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Figure S1: Temperature dependent carrier transport determined via Hall effect. (a) Carrier
concentration as a function of temperature in the range of 10-300K. (b) Free carrier mobility
as a function of temperature.

Temperature dependent Hall effect

For degenerately doped systems we do not expect carrier concentration to vary with temper-

ature due to all carriers being ionized in the temperature range recorded. This is supported

in the figure, a straight line has been plotted with the data to act as a guide for the eye.

The same transport model from the full text, which accounts for ionized impurity scatter-

ing, acoustic deformation potential, longitudinal polar-optic phonons and grain boundary

scattering has been plotted in (b). Ionized impurity scattering is the dominant scattering

mechanism as expected, and does not vary with temperature because all carriers are ionized

at all temperatures. After ∼125K the effect of longitudinal polar optical carrier scattering

becomes much more important than at low temperatures which is evident in the downward

curvature of the simulation lines.
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Figure S2: Transport data and simulation of resistivity and carrier density as determined
via Hall effect and SIMS. The uncompensated model is shown as a dashed curved whilst the
compensated (K=0.48) curve is solid.

Resistivity as a function of carrier concentration

Resistivity can be determined from carrier density (Via either Hall effect or SIMS) and

mobility (obtained via Hall effect) measurements by ρ = 1
neµ

. Using both the data points

and model curves from the full text we plot resistivity as a function of carrier concentration

seen in figure S2. The combined scattering curve (brown dashed curve) is determined via

Matthiessen’s rule, combining the main scattering mechanisms present for degenerate FTO,

i.e. ionized impurities, grain boundaries and phonon effects. This represents the theoretical

minimum resistivity possible for FTO. The solid red curve displays the compensated curve

fitted to the data. The compensated curve accounts for the effects of compensating acceptor

defects determined to be due to the fluorine interstitial. These defects limit the mobility at

a given carrier concentration negating the effects of heavy dopant incorporation.
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Figure S3: (a) XPS spectra for the F1s core level of FTO (n= 4.27× 1020cm−3) measured as
entered (b) XPS spectra for F1s core level after Ar+ ion bombardment surface treatment.

XPS spectra of F 1s as-entered

A comparison between the as-entered sample where no Ar+ ion bombardment had been

performed prior to measuring, and the same sample subsequent to surface treatment. The

four peaks associated with the substitutional and interstitial fluorine and their respective

plasmon losses are seen as well as a large high binding energy component attributed to surface
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contamination.1–3 We do not expect there to be an associated plasmon loss component with

the carbon contaminant due to it residing at the surface of the material, and so photoelectrons

from the contaminant will not come into contact with the bulk free electron gas when being

liberated from the material.
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Figure S4: Ratio of interstitial to substitutional F as a function of free carrier concentration
for a number of FTO samples as determined using XPS and Hall effect.

Interstitial to substitutional F ratio as a function of carrier concentration

XPS measurements were used to determine the ratio of interstitial to substitutional F. Hall

effect was used to measure the carrier concentration of each sample. The ratio values all

lie in the range 0.47 to 0.53. A dashed trend line has also been plotted at a ratio of 0.50,

as a guide to the eye. Uncertainties were determined by varying the area fit parameter of

the Gaussian-Lorentzian curves fitted for each of the data sets until the fit became clearly

unphysical, which became the upper/lower bounds of the uncertainty.
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Figure S5: X-ray diffraction pattern of a typical FTO film.

X-ray diffraction of FTO

In order to confirm the structure of our FTO samples we performed XRDmeasurements using

a PANalytical X’pert diffractometer. Figure S5 shows a typical diffraction pattern obtained.

The prominent peak positions are labeled with the corresponding Miller indices, and peak

positions determined from previous SnO2 crystal structure data4,5 (drawn as vertical lines

underneath the peaks). A background subtraction has been performed in order to allow for

easier comparison of the literature and measured peak positions. A number of indices are

omitted from the plot as their intensities are below the background level so cannot be seen.

The XRD patterns match well with those found in the literature.6–9 It is clear that these

CVD deposited FTO films are polycrystalline structure, with preferential (200) orientation.

No unwanted impurity phases could be distinguished from the data with only peaks related

to rutile SnO2 being present.
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Figure S6: UV-Vis-NIR transmission spectra of a typical FTO sample.

Transmission of FTO

Figure S6 shows a transmission spectra for a typical FTO sample (n= 4.27 × 1020 cm−3)

measured using the Shimadzu UV-Vis-IR 3700 spectrophotometer over a range of ∼0.75–4.75

eV. This plot corresponds to the absorption spectrum seen in the inset to Figure 3 in the

main document. Transmission at λ = 550 nm (2.25 eV) is 84.8% and an average transmission

of ∼ 80% is obtained for a wavelength range of 350–1250 nm (around 1–3.5 eV). These films

demonstrate good optical properties across the visible and near ultraviolet spectrum.
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Figure S7: Calibrated secondary ion mass spectrometry (SIMS) data of the atomic fluorine
signal from a typical FTO sample (nHall = 4.05 × 1020 cm−3 and nHall = 4.27 × 1020 cm−3

corresponding to the XPS data in the main manuscript) and a fluorine-implanted standard
(1 × 1016 cm−2). The x and y-axes have been calibrated to depth (nm) and concentration
(cm−3) respectively.

SIMS of FTO

Nominally undoped conducting SnO2 was implanted with fluorine ions at 100 keV and flu-

ences of 1 × 1016, 5 × 1015, and 1 × 1015 cm−2 at Surrey Ion Beam Centre. Time of flight

(ToF) SIMS measurements were made, using the IonTof TOF-SIMS 5 instrument, of these

implanted films and typical F-doped SnO2 film with nHall = 4.05 × 1020 cm−3 and nHall =

4.27 × 1020 cm−3 (corresponding to the doping density of the sample in the XPS data in the

main manuscript). Pulsed Bi3+ analysis ions were used to bombard the sample surface while

a 1 keV Cs source was used as the sputtering beam. Analysis was performed on a 50.8 ×

50.8 µm2 sputter area. The CsF+
2 ion intensity versus erosion time were converted to fluorine

concentration versus depth. The y-axis in Figure S7 was scaled so that the area under the

curve corresponding to the fluorine ion implanted film is 1 × 1016 cm−2. This enabled the
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fluorine concentration as a function of depth to be determined. The fluorine content varies

significantly with depth as a result of the chemical vapour deposition process in on-line coat-

ing of float glass. The presented samples have an average fluorine concentration of [F] =

(1.08±0.11) × 1021 cm−3 and [F] = (1.06±0.11) × 1021 cm−3. The uncertainty is estimated

by considering the uncertainties in the thicknesses obtained from profilometry (±25 nm), the

implantation doses (±2%) and the possible matrix effects due to F concentrations in excess

of 1 atomic %.
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Table S1: Experimentally determined binding energy positions of F 1s peak components for
F-doped SnO2 and F-doped TiO2. The data presented is from a number of sources which
use different methods of calibrating the binding energy scale. Hence, the energy difference
between F 1s components is also presented for comparison.

Material Main component (eV) Shoulder component (eV) ∆E (eV) Ref.
F:SnO2 684.9 685.7 0.8 This work
F:SnO2 684.7 685.7 1.0 10
F:SnO2 685.7 687.3 1.6 11
F:SnO2 684.7 687.5 2.8 12
F:SnO2 685.1 - - 13
F:SnO2 684.4 - - 14

F:TiO2 684.9 686.4 1.5 15
F:TiO2 683.6 684.7 1.1 16
F:TiO2 684.3 685.4 1.1 17
F:TiO2 684.1 685.3 1.2 18

Binding energies for F 1s region of F-doped SnO2 and F-doped TiO2

XPS binding energy values for the fitted F 1s region taken from this work and a number of

previous studies are presented in Table S1. In the data sets included, the F 1s spectra were

fitted with either one or two components. Below a brief discussion is presented of these data

sets assessing their quality, quality of curve fitting, general differences between data sets and

other relevent comments. Note that only a limited number of sources are available for which

a reasonable signal to noise level in the F 1s spectra of FTO has been obtained and spectral

analysis performed. This is because few XPS studies of SnO2 focus on the dopant, primarily

due to the fact that generally low concentrations of fluorine dopant are incorporated into

the SnO2 matrix. Together with the relatively low photoionization cross-section of F 1s

compared with many other core level lines, this makes achieving a good signal-to-noise ratio

in F 1s spectra a lengthy process (typically taking several tens of hours of scanning). We

therefore also present prior results on F 1s binding energy values for F-doped TiO2 as it

possesses the same rutile crystal structure and may exhibit similar F doping properties to

FTO.

Suffner et al.10 investigated the effects of different fluorine incorporation into the SnO2
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matrix for FTO nanoparticles grown via chemical vapor synthesis. They reported that, as

fluorine incorporation is increased, a shoulder component emerges at high binding energy in

the F 1s spectra. The F 1s spectrum was curve fitted with two components, but the report

gave no information about the line shapes or the background used to fit the data and so it

is difficult to properly judge their analysis and interpretation and compare our F 1s data to

theirs. A negligible carbon signal is seen in the C 1s spectrum, which would usually indicate

some form of surface cleaning to get rid of adventitious carbonaceous species. However, no

surface preparation prior to XPS measurement is described. The only very weak C 1s inten-

sity does however suggest it is unlikely that the F 1s shoulder component is the result of C-F

bonding associated with atmospheric contamination. No electrical measurements of carrier

concentration or mobility are provided for these FTO nanoparticles, making comparisons

between their samples and ours difficult. The exact nature of the interstitials suggested by

Suffner et al. is in contrast to what we see in our DFT results. They proposed the fluorine

substitutional-interstitial pair is the most probable defect accounting for the effects seen on

the unit cell volume via XRD measurements.

This defect was also suggested by Canestrato et al.19 to account for similar observations

of a changing lattice parameter as determined via XRD. We have shown theoretically that

this defect has a much higher formation energy for FTO in the degenerate regime and so

is less likely to form than interstitial fluorine. Park et al.11 looked at metal-organic CVD-

deposited FTO. They showed the Sn 3d, C 1s and F 1s regions for four samples with different

tin incorporation rates. The Sn 3d spectra show good signal-to-noise ratio, but the peak

assignment is incorrect. They claim the 3d3/2 peak is due to Sn-O bonding and the 3d5/2

peak is a component due to Sn-F bonding. Obviously this is incorrect, as any chemically

shifted contributions to the Sn 3d spectra must have both 3d5/2 and 3d3/2 components with

spin orbit separation of 8.4 eV. Similarly the C 1s spectra have also not been fitted but

three components are claimed: C-H, C-F and C-O. It is very difficult to see these due to the

poor signal-to-noise, and really only an adventitious hydrocarbon carbon peak is obvious at
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∼284.6 eV. The F 1s spectrum also suffers from poor signal-to-noise. Two components are

claimed, again with no fit shown, C-F and C9F. Strangely, they claim to have made F:SnO2

but make no mention of substitutional fluorine in this spectrum. There is large ambiguity

between the components they are claiming in the text and those in their figure labels. For

the reasons stated above the reported F 1s peak positions are of little significance.

Chantarat et al.12 also observed two peaks in their XPS F1s spectra for FTO and AZO

coated FTO films deposited via chemical pyrolysis and subsequent sputtering of AZO. They

report a much larger splitting between two F 1s components of 2.8 eV. These components

are assigned to Sn-F (low binding energy) and C-F (high binding energy). Focusing on the

F 1s spectra of the FTO (without AZO deposited on top) there is relatively good signal-to-

noise in the data. Three spectra are shown corresponding to a number of cleaning processes.

Strangely no fluorine is seen in the as deposited or annealed samples. This is in spite of a

measured carrier concentration of 5.5 × 1020 cm−3, suggesting significant fluorine content

must be present in the as deposited samples. Only the H-plasma cleaned samples display

a clear fluorine peak. The fitting of the F 1s spectrum is fairly poor, containing an F-

Sn component that has a very large full width at half maximum (FWHM) without any

justification and a second high binding energy component again with a high FWHM and

intensity similar to that of the noise. This component accomodates the asymmetry of the

F 1s peak, but should probably be shifted to lower binding energy and the FWHM of both

peaks constrained to lower, more reasonable values. We suggest such curve fitting would to

some extent better correspond to our analysis of our data.

However, it is important to note that none of the curve fitting of the XPS data from

heavily doped FTO discussed above included the effects of plasmon loss features. In fact,

this feature is more often than not neglected in XPS analysis of TCOs. Generally, no mention

is made of the influence of components related to the high density of free carriers on the core

level spectral features. Further instances of F 1s data not being curve fitted include those of

Noor et al. and Martinez et al.13,14 These data sets are typical of most in the literature and

12



provide little information about possible dopant bonding configurations in FTO other than

stating a binding energy position of the F 1s peak that roughly corresponds to the Sn-F

bond. Peak fitting information is rarely provided, making it difficult to assess the validity

of the data analysis.

TiO2 is a material that shares the rutile structure of SnO2 and allows for fluorine incorpo-

ration on an oxygen site much in the same way as tin dioxide. Hence, it is not unreasonable

that F-doped TiO2 may share similar doping properties to FTO. In that vein we have also

provided a number of examples of XPS analysis focused on the F1s region of F-doped TiO2.

Seo et al.15 achieved high quality F:TiO2 films through the use of DC magnetron sputtering

and subsequent fluorine plasma insertion. The F 1s spectra they measure from this material

has been fitted using two components, designated Ti-F and interstitial F. Their data set has

good signal-to-noise and the fit line agrees well with the experimental data. Broadly, this

evidence agrees with the notion that F can act in a similar manner in both SnO2 and TiO2

and occupy interstitial sites.

Li et al.16 studied N and F co-doped TiO2 and found two components to their F 1s

peak. The signal-to-noise ratio is poor in the F 1s spectra and leads to significant ambiguity

in the binding energies of the components, with the Ti-F peak reported as having slightly

lower energy than expected. They attribute these peaks to substitutional fluorine, and

an oxyfluoride component. The oxyfluoride component would be most likely to arise from

contamination of the film in air. Much like the carbonaceous fluorine component seen in

figure S3, we would expect an oxygen-fluorine bond to have high binding energy.2 The energy

separation between the two components matches well with what our separation between

substitutional and interstitial components, and with other reports we have discussed.

Finally, two reports worth mentioning are from Trapalis et al.17 and Czoska et al.18 who

have reported XPS spectra for F:TiO2 powders produced via the sole-gel method. These

materials have the added complexity of existing in both the rutile and anatase phases which

may in fact coexist in the powders if the anatase to rutile transformation is not fully made.
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This difference in structure may mean F behaves differently when incorporated into the films,

and so we will not dwell too much on these studies. However, Czoska et al. clearly show

two components fitted to a F 1s spectrum: a substitutional component and a component

they assign to fluorine substituting a surface hydroxyl group. We see no evidence of OH

in our O 1s spectra (Figure 4 of main text) and so this possibility can be ruled out for

our data.20 Trapalis et al. showed an asymmetric peak with no fit, but claimed at least

three components, a contamination or non-stoichimetric TiO2xFx component at high binding

energy (∼ 688eV), a peak associated with TiOF2 (∼ 685.4eV), and either TiF4 or physisorbed

F on TiO2 (∼ 684.3eV). Without curve fitting, the validity of these assignments is difficult

to assess. However, the binding energy shift reported between components is again similar

to that in our FTO F 1s data.

14



References

(1) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. In Handbook of X-ray

Photoelectron Spectroscopy ; Chastain, J., King, R., Eds.; Physical Electronics, Division,

Perkin-Elmer Corporation: Eden Prairie, Minnesota, USA, 1992; p 261.

(2) Ferraria, A. M.; Lopes da Silva, J. D.; Botelho do Rego, A. M. Polymer 2003, 44,

7241–7249.

(3) Sleigh, C.; Pijpers, A.; Jaspers, A.; Coussens, B.; Meier, R. J. Journal of Electron

Spectroscopy and Related Phenomena 1996, 77, 41–57.

(4) Baur, W. H. Acta Crystallographica 1956, 9, 515–520.

(5) Downs, R. T.; Hall-Wallace, M. American Mineralogist 2003, 88, 247–250.

(6) Bhachu, D. S.; Waugh, M. R.; Zeissler, K.; Branford, W. R.; Parkin, I. P. Chemistry -

A European Journal 2011, 17, 11613–11621.

(7) Thangaraju, B. Thin Solid Films 2002, 402, 71–78.

(8) Martinez, A. I.; Acosta, D. R. Thin Solid Films 2005, 483, 107–113.

(9) Amanullah, F.; Pratap, K.; Hari Babu, V. Materials Science and Engineering: B 1998,

52, 93–98.

(10) Suffner, J.; Ágoston, P.; Kling, J.; Hahn, H. Journal of Nanoparticle Research 2010,

12, 2579–2588.

(11) Park, J. H.; Byun, D. J.; Lee, J. K. Journal of Electroceramics 2009, 23, 506–511.

(12) Chantarat, N.; Hsu, S.-H.; Lin, C.-C.; Chiang, M.-C.; Chen, S.-Y. Journal of Materials

Chemistry 2012, 22, 8005–8012.

(13) Noor, N.; Parkin, I. P. J. Mater. Chem. C 2013, 1, 984–996.

15



(14) Martínez, A. I.; Huerta, L.; de León, J. M. O.-R.; Acosta, D.; Malik, O.; Aguilar, M.

Journal of Physics D: Applied Physics 2006, 39, 5091–5096.

(15) Seo, H.; Baker, L. R.; Hervier, A.; Kim, J.; Whitten, J. L.; Somorjai, G. A. Nano

Letters 2011, 11, 751–756.

(16) Li, X.; Zhang, H.; Zheng, X.; Yin, Z.; Wei, L. Journal of Environmental Sciences 2011,

23, 1919–1924.

(17) Todorova, N.; Giannakopoulou, T.; Romanos, G.; Vaimakis, T.; Yu, J.; Trapalis, C.

International Journal of Photoenergy 2008, 534038.

(18) Czoska, a. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Fi-

nazzi, E.; Valentin, C. D.; Pacchioni, G. The Journal of Physical Chemistry C 2008,

112, 8951–8956.

(19) Canestraro, C. D.; Oliveira, M. M.; Valaski, R.; da Silva, M. V. S.; David, D. G. F.;

Pepe, I.; Silva, a. F. D.; Roman, L. S.; Persson, C. Applied Surface Science 2008, 255,

1874–1879.

(20) McCafferty, E.; Wightman, J. P.; Mcca, E.; Wightman, J. P. Surface And Interface

Analysis 1998, 26, 549–564.

16


