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Abstract 

Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and 

repeated overuse can lead to addiction and deleterious effects on health.  Alcohol is thought 

to modulate neuronal function through low affinity interactions with proteins, in particular 

with membrane channels and receptors.  Paradoxically, alcohol acts as both a stimulant and a 

sedative.  The exact molecular mechanisms for the acute effects of ethanol on neurons, as 

either a stimulant or a sedative, however remain unclear.  We investigated the role that the 

heat shock transcription factor, HSF-1, played in determining a stimulatory phenotype of 

Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 

mM; 0.1% v/v).  Using genetic techniques we demonstrate that either RNAi of hsf-1 or use of 

an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol 

exposure evident in wild-type animals.  We identify that the requirement for HSF-1 in this 

phenotype was IL2-neuron specific and required the downstream expression of the α-

crystallin orthologue HSP-16.48.  Using a combination of pharmacology, optogenetics and 

phenotypic analyses we determine that ethanol activates a Gαs – cAMP – protein kinase A 

signalling pathway in IL2 neurons to stimulate nematode locomotion.  We further implicate 

the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as 

an end-point for the Gαs-dependent signalling pathway.  These findings establish and 

characterise a distinct neurosensory cell signalling pathway that determines the stimulatory 

action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway. 
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Introduction  

Alcohol is one of the most prevalent addictive substances and its overuse produces a 

severe burden on society (Who 2011).  Acute effects of alcohol include motor incoordination, 

sedation and anaesthesia.  Alcohol also acts as a stimulant, activating neurotransmitter release 

within the brain’s reward circuitry, increasing heart rate and inducing aggression and risk-

taking (Hendler et al. 2013).  The cellular mechanisms underlying either the anaesthetic or 

stimulatory effects of ethanol are only now being elucidated.  Ethanol was initially 

hypothesised to act through indirect perturbations of the lipid environment thereby affecting 

broadly all membrane protein function (Harris et al. 2008).  Recent work instead implicates 

more direct effects on specific protein targets, particularly membrane proteins such as ion 

channels and receptors (Howard et al. 2014; Trudell et al. 2014).  Ethanol has a very simple 

molecular structure and is thought to exert its intoxicating effects through interactions with 

these target proteins with very low affinity (~0.1M) to alter the natural dynamics of protein 

function (Howard et al. 2011; Olsen et al. 2014).  A complete understanding of both the acute 

and chronic effects of alcohol within the nervous system is an important unresolved question 

in physiology.  

 Invertebrates are excellent genetic models for identification of cellular/molecular 

mechanisms governing the sedative properties of ethanol and other anaesthetics (Barclay et 

al. 2010; Devineni and Heberlein 2013; Bettinger and Davies 2014).  In Drosophila, studies 

of acute ethanol intoxication have implicated a large number of proteins and signalling 

pathways (Kaun et al. 2012).  In Caenorhabditis elegans, proteins such as Munc18 and Rab3 

(Kapfhamer et al. 2008; Graham et al. 2009; Johnson et al. 2013), the BK channel slo-1 

(Davies et al. 2003), the leak channel regulator Lightweight (Speca et al. 2010), chloride 

intracellular channels (Bhandari et al. 2012) and the α-crystallin orthologue HSP-16.48 

(Johnson et al. 2016) all affect sensitivity to high levels of ethanol (400mM).   The use of 
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very high external ethanol in C. elegans behavioural analysis is thought to be a consequence 

of poor penetration through the nematode cuticle (Alaimo et al. 2012).  Indeed, internal 

concentrations in response to 400mM external ethanol are estimated between 20 and 60mM 

(Alaimo et al. 2012; Johnson et al. 2016), although not all studies are in agreement (Mitchell 

et al. 2007).  In addition to sedation, at lower concentrations ethanol acts as a stimulant 

(Phillips and Shen 1996; Wolf et al. 2002; Balino et al. 2016).  In C. elegans, ethanol-

induced stimulation occurs at external concentrations (17 mM, 0.1%) whose absolute values 

would be physiologically consistent with blood alcohol limits for impaired driving (House of 

Commons Transport Committee 2010).  Acute exposure of nematodes to 17 mM ethanol 

causes a small, but characteristic increase in locomotion rate (Graham et al. 2009; Johnson et 

al. 2013).  Virtually nothing is known about the cellular and molecular basis underlying C. 

elegans phenotypes at this ethanol concentration. 

 Heat shock activates a transcriptional response to toxic insults whereby protective 

cellular chaperone (heat shock protein; HSP) expression is increased under the control of the 

heat shock transcription factor (HSF1) (Anckar and Sistonen 2011).  The HSF1-HSP pathway 

is also ubiquitously involved in stress-independent cellular functions such as polypeptide 

folding, protein-protein interactions (Kampinga and Craig 2010) and proteostasis (Morimoto 

2011) as well as contributing to diseases like cancer (Mendillo et al. 2012) and 

neurodegeneration (Kondo et al. 2013).  In C. elegans RNAi or loss-of-function mutations of 

hsf-1 increase stress sensitivity, but also accelerate ageing (Hsu et al. 2003; Prahlad et al. 

2008; Baird et al. 2014).  We have recently shown that hsf-1 loss-of-function increases 

sensitivity to 400 mM ethanol (Johnson et al. 2016).  This hypersensitivity was partially the 

result of the downstream basal expression of HSP-16.48, an orthologue of the human small 

heat shock protein α-crystallin, in a process unrelated to an HSF-1-dependent heat shock 

stress response.  Here, we identify that the stimulatory ethanol phenotype also required HSF-
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1, but specifically in 6 IL2 chemosensory neurons and could be completely rescued by 

transgenic expression of HSP-16.48 in IL2 neurons of the hsf-1 mutant.  Using a combination 

of pharmacology, genetics and optogenetics, we determined further that this ethanol-

dependent stimulation of motility acts via a Gαs-cAMP-protein kinase A signalling pathway 

within the IL2 sensory neurons and identifies the exocytotic protein UNC-18 as a 

downstream effector for PKA.  Although individual components of the Gαs pathway have 

been linked previously to the neuronal effects of ethanol, this study uniquely characterises the 

entire signalling pathway in ethanol-dependent stimulation.  
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Materials and Methods 

Nematode culturing, strains and genetics.   C. elegans were cultured under standard 

conditions at 20°C on Nematode Growth Media (NGM) agar plates with OP50 E. coli as a 

food source as previously described (Brenner 1974; Graham et al. 2009; Edwards et al. 

2012).  These experiments used the following strains:  Bristol N2 (wild-type), PS3551 hsf-

1(sy441), KG524 gsa-1(ce94), KG421 gsa-1(ce81), MT363 goa-1(n363), NM1380 egl-

30(js126), KG1180 lite-1(ce314) and NL2099 rrf-3(pk1426).  To investigate effects of 

single-copy transgenic rescue of hsf-1(sy441) mutants we analysed the OG532 (hsf-

1(sy441);drSi13[hsf-1p::hsf-1::GFP::unc-54 3’UTR + Cbr-unc-119(+)]) and OG580 (hsf-

1(sy441);drSi28[hsf-1p::hsf-1(R145A)::GFP::unc-54 3’UTR + Cbr-unc-119(+)]) strains 

(Morton and Lamitina 2013) which are single-copy MosSCI-produced rescues of the hsf-

1(sy441) mutant.  Basal locomotion rates for each strain can be found in Table S1.  

Transgenic animals were derived by germline injection as previously described (Mello et al. 

1991; Graham et al. 2009; Edwards et al. 2012).  All injections were performed with 10 ng/µl 

indicated construct) and 30 ng/µl (indicated co-injection marker) and made up to 100 ng/µl 

total with empty filler DNA (either pUC19 or pBluescript).  For each transgenic strain, 3 

independent lines were isolated and tested phenotypically.  The results presented were 

consistent for all individual lines; however, individual line results can be found in Table S2.  

Transgenic lines used in this study include the following:  N2;ulvEx[Phsf-1::hsf-1], 

N2;ulvEx[Prab-3::hsb-1], N2;ulvEx[Pklp-6::hsb-1], N2;ulvEx[Prab-3::hsp-16.48]; 

N2;ulvEx[Prab-3::hsp-16.48 ∆38-44], N2;ulvEx[Pklp-6::hsp-16.48], N2;ulvEx[Punc-18::unc-18 

S322A], N2;ulvEx[Pklp-6::unc-18 S322A], N2;ulvEx[Pklp-6::kin-1::Pklp-6] , hsf-

1(sy441);ulvEx[Phsf-1::hsf-1], hsf-1(sy441);ulvEx[Prab-3::hsf-1], hsf-1(sy441);ulvEx[Pmyo-

3::hsf-1], hsf-1(sy441);ulvEx[Pglr-1::hsf-1], hsf-1(sy441);ulvEx[Punc-17::hsf-1], hsf-

1(sy441);ulvEx[Posm-6::hsf-1], hsf-1(sy441);ulvEx[Pgcy-8::hsf-1], hsf-1(sy441);ulvEx[Pklp-
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6::hsf-1], hsf-1(sy441);ulvEx[Prab-3::hsp-16.48], hsf-1(sy441);ulvEx[Prab-3::hsp-16.48 ∆38-

44] and hsf-1(sy441);ulvEx[Pklp-6::hsp-16.48].  Transgenic constructs in Bristol N2 were co-

expressed with either a Psur-5::GFP or a Prab-3::GFP marker.  To indicate appropriate cellular 

expression for additional cell-tissue specific promoters, each of these transgenics used a GFP 

co-expression marker under the control of the same promoter.  IL2 neurons were visualised 

with the promoter::GFP reporter hsf-1(sy441);ulvEx[Pklp-6::GFP; Pmyo-2::mCherry].  To 

examine cell-specific RNAi, Bristol N2 worms were injected with the plasmid Pklp-6::kin-

1::Pklp-6, which drove cell-specific expression of kin-1 (catalytic subunit of C. elegans protein 

kinase A) in both the forward and reverse direction (Esposito et al. 2007).  

RNAi experiments.  RNAi experiments were performed using the rrf-3(pk1426) strain.  

RNAi was induced by feeding (Kamath and Ahringer 2003) using the ORFeome-based RNAi 

library (Rual et al. 2004) as described previously (Johnson et al. 2016).  HT115 RNAi 

bacteria were cultured in LB media with 100 µg/ml ampicillin and spotted onto 60 mm 

diameter NGM plates supplemented with 1 mM isopropyl β-1-thiogalactopyranoside (IPTG) 

and 25 µg/ml carbenicillin.  NGM plates were dried for 4 days before spotting.  5 L3-L4 

worms were added to each RNAi plate and cultured at 20°C.  Phenotypic analysis was 

performed on first generation progeny fed with the indicated RNAi bacterial clones.  For the 

negative control for the RNAi screen, worms were fed with an empty feeding vector. 

Cloning.  C. elegans genes of interest were amplified from either Bristol N2 genomic DNA 

(hsp-16.48) or cDNA (hsf-1), cloned into pDONR201 and recombined into DEST vectors to 

create tissue-specific expression vectors, as previously described (Johnson et al. 2016).  For 

hsb-1, the gene was amplified from Bristol N2 genomic DNA using the following primers: 

hsb-1 attB forward:  

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCGATGAGAAGTCTACC 
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hsb-1 AttB reverse: 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTATTGAGCGCTTGGCGGATGTTC 

Mutagenesis of the hsp-16.48 gene was performed using the Q5 Site-Directed Mutagenesis 

Kit (New England BioLabs) as per the manufacturer’s instructions.  The unc-18 S322A 

expression vector was created using the Gene Tailor mutagenesis kit (Invitrogen) from a 

vector carrying the unc-18 cDNA under the control of the unc-18 genomic flanking regions 

(gift from Dr. H. Kitayama, Kyoto University, Japan) (Gengyo-Ando et al. 1996).  To create 

the Pklp-6::unc-18 construct, the existing unc-18 promoter was excised by EcoRI and BamHI 

restriction digest and replaced with klp-6 promoter using the NEBuilder  DNA assembly 

(New England BioLabs).  For glutathione-S-transferase (GST) fusion protein production, 

unc-18 was subcloned into pGEX-6p-1 as previously described (Edwards et al. 2012).   

All C. elegans promoter fragments were amplified from Bristol N2 genomic DNA and cloned 

into pPD117.01 (kind gift of A. Fire, Stanford University) in place of Pmec-7.  These vectors 

were converted into Gateway DEST vectors using a conversion cassette (Life Technologies).  

Prab-3 (kind gift of M. Nonet, Washington University in St. Louis), Pmyo-3 (kind gift of A. Fire, 

Stanford University) and Phsf-1 are previously described (Edwards et al. 2012; Johnson et al. 

2016).  The following primers were used for additional promoter cloning: 

Punc-17 forward:  AGTCGGCGCGCCATCCGTTCCCATCCGCTTCATC 

Punc-17 reverse:  AGGAGGATCCGGTTACTATTTTGAACAAGAGATGCGG 

Pglr-1 forward:  AGTCGGCGCGCCCTGTAGCCGGTATGCACTGATAAC 

Pglr-1 reverse:  AGTCGGATCCTGTGAATGTGTCAGATTGGGTG 

Posm-6 forward:  ATGTGGCGCGCCCAGTGGAATCACCATTGGGTATCCAG 
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Posm-6 reverse:  GGGTGGATCCGAAGGTAATAGCTTGAAAGAGATATAAGCCC 

Pgcy-8 forward:  AGTCGGCGCGCCAACTACCTTCCTCCGCGTCC 

Pgcy-8 reverse:  AGTCGGATCCTTTGATGTGGAAAAGGTAGAATCG 

Pklp-6 forward:  CCCCGGCGCGCCAACGTCCCAGACAATTTCAAC 

Pklp-6 reverse:  CTACGGATCCGGAGTCACCCTTTCCCCTTATTCTG 

The Pklp-6::kin-1::Pklp-6 construct was made as follows.  A 750 bp fragment of kin-1 was 

amplified from the Vidal library clone (Rual et al. 2004) and sub-cloned into the Pklp-6::GFP 

expression vector, downstream of Pklp-6 in place of GFP, using the NEBuilder cloning kit 

(New England BioLabs).  The Pklp-6::kin-1 PCR fragment was then amplified from this 

construct and again sub-cloned into the same Pklp-6 construct as before, but in reverse.  

Correct construction was confirmed by PCR and sequencing.  Primers used were as follows: 

kin-1 RNAi fwd:  CTATCGATTCGCGGCCATCACAAGTTCGAATCGGA 

kin-1 RNAi rev (step 1):  CTTGTGGGCTTTTGTATAGTTCGTCCGGATAAC 

kin-1 RNAi rev (step 2):  CTATCGATTCGCGGCCATCACAAGTTGGATAACTAC 

Protein phosphorylation and mass spectrometry:  For in vitro biochemistry, recombinant 

proteins (GST, GST-UNC-18) were produced as described previously (Edwards et al. 2012).  

For phosphorylation experiments, 2 µg of substrate protein was incubated with 2 U of PKA 

catalytic subunit (Sigma), 100 µM ATP and 2 µCi [γ-32P]ATP (GE Healthcare) in a 50 µl 

final reaction volume of  MES buffer (50 mM MES, 10 mM MgCl2, 1 mM DTT, 0.5 mM 

EDTA, pH 6.9).  Reactions were incubated at 30°C for 3 hours before termination.  To 

determine phosphorylation, 20 µl of the kinase reaction was separated by SDS-PAGE, stained 

with Coomassie Blue dye, destained overnight in destainer (35% ethanol, 2% glycerol (v/v)), 
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air-dried in Hoeffer Easy Breeze plastic frames (Thermo Fisher Scientific), exposed to a 

phosphor screen for 2-4 hours and scanned by a PhosphorImager 425 (Molecular Dynamics).  

For in vitro phosphorylation site determination, phosphorylated samples were separated on 

NuPAGE 4-12% Bis-Tris precast gels (Invitrogen) and stained with Coomassie Blue dye 

before excision of protein bands.  Gel plugs were destained in 50% acetonitrile (v/v)/50 mM 

ammonium bicarbonate and dried before incubation in trypsin (5 ng/µl in 50 mM ammonium 

bicarbonate) for 16 hours at 37°C.  Peptides were then extracted by sonication of gel plugs in 

60% (v/v) acetonitrile/1% (v/v) trifluoroacetic acid.  Extracts were thoroughly dried and 

ZipTipped (Millipore) before electrospray ionisation mass spectrometry (MS).  Residual 

peptides were resuspended in 50% (v/v) acetonitrile/0.05% trifluoroacetic acid, and 5 µl of 

suspension was delivered into a QStar Pulsar I hybrid quadrupole time-of-flight MS (AB 

Sciex) by automated in-line liquid chromatography (integrated LCPackings System, 5 mm 

C18 nano-precolumn and 75 µm X 15 cm C18 PepMap column (Dionex)).  A gradient from 5 

– 48% acetonitrile/0.05% trifluoroacetic acid (v/v) in 60 minutes was applied at a 300 nl/min 

flow rate and survey scans of 1 s were acquired for m/z 400-2000.  The most intense ions 

were selected for tandem mass spectrometry (MS/MS) with 2 s accumulation times and a 

dynamic exclusion of 30 s.  Identification and analysis was performed using MASCOT 

software (Matrix Science). 

Optogenetics.  JellyOp (Bailes et al. 2012) and hRh1 (Bailes and Lucas 2013) coding 

domain sequences were PCR amplified from pcDNA3.1 and pcDNA3.5 expression vectors 

respectively and sub-cloned downstream of Pklp-6 in pPD117.01 (detailed above) via Gibson 

Cloning techniques (NEB, UK).  The optogenetic vectors were then transformed by germline 

injection into C. elegans as described above.  The vectors were expressed in the lite-1(ce314) 

background to prevent any potential photophobic responses (Husson et al. 2013).  All 

optogenetic worms strains were then grown in the dark at 20°C on standard NGM plates with 



12 

 

OP50 bacteria as a food source.  One day prior to assays, late L4 worms were picked onto 

standard 60 mm NGM plates with 50 µl OP50 supplemented with 100 µM 9-cis-Retinal, an 

active chromophore for opsin.  All plates and worms were handled either in the dark or under 

a dim red light (>630 nm).  Thrashing assays were performed under the dim red light in 

Dent’s solution (140 mM NaCl, 6 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM Hepes, pH 

7.4, with bovine serum albumin at 0.1 mg/ml), in the presence or absence of 17 mM ethanol, 

using a Leica MZ10F-stereomicroscope (Leica, UK) equipped with a pE-300 LED 

fluorescence light source (CoolLED, UK).  To activate opsin, worms were illuminated with  a 

single flash of 100% power green LED through the ET GFP filter set for 5 seconds.  For 

hRh1, opsin activation occurred as soon as they were placed in the Dent’s solution and 

thrashing was quantified after 10 minutes acclimation (as below).  For JellyOp, worms were 

illuminated following the 10 minutes acclimation in Dent’s solution just prior to thrashing 

quantification, as the JellyOp activation is more transient (Bailes et al. 2012).  Assays were 

repeated on three separate days to confirm replicability. 

Behavioural Assays.  Phenotypic analysis was performed in a temperature controlled room 

on young adult hermaphrodites from sparsely populated plates grown at 20°C.  Unless 

otherwise indicated, experiments were conducted at an ambient temperature of 20°C.  Here, 

locomotion rate was measured as thrashing (Gjorgjieva et al. 2014) in 200 µl Dent’s solution 

as previously described (Graham et al. 2009; Johnson et al. 2013).  One thrash was defined as 

a complete movement from maximum to minimum amplitude and back again.  For acute 

ethanol experiments, ethanol was diluted to 17 mM in Dent’s solution and locomotion was 

quantified following 10 minutes exposure and normalised as a percentage of the mean 

thrashing rate of untreated worms measured each day (at least 10 control worms per strain).  

For forskolin (Sigma) experiments, forskolin was diluted in dimethyl sulfoxide (DMSO) and 

added to Dent’s solution in the indicated concentration.  For direct comparison in these 
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experiments, control (untreated) worms were exposed to Dent’s with an equal concentration 

of DMSO.  H-89 (Sigma) was diluted in water and added to the Dent’s/DMSO solution in the 

indicated concentration.  For chemotaxis assays (Kashyap et al. 2014), experimental assay 

plates (100 mm Petri dishes) contained 2% (w/v) agar, 5 mM KH2PO4, 1 mM CaCl2, 1 mM 

MgSO4.  Plates were poured 3 days prior to use and allowed to dry.  Worms were washed in 

M9 buffer and placed on the centre of the plate.  One microliter of the attractant (100% 

ethanol) and a negative control (distilled water) were pipetted on opposite sides of the plate.  

The number of worms on either side of the plate was calculated following 90 minutes.  The 

chemotaxis index (C.I.) was calculated as C.I. = (# worms at attractant - # worms at control) / 

total number of worms.  For worm avoidance assays, a 0.9 cm ring of a substance was made 

by a stamping procedure on unseeded NGM plates.  Immediately after stamping, 30 worms 

were placed within the centre of the ring, completed within 2 minutes.  Following 10 minutes 

exposure, the number of worms that had crossed the ring was counted.   In preliminary 

experiments, 0.9 cm was found sufficient to permit most worms to cross a neutral substance 

(distilled water) within 10 minutes.  All data are expressed as mean ± SE.  As indicated, 

significance was tested by Student’s t-test, Mann-Whitney U-test or analysis of variance 

(ANOVA) with Tukey post-hoc comparisons where appropriate. 

Data Availability.  Strains are available upon request.  
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Results 

HSF-1, the heat shock transcription factor, is involved in a plethora of cellular 

functions (Anckar and Sistonen 2011; Morimoto 2011; Vihervaara and Sistonen 2014).  In C. 

elegans, the hsf-1(sy441) allele is a viable loss-of-function point mutation in the hsf-1 gene 

that acts as an inhibitor of HSF-1 transcriptional activity (Hajdu-Cronin et al. 2004), 

increasing temperature sensitivity and decreasing lifespan (Baird et al. 2014).  Nematodes 

respond to high external ethanol concentration (400 mM) by a dose-dependent decrease in 

coordinated locomotion (Davies et al. 2003; Graham et al. 2009) and we have recently 

characterised a novel role for HSF-1 in determining this phenotype (Johnson et al. 2016).  

Additionally, however, worms respond phenotypically to low levels of external ethanol (17 

mM) with a reproducible enhancement in locomotor activity (Graham et al. 2009; Johnson et 

al. 2013).  In Bristol N2 wild-type worms, this stimulation is a 5-10% increase in basal 

locomotion rate, as quantified by thrashing (Figure 1A).  We tested whether the hsf-1(sy441) 

mutation would also hypersensitise worms to the effects of low concentrations of ethanol.    

Surprisingly, we found that the stimulatory effect of 17 mM external ethanol was completely 

absent in worms containing the hsf-1(sy441) mutation (Figure 1A).  The hsf-1(sy441) mutant 

is well established to have a temperature-sensitive phenotype and we verified that the low 

dose ethanol phenotype was not affected by the ambient temperature (Figure 1B); however, 

all other described experiments were conducted at 20°C standard temperature. 

HSF-1 is an ubiquitously expressed transcription factor that is active in all cell types; 

however, the  role of hsf-1(sy441) in the hypersensitivity to 400 mM external ethanol is 

dependent upon pan-neuronal hsf-1 expression (Johnson et al. 2016).  We therefore 

investigated next whether the ablation of the low (17 mM) ethanol stimulation of locomotion 

phenotype observed in the hsf-1(sy441) mutant was also pan-neuronal in nature by tissue-

specific transgenic rescue.  To allow for a direct comparison of the stimulatory effects of 
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ethanol independent of basal locomotor rates, the data are presented as thrashing rate 

normalised to untreated worms of the same strain as done in previous studies (Davies et al. 

2003; Graham et al. 2009; Johnson et al. 2016).  Basal rates for all strains, however, can be 

compared in Table S1.  Whilst overexpression of hsf-1 in Bristol N2 controls had no 

additional effect, transgenic rescue of hsf-1(sy441) under its own promoter (Phsf-1::hsf-1)  or 

specifically under the control of a pan-neuronal promoter (Prab-3::hsf-1) completely rescued 

the stimulatory ethanol phenotype (Figure 2A).  Transgenic rescue of hsf-1(sy441) using a 

body wall muscle promoter (Pmyo-3::hsf-1), however, was insufficient to rescue.  As a 

complementary approach to investigate hsf-1 function in the ethanol phenotype, we cloned 

and overexpressed hsb-1 in Bristol N2.  hsb-1 is a negative regulator for hsf-1 transcriptional 

function and it’s overexpression in C. elegans results in similar phenotypes to loss-of-

function of hsf-1 (Satyal et al. 1998).  Overexpression of hsb-1 pan-neuronally in Bristol N2 

worms (Prab-3::hsb-1) also resulted in a loss of ethanol stimulation of locomotion similar to 

that seen in the hsf-1(sy441) mutant (Figure 2A).  From these transgenic rescue experiments, 

we conclude that the loss of the ethanol stimulation phenotype is a consequence of a loss in 

neuronal hsf-1 function. 

As the rab-3 promoter drives expression throughout the nervous system, we next 

determined whether the stimulatory ethanol phenotype could be localised more precisely in 

the nervous system.  Intriguingly, the 17 mM ethanol stimulatory phenotype of hsf-1(sy441) 

worms could be re-established by transgenic expression of wild-type hsf-1 specifically in 

cholinergic neurons (Punc-17::hsf-1) or in ciliated sensory neurons (Posm-6::hsf-1) but not in 

interneurons (Pglr-1::hsf-1) or the AFD thermosensory neurons (Pgcy-8::hsf-1) (Figure 2A).  

The localisation of  the ethanol-induced stimulation of locomotion to either cholinergic 

neurons or ciliated sensory neurons was particularly serendipitous, as these two promoters are 

predicted to overlap in only 1 nematode cell type, the inner labial sensilla neurons, IL2 
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(Figure 2B).  There are 3 pairs of IL2 neurons located in the head of the animal, all with 

ciliated endings (White et al. 1986; Burket et al. 2006).  IL2 neurons are cholinergic (Zhang 

et al. 2014) and are predicted to be chemosensory as their dendrites are exposed to the 

external environment.  Very little has been published ascribing function to the IL2 neurons; 

however, they do regulate nictation, a behaviour whereupon a nematode waves its head in 

three dimensions (Lee et al. 2012).  We tested whether the absence of the stimulatory ethanol 

phenotype of hsf-1(sy441) could be reversed by transgenic expression of wild-type hsf-1 

specifically in the IL2 neurons.  For this, we cloned the promoter region of the klp-6 gene, 

which in hermaphrodites is expressed in the IL2 neurons specifically (Peden and Barr 2005).  

Localisation was verified by examination of a promoter::GFP transgenic worm, confirming 

that the IL2 neuronal structures appeared anatomically intact even in the hsf-1(sy441) mutant 

(Figure 2C), although an in depth ultrastructural analysis of the cilia in this mutant remains to 

be fully investigated.  We then determined that expression of wild-type hsf-1 in the IL2 

neurons (Pklp-6::hsf-1) alone could restore the stimulatory ethanol phenotype of the hsf-

1(sy441) mutant to a level indistinguishable from wild-type worms (Figure 2D).  The 

complementary approach also confirmed that IL2-specific overexpression of hsb-1 (Pklp-

6::hsb-1), the negative regulator for hsf-1, was able to block the ethanol-induced stimulation 

in Bristol N2 (Figure 2D).   

hsf-1(sy441) worms have a slightly lower basal locomotor rate (Fig. 1A); however, 

previous transgenic rescue experiments indicate that the basal locomotion rate is uncorrelated 

with the high ethanol phenotype (Johnson et al. 2016).  Our data here also support a lack of 

correlation between basal locomotor rate and the low ethanol phenotype (Table S1).  For 

example, IL2-neuron overexpression of hsb-1 in Bristol N2 does not reduce basal locomotion 

rate at all, but does block the low ethanol phenotype.  Alternatively, overexpression of wild-

type hsf-1 in IL2-neurons in the hsf-1(sy441) mutant background does not rescue the 
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locomotor defect of the mutant, but did restore the low ethanol phenotype.  Notwithstanding 

this lack of correlation, we were interested in determining whether the reduced locomotor rate 

in the hsf-1(sy441) mutant was a consequence of the point mutation.  The hsf-1(sy441) strain 

was originally isolated in a genetic screen of suppressors of heat shock induced expression, 

where it was both backcrossed and outcrossed (Hajdu-Cronin et al. 2004).  We have 

demonstrated here (Table S1) and elsewhere (Johnson et al. 2016) that transgenic rescue can 

alter many hsf-1-dependent phenotypes, without altering the basal locomotor rates 

consistently indicating that the defect in locomotion may be independent of the sy441 

mutation or possibly incomplete rescue by the transgene.  To address this question more 

directly, we analysed the OG532 strain which is a single copy MosSCI-integrated rescue of 

hsf-1(sy441) (Morton and Lamitina 2013).  The OG532 strain demonstrated a significant, yet 

incomplete, rescue of the locomotion defect in comparison to Bristol N2 (Table S1).  The 

incomplete rescue of the locomotion defect was reminiscent of a reported incomplete rescue 

of the hsf-1(sy441) temperature-sensitivity (Morton and Lamitina 2013).  Reassuringly, the 

single-copy rescue did restore the ethanol stimulatory phenotype (Figure S1) to a level 

similar to that seen with transgenic overexpression.  In contrast the OG580 strain, a single-

copy rescue of hsf-1(sy441) with a DNA-binding defective mutant hsf-1 (Morton and 

Lamitina 2013), impaired locomotion further (Table S1) and did not rescue the ethanol 

phenotype (Figure S1).  These data indicate a potentially complex role for hsf-1 in basal 

locomotor rate which is perhaps unsurprising given the broad cellular functions for the HSF-1 

transcription factor and its downstream transcriptional targets.  Critically, however, our 

results show that the basal locomotor rate is unrelated to the ethanol stimulatory effect and is 

instead a consequence of the hsf-1(sy441) mutation. 

 Our previous work on HSF-1 and its effect on sensitivity to 400 mM external 

ethanol indicated that the main effector for HSF-1 was the small heat shock protein HSP-
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16.48 (Johnson et al. 2016).  This work showed that RNAi of hsp-16.48 phenocopied RNAi 

of hsf-1 and that transgenic expression of hsp-16.48 partially rescued the high dose ethanol 

sensitivity of the hsf-1(sy441) mutants.  Finally, overexpression of hsp-16.48 greatly reduced 

wild-type worm sensitivity to high external ethanol in a manner dependent upon an intact 

seven amino acid region of the N-terminus (amino acids 38-44) (Johnson et al. 2016).  We 

next performed a series of experiments to test for functional similarities with the stimulatory 

ethanol phenotype.  There unfortunately are no available hsp-16.48 null mutations as the gene 

has undergone evolutionary genetic duplication rendering null mutations prohibitively 

difficult to isolate (Johnson et al. 2016).  Our results showed that RNAi knockdown of hsf-1 

also resulted in a loss of the 17 mM ethanol phenotype (Figure 3A), to an extent similar to 

that seen with the sy441 point mutation.  Reminiscent of the sedative ethanol phenotype 

results (Johnson et al. 2016), RNAi of hsp-16.48 also blocked the stimulatory ethanol 

phenotype to an equivalent level to hsf-1 RNAi (Figure 3A).  Distinct from the sedative 

ethanol phenotype (Johnson et al. 2016), however, transgenic expression of hsp-16.48 either 

pan-neuronally (Prab-3::hsp-16.48) or in IL2 neurons specifically (Pklp-6::hsp-16.48) was 

sufficient to restore completely the stimulatory ethanol phenotype in the hsf-1(sy441) mutant 

(Figure 3B).  Finally, we determined that overexpression of hsp-16.48 in Bristol N2 wild-

types (Prab-3::hsp-16.48) increased the effect of 17 mM external ethanol whereas the N-

terminal truncation mutant (Prab-3::hsp-16.48 ∆38-44) appeared to act as neomorphic or as 

dominant-negative (Figure 3C).  Expression of the truncation mutant in the hsf-1(sy441) 

background, however, did not result in an enhancement of the ethanol-dependent reduction in 

locomotion in comparison to hsf-1(sy441) alone (Figure 3B).  Therefore we hypothesise that 

the truncation mutant is possibly acting here as a dominant-negative.  These experiments 

implicate HSP-16.48 in the stimulatory ethanol phenotype, acting downstream of HSF-1 in a 

manner requiring the seven amino acid region of the N-terminus. 
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As HSF-1/HSP-16.48 was acting in a chemosensory neuron to increase locomotion, 

we were interested to determine whether this increase in motility was reflective of either 

positive or negative chemotaxis.  Indeed the performed thrashing assays immersed the 

animals directly into ethanol where it would be impossible to determine any directionality to 

movement.  We tested for this possibility by a performing a chemotaxis assay on wild-type 

animals towards or away from ethanol.  Ethanol has been previously reported to have mild to 

negative effects on chemotaxis only at very high concentrations (Bargmann et al. 1993; Lee 

et al. 2009).  We found that, in our hands, ethanol did not act as either a chemoattractant or 

repellent whereas butanol, a longer chain alcohol, did act as a strong attractant (Figure S2A) 

as has been previously described (Bargmann et al. 1993).  As an alternative approach, we 

adapted an osmotic aversion assay (Solomon et al. 2004) to investigate whether populations 

of worms would be averse to crossing a ring of ethanol.  We found that if the ethanol 

concentration of the ring was increased to 100%, we could induce avoidance in comparison 

to a neutral (distilled water) control; however, 17 mM (0.1%) ethanol had no effect (Figure 

S2B).  In contrast, worms were averse to octanol at concentrations as low as 1%.   

We next investigated whether the low concentration of external ethanol was instead 

activating the IL2 chemosensory neurons to stimulate nematode motility through a G-protein 

coupled receptor (GPCR) dependent signalling mechanism.  Physiological effects of ethanol 

are known to be modulated by various GPCRs, for example the GABAB or G-protein coupled 

corticotropin-releasing factor (CRH) 1 receptors (Nie et al. 2004; Kelm et al. 2011; Agabio 

and Colombo 2014).  To screen GPCRs directly, however, would be prohibitively difficult as 

there are >1000 GPCRs in the C. elegans genome, very few of which have been functionally 

characterised (Frooninckx et al. 2012).  For simplicity, therefore, we instead tested available 

G-protein mutants.  Many loss-of-function nematode G-protein mutants are lethal or have 

severe locomotor defects, which would interfere with quantification using our assay.  
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Therefore, we screened gain-of-function mutants instead and determined that the stimulatory 

effect of 17 mM external ethanol remained intact for both Gαo (goa-1) and Gαq (egl-30) 

mutants, but was absent specifically for mutants of Gαs, gsa-1(ce81) and gsa-1(ce94) (Figure 

4A).   

Gαs is a G-protein that, upon activation, stimulates adenylyl cyclase to synthesise the 

cAMP signalling molecule from ATP (Dorsam and Gutkind 2007).  We addressed whether 

we could replicate the stimulatory effect of 17 mM ethanol by applying the chemical 

forskolin, which directly activates adenylyl cyclase pharmacologically.  A dose-response 

curve of varying forskolin concentrations demonstrated that the stimulatory ethanol 

phenotype could indeed be phenocopied by forskolin (Figure 4B).  Addition of ethanol and 

forskolin together did not have additive effects on nematode motility (Figure 4C) suggestive 

that ethanol and forskolin acted in the same pathway.  One downstream cellular effector for 

cAMP is the cAMP-dependent protein kinase (PKA) and we tested for its role in the 

stimulatory ethanol phenotype by the addition of the specific PKA inhibitor H-89.  On its 

own, H-89 had no effect on locomotion; however, it could completely block the stimulatory 

effects of ethanol and forskolin, either separately or both together (Figure 4C).   

Next, as previously was shown for the stimulatory effects of ethanol, we verified that 

stimulation by forskolin was also dependent upon IL2-neuron expression of HSF-1 and HSP-

16.48.  In comparison to Bristol N2 wild-types, the effect of forskolin was absent in hsf-

1(sy441) mutants, but was completely restored in both the full (Phsf-1::hsf-1) or IL2 neuron-

specific transgenic rescues (Pklp-6::hsf-1) (Figure 4D).  Complementary to these results, 

stimulation by forskolin was blocked by the hsf-1 inhibitor hsb-1 expressed either pan-

neuronally (Prab-3::hsb-1) or in IL2 neurons specifically (Pklp-6::hsb-1) in Bristol N2 worms.  

As seen with ethanol, the effect of forskolin was restored in the OG532 single-copy rescue of 

hsf-1(sy441), but not in the OG580 DNA-binding defective rescue (Figure S1).  The forskolin 
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effect was also blocked in the Gαs gain-of-function mutants, gsa-1(ce81) and gsa-1(ce94) 

(Figure 4D).  Furthermore, pan-neuronal (Prab-3::hsp-16.48) or IL2 specific (Pklp-6::hsp-16.48) 

overexpression of hsp-16.48 alone could completely rescue the forskolin phenotype of the 

hsf-1(sy441) mutation (Figure 4E).  Also identical to that seen with ethanol, overexpression 

of hsp-16.48 in Bristol N2 controls (Prab-3::hsp-16.48) enhanced the effect of forskolin 

whereas the N-terminal truncation mutant (Prab-3::hsp-16.48 ∆38-44) appeared to act 

negatively (Figure 4F).  The truncation mutant again had no additional negative effects when 

expressed in the hsf-1(sy441) background (Figure 4E).  Taken together, these data indicate 

that both the 17 mM ethanol and forskolin stimulatory phenotypes are likely acting through 

the same pathway.  Therefore, ethanol appears to activate a Gαs-cAMP-PKA signalling 

pathway that requires hsf-1 and hsp-16.48 expression within the IL2 neurons.  Additionally, 

the requirement of HSF-1/HSP-16.48 is likely to be acting downstream of adenylyl cyclase 

activation as the effect of forskolin is absent in the hsf-1(sy441) mutant. 

The data thus far pointed to an activation of Gαs in IL2 neurons by 17 mM external 

ethanol; however, our evidence was obtained by pharmacological activation of the entire 

nematode.  We next wanted to activate Gαs in the IL2 neurons directly.  To accomplish this 

we expressed genetically a photoactivatable Gαs-linked jellyfish opsin, JellyOp (Bailes et al. 

2012), in the IL2 neurons specifically and demonstrated that photoactivation could enhance 

the nematode locomotion rate to a level statistically indistinguishable from ethanol exposure 

(Figure 5).  In contrast, control worms demonstrated no enhancement of locomotion by 

photostimulation; however, their ethanol effect remained intact.  Importantly, photoactivation 

of the Gαs-linked JellyOp with the addition of ethanol did not produce an even greater 

summative effect on locomotion rate supporting the hypothesis that the Gαs-linked JellyOp 

and ethanol were acting in the same pathway (Figure 5).  Next we antagonised Gαs signalling 

in IL2 neurons specifically by genetic expression of a photoactivatable Gαi-linked human rod 
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opsin (hRh1) (Cao et al. 2012; Bailes and Lucas 2013) which acts to counter Gαs by 

inhibiting the production of cAMP.  On its own, photoactivation of the Gαi-linked hRh1 again 

had no effect on nematode locomotion; however, it was able to block completely the 

stimulatory effect of low concentrations of external ethanol (Figure 5).  As an alternative 

approach to optogenetic activation or inhibition of the Gαs signalling pathway, we produced a 

transgenic worm with IL2 neuron-specific RNAi against the catalytic subunit of C. elegans 

PKA (Pklp-6::kin-1::Pklp-6).  The created transgenic worms appeared qualitatively normal and 

had only a small quantitative reduction in basal locomotion rate (Table S1).  Whilst we 

cannot quantify definitive cell-specificity of the RNAi, if the PKA knockdown had spread 

greatly to other cells it would be expected to be lethal (Rual et al. 2004).  Therefore we are 

reasonably confident in a degree of cellular restriction of the knockdown.  Despite the 

qualitatively wild-type appearance of the worms, the stimulation of locomotion by either 

ethanol or forskolin was absent (Figure S3).  These data support the interpretation that the 

effects of ethanol to stimulate C. elegans locomotion are regulated in IL2 neurons by a Gαs 

signalling pathway. 

Finally we were interested in identifying what was potentially acting downstream of 

the Gαs-cAMP-PKA signalling pathway.  PKA is a serine-threonine kinase that would be 

expected to phosphorylate many downstream targets in response to activation.  Sec1-Munc18 

(SM) proteins are essential components of the exocytotic machinery thought to function 

primarily through interactions with soluble N-ethylmaleimide sensitive factor receptor 

(SNARE) proteins (Rizo and Sudhof 2012).  We have previously shown that expression of a 

single point mutation in the C. elegans SM protein UNC-18 (D214N) was also able to block 

the low ethanol phenotype (Graham et al. 2009).  We therefore suspected UNC-18 could be 

one potential downstream target for PKA phosphorylation.  Both mammalian Munc18 and 

the nematode orthologue UNC-18 are known to be phosphorylated by Protein Kinase C 
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(Barclay et al. 2003; Edwards et al. 2012); however, PKA phosphorylation has not been 

previously demonstrated.  We expressed recombinant UNC-18 and exposed it to PKA, 

determining that it could be phosphorylated in vitro (Figure 6A).  We then determined in 

vitro phosphorylation sites for PKA by mass spectrometry, positively identifying Ser322 as 

an in vitro PKA target (Figure 6B).  We tested the relevance of this putative phosphorylation 

site in vivo by expressing phospho-null versions of UNC-18 (S322A) which act in a dominant 

fashion to endogenous unc-18 (Edwards et al. 2012).  In our assays, expression of this single 

point mutation of UNC-18 pan-neuronally (Punc-18::unc-18 S322A) or in IL2 neurons 

specifically (Pklp-6::unc-18 S322A)  was able to block completely the stimulatory effects on 

motility of either ethanol or forskolin (Figure 6C, D).  
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Discussion 

 In this manuscript we demonstrate that a Gαs-signalling pathway is stimulated by the 

addition of ethanol at external concentrations (17 mM; 0.1%) whose absolute values are 

physiologically consistent with blood alcohol limits for impaired driving.  Through a 

combination of genetics, pharmacology and optogenetic manipulation, we have uniquely 

delineated the entire cell signalling pathway in response to ethanol in IL2 chemosensory 

neurons specifically (Figure 7).  Our model for ethanol stimulation is that ethanol, in some 

way, activates Gαs to stimulate adenylyl cyclase to produce cAMP.  The cAMP in turn 

activates PKA to phosphorylate various downstream proteins, one possibility of which is the 

synaptic SM protein UNC-18.  The ultimate downstream effect of this cellular signalling 

pathway is an enhancement in nematode locomotion, as quantified by thrashing rate.  This 

cell-specific signalling pathway requires the transcription factor HSF-1, most likely through 

its transcriptional control of the α-crystallin orthologue, small heat shock protein HSP-16.48. 

 Our data support the interpretation that a Gαs-signalling pathway is directly activated 

or modulated by ethanol.  There is ample evidence in other systems for ethanol-induced 

activation of G protein coupled signalling pathways, at least in vitro.  Ethanol can enhance 

GABA release and the extent of this enhancement can be regulated by various GPCRs, 

mostly via Gαi-coupled receptors (Kelm et al. 2011).  Ethanol activation of GABAergic 

release in the central amygdala, an area of the brain prominently associated with alcohol 

dependence, requires the G-protein coupled corticotropin-releasing factor (CRH) 1 receptor 

(Nie et al. 2004).  Downstream of GPCRs, ethanol can activate directly specific forms of 

adenylyl cyclase (Yoshimura and Tabakoff 1995; Yoshimura et al. 2006), affect cellular 

cAMP levels (Rex et al. 2008; Gupta et al. 2013), activate PKA (Kelm et al. 2008; Wang et 

al. 2015) and induce protein phosphorylation (Conti et al. 2009).  Genetic or pharmacological 

manipulation of individual components of this pathway has measurable effects on complex 
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alcohol dependency phenotypes as adenylyl cyclase mutants and knockouts affect ethanol 

sensitivities and consumption in both mice and Drosophila (Moore et al. 1998; Maas et al. 

2005; Xu et al. 2012).  Indeed the role of cAMP in the ethanol-induced stimulation of 

locomotion of mice was recently reported using a selective phosphodiesterase-4 inhibitor 

(Balino et al. 2016).  Despite evidence of the Gαs-signalling pathway in other models, it has 

been relatively unexplored in C. elegans.  In C. elegans, the CRH1 homogue seb-3 has a 

characterised high alcohol phenotype; however, seb-3 is expressed in head ganglia and nerve 

cords (Jee et al. 2013) and not sensory neurons such as the IL2 neurons specifically.  Our data 

use combinations of optogenetic, genetic and pharmacological manipulation to trace the 

involvement of the entire Gαs -cAMP-PKA signalling pathway in the IL2 neurons in ethanol-

dependent stimulation.  Additionally we extend this pathway to the downstream 

phosphorylation of the exocytotic protein UNC-18 and implicate HSP-16.48 as a novel 

regulatory protein.   

 Phosphorylation of synaptic proteins is a dynamic mechanism for the regulation of 

vesicle fusion and synaptic transmission.  Many phosphorylation targets have been described 

for serine/threonine kinases, although mostly in vitro.  Phosphorylation of Munc18 has been 

demonstrated in vivo, primarily by Protein Kinase C (De Vries et al. 2000; Craig et al. 2003).  

PKA has not previously been shown to phosphorylate Munc18 or UNC-18, despite strong 

evidence that it does phosphorylate other synaptic proteins such as cysteine string protein 

(Evans et al. 2001).  Both protein kinase C and PKA phosphorylation consensus sequences 

have similar requirements of basic amino acids upstream of the target serine and indeed the 

region upstream of Ser322 is rich in lysine residues (Edwards et al. 2012).  In rat pancreatic 

acini, intriguingly, PKC-dependent phosphorylation of Munc18C occurs in response to acute 

exposure to ethanol (Cosen-Binker et al. 2007).  Physiologically, phosphorylation alters the 

kinetics of amperometric spikes, in particular reducing the quantal size of individual release 



26 

 

events (Barclay et al. 2003).  Munc18 phosphorylation contributes to short-term plasticity at 

the synapse, by controlling post-tetanic potentiation (Genc et al. 2014) and UNC-18 

phosphorylation contributes to thermosensory behaviours of C. elegans (Edwards et al. 

2012).  Biochemically, phosphorylation of this region of either UNC-18 or Munc18 reduces 

the binding affinity for closed-conformation syntaxin (Barclay et al. 2003; Edwards et al. 

2012).  The classically characterised closed-conformation mutation of Munc18, R39C, 

however has no effect on the stimulatory alcohol phenotype (Johnson et al. 2013) arguing 

against the physiological effects of low ethanol concentrations being achieved through 

regulation of that particular interaction.  The IL2 neurons release acetylcholine as a fast 

neurotransmitter (Lee et al. 2012) and connect into the main locomotor circuits via 

intermediary neurons (White et al. 1986).  It is therefore possible that phosphorylation is 

altering synaptic vesicle fusion in the IL2 neurons thereby shaping the patterns of electrical 

activity governing nematode motility. 

 Our data demonstrate that the α-crystallin orthologue HSP-16.48 acts directly 

downstream of HSF-1 indicating that the effects of HSF-1 in this phenotype are likely simply 

as a transcription factor driving constitutive HSP-16.48 expression.  HSF-1 controls the 

expression of heat-inducible stress proteins such as the small HSPs, and HSP-16.48 

specifically, as evidenced by numerous experiments (Hsu et al. 2003; Prahlad et al. 2008; 

Larance et al. 2011; Kourtis et al. 2012).  Exposure to very high concentrations of ethanol 

can induce the expression of many heat shock proteins (Kwon et al. 2004; Pignataro et al. 

2007; Urquhart et al. 2016) and overexpression of some HSPs can alter sensitivity to the 

sedative effects of ethanol (Awofala et al. 2011).  In C. elegans, basal expression of hsp-

16.48 alters the sedative effects of high doses of ethanol, but its overexpression only partially 

rescues the hsf-1(sy441) mutant phenotype (Johnson et al. 2016).  In contrast, our results 

indicate that hsp-16.48 can completely restore the stimulatory phenotype for the hsf-1(sy441) 
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mutant.  Although there is little constitutive HSP-16.48 expressed, even in response to 400 

mM ethanol, our RNAi experiments show that these small quantities are sufficient to affect 

whole animal behaviour.  Small HSPs can be directly phosphorylated by PKA (Garrido et al. 

2012), but it is currently unknown how HSP-16.48 regulates the Gαs -cAMP-PKA signalling 

pathway.  It may be that HSP-16.48 is acting simply as a chaperone to preserve either 

structural conformation of individual proteins, protein-protein interactions or possibly to 

assist in the phosphorylation event itself.  Alternatively, HSP-16.48 may directly interact with 

specific components of the signalling pathway independent of its chaperone ability.  

Nonetheless, the correct functioning of HSP-16.48 in ethanol-dependent phenotypes 

explicitly required a 7 amino acid region of the protein’s N-terminus, a region not found in 

other small HSPs linked to temperature stress tolerance (Kourtis et al. 2012) and it will be 

intriguing to determine the mechanistic role for this protein region.   

 Our experiments have used thrashing as a measure of locomotion (Gjorgjieva et al. 

2014).  The main rationale for this selection was the simplicity and reproducibility of the 

assay.  It is unknown experimentally whether other measures of locomotion, such as body 

bends or locomotor speed, would be similarly affected; however, that speculation would be 

considered likely.  High alcohol concentrations reduce all aspects of locomotion by similar 

extents including thrashing (Mitchell et al. 2007; Graham et al. 2009; Johnson et al. 2013), 

body bends (Johnson et al. 2016) and locomotor speed (Davies et al. 2003; Kapfhamer et al. 

2008) and there is no reason to suspect differences with low alcohol concentrations.  

Exposure to high or low ethanol has no reported effect on reversals or omega turns of C. 

elegans on agar (Mitchell et al. 2010), but high alcohol did increase spontaneous reversals in 

solution by ~1 reversal per minute (Topper et al. 2014).  Whilst uncharacterised in this study, 

it is unlikely that a change in reversal frequency would be significant enough to influence 

rates as high as 110-120 thrashes per minute. 
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 The internal concentration of ethanol in nematodes is reported to be approximately 

10% of external experimental levels due to poor penetration through the cuticle (Davies et al. 

2003; Alaimo et al. 2012; Johnson et al. 2016).  The structure of the IL2 neurons however, 

with dendritic projections directly to the exterior of the body (White et al. 1986), would be in 

contact with the exact level of ethanol seen in solution.  Therefore, it is unclear whether this 

low alcohol phenotype represents a phenotypic response to 17 mM or a substantially reduced 

concentration.  In either case, however, this phenotype does indicate a neuronal cell 

signalling effect in C. elegans to ethanol at levels that would be seen in intoxicated humans.  

The stimulation of locomotion has been reproducibly demonstrated in C. elegans (Graham et 

al. 2009; Johnson et al. 2013) but is smaller than that seen in Drosophila (Wolf et al. 2002).  

It is difficult to determine whether there could be a further enhancement of locomotion with 

exposure to higher levels of ethanol as competing depressive and stimulatory effects of 

ethanol may begin to cancel each other out as concentration is increased.  Indeed, there is no 

net effect of 100 mM external ethanol on locomotion rate (Davies et al. 2003; Mitchell et al. 

2007; Graham et al. 2009; Johnson et al. 2016).  It remains possible that the stimulatory 

effects of 17 mM ethanol are actually underrepresented here due to the antagonistic sedative 

effects of higher alcohol concentrations. Why would C. elegans increase their movement in 

response to 17 mM ethanol?  The ecology of the species is not fully understood; however, 

some evidence point to C. elegans feeding on bacteria associated with decomposing material.  

Unlike longer chain alcohols, however, evidence for ethanol acting as a chemotactic cue 

signalling a potential nutrient source is not well supported.  Although we were unable to 

reproduce the results, some data point to ethanol acting as a low level chemorepellant 

(Bargmann et al. 1993; Lee et al. 2009).  It is therefore conceivable that the stimulus in 

locomotor rate is enhancing escape or avoidance of a potentially poisonous substance.  

Alternatively, the locomotor stimulus is merely reflective of an indirect activation of a 
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neuronal G-protein signalling pathway that feeds into the circuitry governing nematode 

locomotion (Gjorgjieva et al. 2014). 

    Alcohol acts paradoxically as both a depressant and as a stimulant.  These 

stimulatory effects in humans are thought to be more rewarding than sedative effects and thus 

may play a more prominent role in determining addiction.  The differentiator model for risk 

to alcoholism is associated with a trade-off between stimulant and sedative effects (Hendler 

et al. 2013).  We have shown a unique genetic link between the α-crystallin homologue HSP-

16.48 and both the sedative (Johnson et al. 2016) and now also the stimulatory effects of 

alcohol where an increase in HSP-16.48 expression biphasically both enhances ethanol-

induced stimulation and decreases ethanol-induced sedation.  Importantly, the expression of 

the α-crystallin chaperone is upregulated in mice strains with a high alcohol intake preference 

(Mulligan et al. 2006) as well as human alcohol addicts (Iwamoto et al. 2004) indicative that 

the phenotypic effects presented here may indeed reflect neuronal pathways and have 

biomedical relevance in higher organisms.  This identification of an ethanol-dependent 

signalling pathway, from G-protein to the phosphorylation target of UNC-18, therefore 

presents novel targets for future pharmacological intervention that could be exploited to 

control the devastating physiological effects of alcohol.  
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Figure Legends 

Figure 1.  Low concentrations of ethanol stimulate C. elegans locomotion in an hsf-1-

dependent fashion.  (A)  In comparison to untreated controls, exposure to 17 mM ethanol (+ 

ethanol) significantly increased the locomotion of Bristol N2 wild-type worms.  The hsf-

1(sy441) loss-of-function mutant demonstrated a reduced untreated locomotion rate that was 

unaffected by ethanol.  Locomotion rate was quantified by thrashing after 10 minutes 

immersion in Dent’s solution.  *; P<0.001 (one-way analysis of variance with Tukey post-hoc 

comparisons); n.s. = not significant. N = 100 for each condition. (B) The absence of ethanol 

stimulation in hsf-1(sy441) worms is independent of temperature.  Locomotion rate was 

quantified at the indicated temperature and expressed here as a percentage of mean thrashing 

rate of untreated worms.  At all temperatures, ethanol stimulated Bristol N2 locomotion, but 

had no effect on hsf-1(sy441) loss-of-function worms.  *; P<0.001 (two-way analysis of 

variance with Tukey post-hoc comparisons); N = 20 for each condition.   

Figure 2.  The hsf-1-dependence of the low ethanol stimulation of locomotion requires hsf-1 

expression in IL2 neurons. (A)  In hsf-1(sy441) worms, the low ethanol stimulation of 

locomotion was restored by transgenic rescue of wild-type hsf-1 under the control of its 

endogenous (Phsf-1), pan-neuronal (Prab-3), cholinergic neuron (Punc-17) or ciliated sensory 

neuron promoter (Posm-6).  Tissue-specific expression in muscle (Pmyo-3), interneurons (Pglr-1) 

or the AFD thermosensory neurons (Pgcy-8)  was unable to rescue the hsf-1(sy441) mutant.  In 

Bristol N2 worms, overexpression of hsf-1 under its endogenous promoter (Phsf-1) had no 

additional effect on ethanol stimulation of locomotion whereas neuronal overexpression of 

the hsf-1 inhibitor, hsb-1, blocked the ethanol effect.  (B)  Cartoon schematic of the C. 

elegans head region indicating the location of the IL2 neurons (1 neuron of each of the 3 

pairs are depicted) and their projections (in red) adjacent to the pharynx (in green).  The 

approximate anterior-posterior (A-P) and ventral-dorsal (V-D) axes are indicated and apply to 
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part C as well. (C)  Expression of green fluorescent protein (GFP) under the control of the 

klp-6 promoter, showing expression in the IL2 neurons of hsf-1(sy441) mutants.  Expression 

in Bristol N2 worms was anatomically similar. (D)  In comparison to hsf-1(sy441) worms, 

low ethanol stimulation of locomotion was restored by transgenic expression of wild-type 

hsf-1 using an IL2 specific promoter (Pklp-6).  In Bristol N2 worms, IL2 neuron 

overexpression of the hsf-1 inhibitor, hsb-1, blocked the ethanol effect.  In both (A) and (D), 

data are expressed normalised to untreated controls.  For each experiment, exposure to 

ethanol enhanced the locomotion rate of Bristol N2 worms (Mann-Whitney U-test; P<0.05).  

* indicates significant difference in comparison to treated Bristol N2.  Comparisons were 

made by one-way analysis of variance with Tukey post-hoc comparisons (P<0.001; N = 30 

for each condition).  Bristol N2 worms are depicted in black, hsf-1(sy441) in grey.  Hatching 

indicates transgenic expression (transgene and promoter indicated below graph). 

Figure 3.  HSP-16.48 acts downstream of HSF-1 in IL2 neurons. (A)  RNAi knockdown of 

the small heat shock protein (HSP), hsp-16.48, statistically phenocopied the ethanol 

sensitivity of hsf-1 RNAi knockdown in comparison to control.  RNAi was performed by 

feeding where controls were fed empty vector.  n.s. = not significant. (B) Either pan-neuronal 

(Prab-3) or IL2-specific (Pklp-6) expression of hsp-16.48 rescued the hsf-1(sy441) mutant 

phenotype.  Expression of an hsp-16.48 truncation mutant (+∆38-44) was unable to rescue. 

(C)  Overexpression of hsp-16.48 in Bristol N2 worms enhanced the ethanol stimulation of 

locomotion to a significantly greater extent, whereas the hsp-16.48 truncation mutant (+∆38-

44) blocked the ethanol enhancement of locomotion.  For (A)-(C), data are expressed 

normalised to untreated controls.  For each experiment, exposure to ethanol enhanced the 

locomotion rate of RNAi control or Bristol N2 worms (Mann-Whitney U-test; P<0.05).  * 

indicates significant difference in comparison to treated RNAi control or Bristol N2.  

Comparisons were made by one-way analysis of variance with Tukey post-hoc comparisons 
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(P<0.001; N = 10 (A), 30 (B) and 20 (C) for each condition).  Bristol N2 worms are depicted 

in black, hsf-1(sy441) in grey.  Hatching indicates transgenic expression (transgene and 

promoter indicated below graph). 

Figure 4.  Ethanol enhances locomotion through an IL2-neuron Gαs-dependent  signalling 

pathway. (A)  Stimulation of locomotion by ethanol was blocked in Gαs mutants (gsa-1(ce94) 

and gsa-1(ce81)), but not in Gao (goa-1 (n363)) or Gaq (egl-30(js126)) mutants. (B)  Forskolin 

stimulated C. elegans Bristol N2 locomotion.  Increasing concentrations of forskolin 

significantly (*) stimulated locomotion at 10 and 100 µM in comparison to untreated worms.    

(C)  Ethanol and forskolin stimulate locomotion of Bristol N2 worms to an equivalent level 

and this stimulation can be blocked by addition of the PKA inhibitor H-89.  * indicates 

significant increase from untreated.  n.s = not significant. (D)  Forskolin-dependent 

stimulation also requires IL2 neuron expression of hsf-1.  The forskolin effect was absent in 

hsf-1(sy441) mutants but could be rescued by re-expression of wild-type hsf-1 under its 

endogenous (Phsf-1) or an IL2-specific (Pklp-6) promoter.  Like ethanol, the forskolin effect was 

blocked in Bristol N2 worms by pan-neuronal (Prab-3) or IL2 neuron-specific (Pklp-6) 

expression of the hsf-1 inhibitor, hsb-1.  The forskolin effect was also absent in Gαs mutants. 

(E) Forskolin-dependent stimulation also involved IL2 neuron expression of hsp-16.48.  Pan-

neuronal (Prab-3) or IL2-specific (Pklp-6) overexpression of hsp-16.48 rescued the absence of 

the forskolin phenotype in hsf-1(sy441) mutant worms.  Expression of the hsp-16.48 

truncation mutant (+∆38-44) was unable to rescue. (F) Overexpression of hsp-16.48 in 

Bristol N2 worms enhanced the forskolin stimulation of locomotion, whereas the truncation 

mutant (+∆38-44) acted in a dominant negative fashion.  For each experiment (A)-(F), data 

are expressed normalised to untreated controls.  Exposure to ethanol or forskolin enhanced 

the locomotion rate of Bristol N2 worms (Mann-Whitney U-test; P<0.05).  * indicates 

significant difference in comparison to treated Bristol N2.  Comparisons were made by one-
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way analysis of variance with Tukey post-hoc comparisons (P<0.001; N = 20 (A, B), 25 (C, 

D, F) or 30 (E) for each condition).  Bristol N2 worms are depicted in black, hsf-1(sy441) in 

grey.  Hatching indicates transgenic expression (transgene and promoter indicated below 

graph). 

Figure 5.  Ethanol enhancement of locomotion requires Gαs protein activation in IL2 neurons.  

Left.  In control animals (lite-1(ce314)), addition of ethanol enhanced locomotion; however, 

photostimulation has no stimulatory or depressive effects.  Middle.  In comparison, IL2-

specific optogenetic activation of Gαs stimulated C. elegans locomotion to an equivalent level 

to low ethanol exposure (lite-1(ce314);Ex[Pklp-6::JellyOp]).  Simultaneous ethanol exposure 

and Gαs photoactivation had no additional effect on locomotion.  Right.  Inhibition of Gαs by 

IL2-specific optogenetic activation of Gαi blocked ethanol-dependent enhancement of 

locomotion (lite-1(ce314);Ex[Pklp-6::hRh1]).  Activation of Gαi alone had no depressive effect 

on nematode locomotion.  Addition of ethanol without Gαi activation exhibited normal 

locomotor enhancement.  All data are expressed normalised to untreated controls.  * indicates 

significant enhancement in comparison to untreated control.  Comparisons were made by 

one-way analysis of variance with Tukey post-hoc comparisons (P<0.001; N = 30 for each 

condition).  Control worms (lite-1(ce314)) are depicted in white, lite-1(ce314);Ex[Pklp-

6::JellyOp] in black and lite-1(ce314);Ex[Pklp-6::hRh1] in grey. 

Figure 6.  UNC-18 is phosphorylated by protein kinase A and phosphorylation of UNC-18 

Ser322 is required for both ethanol and forskolin-dependent stimulation of locomotion. (A)  

Recombinant UNC-18 protein (GST-UNC-18) was incubated with 32P-labelled ATP in the 

absence (mock) or presence of either protein kinase C (+PKC) or protein kinase A (+PKA).  

Proteins were separated by SDS-PAGE and phosphorylation was determined by 

PhosphorImager (Phosphoscreen).  Coomassie staining indicates equal protein loading. (B)  

Liquid chromatography-MS/MS data positively indicating phosphorylation of Ser322 of 
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UNC-18 in PKA-phosphorylated protein samples. (C)  Pan-neuronal (Punc-18) or IL2-specific 

(Pklp-6) expression of a phospho-null mutation of a PKA-phosphorylation site of unc-18 

(S322A) in Bristol N2 blocked the ethanol-dependent stimulation of locomotion. (D)  Pan-

neuronal (Punc-18) or IL2-specific (Pklp-6) expression of a phospho-null mutation of a PKA-

phosphorylation site of unc-18 (S322A) in Bristol N2 blocked the forskolin-dependent 

stimulation of locomotion.  For (C) and (D), data are expressed normalised to untreated 

controls.  Exposure to ethanol or forskolin enhanced the locomotion rate of Bristol N2 worms 

(Mann-Whitney U-test; P<0.05).  * indicates significant difference in comparison to treated 

Bristol N2.  Comparisons were made by one-way analysis of variance with Tukey post-hoc 

comparisons (P<0.001; N = 30 for each condition).  Bristol N2 worms are depicted in black.  

Hatching indicates transgenic expression (transgene and promoter indicated below graph). 

Figure 7.  A model for ethanol-dependent enhancement of locomotion in C. elegans.  The 

addition of ethanol at a low external concentration 17 mM activates a Gαs-dependent 

signalling pathway in the IL2 chemosensory neurons, likely through an as yet unidentified G-

protein coupled receptor.  Whether ethanol directly activates or modulates an existing signal 

remains to be determined.  The Gαs-dependent signalling activates adenylyl cyclase and 

protein kinase A (PKA).  PKA-dependent phosphorylation of the exocytotic protein UNC-18 

at Ser322, in some way, alters signalling from IL2 neurons which feeds into the neurons 

controlling nematode locomotion. 
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Supplemental Figure Legends 

Figure S1.  Single-copy rescue of hsf-1(sy441) rescues the lack of ethanol and forskolin 

stimulation of locomotion. (A) The absence of ethanol stimulation in hsf-1(sy441) mutants 

was restored by single-copy expression of wild-type hsf-1 (OG532), but not by single-copy 

expression of a DNA binding defective mutant of hsf-1 (OG580).  OG532 and OG580 strains 

were generated by Morton and Lamitina (2013). (B) The absence of forskolin stimulation in 

hsf-1(sy441) mutants was restored by single-copy expression of wild-type hsf-1 (OG532), but 

not by single-copy expression of a DNA binding defective mutant of hsf-1 (OG580).  In both 

(A) and (B), data are expressed normalised to untreated controls.  For each experiment, 

exposure to ethanol or forskolin enhanced the locomotion rate of Bristol N2 worms (Mann-

Whitney U-test; P<0.05).  * indicates significant difference in comparison to untreated 

Bristol N2.  Comparisons were made by one-way analysis of variance with Tukey post-hoc 

comparisons (P<0.001; N = 30 for each condition).  Bristol N2 worms are depicted in black, 

hsf-1(sy441) in grey.  Hatching indicates single-copy rescue of hsf-1(sy441). 

Figure S2.  Ethanol does not act as a chemoattractant or chemorepellant. (A)  In a 

chemotaxis assay, exposure to 100% ethanol had no effect on movement of Bristol N2 worms 

within 90 minutes.  In comparison, 100% butanol acted as a strong chemoattractant.  

Comparison was made by t-test.  *; P < 0.001 (t-test); N = 3 (butanol) and 6 (ethanol).  (B)  

In an avoidance assay, Bristol N2 worms only avoided ethanol at concentrations greater than 

10%.  In contrast, worms avoided octanol at concentrations as low as 1% (Inset).  * indicates 

significant difference in comparison to control conditions.  Comparisons were made by one-

way analysis of variance with Tukey post-hoc comparisons (P<0.001; N = 3).  Control worms 

(exposed to distilled water) are depicted in white, alcohol exposed worms in black. 



Figure S3.  IL2 neuron-specific RNAi of protein kinase A (PKA) blocks ethanol and 

forskolin stimulation of locomotion.  (A) IL2 neuron-specific knockdown of the catalytic 

subunit of C. elegans PKA (kin-1) blocked the ethanol phenotype in Bristol N2 worms.  (B)   

IL2 neuron-specific knockdown of the catalytic subunit of C. elegans PKA (kin-1) blocked 

the forskolin phenotype in Bristol N2 worms. In both (A) and (B), data are expressed 

normalised to untreated controls.  For each experiment, exposure to ethanol or forskolin 

enhanced the locomotion rate of Bristol N2 worms (Mann-Whitney U-test; P<0.05).  * 

indicates significant difference in comparison to untreated Bristol N2.  Comparisons were 

made by one-way analysis of variance with Tukey post-hoc comparisons (P<0.001; N = 30 

for each condition).  Bristol N2 worms are depicted in black.  Hatching indicates Pklp-6::kin-

1::Pklp-6 expression. 

Table S1.  Basal (untreated) thrashing rates of C. elegans strains used in this study.  For 

strains grouped in parentheses, please see Table S2 for the genotypes of the individual 

independent transgenic lines. 

Table S2.  Thrashing rates of individual transgenic lines used in this study. 

 









TABLES 

Table S1:  Basal (untreated) thrashing rates of C. elegans strains used in this study. 

C. elegans strain Locomotion Rate 
(thrashes/min) 

Bristol N2 96.1±1.2 
(AMG160, 161, 162) Bristol N2;Ex[Phsf-1::hsf-1] 83.8±2.0 
(AMG157, 158, 159) Bristol N2;Ex[Prab-3::hsb-1] 83.3±2.9 
(AMG475, 476, 477) Bristol N2;Ex[Pklp-6::hsb-1] 97.9±2.4 
(AMG109, 110, 111) Bristol N2;Ex[Prab-3::hsp-16.48] 75.5±4.2 
(AMG142, 143, 144) Bristol N2;Ex[Prab-3::hsp-16.48∆38-44] 68.4±4.9 
(AMG55, 56, 57) Bristol N2;Ex[Punc-18::unc-18 S322A] 83.2±2.5 
(AMG478, 479, 480) Bristol N2;Ex[Pklp-6::unc-18 S322A] 101.3±1.9 
(AMG481, 482, 483) Bristol N2;Ex[Pklp-6::kin-1::P klp-6] 89.7±2.8 
PS3551 hsf-1(sy441) 70.1±1.6 
(AMG73, 74, 75) hsf-1(sy441);Ex[Phsf-1::hsf-1] 74.4±2.1 
(AMG76, 77, 78) hsf-1(sy441);Ex[Prab-3::hsf-1] 66.6±3.3 
(AMG79, 80, 81) hsf-1(sy441);Ex[Pmyo-3::hsf-1] 61.5±3.4 
(AMG85, 86, 87) hsf-1(sy441);Ex[Pglr-1::hsf-1] 67.8±2.3 
(AMG82, 83, 84) hsf-1(sy441);Ex[Punc-17::hsf-1] 65.3±2.6 
(AMG91, 92, 93) hsf-1(sy441);Ex[Pgcy-8::hsf-1] 61.6±2.2 
(AMG88, 89, 90) hsf-1(sy441);Ex[Posm-6::hsf-1] 60.9±4.1 
(AMG94, 95, 96) hsf-1(sy441);Ex[Pklp-6::hsf-1] 80.8±4.3 
(AMG97, 98, 99) hsf-1(sy441);Ex[Prab-3::hsp-16.48] 64.7±2.0 
(AMG469, 470, 471) hsf-1(sy441);Ex[Prab-3::hsp-16.48 ∆38-
44] 

63.2±2.8 

(AMG472, 473, 474) hsf-1(sy441);Ex[Pklp-6::hsp-16.48] 70.2±2.7 
OG532 hsf-1(sy441);drSi13[hsf-1p::hsf-1::GFP::unc-54 
3’UTR + Cbr-unc-119(+)] 

87.7±6.8 

OG580 hsf-1(sy441);drSi28[hsf-1p::hsf-
1(R145A)::GFP::unc-54 3’UTR + Cbr-unc-119(+)] 

53.6±4.1 

MT363 goa-1(n363) 63.1±4.0 
NM1380 egl-30(js126) 70.0±2.5 
KG524 gsa-1(ce94) 133.3±7.9 
KG421 gsa-1(ce81) 152.9±5.4 
KG1180 lite-1(ce314) 47.2±0.9 
AMG484 lite-1(ce314);Ex[Pklp-6::JellyOp] 40.7±0.9 
AMG 487 lite-1(ce314);Ex[Pklp-6::hRh1] 38.2±1.1 
NL2099 rrf-3(pk1426) (empty vector RNAi) 92.1±2.5 
NL2099 rrf-3(pk1426) (hsf-1 RNAi) 93.7±1.8 
NL2099 rrf-3(pk1426) (hsp-16.48 RNAi) 88.7±2.5 
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Table S2:  Thrashing rates of individual transgenic lines used in this study. 

C. elegans transgenic line Locomotion Rate – 
untreated (thrashes 
per minute) 

Locomotion 
Rate – 
ethanol 
(thrashes 
per minute) 

AMG160 Bristol N2;ulvEx160[Phsf-1::hsf-1] 76.0±2.4 91.2±4.7 
AMG161 Bristol N2;ulvEx161[Phsf-1::hsf-1] 87.5±3.6 95.1±3.9 
AMG162 Bristol N2;ulvEx162[Phsf-1::hsf-1] 87.9±3.5 94.3±3.6 
AMG157 Bristol N2;ulvEx157[Prab-3::hsb-1] 85.5±3.1 76.7±5.3 
AMG158 Bristol N2;ulvEx158[Prab-3::hsb-1] 73.4±5.8 64.4±7.9 
AMG159 Bristol N2;ulvEx159[Prab-3::hsb-1] 92.0±3.5 84.9±4.5 
AMG475 Bristol N2;ulvEx475[Pklp-6::hsb-1] 96.4±5.4 92.0±4.0 
AMG476 Bristol N2;ulvEx476[Pklp-6::hsb-1] 97.5±4.3 95.4±4.3 
AMG477 Bristol N2;ulvEx477[Pklp-6::hsb-1] 99.9±2.8 85.5±4.9 
AMG109 Bristol N2;ulvEx109[Prab-3::hsp-16.48] 74.8±6.8 103.8±4.4 
AMG110 Bristol N2;ulvEx110[Prab-3::hsp-16.48] 76.6±4.8 90.9±4.0 
AMG111 Bristol N2;ulvEx111[Prab-3::hsp-16.48] 76.1±7.5 82.9±5.1 
AMG142 Bristol N2;ulvEx142[Prab-3::hsp-
16.48∆38-44] 

55.8±6.3 47.6±3.8 

AMG143 Bristol N2;ulvEx143[Prab-3::hsp-
16.48∆38-44] 

80.9±5.1 77.5±5.5 

AMG144 Bristol N2;ulvEx144[Prab-3::hsp-
16.48∆38-44] 

71.0±3.2 63.4±10.2 

AMG55 Bristol N2;ulvEx55[Punc-18::unc-18 
S322A] 

84.8±4.4 79.4±3.6 

AMG56 Bristol N2;ulvEx56[Punc-18::unc-18 
S322A] 

76.2±3.0 72.2±3.5 

AMG57 Bristol N2;ulvEx57[Punc-18::unc-18 
S322A] 

88.6±4.8 83.6±2.5 

AMG478 Bristol N2;ulvEx478[Pklp-6::unc-18 
S322A] 

104.2±3.7 101.5±4.7 

AMG479 Bristol N2;ulvEx479[Pklp-6::unc-18 
S322A] 

96.4±2.8 93.5±5.0 

AMG480 Bristol N2;ulvEx480[Pklp-6::unc-18 
S322A] 

103.4±2.7 98.3±3.0 

AMG481 Bristol N2;ulvEx481[Pklp-6::kin-1::P klp-6] 84.2±2.9 75.0±3.6 
AMG482 Bristol N2;ulvEx482[Pklp-6::kin-1::P klp-6] 103.3±4.8 89.8±4.7 
AMG483 Bristol N2;ulvEx483[Pklp-6::kin-1::P klp-6] 81.7±3.8 71.7±5.0 
AMG73 hsf-1(sy441);ulvEx73[Phsf-1::hsf-1] 64.6±4.3 66.4±3.5 
AMG74 hsf-1(sy441);ulvEx74[Phsf-1::hsf-1] 84.8±3.1 90.2±2.8 
AMG75 hsf-1(sy441);ulvEx75[Phsf-1::hsf-1] 66.0±3.2 82.0±2.8 
AMG76 hsf-1(sy441);ulvEx76[Prab-3::hsf-1] 79.8±3.6 91.4±2.1 
AMG77 hsf-1(sy441);ulvEx77[Prab-3::hsf-1] 80.2±3.7 90.2±3.9 
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AMG78 hsf-1(sy441);ulvEx78[Prab-3::hsf-1] 64.8±5.1 108.4±2.4 
AMG79 hsf-1(sy441);ulvEx79[Pmyo-3::hsf-1] 58.9±6.1 55.6±8.6 
AMG80 hsf-1(sy441);ulvEx80[Pmyo-3::hsf-1] 66.2±8.3 58.2±6.0 
AMG81 hsf-1(sy441);ulvEx81[Pmyo-3::hsf-1] 59.4±2.4 52.6±2.3 
AMG85 hsf-1(sy441);ulvEx85[Pglr-1::hsf-1] 71.3±6.3 66.9±5.1 
AMG86 hsf-1(sy441);ulvEx86[Pglr-1::hsf-1] 67.4±2.2 60.0±2.1 
AMG87 hsf-1(sy441);ulvEx87[Pglr-1::hsf-1] 64.6±2.2 58.6±2.5 
AMG82 hsf-1(sy441);ulvEx82[Punc-17::hsf-1] 69.3±5.9 94.1±5.4 
AMG83 hsf-1(sy441);ulvEx83[Punc-17::hsf-1] 62.4±4.6 75.6±1.9 
AMG84 hsf-1(sy441);ulvEx84[Punc-17::hsf-1] 64.2±2.5 69.4±1.7 
AMG91 hsf-1(sy441);ulvEx91[Pgcy-8::hsf-1] 65.8±5.6 58.8±6.8 
AMG92 hsf-1(sy441);ulvEx92[Pgcy-8::hsf-1] 58.0±2.1 49.8±1.8 
AMG93 hsf-1(sy441);ulvEx93[Pgcy-8::hsf-1] 61.0±2.7 50.2±2.0 
AMG88 hsf-1(sy441);ulvEx88[Posm-6::hsf-1] 62.5±7.8 69.9±4.3 
AMG89 hsf-1(sy441);ulvEx89[Posm-6::hsf-1] 63.1±8.0 75.6±4.4 
AMG90 hsf-1(sy441);ulvEx90[Posm-6::hsf-1] 57.0±5.9 68.0±3.0 
AMG94 hsf-1(sy441);ulvEx94[Pklp-6::hsf-1] 79.7±4.0 92.5±4.1 
AMG95 hsf-1(sy441);ulvEx95[Pklp-6::hsf-1] 80.9±4.3 89.4±3.1 
AMG96 hsf-1(sy441);ulvEx96[Pklp-6::hsf-1] 80.8±5.7 96.4±5.3 
AMG97 hsf-1(sy441);ulvEx97[Prab-3::hsp-16.48] 63.5±3.9 73.1±4.5 
AMG98 hsf-1(sy441);ulvEx98[Prab-3::hsp-16.48] 65.2±2.9 78.5±4.1 
AMG99 hsf-1(sy441);ulvEx99[Prab-3::hsp-16.48] 65.6±3.6 77.1±3.3 
AMG469 hsf-1(sy441);ulvEx469[Prab-3::hsp-16.48 
∆38-44] 

58.6±3.7 50.9±6.3 

AMG470 hsf-1(sy441);ulvEx470[Prab-3::hsp-16.48 
∆38-44] 

62.0±4.7 60.5±6.9 

AMG471 hsf-1(sy441);ulvEx471[Prab-3::hsp-16.48 
∆38-44] 

68.9±5.7 58.5±4.9 

AMG472 hsf-1(sy441);ulvEx472[Pklp-6::hsp-16.48] 67.2±4.5 73.5±3.5 
AMG473 hsf-1(sy441);ulvEx473[Pklp-6::hsp-16.48] 76.4±5.2 88.2±3.5 
AMG474 hsf-1(sy441);ulvEx474[Pklp-6::hsp-16.48] 66.9±4.3 84.2±4.3 

 

 


