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Anion Induced Ferroelectric Polarization in a Luminescent Metal-
organic Cage Compound†  

Ashok Yadav,a Anant Kumar Srivastava,a Priyangi Kulkarni,c Pillutla Divya,c Alexander Steiner*,d, B. 
Praveenkumar*,c and Ramamoorthy Boomishankar*,a,b  

Metal-organic crystalline solids with ferroelectric properties have attracted significant attention recently as materials for 

high-tech applications. Here, we describe two crystalline assemblies that contain cationic metal-organic cages 

{[Zn6(H2O)12][TPTA]8}(NO3)12·26H2O (1)  and {[Zn6(H2O)12][TPTA]8}(ClO4)12·18.75H2O  (2) featuring the tripodal ligand 

[PS(NH3Py)3] (TPTA). Ferroelectric measurement on a single crystal of 1 gave a remnant (Pr) polarization of 1.2 µCcm-2 at 

room temperature. The ferroelectric response originates from the toggling of nitrate anions and solvate molecules found 

in pockets between the cages. The temperature dependent permittivity of 1 shows an anomalous dielectric peak at 20 °C. 

This is attributed to the desolvation assisted dielectric relaxation behaviour and signifies the role of solvate molecules in 

the ferroelectric behaviour of 1. In addition, this material is highly luminescent exhibiting a bright blue emission under UV-

light. This multifunctional behaviour is unique among metal-organic cage frameworks. 

Introduction 

Ferroelectric (FE) materials exhibit switchable spontaneous 

polarization in response to an external electric field, which led 

to a wide range of applications in computing devices, 

capacitors, micro-electro-mechanical systems (MEMS), field-

effect transistors (FETs) and off late as enhanced light 

absorbing layers in FE photovoltaic cells.1-11 Ferroelectric 

crystals that encompass piezoelectric, pyroelectric, 

luminescent and nonlinear optical properties have shown 

potential for energy harvesting and multifunctional 

optoelectronics.12-25 Rare-earth doped luminescent 

ferroelectric perovskites  are promising candidates for field 

emission and vacuum fluorescent displays.26-28 Metal-organic 

materials with ferroelectric, multiferroic and piezoelectric 

properties have gained immense interest in recent years29-38 

since they are more amenable for low-temperature fabrication 

in comparison with traditional ceramic-based materials such as 

barium titanate and lead zirconate titanate.39-44 They also offer 

a broader range of designs and therefore provide a better 

platform for fine-tuning of material properties. A number of 

metal tartrates, metal formates, metal sulfates, metal 

cyanamides and halogenometallates have been screened for 

ferroelectric and/or multifunctional behaviour.45-48 In some 

cases hybrid halogenometallates have shown both 

ferroelectric and luminescent activity.49-50 However, synthetic 

approaches to access molecular materials with ferroelectric 

properties are still challenging and often serendipitous. 

Recently, our group has embarked on a new family of cationic 

[CuIIL2]n, [NiIIL2]4 and [CoIIL2]4 based discrete or polymeric 

frameworks derived from dipodal phosphoramide ligands of 

the type [PhPO(NHPy)2], (Py = 3-pyridyl (3Py) or 4-pyridyl(4Py)), 

which showed tuned ferroelectric responses depending on the 

counter anions, dimensionality of the framework and guest 

molecules present in them.51-54 Utilizing a similar C3-symmetric 

ligand [PO(NH3Py)3] (TPPA), Hong and co-workers have 

synthesized a family of chiral octahedral cages of the type 

[M6L8]12+ (point group O).55-56 In order to utilize such chiral 

cages of high symmetry as frameworks that enable FE 

behaviour, we paid attention to subtly alter the ligand 

backbone, counter anions and guest molecules. 

Herein, we report an octahedral luminescent cage compound 

{[Zn6(H2O)12][TPTA]8}(NO3)12·26H2O 1, featuring the tripodal 

tris(3-aminopyridyl)thiophosphoramide ligand (TPTA),57 

[PS(NH3Py)3] which crystallizes in space group I4. The 

ferroelectric measurements on this cage assembly gave a 

remnant polarization (Pr) value of ~1.2 Ccmˉ2 at room 

temperature. Polyhedral cages derived from metal-ligand 

interactions have shown fascinating structures and potential 

applications in the areas of sorption, sensing, catalysis and 

host-guest chemistry.58-68 To the best of our knowledge, this is 

the first report where framework of a polyhedral cage exhibits 
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not only ferroelectric, but a combination of ferroelectric and 

luminescent behaviour. 

Results and discussion 

Syntheses and Structures of the Octahedral Cages 

We have found that the solid-state assembly of these metal-

organic cages is strongly dependent on the choice of 

counterion. The treatment of TPTA (Fig. S1-S4, ESI) with 

Zn(ClO4)2 resulted in the formation of 

{[Zn6(H2O)12][TPTA]8}(ClO4)12·18.75H2O, 2, which crystallizes in 

the cubic space group I-43d as determined from single crystal 

X-ray diffraction (SCXRD) and features a racemic mixture of 

cages; its structure corresponds to that of the TPPA derivative 

reported by Hong and co-workers.56 In contrast, use of the 

nitrate salt Zn(NO3)2·6H2O led to the formation of 

{[Zn6(H2O)12][TPTA]8}(NO3)12·26H2O, 1, which crystallizes in 

space group I4, consisting of a chiral assembly of cages albeit 

as part of racemically twinned crystals. The packing of cages in 

both structures can be described as body-centred; every cage 

is linked with eight others in a hydrogen-bonded network via 

water molecules. Both compounds contain partially disordered 

counterions (Fig. 1, Fig. S5-S9, ESI). However, the disorder of 

nitrate ions in 1 can give rise to polar assemblies that facilitate 

a ferroelectric response (as discussed in detail further below); 

compound 2 does not show this behaviour. 

 
Scheme 1. Schematic diagram showing the formation of octahedral cage assemblies 1 

and 2. 

Each ligand of the cationic cage {[Zn6(H2O)12][TPTA]8}12+ is 

connected to three Zn(II) ions via Npyridyl sites and, in return, 

each zinc ion displays an octahedral coordination with four 

equatorial Npyridyl contacts and two water ligands at axial 

positions (Fig. 1a and Tables S1-S2, ESI). All eight TPTA ligands 

offer a syn-mode of coordination to the Zn2+ ions in which the 

P=S moieties are oriented towards the cavity of the cage. The 

cages show local chiral octahedral symmetry (point group O); 

the six Zn2+ ions are located on the three 4-fold axes and the P 

and S atoms on the four 3-fold axes (Fig. 1a and 1b). The 

ligands are all twisted in the same direction around the 3-fold 

axes. Concomitantly, the square planar ZnN4 arrangements are 

also twisted the same way when viewed onto the Zn6 

octahedron. 

It is interesting to note that mass spectrometry of aqueous 

solutions of 1 and 2 indicate the existence of complete cages 

(Fig. S10, ESI). Variable temperature 1H and 31P-NMR of 1 and 2 

show line broadening at 230 K, which suggest that the cages 

fluctuate at room temperature but start to freeze into a static 

conformation at lower temperature (Fig. S11-S14, ESI). Hence, 

we assume that the cages also freeze upon crystallization to 

form either chiral (as in 1) or racemic crystals (as in 2). Figures 

1c and 1d emphasize the chiral and racemic structures of 1 and 

2, by highlighting the relative turns of ZnN4 squares at the 

corners of the Zn6 octahedra. 

 
Fig. 1. View of the {[Zn6(H2O)12][TPTA]8}12+ cage in 1 and 2; along the 3-fold (a) and 4-

fold axis (b). Packing view of the Zn6 octahedra in 1 (c) and 2 (d) along with the 

direction of rotation of the ZnN4 subunits in them. Only a partial segment of the 

packing in 2 is given; the organic ligands (except those of Npyridyl atoms), anions and 

solvates are omitted for clarity. 

Ferroelectric and Dielectric Studies of 1 

Ferroelectric measurements of 1 gave a well saturated 

hysteresis loop for polarization (P) vs electric field (E) at room 

temperature characteristic of ferroelectric materials. A closer 

look at the loop indicates remnant (Pr) and saturation 

polarization (Ps) values of 1.20 and 0.95 µCcm-2, respectively, 

at 0.1Hz frequency (Fig. 2a). The slightly higher Pr value as 

compared to Ps corresponds to the higher relaxation time 

required for aligning the dipoles created by the weak hydrogen 

bonding interactions. Such a behaviour has also been observed 

in several supramolecular ferroelctric systems such as TGS.69 

The obtained Ec value of 0.86 kVcm-1 is considerably low which 

indicates the facile switching of the ferroelectric domains in 1. 

Recording the data at 1Hz frequency gave an almost similar P-E 

loop with a Pr of 1.09 µCcm-2 and Ec of 1.40 kVcm-1 (Fig. S15, 

ESI). The plot of leakage current vs. applied field shows a very 

low leakage current of the order of 10-7 A and exhibits peaks 

corresponding to the domain switching at the coercive field 

which confirms the ferroelectric origin of the obtained loop 

(Fig. 2b). To further probe its non-conducting behaviour, the 

crystals of 1 (with contacts) were directly subjected to a dc 

electric field. The output current measured in this experiment 

was found to be very low (47.16 µA) when 1kV of dc voltage 

Page 2 of 7Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
9 

Se
pt

em
be

r 
20

17
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
L

iv
er

po
ol

 o
n 

29
/0

9/
20

17
 1

8:
04

:3
5.

 

View Article Online
DOI: 10.1039/C7TC03375C

http://dx.doi.org/10.1039/C7TC03375C


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

was passed through the crystal. This confirms the resistive 

nature of the crystal (Table S3, ESI). 

 
Fig. 2. (a) Ferroelectric hysteresis loop for 1 and (b) the corresponding plot of the 

leakage current vs. voltage. 

In contrast, a similar P-E loop measurement for 2 gave a 

negligible polarization (Fig. S16, ESI). The obtained Pr values for 

1 are in good comparison with several polymeric, organic and 

molecular ferroelectric materials (Table S4, ESI).70 

Furthermore, ferroelectric fatigue measurements were 

performed on 1 (at 1 Hz) to check the loss of remnant 

polarization during bipolar switching cycles. These 

measurements showed the retention of nearly 50% of the 

polarization and rectangularity of the loop after 105 switching 

cycles (Fig. S17, ESI). 

As described earlier, the cages themselves, as well as the 

framework they build have no dipole moment due to the 

octahedral symmetry of the cage. The polarization necessary 

for the ferroelectric response originates from the distribution 

of nitrate ions relative to the framework and its interactions 

with the solvate molecules of water (Fig. S18-S19, ESI). The 

network of nitrate ions and water molecules in 1 consists of 

both ordered and disordered parts. The ordered part contains 

one nitrate ion and four water molecules which form bridges 

between adjacent exogenically facing P(NH)3 ligand segments 

(Fig. 3a). As such all eight P(NH)3 units of a given cage are 

connected in this way to P(NH)3 units of neighbouring cages. 

The disordered parts consist of four nitrate ions and water 

molecules that are located in isolated pockets created by the 

packing of the cages. These ions are disordered over two 

positions which are crystallographically related by the 2-fold 

axis that runs parallel to the c-axis (Wyckoff site 4b in space 

group I4). Switching between the two disordered sites would 

involve a movement of ions along the a- and b-axis, 

respectively (Fig. 3b). 

Measurements of capacitance Cp (directly proportional to ε) on 

individual single crystals show that the dipole moments in 1 

were dominant along the a- and b- and weaker along the c-axis 

(Table S5, ESI). In a fully polarized state, the location of nitrate 

ions will be biased towards one of the two positions. A similar 

bias could also be shown by the disordered solvate molecules 

perpendicular to the c-axis. If the crystal was fully polarized, 

the space group symmetry would be reduced to I1 (P1) due to 

the absence of both 2-fold and 4-fold axes. Refinement of the 

structure of freshly prepared crystals of 1 in the lower 

symmetry I1 revealed the same disorder as observed for I4. 

This indicates that bulk polarization does not occur prior to the 

application of an electric field (Fig. 3c).71 Thus, one can assume 

that the toggling of nitrate anions and water molecules within 

the isolated pockets of the crystal structure plays a role in the 

polarisation. 

 
Fig. 3. Segments of the (a) ordered and (b) disordered parts of the nitrate anions and 

their H-bonding interactions. The two disordered parts are shown in blue and green 

colours and the arrows indicate the possible migration pathways. The octahedral cage 

core is depicted as an orange coloured sphere. (c) Schematic diagram showing the 

overall arrangement of dipoles in the structure of 1 before and after polarization (cages 

are shown in orange). 
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To further investigate the polarization attributes of 1, we 

performed dielectric permittivity (ε) measurements. From the 

plot of the real part of dielectric permittivity (ε') as a function 

of frequency it can be noted that the maximum room 

temperature ε' value is 39.4 at 100 Hz (Fig. S20-S21, ESI). These 

values gradually decreased at higher frequencies indicating the 

contribution of all polarization mechanisms at lower 

frequencies.51 The computed dipole moment for 1 gave a value 

of 59.4 D which is consistent with its observed high-dielectric 

constant. Next, we studied the temperature dependence of 

dielectric permittivity at various frequencies between 102 and 

106 Hz. These curves show a broad feature for all measured 

frequencies with an increase in permittivity up to room 

temperature (onset at -50 °C), beyond which it gradually 

decreases attaining a minimum value of around 8-10 at 60 °C 

(Fig. 4a). The maximum ε' value of 39.4, which corresponds to 

an anomalous dielectric peak, is observed at 20 °C at 100 Hz. 

Furthermore, the intensity of the anomalous peak gradually 

declined and slightly shifted at higher frequencies suggesting 

the presence of dielectric relaxation behaviour in 1. These 

observations suggest that the dielectric anomaly in 1 is due to 

desolvation (see also below). Furthermore, the dielectric loss 

(tan δ) observed at various frequencies are very low indicating 

the high dielectric and ferroelectric nature of 1 (Fig. 4b). 

 

 
Fig. 4. Plots of (a) the real part of dielectric permittivity and (b) the dielectric loss as a 

function of temperature. 

The structural integrity of 1 and the desolvation dependant 

dielectric anomaly has been confirmed by thermogravimetric-

differential thermal analysis, infrared spectra recorded in the 

ATR mode, variable temperature powder X-ray diffraction 

analysis, SCXRD experiments on 1 at various temperatures 

between -173 and 100 °C and solid state CP-MAS 31P-NMR 

spectra. The thermogravimetric-differential thermal analysis of 

1 gave an irreversible endothermic peak at 30 °C indicating the 

onset of desolvation at the transition temperature (Fig. S24-

S26, ESI). The Fourier-transform infrared spectra recorded in 

the ATR mode for the neat samples of 1, 1desolvated and 1resolvated 

gave almost similar peak patterns except that the –OH 

stretching frequencies due to the solvate molecules were 

absent in the case of 1desolvated (Fig. 5a). 

The variable temperature powder X-ray diffraction (VTPXRD) 

analysis showed that the peak patterns begin to change at 30 

°C and the profile obtained after 120 °C matched with that of 

1desolvated (Fig. S27, ESI). However, the PXRD of 1resolvated exactly 

matched with that of the as-made 1 confirming the 

desolvation and resolvation processes in 1 are reversible (Fig. 

5b). The SCXRD experiments performed on 1 at various 

temperatures between -173 and 100 °C are in agreement with 

the VTPXRD data. Also, a crude model for the structure of 1 at 

both 273 and 295 K have been obtained that confirms the 

same packing of cages in I4 and even obtained a reflection 

pattern at 323 K which shows similar unit cell parameters (Fig. 

S28, Table S6, ESI). This confirms that the integrity of the 

crystal is retained even after crossing the Tc. The solid state CP-

MAS 31P-NMR spectra of the bulk samples of 1, 1desolvated and 

1resolvated gave almost identical peak patterns consisting of a 

sole signal due to ligand phosphorus atom at 39.13 ppm (Fig. 

S29, ESI). 

 
Fig. 5. (a) IR spectra for 1, 1desolvated, and 1resolvated. (b) PXRD pattern of 1 at various 

states. 
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Optical Properties of 1 

It is worth noting that the framework of cages in 1, which can 

be regarded as static during the ferroelectric response, is polar 

in itself (space group I4). The direction of the ferroelectric 

response, on the other hand, lies orthogonal to the polar 4-

fold axis, leading to an overall reduction in symmetry to I1. 

Hence, the extra 'permanent' polarity orthogonal to the 

direction of ferroelectricity implies further interesting 

properties. Preliminary non-linear optical measurements (NLO) 

were obtained for 1 in both solvated and desolvated states. 

The second harmonic generation (SHG) intensities for the bulk 

un-sieved samples of 1, 1desolvated and 1resolvated were found to 

be around 30, 20 and 32 %, respectively, with respect to the 

standard urea sample (Table S7, ESI). The cage assembly of 1 

was also found to exhibit bright blue luminescence under UV-

light in the solid state owing to intra-ligand (-*) transitions 

(Figure 6). The emission spectrum of 1 shows an intense band 

at λem = 398 nm (λex = 345 nm).72 The decay profile recorded 

on 1 gave a lifetime of 6.9 ns for this fluorescence emission 

(Fig. S31, ESI). Observation of such dual properties 

(fluorescence and ferroelectricity) promises interesting 

applications of metal-organic materials for future electro-

optical and energy harvesting applications. 

 
Fig. 6. (a) Fluorescence profile of 1 and TPTA in the solid state; the inset shows the 

excitation spectrum of 1. (b) View of the crystals of 1 at ambient and under UV light 

Conclusions 

In conclusion, this work demonstrates that by subtly altering 

the molecular constituents of a metal-ligand cage assembly, it 

is possible to derive materials with ferroelectric properties. An 

assembly of {[Zn6(H2O)12][TPTA]8}12+ cages and nitrate ions 

gave a ferroelectric remnant polarization value of 1.2 µCcm-2 

at room temperature. The polarization can be attributed to the 

toggling of anions and water molecules that are located in 

pockets between the cages. Further, dielectric measurements 

showed that 1 exhibits a desolvation assisted dielectric 

transition associated with the release of solvate molecules 

from the unit cell packing. In addition, crystals of 1 are 

noncentrosymmetric, which gives rise to NLO activity. 

Furthermore, the compound 1 is highly luminescent showing a 

bright blue emission under UV-light. Such multifunctional 

behaviour is unique among metal-organic cage compounds 

and may pave the way for new and interesting applications. 
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Graphical Abstract 

 

Anion Induced Ferroelectric Polarization in a Luminescent 

Metal-organic Cage Compound  
 

Ashok Yadav, Anant Kumar Srivastava, Priyangi Kulkarni,
 
Pillutla Divya, Alexander 

Steiner,* B. Praveenkumar,* and Ramamoorthy Boomishankar* 

 

A cage assembly consisting of an axially symmetric nonpolar octahedral [Zn6L8] core 

exhibits an interesting multifunctional luminescence and ferroelectric order at room 

temperature. The ferroelectric response originates from the toggling of nitrate anions and 

solvate molecules found in pockets between the cages. 
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