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Abstract 

Recent studies have shown that cellular bioenergetics may be involved in stem cell 
differentiation. Considering that during cancerogenesis cells acquire numerous properties of 
stem cells or dedifferentiate, it is possible to assume that the energy metabolism in 
tumorigenic cells might be differently regulated. The aim of this study was to compare the 
mitochondrial bioenergetic profile of normal pluripotent human embryonic stem cells (hESC) 
and relatively nullipotent embryonal carcinoma cells (2102Ep cell line). 

We examined three parameters related to cellular bioenergetics: phosphotransfer system, 
aerobic glycolysis, and oxygen consumption. Activities and expression levels of main 
enzymes that facilitate energy transfer were measured. The oxygen consumption rate studies 
were performed to investigate the respiratory capacity of cells. In addition, we applied 
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metabolic control analysis to identify target reactions that control oxygen consumption in both 
cell lines. 

2102Ep cells showed a shift in energy distribution towards adenylate kinase network. The 
total AK activity was almost 3 times higher in 2102Ep cells compared to hESCs (179.85±5.73 
vs 64.39±2.55 mU/mg of protein) and the expression of AK2 was significantly higher in these 
cells, while CK was downregulated. 2102Ep cells displayed reduced levels of oxygen 
consumption and increased levels of aerobic glycolysis compared to hESCs. The 
compromised respiration of 2102Ep cells is not the result of increased mitochondrial mass, 
increased proton leak, and reduced respiratory reserve capacity of the cells or impairment of 
respiratory chain complexes. We also noted that the respiration chain might be distinctly 
organized in studied cell lines since FCC values for complexes II and IV, ATP synthase and 
ANT were considerably higher in 2102Ep cells than in hESCs that value in hESCs. 

Our data showed that the bioenergetic profile of 2102Ep cells clearly distinguishes them from 
normal hESCs. This should be considered when this cell line is used as a reference, and 
highlight the importance of further research concerning energy metabolism of stem cells. 
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Highlights: 

• bioenergetic profile of 2102Ep embryonal carcinoma cells clearly distinguishes them 
from normal hESCs 

• 2102Ep cells have elevated levels of adenylate kinase 2 and reduced levels of creatine 
kinase compared with hESCs 

• 2102Ep cells display reduced levels of OXPHOS and elevated levels of aerobic 
glycolysis 

• respiration chain is distinctly regulated in 2102Ep cells compared with normal hESCs 
 

1 Introduction	
There are increasing evidences that cancer could be considered as a stem cell disease [1]. As 

aging induces mutations in stem cells [1], it supports the idea of cancer stem cells (CSCs) 

evolving from different stem cell compartments. CSC has been defined as “a cell within a 

tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of 

cancer cells that comprise the tumor”[2]. It has been demonstrated that CSCs are involved in 

cancer onset and development, distant metastasis, angiogenesis and drug resistance [3]. The 

development of specific strategies to eradicate highly malignant CSCs holds a great potential 

for cancer treatment [4-5]. In light of novel observations on how core metabolic properties of 

CSCs might contribute to tumor progression and resistance to conventional treatment, the 
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cellular metabolism of CSCs may represent an attractive target for cancer therapy. However, 

these therapies may cause toxicity to normal stem cells, which share many common features 

with CSCs [6]. In order to develop safe and effective cancer therapy, it is crucial to 

understand shared and distinguishing mechanisms that regulate proliferation in normal and 

cancer stem cells. 

The bioenergetic profiles of various human progenitor and stem cells are just being 

understood. It is clear now, that energy metabolism plays an important role in the homeostasis 

and differentiation of stem cells. Differentiation of the cell is accompanied by changes in 

mitochondrial metabolism, activity and organization of electron transport chain (ETC) 

complexes [7-9]. Moreover, recent studies have demonstrated that mitochondrial metabolism 

itself can influence the stemness maintenance and differentiation process [9-10]. Although 

stem cells contain fewer number and morphologically more immature mitochondria than 

differentiated cells[9], the ETC complexes within the inner membrane of the mitochondria are 

functionally active and mitochondria are able to consume oxygen and produce ATP from 

oxidative phosphorylation (OXPHOS)[10-11]. 

The reprogramming of energy metabolism is proposed as one of the hallmarks of cancer[12]. 

It has been shown that cancer cells are able to modulate their energy metabolism via aerobic 

glycolysis[13]. This inclination of cancer cells to use glycolysis even in the presence of 

oxygen characterizes also normal stem cells[14]. One of the mechanisms that explain high 

glycolytic rate in tumor cells at normoxic condition is Warburg-Pedersen model[15]where the 

association between glycolytic enzyme hexokinase (HK) and mitochondrial outer membrane 

enhances aerobic glycolysis in cancer cells. It has been demonstrated that HK bound to 

voltage dependent anion channel (VDAC) utilizes ATP produced during OXPHOS to catalyze 

the first reaction of glycolysis[15]. A similar mechanism may occur in stem cells, which also 

overexpress HK enzymes[10]. 

Well-organized high-energy phosphoryl transfer system is required to mediate intracellular 

communication between ATP-consuming and ATP-producing cellular compartments and thus 

maintain normal growth and development of cell [16].The main components of 

phosphotransfer system are adenylate kinase (AK) network, creatine kinase (CK) network and 

glycolysis[16]. CK network maintains normal phosphate levels in cells with high energy 

demands. Mitochondrial CK isoforms, CKMT1A and CKMT2, as well as cytosolic isoform, 

CKB, provide energy for various cellular processes[16]. AK1, the major cytosolic isoform, 

and AK2, localized in mitochondrial intermembrane space, have been recognized as the main 
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facilitators of intracellular nucleotide exchange in cells with compromised CK network. AK4, 

enzymatically inactive isoform, has been proposed as a marker of poor clinical outcome for 

lung cancer [17]. 

Recent studies have shown that adenylate kinase and creatine kinase networks are involved in 

the differentiation of hematopoietic stem cells facilitating energy transfer and metabolic 

signaling required for developmental programming [18-19]. The cancerogenesis has been also 

associated with the reorganization of the phosphotransfer system. The creatine kinase system 

is significantly downregulated in various cancer types including breast cancer [20], Ehrlich 

ascites carcinoma [21], neuroblastoma[22], colorectal cancer [23] and prostate cancer [24]. 

On the contrary, AK levels were found to be elevated in several types of cancer [22-23]. 

However, the exact role of CK and AK enzymes in the regulation of cell stemness or cancer 

development remains elusive. 

In the present study, we used 2102Ep cell line derived from a primary human testicular 

teratocarcinoma [25] as a CSC model. Described as relatively nullipotent,.this cell line has 

been shown to express many of the identified markers of pluripotent hESCs[26], as well as, 

numerous oncogenes and has many potentially tumorigenic genomic alterations [27]. 

Embryonic stem cell-like gene expression signature has been found to be characteristic of 

poorly differentiated aggressive tumors [28-29]. With limited differentiation potential 2102Ep 

resembles these undifferentiated cancer cells that are often associated with poor prognosis of 

cancer patients. Embryonic stem cells represent the normal counterparts of embryonal 

carcinoma cells and together, these can be used as complementary tools for studying 

pluripotency, stem cell biology and cancer[30].We examined differences between normal 

human embryonic stem cells and 2102Ep cells in the three parameters related to cellular 

bioenergetics: phosphotransfer system, aerobic glycolysis, and oxygen consumption. In 

addition, we applied the metabolic control analysis to compare the effect of inhibition of 

different respiratory complexes on the respiratory efficiency in the two cell lines. 

 

2 Material	and	methods	

2.1 Cell	cultures	

2.1.1 2102Ep	cell	line	
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The human embryonal carcinoma cell line 2102Ep(Cl.2/A6; GlobalStem)was routinely 

cultured in T75 (Greiner bio-one) flasks in high glucose Dulbecco’s modified Eagle medium 

with L-glutamine, supplemented with 10% heat inactivated fetal bovine serum (FBS), 

penicillin (100 U/ml), streptomycin (100 µg/ml) and 50 µg/ml gentamicin. Cells were grown 

at high density to limit spontaneous differentiation[31]and maintained at 37°C in a humidified 

incubator containing 5% CO2 in the air. 

2.1.2 H9	cell	line	

Pluripotent H9 human embryonic stem cells (WA09, National Stem Cell Bank, WiCell) were 

cultured on 6-well tissue culture plates (BD Biosciences) coated with Matrigel (BD 

Biosciences) in mTeSR1 media (STEMCELL Technologies) according to the manufacturer’s 

specifications.The culture medium was changed daily. Cells were passaged mechanically with 

micropipette tip after 3-4 days and cultured in the presence of 5% CO2 at 37°C in humid 

conditions. Normal karyotype of the cells was confirmed by G-banding. 

2.1.3 Oxygen	consumption	rate	(OCR)	study	

The rates of oxygen consumption were measured at 25°C using an Oxygraph-2k (Oroboros 

Instruments, Innsbruck, Austria).Measurements were performed in Mitomedium B solution 

supplemented with 5mM glutamate, 2mM malate and 1mg/ml BSA. A suspension of cells (1x 

106 cells/ml) was placed in the oxygraph chamber, permeabilized with saponin (40µg/ml) and 

allowed to equilibrate for 5 min.10mM succinate was added to initiate electron transport 

through Complex II. State 2 respiration was monitored and after that 2 mM ADP was added to 

evaluate state 3 respiration. Respiration rates were normalized to the total protein amount in 

the cells and expressed as nmol of O2 consumed per /min/per mg of total protein (nmol/(min x 

mg). Protein concentrations were determined using the Pierce BCA Protein Assay Kit. 

The functional coupling between HK and mitochondria was measured as described earlier. 

[23, 32]. The functional activities of respiratory chain complexes were studied by substrate-

inhibitor titration [23, 33]. 

Mitochondrial contribution to the energy metabolism was measured in non-permeabilized 

cells. Following stabilization of endogenous routine respiration (ROUTINE) 2 µg/ml of 

oligomycin was added to inhibit ATP synthesis and induce the nonphosphorylating leak state 

(LEAK). Maximal uncoupled respiratory rates were determined with FCCP titration followed 

by inhibition of electron transfer by 10 µM antimycin A to measure residual oxygen 

consumption (ROX). 
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2.1.4 Metabolic	control	analysis	(MCA)	

In MCA, the degree of the control that a given enzyme exerts on the flux can be described 

quantitatively as a flux control coefficient (FCC). If the enzyme exerts an elevated control 

over the regulation of the metabolic pathway, then even a small change in the given enzyme 

activity will promote a significant variation in the pathway flux[34-35]. 

FCCs were determined for all mitochondrial ETC complexes, adenine nucleotide translocator 

(ANT) and inorganic phosphate carrier after their stepwise titration with specific pseudo 

irreversible inhibitors upon direct activation of respiration by exogenously added ADP (at 2 

mM). The following inhibitors were used: rotenone for Complex-I of the mitochondrial 

electron transport chain (ETC); atpenin A5for Complex-II; antimycin A for Complex-III; 

sodium cyanide for Complex-IV; oligomycin for complex-V (ATP synthase); 

carboxyatractyloside (CAT) for ANT; and mersalyl for inorganic phosphate carrier. 

2.1.5 Assays	of	enzymes	activity	

The enzyme activities were studied spectrophotometrically at 25 °C using a Cary 100 Bio 

UV-visible spectrophotometer. The activity of HK was measured as the total glucose 

phosphorylating capacity of whole cell extracts, using a standard glucose-6-phosphate 

dehydrogenase (G6PDH)-coupled spectrophotometric assay [36].The activity of CK was 

measured by a coupled enzyme assay in the presence of di(adenosine-5′) pentaphosphate 

(adenylate kinase inhibitor[37]), 20 mM phosphocreatine (PCr) and with 2 U/ml G6PDH and 

2 U/ml HK as the coupled enzymes[38]. 

The total AK activity was also measured by a coupled enzyme assay[39]. In order to 

determine the specific activities of AK1 and AK2, lysates were incubated with AK1 inhibitor 

N-ethylmaleimide(NEM) for 1h at 25°C.AK2 activity was determined as the activity 

remaining after the NEM treatment. AKl activity was calculated as total AK activity minus 

activity remaining after the NEM treatment. 

The activity of citrate synthase (CS) was measured by monitoring the production of CoA from 

oxaloacetate together with acetyl-CoA. The thiol group of CoA reacts with 5,5’-dithiobis-(2-

nitrobenzoic acid) (Ellman’s reagent, DTNB) to produce a yellow-colored product which was 

observed by measuring the absorbance at 412 nm. Reactions were performed in 96-well plates 

containing 100mMTris-HCl pH 8.1, 0.3mMAcCoA, 0.5mM oxaloacetate and 0.1mM DTNB 

using FLUOstar Omega plate-reader spectrophotometer (BMG Labtech). 
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2.1.6 Confocal	imaging	

2102Ep cells were seeded on glass coverslips in 12-well plates (Greiner bio-one) and allowed 

to adhere overnight. H9 cells were passaged onto Matrigel coated glass coverslips and 

cultured in 12-well plates for 3 days. Then, the growth mediumwas removed and cells were 

incubated with 200nMMitoTracker Red CMXRos for 30 min at 37°C to stain mitochondria. 

After staining, cells were fixed in 4% paraformaldehyde in PBS during 15 min at RT. 

Following permeabilization with ice-cold methanol for 20min at RT,cells were incubated with 

2% BSA in PBS for 1 h at RT, probed with specific primary antibodies against Oct-4 and 

incubated for 1h at RT. After incubation, cells were washed with PBS and incubated with 

corresponding fluorescence-conjugated secondary antibodies. Finally, cells were incubated 

for 15 min at RT with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI, Molecular 

Probes™) to visualize the cell nucleus. Cells were imaged by an Olympus FluoView FV1000 

inverted laser scanning confocal microscope. 

2.1.7 Isolation	of	RNA,	cDNA	synthesis	and	qPCR	

Total RNA from Ep2102 and hES cells was isolated using FavorPrep™ Blood/Cultured Cell. 

Total RNA Mini Kit (Favorgen Biotech Corporation) and quantitated using a Nanodrop 

spectrophotometer (ND-1000; Nanodrop). Following DNaseI (Thermo Fisher Scientific) 

treatment, reverse transcription was performed on 1 µg of total RNA with random hexamer 

primers using RevertAid RT Reverse Transcription Kit (Thermo Fisher Scientific) according 

to the manufacturer protocol. The synthesized cDNA was subjected to quantitative PCR 

analysis using 5x HOT FIREPol® Probe Universal qPCR Mix (Solis BioDyne) and specific 

primers actin beta – Hs01060665_g1; hexokinase I – Hs00175976_m1; hexokinase II – 

Hs00606086_m1; creatine kinase brain-type HS00176484_m1; creatine kinase, mitochondrial 

1B – Hs00179727_m1; creatine kinase, mitochondrial 2 – Hs00176502_m1, adenylate kinase 

1 HS00176119_m1; adenylate kinase 2 HS01123132_g1; adenylate kinase 4 

HS03405743_g1. All qPCR experiments were performed on LightCycler 480 II Real-Time 

PCR System (Roche) with following conditions: 95 °C for 10 min followed by 40 cycles of 

95 °C for 15 sec and 60 °C for 1 min. PCR reactions were performed in triplicate for each of 

three independent experiments and included no reverse transcriptase and no template negative 

controls. Threshold cycles (Ct) were automatically calculated by LightCycler 480 software 

(Roche). Data were analyzed with the formula 2–ΔΔCt (Livak and Schmittgen, 2001), 

normalized to the endogenous control ActB and expressed as fold change over hESC samples. 

2.1.8 Statistical	analysis	of	data	
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All data points are presented as means ± standard error (SEM) from at least five separate 

experiments performed in duplicate. Significance was calculated by Student’s t-test; 

differences between two data groups were considered to be statistically significant when p< 

0.05. 

3 Results	

3.1 2102Ep	cells	displayedelevated	levels	of	adenylate	kinase	2	(AK2)	and	
reduced	levels	of	creatine	kinase	(CK)	compared	to	hESCs	

2102Ep demonstrated a distinct expression pattern of key enzymes that are involved in 

cellular energy homeostasis (Fig.1). The measurements of enzymatical activities further 

clarified the differences between hESC and 2102Ep cells. Compared to hESCs, the total 

creatine kinase activity was significantly decreased in 2102Ep cells (Table1) in accordance 

with the down-regulation of creatine kinase mitochondrial (CKMT1A) and brain (CKB) 

isoforms (Fig.1). Interestingly, both cell lines had very low expression of CKMT2 and the 

expression level of CKMT1A was significantly higher. This suggests CKMT1A to be the 

main isoform of mitochondrial CK expressed in these cells. Concomitantly, the total 

adenylate kinase activity was significantly increased in 2102Ep cells (Table 1)  and was most 

probably associated with a nearly 2-foldhigher expression level of AK2 isoform in 2102Ep 

cells than in hESC (Fig.1). Although the expression of AK1 was lower in 2102Ep cells 

(Fig.1), this was not reflected on its enzymatical activity (Table 1). We observed no statistical 

difference in the expression levels of AK4 between two cell lines (Fig.1). 

3.2 The	respiration	is	compromised	in	2102Ep	cells	compared	to	hESCs	

To characterize the ability of cells to consume oxygen we performed OCR studies. The 

intactness of mitochondrial outer and inner membranes was controlled by standard 

mitochondrial membrane integrity test (Fig.2A)[40]. The addition of cytochrome c (8 µM) 

had no effect on oxygen consumption rate, while the addition of carboxyatractyloside (1 µM) 

decreased the respiration rate to the basal level indicating the intactness of outer and inner 

mitochondrial membranes. In order to ensure the quality of the cells, this test was performed 

prior to every experiment. 

State 2 (in the absence of ADP) and state 3 (in the presence of ADP) respiration rates were 

determined and compared between these two cell lines. State 3 respiration rate in 2102Ep 

cells was remarkably lower than in hESCs (5.04±0.37 versus 7.45±0.58, 
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p=0.01)(Fig.2B).Respiratory control ratios (RCRs) were calculated as the ratios between state 

2 and state 3 respiration. Because of reduced state 3 respiration, RCR was two times lower in 

the 2102Ep cells (1.98±0.10 versus 3.99±0.36,p=0.005) (Fig.2C). 

3.3 Mitochondrial	contribution	to	the	energy	metabolism	of	hESCs	and	
2102Ep	cells	

For the understanding of mitochondrial contribution to the energy metabolism of hESC and 

2102Ep cell lines, we analyzed OCR response of these cells to the combination of inhibitors 

(oligomycin, antimycin) and uncoupler of OXPHOS (FCCP) (Fig.3A, B). After monitoring 

routine respiration, oligomycin, the inhibitor of ATP synthase, was added to uncouple the 

ATP-linked respiration from the proton leak. As shown in figure 3C, 50% of routine 

respiration (State 2 respiration measured without permeabilization of the cell membrane) was 

dedicated to ATP production. The proton leak appears to be very similar in these two cell 

lines, accounting approximately 25% of the cellular respiration rate, indicating that the 

suppressed respiration of 2102Ep cells is not due to the decreased proton leak. After addition 

of oligomycin, maximal respiratory rate was determined by FCCP treatment. FCCP is a 

protonophore that uncouples electron transport and mitochondrial respiration from ATP 

synthesis by dissipating the proton gradient. The addition of FCCP resulted in an increase of 

oxygen consumption levels in both cell lines with a more pronounced response in 2102Ep 

cells. The difference between oxygen consumption rate following FCCP treatment and State 2 

respiration rate represents the respiratory capacity of these cells. We observed that the 

mitochondrial respiratory capacity was higher for 2102Ep cells when compared with hESCs 

(Fig.3C).The addition of mitochondrial Complex I and III inhibitors rotenone and antimycin 

reduced respiration rates in both cell lines, although this effect was significantly more 

pronounced in 2102Ep cells (Fig.3B). 

3.4 2102Ep	demonstrated	stronger	coupling	between	HK	and	OXPHOS	
than	hESCs	

To examine if reduced level of oxygen consumption is associated with increased level of 

glycolysis in 2102Ep cells, we compared the activity and expression levels of HK, an enzyme 

that catalyzes the first reaction of glycolysis, between these two cell lines. Although 2102Ep 

cells had a 2-fold decrease in HK2 mRNA level, the total HK activity was similar between 

studied cell lines (Fig.1, Table 1). 
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To evaluate the coupling between HK and OXPHOS, we investigated the effect of glucose on 

cellular respiration (Fig.4). It can be seen that addition of 0.1 mM ATP increased in the 

respiration rate  due to the generation of a large flux of ADP from ATPases in hESCs. The 

effect of glucose on the oxygen consumption was characterized by glucose index (Iglu), which 

represents the degree of glucose-stimulated respiration compared to maximal ADP-stimulated 

respiration. The Iglu calculated for 2102Ep cells was considerably higher compared to hESCs, 

55.16±2.21 versus 40.18±4.64, respectively (p=0.06), suggesting that coupling between HK 

reactions and OXPHOS are more pronounced in2102Ep cells (Fig.4B). These results suggest 

that 2102Ep cells prefer more aerobic glycolysis to produce ATP than hESC. 

3.5 hESCs	and	2102Ep	have	a	functional	mitochondrial	respiratory	chain	

In order to identify mechanisms of mitochondrial respiratory chain that could account for the 

lower oxygen consumption rate in 2102Ep, we examined the functional activity of respiratory 

chain complexes I-IV and ATP-synthase in both cell types. Our data demonstrated that all 

complexes within the mitochondrial respiratory chain of hESCs and 2102Ep cells were 

functionally active and their activities were equivalent in both cell lines (Fig.5). Firstly, ADP 

stimulated respiration was blocked by rotenone (20 µM, Complex I inhibitor), restored by 

addition of succinate (10 mM, Complex II substrate) and then, inhibited again by antimycin A 

(10 µM, Complex III inhibitor), indicating the functional activity of Complexes I, II and III. 

Finally, the functional activity of Complex IV was confirmed by the addition of electron 

donors ascorbic acid (5mM) and N,N,N’,N’-tetramethyl-p-phenylenediamine(TMPD, 1 

mM),which strongly enhanced oxygen consumptionin both cell types (Fig.5). 

The morphological features of hESC and 2102Ep cells were examined by confocal 

microscopy (Fig.6). Although both cell lines expressed pluripotency marker Oct-4 and 

contained some spontaneously differentiated cells, there were several differences in cell 

morphology. While hESCs grow as colonies and display high nucleus to cytoplasm ratio, 

2102Ep cells grow as a monolayer and contain considerably larger volumes of cytoplasm. 

Consistent with previous reports[9], hESCs display punctuate mitochondria with 

predominantly perinuclear localization, whereas in 2102Ep cells mitochondria localize 

randomly in the cytoplasm (Fig.6). To ensure that alterations in mitochondrial respiration 

rates were not due to differences in mitochondrial content, the CS activity assay was 

performed. Our results (Table 1) indicated a similar mitochondrial mass in both cell lines. 
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3.6 Metabolic	control	analysis	revealed	the	differences	of	regulation	of	
cellular	respiration	in	2102Ep	and	hESCs	

To further analyze mitochondrial respiration in hESCs and 2102Ep cells, the sensitivity of 

mitochondrial respiratory chain complexes to specific inhibitors was measured and the degree 

of control that each individual complex exerts on whole respiration chain was evaluated using 

MCA method[41]. Flux control coefficients (FCC) for mitochondrial complexes I-IV, ATP-

synthase, adenine nucleotide translocator (ANT) and phosphor carrier (Pi) are summarized in 

Table 2. Our results showed that the key sites for the regulation of respiration are Complex I 

(FCC=0.76), and Complex IV (FCC=1.02) in hESCs. In 2102Ep cells.Complex II 

(FCC=0.75) and Complex IV (FCC=1.24) are the main regulators, since FCC values for other 

complexes were considerably lower (Table 2). It was impossible to determine FCC for 

Complex III in hESCs, because of the high sensitivity of these cells to Complex III inhibition. 

Beyond 0.15 nM of antimycin A, the inhibition was suddenly increased and the rate of 

respiration dropped sharply. 

Our results indicated a notable difference in the control exerted by the phosphorylating system 

of OXPHOS constituted by the ATP synthase, ANT and Pi carrier in 2102Ep and hESCs. The 

FCCfor ANT in 2102Ep cells exceeded 8 times the value obtained for hESCs (FCC=0.62 

versus FCC=0.07). On the contrary, the FCC for Pi carrier was significantly lower in 2102Ep 

cells (FCC=0.03 versus FCC=0.26).The FCC value estimated for ATP synthase was 3 times 

higher in 2102Ep cells (FCC=0.63) compared to hESCs (FCC=0.22). 

The total FCCs values for both cell types exceeded significantly the theoretic value for linear 

systems, which is considered to be close to 1[42]. 2102Ep cells had higher total FCC values 

(FCC=3.98) than hESCs (FCC>2.7). Altogether, these results demonstrate that the role of 

respiratory chain complexes and ATP synthase in energy metabolism of 2102Ep cells differ 

considerably from that in normal stem cells. 

4 Discussion	
Cancer stem cells may acquire numerous properties of normal stem cells including their 

ability to self-renew, relative quiescence, expression of the same surface markers and 

activation of the same cell signaling pathways [43]. The specific depletion of CSC that 

represents a promising approach in clinical cancer therapy is challenging due to this 

similarity. Therefore, it is necessary to discover cellular or metabolic features that could help 

to distinguish CSCs from normal stem cells. In order to elucidate the possible differences, we 
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have chosen normal hESC (H9) to compare with embryonal carcinoma cells (2102Ep) that 

express similar pluripotency-associated marker proteins but have limited differentiation 

ability[44]. 

In normal cells, the oxidative phosphorylation is closely linked to phosphotransfer 

systemswhere adenylate kinase and creatine kinase networks transport ATP from 

mitochondria to ATP-consumption sites[16]. We have demonstrated that the expression and 

the activity of several major components of the phosphotransfer system vary notably between 

2102Ep cells and hESCs. In the current study, the deficiency of CK network was 

accompanied by the up-regulation of AK network in 2102Ep cells. The significant decrease of 

CK levels has been previously reported upon the transformation of skeletal muscle into 

sarcoma [45]. Several reports have indicated reduced levels of CK in brain cancer, colon 

cancer, prostate cancer and other malignancies [20, 46].The current findings about the 

expression and activity of different AK isoforms during cancerogenesis are contradictory. 

Although the increased expression of AK2 has been found in breast CSC[47] and prostate 

cancer cells[48], another study states that AK2 is rather a negative regulator of tumor 

growth[49].On the other hand, it has been reported that the up-regulation of AK2 provides the 

energy required for the proliferation of hematopoietic stem cells [50] and plays an important 

role in communication between mitochondria and nucleus [16]. AK2 deficiency impairs 

embryonic development and causes hematopoietic defects indicating the significance of AK2 

in the energy metabolism of normal stem cells [50-51].Further studies are needed to find out 

how AK2 expression and its compartmentalization influence cellular proliferation. A brief 

analysis of data from The Cancer Genome Atlas (TCGA) using the cBioPortal shows genomic 

alterations (amplification, deletion, or base pair mutation) in phosphotransfer systems in many 

cancers (Fig. 1S). The most frequent alteration was detected in breast cancer xenografts where 

48% of tumors exhibited amplified number of AK2 and HK2suggesting that tumor cells with 

elevated levels of AK2 and HK2 may be one of the key players in cancer development and 

progression. A closer look at specific AK2 and HK2 alterations across various tumors reveals 

that amplification is the most common genomic alteration of AK2 while HK2 might be either 

amplified or mutated (Table 1S). 

In agreement with previous reports, our results demonstrated that both normal and cancer 

stem cells have functional mitochondria. Although CSCs are often considered to be a 

glycolytic cell type, many recent reports identify oxidative metabolism as the preferred energy 

production mechanism in various CSCs [17, 52].Moreover, it has been shown that functional 
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mitochondria are crucial for the maintenance of CSC phenotype [17, 47]. Enhanced 

mitochondrialfunction of CSCs has been associated with tumor growth [53], increased 

metastatic potential[54] and resistance to chemotherapy[55]. 

Our results showed that 2102Ep cells consume lower levels of oxygen than normal stem cells. 

The reduced respiration rate may indicate that the mitochondrial respiratory chain does not 

operate sufficiently to generate an effective proton gradient. However, our results 

demonstrated that reduced mitochondrial respiration in 2102Ep cells was not the result of the 

impairment of respiratory chain complexes because all mitochondrial respiratory complexes 

were functionally active and their activities were equivalent in both cell lines. No differences 

were found between the rates of proton leak in studied cell lines. Mitochondria are 

functioning in the vast majority of cells at a basal energy level that is required for cell survival 

and normal performance. The term “reserve respiratory capacity” is used to characterize the 

additional capacity available in cells to produce energy in response to certain conditions or 

increased stress[56]. One possible reason for the elevated reserve respiratory capacity in 

2102Ep cells could be the increase of substrate entry into the TCA cycle [57]. In support of 

this hypothesis, it has been shown that TCA cycle intermediates are enriched in another 

(NTERA2) human embryonal carcinoma cell line [58]. 

We applied MCA to identify target reactions that control respiratory chain activity in 2102Ep 

cells and hESCs. Our results from MCA provided indirect evidence to conclude that the 

complexes II and IV share larger control strength over respiration in 2102Ep than in hESCs. 

Complex I exerted larger control over respiration in hESCs. Interestingly, Complex I has been 

shown to play an important role in cellular differentiation by generating reactive oxygen 

species (ROS) that stimulate muscle cell differentiation[59]. Taking into account that 2102Ep 

cells exhibit reduced ability to differentiate; Complex I in these cells may have distinct 

functional features compared to hESCs. 

Completely different control patterns were also obtained for ATP synthase and its associated 

substrate suppliers, Pi carrier, and ANT. It has long been known that the coupling of ATP 

synthesis to oxygen consumption is not perfect due to the proton leak across the inner 

membrane of mitochondria[60]. Two groups of mitochondrial proteins contribute 

significantly to proton leak, uncoupling proteins and the adenine nucleotide translocator[61]. 

In current work the FCC for ANT was considerably higher in 2102Ep cells, showing that 

ANT exerts a higher degree of control over respiration and may play an important role in the 
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regulation of proton leak in these cells. This is supported by the recent finding that the 

regulation of mithochondrial proton leak depends on the metabolic conditions.[62]. Thus, it 

can be assumed that the regulation of proton leak could be also distinctly mediated in cells 

with different cellular metabolic states. However, additional research is needed to control this 

hypothesis. 

The total FCCs were higher than expected for both hESCs and 2102Epcells, contradicting the 

summation theorem of MCA according to which the sum of the FCCs of the enzymes of a 

metabolic pathway should be equal to 1. High total FCCs in both cell lines might be the result 

of branched pathways or direct substrate channeling between the protein (super)complexes 

[42].Very little is known about the organization of respiratory chain in stem cells. It has been 

shown that the differentiation of human mesenchymal stem cells (hMSCs) is accompanied by 

the increased mitochondrial biogenesis and formation of supercomplexes[8, 63]. Hoffmann et 

al. has confirmed the presence of several supercomplexes in hMSCs, although the number of 

supramolecular assemblies was significantly reduced compared with differentiated cells[8].It 

has been shown that in mitochondria with impaired respiration, ATP synthase and ANT may 

operate in the opposite direction compared with normal cells generating high ATP level and 

reverse proton gradient[64]. Definitely, the role of mitochondrial biogenesis and OXPHOS 

organization in the regulation of cellular differentiation and cancer development represents an 

important direction for future research. 

Rapidly proliferating hESCs and CSCs are forced to adapt their cellular metabolism to meet 

their demand for energy and increased biosynthesis of macromolecules[65].The Warburg 

effect represents one of the most common adaptive mechanisms which is acquired by highly 

proliferative and malignant cells to support their metabolic needs [66]. While the majority of 

normal differentiated cells use glycolysis followed by aerobic oxidation of pyruvate in the 

mitochondria to eventually produce ATP, highly proliferating cells prefer glycolysis followed 

by lactic acid fermentation during the process called “aerobic glycolysis” or “Warburg 

effect”[66]. Although aerobic glycolysis provides less ATP per molecule of glucose, it 

produces energy much faster and provides many intermediates for the production of proteins, 

lipids, and nucleotides[67].In order to compare the level of aerobic glycolysis in our 

experimental models (Warburg-Pedersen) we evaluated the effect of exogenously added 

glucose on the cellular respiration. Our results showed up-regulation of aerobic glycolysis in 

2102Ep compared to hESCs. 
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Altogether, our results confirm that the embryonal carcinoma2102Epcells display distinct 

bioenergetic profile compared to normal hESCs. The shift in energy distribution towards AK 

network, alterations in the regulation of respiratory chain as well as suppressed respiration 

may serve as indicators of tumorigenic stem cell. In addition, as differences in bioenergetic 

profile indicate different regulation of various cellular processes, this data should be taken 

into account for future use of these cell lines as in vitro stem cell or cancer stem cell 

models.Clearly, further extensive characterization of bioenergetics of normal and cancer cells 

is necessary in order to extend our knowledge of the mechanisms behind the cellular 

proliferation and differentiation. Ultimately, this will help to develop an effective treatment 

that would selectively target CSCs sparing normal stem cells and, thus, reducing side effects 

of conventional anti-cancer therapy. 

5 Conclusions	
Current study shed light on several aspects of energy metabolism in normal and tumorigenic 

stem cells. Our results showed that the bioenergetic profile of 2102Ep cells clearly 

distinguishes them from normal hESCs. Reduced oxygen consumption, increased aerobic 

glycolysis and shifted energy metabolism towards AK network represented the bioenergetic 

signature of this carcinoma cell line. Present and future studies will potentially aid in the 

understanding of metabolic properties of stem cells and establishment of effective strategies 

for identifying cells with increased tumorigenic potential. 
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FIGURE LEGENDS 

Fig.1. Comparison of the mRNA expression levels of key enzymes involved in cellular 

energy homeostasis  in hESCs and 2102Ep cells. Expression of the indicated mRNA was 
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quantified using qPCR. Data were normalized to β-actin mRNA and expressed as a fold 

change relative to hESCs. The results are means ± SEM of three individual studies. *p<0.05 

and **p<0.005 

Fig.2. Respiratory properties of hESC and 2102Ep cells.(A) Mitochondrial membranes 

integrity validation test. Adenosine diphosphate, ADP; Cytochrome c, Cyt c; 

Carboxyatractyloside, CAT. (B) State 2 and state 3 respiration rates. All rates were 

normalized to total protein concentration in the same samples. (C) Respiratory control indexes 

(RCIs). RCIs were calculated as the ratios between state 2 and state 3 rates. All data are mean 

± SEM of 5–6 independent experiments. *p<0.05. 

Fig.3. Assessment of mitochondrial function in hESCs and 2102Ep cells.(A) Representative 

respirometric trace with schematic representation of the mitochondrial function assay. Arrows 

indicate the titrations into the oxygraph chamber. Maximal respiratory rate was determined 

with FCCP titration. Maximal uncoupled respiration was reached at 0.5µM FCCP followed by 

inhibition of electron transfer (ETS) by antimycin A to measure residual oxygen consumption 

(ROX). (B) Quantitative analysis of mitochondrial OCR readings. (C) Functional properties 

of mitochondrial respiration. Proton leak was calculated as (VLEAK-VROX)/VROUTINE; ATP-

linked respiration: (VROUTINE-VLEAK)/VROUTINE; maximal respiration: (VFCCP-VROX)/VROUTINE; 

respiratory reserve capacity: (VFCCP-VROUTINE)/VROUTINE. 

Fig.4.Effect of exogenously added glucose on the rate of oxygen consumption. The effect of 

glucose was estimated as a degree of glucose-mediated respiration compared to State 3 

respiration and expressed as the glucose index (Iglu): Iglu(%)=(Vglu-VATP)/(VADP-VATP).Results 

represent means ± SEM, n=5. The difference in the mean values of the two groups is 

statistically significant, * p<0.05. Cytochrome c, Cyt c. 

Fig.5.Functional activity of respiratory chain complexes. The Complex IV-dependent 

respiration was calculated as VTMPD/Asc–VTMPD/Asc+NaCN where VTMPD/Asc and VTMPD+NaCNare 

TMPD-stimulated respiration rates before and after addition of NaCN. Results represent 

means ± SEM, n=5.Asc – ascorbate, TMPD - N,N,N′,N′-tetramethyl-p-phenylenediamine, CI, 

CII, CIII and CIV – Complexes I, II, III and IV respectively. Bars are SEM. 

Fig.6. Immunocytochemical analysis of Oct-4 (green) and MitoTracker Red (red) in hESC 

and 2102Ep cells. Nuclei are stained with DAPI (blue). Scale bars, 10 µm. 
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TABLES 

Table 1. The activity of HK, CK and CS in hESCs and 2102Ep cells 

 Enzyme activities, mU/mg protein  

 hESC 
mean±SEM 

2102Ep 
mean±SEM 

p-values 

Hexokinase 67.28±2.75 71.46±7.91 0.64 

Creatine kinase 159.84±3.70 12.75±2.15 <0.0001 

Citrate synthase 52.26±3.07 64.77±4.26 0.08 

Total adenylate kinase 
(AK) 64.39±2.55 179.85±5.73 <0.001 

AK1 28.77±1.6 
(46%*) 37.44±3.86 (21%) 0.1 

AK2 33.10±1.00 
(54%) 142.42±3.29 (79%) <0.001 

Notes: *% from the total AK activity. 
 

Table 2. Flux control coefficients (FCC) of respiratory chain complexes for hESCs and 

2102Ep cells 

ETC component Inhibitor 
hESCs, 

FCC 

2102Ep, 

FCC 

Complex I Rotenone 0.76 0.40 

Complex II Atpenin A5 0.37 0.75 

Complex III Antimycin A NA 0.31 

Complex IV Na cyanide 1.02 1.24 

ATP synthase Oligomycin 0.22 0.63 

ANT Carboxyatractyloside 0.07 0.62 

Pi carrier Mersalyl 0.26 0.03 
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