studies of these models.
For the convex CV model [14], once discretised, the optimization problem can be solved by fast
graph cut type method with O(N logN) e�ciency (at the level of a multigrid method) for an
image sized n× n with N = n2 [41, 42].

This paper is concerned with another type of image segmentation models, namely selective
segmentation. They are de�ned as the process of extracting one object of interest in an image
based on some known geometric constraints [20, 35, 39]. Two e�ective models are Badshah-
Chen [6] and Rada-Chen [35] which used a mixture of edge-based and region-based ideas in
addition to imposing constraints. Recently, a convex selective variational image segmentation
model called as Convex Distance Selective Segmentation was successfully proposed by Spencer
and Chen [39]. The convex model allowing a global minimiser to be found independently of
initialisation [39, 14]. The additive operator splitting (AOS) method with a balloon force term
(suitable for images of moderate size, faster than gradient type methods) was proposed for such
models. However, to process images of large size, urgent need exists in developing fast multilevel
methods.

Both the multilevel and multigrid methods are developed using the idea of hierarchy of dis-
cretizations. However, a multilevel method is based on discretize-optimize scheme (algebraic)
where minimization of a variational problem is solved directly without using a partial di�er-
ential equation (PDE). In contrast, a multigrid method is based on optimize-discretize scheme
(geometric) where it solves a PDE numerically. The two methods are inter-connected since both
can have geometric interpretations and use similar inter-level information transfers.

The latter multigrid methods have been used to solve a few variational image segmenta-
tion models in the level set formulation. For geodesic active contours models, linear multigrid
methods have been developed [25, 33, 34]. In 2008, Badshah and Chen [4] have successfully
implemented a multigrid method to solve the Chan-Vese nonlinear elliptical partial di�erential
equation. In 2009, Badshah and Chen [5] also have developed two multigrid algorithms for
modelling variational multiphase image segmentation. While the practical performance of these
methods is good, however, they are sensitive to parameters and hence not e�ective, mainly due
to non-smooth coe�cients which lead to smoothers not having an acceptable smoothing rate
(which in turn are due to jumps or edges that separate segmented domains). Therefore the
above multigrid methods behave like the cascadic multigrids [30] where only one multigrid cycle
is needed.

Here we pursue the former type of optimization based multilevel methods, based on a
discretize-optimize scheme where the minimization is solved directly (without using PDEs).
The idea has been applied to other image problems in denoising and debluring [11, 12, 13], not
yet to segmentation problems. However, the method is found to get stuck to local minima due
to non-di�erentiability of the energy functional. To overcome that situation, Chan and Chen
[11] have proposed the �patch detection" idea in the formulation of the multilevel method which
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is e�cient for image denoising problems. However, as image size increases, the method can be
slow because of the patch detection idea searches the entire image for the possible patch size on
the �nest level after each multilevel cycle.

In this work, we will consider a di�erentiable form of variational image segmentation models
and develop the multilevel algorithm for the resulting models without using a �patch detection"
idea. We are not aware of any similar work on multilevel algorithms for segmentation models in
the level set formulation. The key �nding is that the resulting multilevel algorithm converges,
while not very sensitive to parameter choices, unlike geometric multigrid methods [5] which are
known to have problems in convergence.

The rest of the paper is organized in the following way. In Section 2, we brie�y review the
global segmentation model namely the Chan-Vese model [15] and two selective segmentation
models which are Badshah-Chen model [6] and Rada-Chen model [35]. In Section 3, we present
an optimization based multilevel algorithm for the selective segmentation models. In Section
4, we propose localized segmentation models and further present multilevel methods for solving
them. In Section 5, we give some experimental results to test the presented algorithms. We
compare the new methods to the previously fast methods from the literature namely the AOS
method for Badshah-Chen [6] and Rada-Chen [35] models (since multigrid methods are not
yet developed for these models). However, a multiscale AOS method (for Badshah-Chen [6]
and Rada-Chen [35] models) based on the pyramid idea is implemented and included in the
comparison. We conclude the paper in Section 6.

2 Review of three existing models

In this section we will �rst introduce the global segmentation model [15] because it provides
the foundation for the selective segmentation models as well as a method for minimizing the
associated functional. Next, we will discuss two selective segmentation models by Badshah-Chen
[6] and Rada-Chen [35] before we address the fast solution issue for these models.

2.1 The Chan-Vese model

The Chan and Vese (CV) model [15] considers a special case of the piecewise constant Mumford-
Shah functional [31] where it is restricted to only two phases (i.e. constants), representing the
foreground and the background of the given image z (x, y).

Assume that z is formed by two regions of approximately piecewise constant intensities of
distinct (unknown) values c1 and c2 , separated by some (unknown) curve or contour Γ. Let
the object to be detected be represented by the region Ω1 with the value c1 inside the curve Γ
whereas outside Γ, in Ω2 = Ω\Ω1, the intensity of z is approximated with the value c2. Then,
with Ω = Ω1 ∪ Ω2, the Chan-Vese model minimizes the following functional

min
Γ,c1,c2

FCV (Γ, c1, c2) = µ length (Γ) + λ1

∫
Ω1

(z − c1)2dxdy + λ2

∫
Ω2

(z − c2)2dxdy. (1)

Here, the constants c1 and c2 are viewed as the average values of z inside and outside the variable
contour Γ. The �xed parameters µ, λ1, and λ2 are non-negative but to be speci�ed. In order to
minimize equation (1), they applied the level set method [15] , where the unknown curve Γ is
represented by the zero level set of the Lipschitz function such that

Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,
Ω1 = inside (Γ) = {(x, y) ∈ Ω : φ (x, y) > 0} ,
Ω2 = outside (Γ) = {(x, y) ∈ Ω : φ (x, y) < 0} .

To simplify the notation, denote the regularized versions of the Heaviside function and the
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Dirac delta function, respectively, by

H (φ (x, y)) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
and δ (φ (x, y)) =

ε

π (ε2 + φ2)
.

Thus equation (1) becomes

min
φ,c1,c2

FCV (φ, c1, c2) = µ

∫
Ω
|∇H (φ)| dxdy + λ1

∫
Ω

(z − c1)2H (φ) dxdy

+λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(2)

Keeping the level set function φ �xed and minimizing (2) with respect to c1 and c2, we have

c1(φ) =

∫
Ω z (x, y)H (φ) dxdy∫

ΩH (φ) dxdy
, c2(φ) =

∫
Ω z (x, y) (1−H (φ)) dxdy∫

Ω (1−H (φ)) dxdy
. (3)

After that, by �xing constants c1 and c2 in FCV (φ, c1, c2), �rst variation with respect to φ yields
the following Euler-Lagrange equation: µδ (φ)∇ ·

(
∇φ
|∇φ|

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

(4)

Notice that the nonlinear coe�cient in equation (4) may have a zero denominator, so the equation
is not de�ned in such cases. A commonly-adopted idea to deal with |∇φ| = 0 was to introduce
a small positive parameter β to (2) and (4), so the new Euler Lagrange equation becomes µδ (φ)∇ ·

(
∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

where corresponds to minimizing the following di�erentiable energy function, instead of (2)

min
φ,c1,c2

FCV (φ, c1, c2) = µ

∫
Ω

√
|∇H (φ)|2 + β dxdy + λ1

∫
Ω

(z − c1)2H (φ) dxdy

+λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.

(5)

2.2 The Badshah-Chen model

The selective segmentation model by Badshah-Chen (BC) [6] combines the edge based model
of Gout et al [20, 21] with intensity �tting terms of Chan-Vese [15]. For image z (x, y) with a
marker set A = {wi = (x∗i , y

∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω of n1 geometrical points on or near the

target object [35, 43], the selective segmentation idea tries to detect the boundary of a single
object among all homogeneity intensity objects in Ω closest to A; here n1 ≥ 3. The geometrical
points in A de�ne an initial polygonal contour and guide its evolution towards Γ [43].

The BC minimization equation [6] is given by

min
Γ,c1,c2

FBC (Γ, c1, c2) = µ

∫
Γ
d (x, y) g (|∇z (x, y)|) dxdy +

λ1

∫
inside(Γ)

(z − c1)2 dxdy + λ2

∫
outside(Γ)

(z − c2)2 dxdy.
(6)

In this model, the function g (|∇z|) = 1
1+η|∇z(x,y)|2 is an edge detector which helps to stop the

evolving curve on the edge of the targeted object. The strength of detection is adjusted by a
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parameter η. The function g (|∇z|) is constructed to take small values near to 0 near object
edges and large values near to 1 in �at regions. The d (x, y) is a marker distance function which
is close to 0 when approaching the points from marker set, given as:

d (x, y) = distance ((x, y) ,A) =

n1∏
i=1

(
1− e−

(x−x∗i )2

2κ2 − e−
(y−y∗i )2

2κ2

)
, ∀ (x, y) ∈ Ω

where κ is a positive constant. Alternative distance functions d (x, y) are also possible [35, 43].
Using a level set formulation, the functional (6) becomes

min
φ,c1,c2

FBC (φ, c1, c2) = µ

∫
Ω
d (x, y)g (|∇z (x, y)|) |∇H (φ)| dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(7)

Keeping the level set function φ �xed and minimizing (6) with respect to c1 and c2, we have

c1(φ) =

∫
Ω z (x, y)H (φ) dxdy∫

ΩH (φ) dxdy
, c2(φ) =

∫
Ω z (x, y) (1−H (φ)) dxdy∫

Ω (1−H (φ)) dxdy

Finally keeping constants c1 and c2 �xed in FBC (φ, c1, c2) , and the following Euler-Lagrange
equation for φ is derived: µδ (φ)∇ · dg

(
∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

dg δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

(8)

The small positive parameter β is introduced to avoid singularities in (8) which corresponds to
minimizing the following di�erentiable form of the BC model in replace of (7)

min
φ,c1,c2

FBC (φ, c1, c2) = µ

∫
Ω
G(x, y)

√
|∇H (φ)|2 + β dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy
(9)

where G = d(x, y)g(x, y). To encourage faster convergence, a balloon force term αG|∇φ| is
added to the (8) as used by [6].

2.3 The Rada-Chen model

The Rada-Chen (RC) model [35] imposes a further constraint on Ω1 to ensure that its area
is closest to the internal area de�ned by the marker set. From the polygon formed by the
geometrical points in the set A, denote by A1 and A2 respectively the area inside and outside
the polygon. They compute A1 and A2 to approximate the area of the object they try to capture.
The RC model also incorporates the similar edge detection function as in the BC model into the
regularization term. The energy minimization problem is given by

min
Γ,c1,c2

FRC (Γ, c1, c2) = µ

∫
Γ
g (|∇z (x, y)|) dxdy + λ1

∫
Ω1

(z − c1)2dxdy

+λ2

∫
Ω2

(z − c2)2dxdy + ν

(∫
Ω1

dxdy −A1

)2

+ ν

(∫
Ω2

dxdy −A2

)2

.

(10)

Rewriting (10) in level-set formulation as in (3), we arrived at the following Euler-Lagrange
equation for φ:

µδ (φ)∇ · g
(

∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2

−νδ (φ)
[(∫

ΩH (φ) dxdy −A1

)
−
(∫

Ω (1−H (φ)) dxdy −A2

)]
= 0, in Ω

dg δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

(11)
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As with the BC model, in the actual implementation of the RC model, the small positive
parameter β is introduced to avoid singularities in (11) where corresponds to minimizing the
following di�erentiable form of the RC model

min
φ,c1,c2

FRC (φ, c1, c2) = µ

∫
Ω
g (|∇z (x, y)|)

√
|∇H (φ)|2 + β dxdy +

λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy +

ν

(∫
Ω
H (φ) dxdy −A1

)2

+ ν

(∫
Ω

(1−H (φ)) dxdy −A2

)2

.

(12)

To encourage faster convergence, they also added the balloon force term which is de�ned as
αg (x, y) |∇φ (x, y)| to (11).

We will use the term BC0 and RCO to refer the AOS algorithm previously used to solve
BC model and RC model in [6] and [35] respectively

Of course, it is known that such AOS method is not designed for processing large image.
To assist AOS, a pyramid method can be used. The basic idea in a pyramid method is, in the
process of curve evolution, the pyramid scheme is used to decompose an image into di�erent
scale images and then coarse segmentation is performed on the coarse-scale image using the
AOS method instead of directly using the original-size image. Then, the segmentation result is
interpolated and adopted as an initial contour for the �ne-scale image, thus gradually optimizing
the contour and reaching the �nal segmentation result.

We refer the pyramid method for BC and RC models as BCP and RCP respectively.
The above forms of variational models, the BC model (9), the RC model (12) respectively,

will be conveniently solved by our new proposed multilevel scheme shortly. The BC0, RCO,
BCP and RCP will be used as comparison methods to our method in segmenting large images.

As remarked before, the reason for seeking alternative optimization based multilevel methods
instead of applying a geometric multigrid method is that there are no e�ective smoothers for the
latter case and consequently there exist no converging multigrid methods for the Euler-lagrange
equations for our variational models.

3 An O(N logN) optimization based multilevel algorithm

The main objective of this section is to present the �rst version of our multilevel formulation
for two selective segmentation models: the BC model [6] and the RC model [35]. This section
provides the foundation for the development of our main multilevel algorithm for the localized
versions of these models. For simplicity for a given image of size n×n, we shall assume n = 2L.
The standard coarsening de�nes L+ 1 levels: k = 1 (�nest) , 2, ..., L, L+ 1 (coarsest) such that
level k has τk× τk �superpixels� with each �superpixel� having pixels bk× bk, where τk = n/2k−1

and bk = 2k−1. Figure 2(a-e) show the case of L = 4, n = 24 for an 16× 16 image with 5 levels:
level 1 has each pixel of the default size of 1×1 while the coarsest level 5 has a single superpixel
of size 16 × 16. If n 6= 2L, the multilevel method can still be developed with some coarse level
superpixels of square shapes and the rest of rectangular shapes.

3.1 Multilevel algorithm for the BC model

Our goal is to solve (9), i.e. the BC model [6] , using a multilevel method in a discretize-optimize
scheme.

Before we proceed further, one may question how to discretize the total variation (TV) term
in the form

TV (u) =

∫
Ω

|∇u| dxdy
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TV is most often discretized by

TVd (u) =
n−1∑
i=1

n−1∑
j=1

√(
∇+
x u
)2
i,j

+
(
∇+
y u
)2
i,j

=
n−1∑
i=1

n−1∑
j=1

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

There are other ways to de�ne discrete TV by �nite di�erence, but the above form is the
simplest one according to [29]. In addition, the reason why the form is considered as a dis-
cretization of TV relies in the notion of consistency, well known in numerical analysis where if
we consider a regular function U : R2 → R and its discretization (i, j) 7→ Uh (i, j) = U (ih, jh)
for h > 0, we have

h−1. |∇Uh| (ih, jh)→ |∇U (x, y)|

as h→ 0, ih→ x, and jh→ y.
Furthermore, central di�erences are undesirable for TV discretization (in a discretize-optimize

approach) because they miss thin structure [19] as the central di�erences at (i, j) does not depend
on ui,j :

TVd (u) =
n−1∑
i=1

n−1∑
j=1

√[(
∇+
x u
)
/2 +

(
∇−x u

)
/2
]2

+
[(
∇+
y u
)
/2 +

(
∇−y u

)
/2
]2

=
n−1∑
i=1

n−1∑
j=1

√
[(ui+1,j − ui,j) /2 + (ui,j − ui−1,j) /2]2 + [(ui,j+1 − ui,j) /2 + (ui,j − ui,j−1) /2]2

=
n−1∑
i=1

n−1∑
j=1

√
[(ui+1,j − ui−1,j) /2]2 + [(ui,j+1 − ui,j−1) /2]2.

To avoid the problem, one sided di�erence can be used. More discussion on discretizing TV can
be found in [19] and [29] and the references therein.

Using the above information, the discretized version of (9) is given by:

min
φ,c1,c2

FBC (φ, c1, c2) ≡ min
φ,c1,c2

F aBC (φ1,1, φ2,1, . . . , φi−1,j , φi,j , φi+1,j , . . . , φn,n, c1, c2)

= µ̄
n−1∑
i=1

n−1∑
j=1

Gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+ λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j) (13)

where φ denotes a row vector, µ̄ =
µ

h
, h =

1

n− 1
, c1 =

n∑
i=1

n∑
j=1

zi,jHi,j

/ n∑
i=1

n∑
j=1

Hi,j ,

Gi,j = G(xi, yj), c2 =

n∑
i,j=1

zi,j (1−Hi,j)
/ n∑
i,j=1

(1−Hi,j) and Hi,j =
1

2
+

1

π
arctan

(φi,j
ε

)
.

As a prelude to multilevel methods, consider the minimization of (13) by the coordinate
descent method on the �nest level 1:

Given φ(0)=
(
φ

(0)
i,j

)
and set m = 0;

Solve φ
(m+1)
i,j = arg min

φi,j∈R
F locBC (φi,j , c1, c2) for i, j = 1, 2, ..., n; (14)

Repeat the above step with m = m+ 1 until stopped.
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Figure 1: The interaction of φi,j at a central pixel (i, j) with neighboring pixels on the �nest level 1.
Clearly only 3 terms (pixels) are involved with φi,j (through regularisation).

Here equation (14) is obtained by expanding and simplifying the main model in (13) i.e.

F locBC(φi,j , c1, c2)

≡ F aBC
(
φ

(m−1)
1,1 , φ

(m−1)
2,1 , . . . , φ

(m−1)
i−1,j , φi,j , φ

(m−1)
i+1,j , . . . , φ

(m−1)
n,n , c1, c2

)
− F (m−1)

BC

= µ̄

[
Gi,j

√(
Hi,j −H(m)

i+1,j

)2
+
(
Hi,j −H(m)

i,j+1

)2
+ β

+Gi−1,j

√(
Hi,j −H(m)

i−1,j

)2
+
(
H

(m)
i−1,j −H

(m)
i−1,j+1

)2
+ β

+Gi,j−1

√(
Hi,j −H(m)

i,j−1

)2
+
(
H

(m)
i,j−1 −H

(m)
i+1,j−1

)2
+ β

]
+ λ1(zi,j − c1)2Hi,j + λ2(zi,j − c2)2 (1−Hi,j)

with Neumann's boundary condition, where F
(m−1)
BC denotes the sum of all terms in F aBC that

do not involve φi,j . Minimization of c1, c2 follows as before. Clearly one seems that this is
a coordinate descent method. As such the method will exhibit a functional decay property
F aBC(φ(m)) ≤ F aBC(φ(m−1)) from one substep to the next. It should be remarked that the
formulation in (14) is based on the work in [9, 11].

Using (14), we illustrate the interaction of φi,j with its neighboring pixel on the �nest level
1 in Figure 1. We will use this basic structure to develop a multilevel method.

The one-dimensional problem from (14) may be solved by any suitable optimization method
� here from φ(m−1) → φ→ φ(m), we solve its �rst order condition

µ̄Gi,j
2Hi,j−H

(m)
i+1,j−H

(m)
i,j+1√(

Hi,j−H
(m)
i+1,j

)2
+
(
Hi,j−H

(m)
i,j+1

)2
+β

+ µ̄Gi−1,j
Hi,j−H

(m)
i−1,j√(

Hi,j−H
(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

+µ̄Gi,j−1
Hi,j−H

(m)
i,j−1√(

Hi,j−H
(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

+ λ1(zi,j − c1)2 − λ1(zi,j − c2)2 = 0.

As an example, if using the Newton iterations, one gets the form

φnewi,j = φoldi,j − T old/Bold (15)
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where

T old = µ̄Gi,j
2Hold

i,j −H
(m)
i+1,j−H

(m)
i,j+1√(

Hold
i,j −H

(m)
i+1,j

)2
+
(
Hold
i,j −H

(m)
i,j+1

)2
+β

+ µ̄Gi−1,j
Hold
i,j −H

(m)
i−1,j√(

Hold
i,j −H

(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

+µ̄Gi,j−1
Hold
i,j −H

(m)
i,j−1√(

Hold
i,j −H

(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

+ λ1(zi,j − c1)2 − λ1(zi,j − c2)2,

Bold =
2µ̄Gi,j√(

Hold
i,j −H

(m)
i+1,j

)2
+
(
Hold
i,j −H

(m)
i,j+1

)2
+β

−
µ̄Gi,j

(
2Hold

i,j −H
(m)
i+1,j−H

(m)
i,j+1

)2√((
Hold
i,j −H

(m)
i+1,j

)2
+
(
Hold
i,j −H

(m)
i,j+1

)2
+β

)3/2

+
µ̄Gi−1,j√(

Hold
i,j −H

(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

−
µ̄Gi−1,j

(
Hold
i,j −H

(m)
i−1,j

)2√((
Hold
i,j −H

(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

)3/2

+
µ̄Gi,j−1√(

Hold
i,j −H

(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

−
µ̄Gi,j−1

(
Hold
i,j −H

(m)
i,j−1

)2√((
Hold
i,j −H

(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

)3/2
.

To develop a multilevel method of this coordinate descent method, we may interpret solving

(14) for a new iterate φ
(m)
i,j as looking for the best update (on an old iterate φ

(m−1)
i,j ; here a

scalar constant) that minimizes the local merit functional F locBC (φi,j , c1, c2). On level 1 the local
minimization for c takes the form

F locBC (φi,j , c1, c2) = F locBC

(
φ

(m)
i,j + c, c1, c2

)
.

Hence, we may rewrite (14) in an equivalent form:

Given
(
φ

(m)
i,j

)
with m = 0,

Solve ĉ = arg min
c∈R

F locBC

(
φ

(m)
i,j + c, c1, c2

)
, φ

(m+1)
i,j = φ

(m)
i,j + ĉ for i, j = 1, 2, ..., n; (16)

Repeat the above step with m = m+ 1 until stopped.

Now consider how the update is done on a general level k = 2, . . . , L+ 1. Similarly to k = 1,
we derive the simpli�ed formulation for each of the τk × τk subproblems, in a block of pixels
bk × bk e.g. the multilevel method for k=2 is to look for the best correction constant to update
this block so that the underlying merit functional, relating to all four pixels (see Fig.2(b)),
achieves a local minimum.

For levels k = 1, ..., 5, Figure 2 illustrates the multilevel partition of an image of size 16× 16
pixels from (a) the �nest level (level 1) until (e) the coarsest level (level 5).

Observe that bkτk = n on level k, where τk is the number of boxes and bk is the block size.
So from Figure 1(a), b1 = 1 and τ1 = n = 16. On other levels k = 2, 3, 4 and 5, we see that
block size bk = 2k−1 and τk = 2L+1−k since n = 2L. Based on Figure 1, we illustrate a box �
interacting with neighboring pixels • in level 3. In addition, Figure 2 (f) illustrates that fact
that variation by ci,j inside an active block only involves its boundary of precisely 4bk−4 pixels,
not all b2k pixels, in that box, denoted by symbols C, B, ∆, ∇. This is important in e�cient
implementation.

With the above information, we are now ready to formulate the multilevel approach for
general level k. Let's set the following: b = 2k−1, k1 = (i− 1) b+ 1, k2 = ib, `1 = (j − 1) b+ 1,
`2 = jb, and c = (ci,j) . Then, the computational stencil involving c on level k can be shown as

9



(a) Level 1: τ2
1 = 162 variables (b) Level 2: τ2

2 = 82 variables

(c) Level 3: τ2
3 = 42 variables (d) Level 4: τ2

4 = 22 variables

(e) Level 5: τ2
5 = 1 variable

(f) Level 3 block with b23 = 16
pixels but only 12 e�ective terms

in local minimization F locBC

Figure 2: Illustration of multilevel coarsening. Partitions (a)-(e): the red �×" shows image pixels, while
blue • illustrates the variable c. (f) shows on coarse level 3 the di�erence of inner and boundary pixels
interacting with neighboring pixels •. The middle boxes � indicate the inner pixels which do not involve
c, others boundary pixels denoted by symbols C, B, ∆, ∇ involve c as in (16) via F loc

BC .

10



follows

(17)

The illustration shown above is consistent with Figure 2 (f) and the key point is that interior
pixels (non-boundary pixels) do not involve ci,j in the formulation's �rst nonlinear term. This
is because the �nite di�erences are not changed at interior pixels by the same update as in√(

φ̃k,l + ci,j − φ̃k+1,l − ci,j
)2

+
(
φ̃k,l + ci,j − φ̃k,l+1 − ci,j

)2
+ β

=

√(
φ̃k,l − φ̃k+1,l

)2
+
(
φ̃k,l − φ̃k,l+1

)2
+ β.

Then, as a local minimization for c, the problem (16) is equivalent to minimizing the following

FBC1 (ci,j) =µ̄

`2∑
`=`1

Gk1−1,`

√[
ci,j −

(
φ̃k1−1,` − φ̃k1,`

)]2
+
(
φ̃k1−1,` − φ̃k1−1,`+1

)2
+ β

+ µ̄

k2−1∑
k=k1

Gk,`2

√[
ci,j −

(
φ̃k,`2+1 − φ̃k,`2

)]2
+
(
φ̃k,`2 − φ̃k+1,`2

)2
+ β

+ µ̄Gk2,`2

√[
ci,j −

(
φ̃k2,`2+1 − φ̃k2,`2

)]2
+
[
ci,j −

(
φ̃k2+1,`2 − φ̃k2,`2

)]2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√[
ci,j −

(
φ̃k2+1,` − φ̃k2,`

)]2
+
(
φ̃k2,` − φ̃k2,`+1

)2
+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√[
ci,j −

(
φ̃k,`1−1 − φ̃k,`1

)]2
+
(
φ̃k,`1−1 − φ̃k+1,`1−1

)2
+ β

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H

(
φ̃k,` + ci,j

))(
zk,` − c2

)2
+ λ1

k2∑
k=k1

`2∑
`=`1

(
H
(
φ̃k,` + ci,j

))(
zk,` − c1

)2
. (18)

For the third term, we may note
√

(c− a)2 + (c− b)2 + β =

√
2
(
c− a+b

2

)2
+ 2
(
a−b

2

)2
+ β.

Further we conclude that the local minimization problem for block (i, j) on level k with

11



respect to ci,j amounts to minimising the following equivalent functional

FBC1 (ci,j) = µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)2 + υ2

k1−1,` + β

+ µ̄

k2−1∑
k=k1

Gk,`2

√(
ci,j − υk,`2

)2
+ h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+ µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2
+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)2

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)2 (19)

where we have used the following notation (which will be used later also):

hk,` = φ̃k+1,` − φ̃k,`, υk,` = φ̃k,`+1 − φ̃k,`, υk2,`2 = φ̃k2,`2+1 − φ̃k2,`2 ,
hk2,`2 = φ̃k2+1,`2 − φ̃k2,`2 , ῡk2,`2 =

υk2,`2+hk2,`2
2 , h̄k2,`2 =

υk2,`2−hk2,`2
2 ,

hk1−1,` = φ̃k1,` − φ̃k1−1,`, υk1−1,` = φ̃k1−1,`+1 − φ̃k1−1,`, υk,`2 = φ̃k,`2+1 − φ̃k,`2 ,
hk,`2 = φ̃k+1,`2 − φ̃k,`2 , hk2,` = φ̃k2+1,` − φ̃k2,`, υk2,` = φ̃k2,`+1 − φ̃k2,`,
υk,`1−1 = φ̃k,`1 − φ̃k,`1−1, hk,`1−1 = φ̃k+1,`1−1 − φ̃k,`1−1.

On the coarsest level, we look for a single constant update for the current approximation φ̃

that is FBC1

(
φ̃+ c

)
,

min
c
FBC1(φ̃+ c) = µ̄

n−1∑
i=1

n−1∑
j=1

Gi,j

√
(φ̃i,j + c− φ̃i,j+1 − c)

2
+ (φ̃i,j + c− φ̃i+1,j − c)

2
+ β

+λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2+λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)2

which is equivalent to

min
c
F̂BC1(φ̃+ c) = λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2

+λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)2.

(20)

In general, (19) can be written as min
ci,j∈R

FBC1

(
φ̃+ Pc

)
where Pc = c~d and φ̃, ~d ∈ Rn2

. To

interpret our method as a hierarchical gradient descent method, we may view a general update
as choosing the best c to solve minc F

a
BC(φ̃+ Pc) where e.g.

level 1, at pixel (1, 1) : ~d = ( 1 , 0, · · · , 0; 0, 0, · · · , 0; · · · ; 0, 0, · · · , 0),

(2, 1) : ~d = (0, 1 , · · · , 0; 0, 0, · · · , 0; · · · ; 0, 0, · · · , 0),

level 2, superpixel (1, 1) : ~d = ( 1, 1 , 0, · · · , 0; 1, 1 , 0, · · · , 0; · · · ; 0, 0, 0, · · · , 0).

The solutions of the above local minimization problems , solved using a Newton method as
in (15) or a �xed point method for t iterations (inner iteration), de�nes the updated solution

12



φ̃ = φ̃+Qkc. Here Qk is the interpolation operator distributing ci,j to the corresponding bk× bk
block on level k as illustrated in (17). Then we obtain a multilevel method if we cycle through
all levels and all blocks on each level until the solution converges to the prescribe tolerance, tol
or reach the prescribe maximum cycle (outer iteration).

So �nally our implementation of the proposed multilevel method is then summarized in
Algorithm 1. Here Steps 2 − 3 simply update φ̃ from the �nest to the coarsest level k =

Algorithm 1 BC1 � Multilevel algorithm for the BC model

Given z, an initial guess φ̃ and the stop tolerance tol with L+ 1 levels,

1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the �rst iteration and the

updated solution at all later iterations)

2) Smooth for t iterations the approximation on the �nest level k = 1 that is solve

minφi,j F
loc
BC(φi,j , c1, c2) or (16) for i, j = 1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :

I If k ≤ L, compute the minimizer c of (19) or solve minci,j FBC1(ci,j);

I If k = L+ 1, solve (20) or minc F̂BC1(φ̃+ c) on the coarsest level.

Add the correction φ̃ = φ̃+Qkc where Qk is the interpolation operator distributing ci,j to the

corresponding bk × bk block on level k as illustrated in (17).

4) Return to Step 1 unless
‖φ̃−φold‖2
‖φ̃‖

2

< tol or until the prescribed maximum of cycles is reached.

Otherwise exit with φ = φ̃.

1, 2, . . . , L, L + 1 so they might be viewed as a single step. We will use the term BC1 to refer
the multilevel Algorithm 1.

In this algorithm, we recommend that we start updating our multilevel algorithm in a fast
manner is to adjust the �ne structure before the coarse level. We found in a separate experiment
that if we adjust the coarse structure before the �ne level, the convergence is slower.

3.2 Multilevel algorithm for the RC model

Generalization of the above algorithm to other models is much similar. For the RC model, the
discretized version of in (12) takes the following form

min
φ,c1,c2

FRC (φ, c1, c2) = µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j)

+ν
(
−A1 +

n∑
i=1

n∑
j=1

Hi,j

)2
+ ν
(
−A2 +

n∑
i=1

n∑
j=1

(
1−Hi,j

))2
.

(21)

Consider the minimization of (21) by the coordinate descent method on the �nest level 1:

Given φ(m)=
(
φ

(0)
i,j

)
with m = 0,

Solve φ
(m)
i,j = arg min

φi,j ,c1,c2∈R
F locRC (φi,j , c1, c2) for i, j = 1, 2, ..., n, (22)

Set φ
(m+1)
i,j =

(
φ

(m)
i,j

)
and repeat the above steps with m = m+ 1 until stopped. Here
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F locRC (φi,j , c1, c2) = FRC − F0 = µ̄

[
gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+ gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+ gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

]
+ λ1(zi,j − c1)2Hi,j + λ2(zi,j − c2)2(1−Hi,j)

+ ν(Hi,j −A1)2 + ν((1−Hi,j)−A2)2.

The term F0 refers to a collection of all terms that are not dependent on φi,j . For φi,j at the
boundary, Neumann's condition is used. In order to introduce the multilevel algorithm we �rst
rewrite (22) in an equivalent form:

ĉ = arg min
c∈R

F locRC

(
φ

(m)
i,j + c, c1, c2

)
, φ

(m+1)
i,j = φ

(m)
i,j + ĉ for i, j = 1, 2, ..., n. (23)

Similar to BC1, we arrive at the following local functional for ĉ on a general level:

FRC1 (ci,j) =µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β + ν

k2∑
k=k1

`2∑
`=`1

(−A1 +H(φ̃k,` + ci,j))
2

+µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2
+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)2

+λ2

k2∑
k=k1

`2∑
`=`1

(1−H(φ̃k,` + ci,j))(zk,` − c2)2 + µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+ν

k2∑
k=k1

`2∑
`=`1

(−A2 + (1−H(φ̃k,` + ci,j)))
2
. (24)

A single constant update on the current φ̃ on the coarsest level is given by solving

min
c
F̂RC1(φ̃+ c) = λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2 + ν

n∑
i=1

n∑
j=1

(
−A1 +H(φ̃i,j + c)

)2

+ λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃i,j + c)

)
(zi,j − c2)2

+ ν

n∑
i=1

n∑
j=1

(
−A2 +

(
1−H(φ̃i,j + c)

))2
. (25)

Our implementation of the proposed multilevel method is then summarized in Algorithm 2 which
will be referred to as RC1.

Before we conclude this section, we give a brief convergence analysis of BC1 and RC1. Let
N = n2 be the total number of pixels (unknowns). First, we compute the number of �oating
point operations (�ops) for BC1 for level k as follows:
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Algorithm 2 RC1 � Multilevel algorithm for the RC model

Given z, an initial guess φ̃ and the stop tolerance tol with L+ 1 levels,

1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the �rst iteration and the

updated solution at all later iterations)

2) Smooth for t iterations the approximation on the �nest level 1 i.e. solve

minφi,j F
loc
RC(φi,j , c1, c2) or (23) for i, j = 1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :

I If k ≤ L, compute the minimizer c of (24) or solve minci,j FRC1(ci,j);

I If k = L+ 1, solve (25) or minc F̂RC1(φ̃+ c) on the coarsest level .
Add the correction φ̃ = φ̃+Qkc where Qk is the interpolation operator distributing ci,j to the

corresponding bk × bk block on level k as illustrated in (17).

4) Return to Step 1 unless
‖φ̃−φold‖2
‖φ̃‖

2

< tol or until the prescribed maximum of cycles is reached.

Otherwise exit with φ = φ̃.

Quantities Flop counts for BC1

h, υ 4bkτk
λ1 term 2N
λ2 term 2N

s smoothing
steps

38bkτks

Then, the �op counts for all level is ξBC1 =
L+1∑
k=1

(4N + 4bkτk + 38bkτks) where k = 1 (�nest)

and k = L+ 1 (coarsest). Next, we compute the upper bound for BC1 as follows:

ξBC1 = 4(L+ 1)N +
L+1∑
k=1

(
4N

bk
+

38Ns

bk

)
= 4(L+ 1)N + (4 + 38s)N

L∑
k=0

(
1

2k

)
< 4N log n+ 12N + 76Ns ≈ O (N logN)

Similarly, the �ops for RC1 is given as

Quantities Flop counts for RC1

h, υ 4bkτk
λ1 term 2N
λ2 term 2N
ν term 4N

s smoothing
steps

31bkτks

Hence, the total �op counts for RC1 is ξRC1 =
L+1∑
k=1

(8N + 4bkτk + 31bkτks). This gives the

upper bound for RC1 as

ξRC1 = 8(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 8(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1

2k

)
< 8N log n+ 16N + 62Ns ≈ O (N logN)

15



One can observe that bothBC1 andRC1 are of the optimal complexityO(N logN) expected
of a multilevel method and ξRC1 > ξBC1 .

It may be remarked that both algorithms BC1 and RC1 are easily paralellizable and hence
there is much potential to explore parallel e�ciency. However below we consider how to improve
the sequence e�ciency in a simple and yet e�ective manner.

4 The new localized models

The complexity of the above presented algorithms is O(N logN) per cycle through all levels, for
an image sized n × n with N = n2. As this is optimal, for most problems, there is no need to
consider further reduction for man problems e.g. for image denoising. However, segmentation is a
special problem because evolution of level set functions φ is always local in selective segmentation.
Below we turn this locality into reformulations and explore further reduction of the O(N logN)
complexity, consequently achieving the super-optimal e�ciency.

Motivated by developing faster solution algorithms than Algorithms 1-2 and by methods
using narrow band region-based active contours, localized models amenable to fast solution
are proposed in this section respectively for the BC model [6] and the RC model [35] . It is
followed by presenting the corresponding multilevel algorithms to solve them. As expected, the
complexity of the new models will be directly linked to the length of segmented objects at each
iteration; at the discrete level, this length is usually O(

√
N). Our use of narrow band regions is

fundamentally di�erent from active contours in that we apply the idea to a model, not just to
a numerical procedure.

The key notation used below is the following, as shown in Fig.3. Given a level set function

Figure 3: New modelling setup: replacement of domain Ω1 by a smaller domain Ωγ .

φ (intended to represent Ω1), a local function b de�ned by

b (φ (x, y) , γ) = H (φ (x, y) + γ) (1−H(φ(x, y)− γ)) (26)

characterizes the narrow band region domain Ωγ = Ω1 (γ)∪Γ∪Ω2 (γ) surrounding the boundary
Γ, with Ω1 (γ) and Ω2 (γ) denoting the γ band inside and outside region from Γ respectively.
Similar notation is also used by [28, 43]. Note b = 1 inside Ωγ and 0 outside, and similarly
b (φ (x, y) , γ)H (φ) = 1 inside Ω1 (γ) and 0 outside i.e. b (φ (x, y) , γ) (1 − H (φ)) = 1 inside
Ω2 (γ) and 0 outside. Further after discretization, we de�ne the notation for the set falling into
the γ-band where b = 1:

B(φ) =
{

(i, j)
∣∣ − γ ≤ φi,j ≤ γ i.e. φ (x, y) + γ > 0 and φ(x, y)− γ < 0

}
. (27)
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We propose a localized version of the BC model [6] by the following

min
Γ,c1,c2

{
FBL (Γ, c1, c2) = µ

∫
Γ
dgds+ F γBL (Γ, c1, c2)

}
(28)

where the re�nement is seen in

F γBL (Γ, c1, c2) = λ1

∫
Ω1(γ)

(z − c1)2dxdy + λ2

∫
Ω2(γ)

(z − c2)2dxdy.

In level set formation,

min
φ,c1,c2

FBL (φ, c1, c2) = µ

∫
Ω
dg

√
|∇H (φ)|2 + β dxdy + λ1

∫
Ω

(z − c1)2b (φ, γ)H (φ) dxdy

+λ2

∫
Ω

(z − c2)2b (φ, γ) (1−H (φ)) dxdy. (29)

Next, we propose a localized RC model of the form

min
φ,c1,c2

FRL (φ, c1, c2) = µ

∫
Ω
g (|∇z (x, y)|)

√
|∇H (φ)|2 + β dxdy +

λ1

∫
Ω

(z − c1)2 b (φ, γ)H (φ) dxdy + λ2

∫
Ω

(z − c2)2 b (φ, γ) (1−H (φ)) dxdy

+ν
(∫

Ω
b (φ, γ)H (φ) dxdy −A1

)2
+ ν
(∫

Ω
b (φ, γ) (1−H (φ)) dxdy −A2

)2
.

(30)

5 Multilevel algorithms for localized segmentation models

We now show how to adapt the above Algorithms 1-2 to the new formulations (29) and (30).
Multilevel algorithm for the localized BC model. Discretize functional (29) as

FBL (φ, c1, c2) = µ̄

n−1∑
i=1

n−1∑
j=1

Gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,jbi,j

+λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j) bi,j

(31)

where G = dg, Gi,j = G(xi, yj), (i, j) ∈ B(φ). Minimization of (31) by the coordinate descent
method on the �nest level 1 leads to the following local minimization for only (i, j) ∈ B(φ(m)):

F locBL(φi,j , c1, c2) =µ̄

[
Gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+Gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+Gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

]
+ λ1(zi,j − c1)2Hi,jbi,j + λ2(zi,j − c2)2 (1−Hi,j) bi,j (32)

where bi,j = 1 if (i, j) ∈ B(φ(m)) else bi,j = 0.
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Algorithm 3 BC2 � Multilevel algorithm for the new local BC model

• Input γ and the other quantities as in Algorithm 1
• Apply Algorithm 1 to new functionals from replacing

min
φi,j

F locBC(φi,j , c1, c2) on the �nest level by min
φi,j

F locBL(φi,j , c1, c2)

min
ci,j

FBC1(ci,j) on coarse levels by min
ci,j

FBC2(ci,j)

All other steps are identical.

Further, the multilevel method for the localized BC model (29) at a general level for updating
block [k1, k2]× [`1, `2] amounts to minimizing the following local functional

FBC2 (ci,j) =µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β + µ̄

k2−1∑
k=k1

Gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+ β/2

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

H(φ̃k,` + ci,j)(zk,` − c1)2b(φ̃k,` + ci,j , γ)

+λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)2b(φ̃k,` + ci,j , γ) (33)

similar to Algorithm 1, where (i, j) ∈ B(φ̃). The di�erence is that φ̃ := φ̃ + ci,j only needs
updating if the set [k1, k2] × [`1, `2] ∩ B(φ̃) is non-empty. We will use the term BC2 to refer
the multilevel Algorithm 3.

Multilevel algorithm for the localized RC model. Functional (30) is discretized as

FRL (φ, c1, c2) = µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,jbi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j) bi,j

+ν
(
−A1 +

n∑
i=1

n∑
j=1

Hi,jbi,j

)2
+ ν
(
−A2 +

n∑
i=1

n∑
j=1

(1−Hi,j) bi,j

)2
.

(34)

Further at a general level, whenever a block [k1, k2] × [`1, `2] overlaps with B(φ̃) (i.e. the set
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Algorithm 4 RC2 � Multilevel algorithm for the new and local RC model

• Input γ and the other quantities as in Algorithm 2
• Apply Algorithm 2 to new functionals from replacing

min
φi,j

F locRC(φi,j , c1, c2) on the �nest level by min
φi,j

F locRL(φi,j , c1, c2)

min
ci,j

FRC1(ci,j) on coarse levels by min
ci,j

FRC2(ci,j)

All other steps are identical.

[k1, k2]× [`1, `2] ∩B(φ̃) is non-empty), the multilevel method minimizes

FRC2(ci,j) =µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β + µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+ µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

b
(
φ̃k,` + ci,j , γ

)
H(φ̃k,` + ci,j) (zk,` − c1)2

+ λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
b
(
φ̃k,` + ci,j , γ

)
(zk,` − c2)2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A1 + b

(
φ̃k,` + ci,j , γ

)
H
(
φ̃k,` + ci,j

))2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A2 +

(
1−H

(
φ̃k,` + ci,j

))
b
(
φ̃k,` + ci,j , γ

))2
(35)

and then updates φ̃ by φ̃+ ci,j . We will refer this Algorithm 4 as RC2.
For a single object extraction, Algorithms 3 - 4 have a complexity ofO(γn logN) = O(

√
N logN)

where logN refers to the number of levels. However they are only applicable to our selective
models; for global models such as the CV model, the band idea promotes local minimizers and
is hence not useful.

6 Numerical experiments

In order to demonstrate the strengths and limitations of the proposed multilevel method for
both the original and the localized segmentation models, we performed several experiments.
The main algorithms to be compared are
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Name Algorithm Description

BC0 Old : The AOS algorithm [6] for the original BC model [6];

BCP Old : The Pyramid scheme for BC0;

BC1 New : The multilevel Algorithm 1 for the BC model;

BC2 New : The multilevel Algorithm 3 for the localized BC model;

RC0 Old : The AOS algorithm [35] for the original RC model [35];

RCP Old : The Pyramid scheme for RC0;

RC1 New : The multilevel Algorithm 2 for the RC model;

RC2 New : The multilevel Algorithm 4 for the localized RC model.
Our aims of the tests are
i) to verify numerically the e�ciency as n increases � is an algorithm faster or slower than or of
the same magnitude as O(N logN) where N = n2;
ii) to compare the quality, we use the so-called the Jaccard similarity coe�cient (JSC) and Dice
similarity coe�cient (DSC):

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

, DSC =
2 |Sn ∩ S∗|
|Sn|+ |S∗|

where Sn is the set of the segmented domain Ω1 and S∗ is the true set of Ω1. The similarity
functions return values in the range [0, 1]. The value 1 indicates perfect segmentation quality
while the value 0 indicates poor quality.

The test images used in this paper are listed in Figure 4. They are four images used which
include 3 real medical images and 1 synthetic image (Problems 1 which have known solutions to
aid computing JSC and DSC). The markers set also are shown in Figure 4. The initial contour is
de�ned by the markers set. We remark that for an image of size n×n the number of unknowns
is N = n2 which means that for n = 256, 512, 1024, 2048, the respective number of unknowns
is N = 65536, 262144, 1048576, 4194304; we are solving large scale problems. Our algorithms
are implemented in MATLAB R2017a on a personal computer with Intel Core i7 processor,
CPU 3.60GHz, 16 GB RAM CPU. All the programs are stopped when tol = 10−4 or when the
maximum number of iterations, maxit = 1500 is reached.

6.1 Comparison of BC2 with BC0, BC1 and BCP

In the following experiments, we take the parameters λ1 = λ2 = 1, α = 0.01, β = 10−4 and
κ = 4 . Through the experiments it was observed that the parameters ε and η can be in a range
between ε = 1/n to 1 and η = 10−3 and 102.

First, we compare BC1 and BC2 using test Problems 1-3. All the images are of size 256×256.
We take µ̄ = 0.05n2 (Problem 1) and µ̄ = 0.1n2 (Problems 2− 3). For BC2, γ is between 30 to
100.

Figure 5(a) and 5(b) show the successful selective segmentation results by BC1 and BC2
respectively for capturing one object in Problems 1-3. We see that that the results from BC1 are
quite similar to BC2. The times needed by BC1 and BC2 to complete the selective segmentation
task are tabulated below

Problem BC1 BC2

1 12.1 8.4
2 11.7 6.8
3 11.9 9.3

where we can observe that BC2 is about 2 times faster than BC1.
Second, against BC2, we test BC0 that is based on additive operator splitting (AOS) [6], the

pyramid scheme BCP based on BC0 and BC1. For this purpose, we segment Problem 1 with
di�erent resolutions using µ = µ̄ = 0.05n2. The segmentation results for image size 1024× 1024
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Problem 1 Problem 2

Problem 3 Problem 4

Figure 4: Test images with the markers set.

are shown in Figure 6 and the results for all sizes in terms of quality and computation time
needed to complete the segmentation tasks are presented in Table 1. Columns 5 (ratios of the
CPU times) show that BC0, BCP and BC1 are of complexity O(N logN) while BC2 of the
`super'-optimal e�ciency O(

√
N logN).

Clearly BC0 (the AOS method for the BC model with added balloon force) provides an
e�ective acceleration for images of moderate size n ≤ 256. Signi�cant improvement can be seen
by BCP which shows that the pyramid method together with AOS is better than BC0. However,
we can see that our BC1 and BC2 are faster than BC0 and BCP, while BC2 is faster than the
other 3 algorithms. The computation time di�erences between BC2 with other 3 algorithms
become signi�cant as the image size increases to n ≥ 512. The BC0 result with � ** " indicates
that a very long time is taken to complete the segmentation task. One can see for example
BC0 needs almost 100 times more time compared to BC2 to complete segmentation in case of
1024× 1024. We also see that all algorithms provide high segmentation quality, from JSC and
DSC values.

6.2 Comparison of RC2 with RC0, RC1, RCP

In the following experiments, we �xed the parameters λ1 = λ2 = 1, α = 0.01 and β = 10−4.
Through the experiments it was observed that the parameters ν, ε and η can be in a range
between ν = 0.001 to 0.01 ε = 1/n to 1 and η = 10−3 to 10−2.

We �rst compare RC1 and RC2 using Problems 1-3. All the images are of size 256 × 256.
We take µ̄ = 0.05n2 (Problem 1) and µ = µ̄ = 0.1n2 (Problems 2-3). For RC2, γ is between 30
to 100. Figure 7(a) and 7(b) show the successful selective segmentation results of RC1 and RC2
respectively for capturing one object for Problems 1-3.

We then compare RC2 with RC0, RCP and RC1 using Problem 1. Here µ = µ̄ = 0.05n2

for all algorithms. The segmentation results for image size 1024 × 1024 shown in Figure 8 and
the quality measures and the computation time presented in Table 2 show that RC2 can be
100 times faster than RC0, 17 times faster than RCP and 4 times faster than RC1 for the case
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BC1 BC2

BC1 BC2

(a) BC1 (b) BC2

Figure 5: Segmentation of Problems 1-3: Column (a) BC1 and (b) BC2.

BC0 BCP

BC1 BC2

Figure 6: Segmentation of Problem 1 of size 1024× 1024 for BC0, BCP, BC1 and BC2.
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Table 1: Comparison of computation time (in seconds) and segmentation quality of BC0, BCP and BC1
with our BC2 for Problem 1. The ratio close to 4.4 for time indicates O(N logN) speed while a ratio
of 2.2 indicates O(

√
N logN) �super-optimal" speed, where the number of unknowns N = n2. Here and

later, `**' means taking too long to run.

Algorithm Size n× n
Number of
iteration
(outer)

Time
tn

tn
tn−1

JSC DSC

256× 256 1293 227.8 1.0 1.0

BC0 512× 512 1276 898.5 3.9 1.0 1.0
1024× 1024 1234 4095.5 4.6 1.0 1.0
2048× 2048 ** ** ** **
256× 256 4 61.0 1.0 1.0

BCP 512× 512 2 180.0 3.0 1.0 1.0
1024× 1024 2 812.3 4.5 1.0 1.0
2048× 2048 2 3994.0 4.9 1.0 1.0
256× 256 2 11.6 1.0 1.0

BC1 512× 512 2 43.7 3.8 1.0 1.0
1024× 1024 2 173.2 4.0 1.0 1.0
2048× 2048 2 736.9 4.3 1.0 1.0
256× 256 2 10.5 1.0 1.0

BC2 512× 512 2 21.6 2.1 1.0 1.0
1024× 1024 2 42.5 2.0 1.0 1.0
2048× 2048 2 80.5 1.9 1.0 1.0

of 1024 × 1024: In particular, ratios of the CPU times verify that RC0, RCP and RC1 are of
complexity O(N logN) while RC2 of the `super'-optimal e�ciency O(

√
N logN). Furthermore,

the RC0 result with � ** " indicates that too much time is taken to complete the segmentation
task. The high values of JSC and DSC show that RC0, RCP, RC1 and RC2 provide high
segmentation quality.

For the bene�t of readers, in Figure 9, we demonstrate a convergent plot based on Tables
1-2 of our proposed multilevel based models (BC2 and RC2) in segmenting Problem 1 of size
2048×2048. One can see that the models are fast, converging to tol in 2 iterations that is before
the prescribed maxit.

Furthermore, we have extended the number of iterations for BC2 and RC2 up to 6 iterations
and plot the residual history in the same Figure 9. We can observe that BC2 and RC2 keep
converging.

6.3 Sensitivity tests on the algorithmic parameters

Sensitivity is a major issue that has to be addressed and tested below. We shall pay particular
attention to the regularizing parameter β that was known to be sensitive to convergence of a
geometric multigrid method [4]; it turns out that our Algorithms 1-4 are more advantageous as
they are not very sensitive to β.

Tests on parameter t. The inner iteration t indicates the number of iterations needed to
solve the minimization problem in each level. We test several numbers of t required by BC2 and
RC2 to segment heart shape in Problem 1 and record the outer iteration needed to achieve tol,
the CPU time and the quality of segmentation. The results are tabulated in Table 3.

We can see that BC2 and RC2 work in e�ciently and e�ectively using only 1 inner iteration
i.e t = 1. As we increase t, the quality of segmentation for BC2 and RC2 reduce and need more
CPU time and outer iteration as well.
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Table 2: Comparison of computation time (in seconds) and segmentation quality of RC0, RCP and RC1
with RC2 for Problem 1. Again, the ratio close to 4.4 for time indicates O(N logN) speed while a ratio
of 2.2 indicates O(

√
N logN) �super-optimal" speed, where the number of unknowns N = n2.

Algorithm Size n× n
Number of
iterations
(outer)

Time
tn

tn
tn−1

JSC DSC

256× 256 1500 260.5 1.0 1.0

RC0 512× 512 1385 975.0 3.7 1.0 1.0
1024× 1024 1404 4735.0 4.9 1.0 1.0
2048× 2048 ** ** ** **
256× 256 4 62.5 1.0 1.0

RCP 512× 512 2 187.2 3.0 1.0 1.0
1024× 1024 2 822.3 4.4 1.0 1.0
2048× 2048 2 3996.3 4.9 1.0 1.0
256× 256 2 13.0 1.0 1.0

RC1 512× 512 2 48.4 3.7 1.0 1.0
1024× 1024 2 189.9 3.9 1.0 1.0
2048× 2048 2 819.0 4.3 1.0 1.0
256× 256 2 11.5 1.0 1.0

RC2 512× 512 2 24.0 2.1 1.0 1.0
1024× 1024 2 46.9 2.0 1.0 1.0
2048× 2048 2 87.6 1.9 1.0 1.0

Table 3: Dependence of BC2 and RC2 on t for heart shape in Problem 1 (Figure 4).

Algorithm
t:inner
itera-
tion

Number
of

iterations
(outer)

CPU JSC DSC

1 2 8.1 1.0 1.0

BC2 2 6 22.4 1.0 1.0
3 7 26.7 0.9 1.0

1 2 8.8 1.0 1.0

RC2 2 9 35.3 0.9 1.0
3 7 28.7 0.9 1.0
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RC1 RC2

RC1 RC2

(a) RC1 (b) RC2

Figure 7: Segmentation of Problems 1-3. (a) and (b) show the segmentation using RC1 and RC2
respectively.

RC0 RCP

RC1 RC2

Figure 8: Segmentation of Problem 1 of size 1024 × 1024 for RC0, RCP, RC1 and RC2. For the same
segmentation result, RC2 can be 100 times faster than RC0, 17 times faster than RCP and 4 times faster
than RC1; see Table 2. 25



Table 4: Dependence of our new BC2 and RC2 on β for heart shape in Problem 1 (Figure 4).

β BC2 RC2
FBL (φ, c1, c2) JSC DSC FRL (φ, c1, c2) JSC DSC

1 2.461759e+09 0.6 0.7 5.177135e+10 0.6 0.7

10−1 2.258762e+09 0.9 1.0 5.168056e+10 0.9 1.0

10−2 2.197002e+09 1.0 1.0 5.164663e+10 1.0 1.0

10−4 2.178939e+09 1.0 1.0 5.163375e+10 1.0 1.0

10−6 2.177950e+09 1.0 1.0 5.163266e+10 1.0 1.0

10−8 2.176280e+09 1.0 1.0 5.163252e+10 1.0 1.0

10−10 2.175254e+09 1.0 1.0 5.163243e+10 1.0 1.0

Tests on parameter γ. The band width parameter γ is an important parameter to be
tested. Its size determines how local the resulting segmentation will be. Below we will demon-
strate the e�ect of applying di�erent values of γ to BC2 and RC2.

We aim to segment an organ in Problem 4 by for BC2 and RC2 with varying γ and the
results are presented in Figure 10. Columns 2 and 3 of Figure 10 show the results using 3 γ
values (more spread out) for BC2 and RC2. Clearly, unless the value is too small (that results
in an incorrect segmentation), in general, both BC2 and RC2 are not much sensitive to γ choice.

Tests on parameter β. Finally, we examine the sensitivity of BC2 and RC2 on this impor-
tant parameter β. Seven di�erent values of β are tested: β = 1, 10−1, 10−2, 10−4, 10−6, 10−8

and 10−10 in segmenting the heart shape in Problem 1. For a quantitative analysis, we evaluate
the energy value FBL (φ, c1, c2) in equation (31), FRL (φ, c1, c2) in equation (34) and the indexes
JSC and DSC. The values of FBL (φ, c1, c2), FRL (φ, c1, c2), JSC and DSC are tabulated in Table
4. One can see that as β decreases, the functional FBL (φ, c1, c2) and FRL (φ, c1, c2) gets closer
to each other. The segmentation quality measured by JSC and DSC increases as β decreases.
This �nding shows that BC2 and RC2 are only sensitive to (unrealistic) large β but less to a
very small β. In separate experiments, we found that BC2 and RC2 algorithms are not much
sensitive to η, α, ε, and ν (involve in RC2 only), although there exist choices what give the
optimal quality of segmentation.
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7 Conclusions

In this work, we presented an optimization based multilevel method to solve two variational and
selective segmentation models (BC and RC), though the idea is applicable to other global and
variational models.

In Part 1, we presented 2 algorithms (BC1, RC1) for solving the respective models with each
algorithm having the expected optimal complexity of O(N logN) for segmentation of an image
of size n×n or N = n2 unknowns (pixels). These algorithms can be adapted to solve other seg-
mentation models. In Part 2, we reformulated the models so that they became localized versions
that operate within a banded region of an active level set contour, and consequently obtained
2 further algorithms (BC2, RC2) with each algorithm having the `super'-optimal complexity
of approximately O(

√
N logN) depending on the objects to be segmented. These algorithms
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Figure 9: The number of iterations needed by BC2 and RC2 to achieve a set tol (residual) in segmenting
an image of size 2048× 2048. With tol = 10−4, BC2 and RC2 need 2 iterations. The extension up to 6
iterations shows that residuals of BC2 and RC2 keep reducing.

(a) BC2 γ=1 (d) RC2 γ=1

(b) BC2 γ = 7 (e) RC2 γ = 7

(c) BC2 γ = 100 (f) RC2 γ = 100

Figure 10: Dependence of algorithms BC2, RC2 on parameter γ for Problem 4.
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are only applicable to our selective segmentation models. Numerical experiments have veri�ed
the complexity claims, and comparisons with related algorithms (BC0, BCP, RC0, RCP for the
standard models) show that the new algorithms are many times faster than BC0, BCP, RC0,
RCP, in achieving comparable quality of segmentation.

Future works will address convexi�ed selective variational models such as [39] especially in
high dimensions and other image processing tasks such as image registration and joint regis-
tration and segmentation models. There is much scope to explore the presented algorithms on
parallel platforms, especially for 3D problems.
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