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Abstract

We present the first determination of Higgs-boson decay to hadrons at the next-to-next-to-

next-to-next-to-leading order of perturbative QCD in the limit of a heavy top quark and

massless light flavours. This result has been obtained by computing the absorptive parts

of the relevant five-loop self-energy for a general gauge group and combining the outcome

with the corresponding coefficient function already known to this order in QCD. Our new

result reduces the uncertainty due to the truncation of the perturbation series to a fraction

of the uncertainty due to the present error of the strong coupling constant. We have also

performed the corresponding but technically simpler computations for direct Higgs decay

to bottom quarks and for the electromagnetic R-ratio in e+e− → hadrons, thus verifying

important fifth-order results obtained only by one group so far.
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1 Introduction

The production and decay processes of the Higgs boson, discovered five years ago at CERN

[1,2] with a mass MH of 125 GeV, are among the most important research topics in collider

physics. The dominant standard-model decay is that to bottom quarks, H → b̄b (+ hadrons).

The QCD calculations of this decay mode have been completed up to the fourth order in

the strong coupling αs, see ref. [3] and references therein. A crucial component of this high

accuracy is the next-to-next-to-next-to-next-to-leading order (N4LO) computation [4] of the

decay to quarks via their direct coupling to the Higgs. This calculation, in which the quark

mass can be neglected (except in the Yukawa coupling), has not been repeated so far.

The second important hadronic decay channel arises via H → gg, where the coupling of

the Higgs to gluons is predominantly mediated, in the standard model, by the top quark. Due

to MH ≪ 2mt, high-order QCD corrections to this process can be evaluated in an effective

theory in which the top quark has been integrated out [5]; for 1/mt corrections up to NNLO

see refs. [6, 7]. The resulting coefficient function for the effective Higgs coupling to gluons

is known to N4LO [8–13]. The absorptive part of the corresponding vacuum polarization

is not yet known at this order. The N3LO corrections have been computed in ref. [14] and

checked in ref. [15] (except for their kinematic π2 terms) and very recently in ref. [16]; see

refs. [5, 17, 18] for the previous orders.

In this article we present this hitherto missing fourth-order correction, thus completing

the N4LO corrections to Higgs decay into hadrons in the limit of a heavy top quark and any

number of massless flavours. We have also performed the computationally far simpler N4LO

determination of the H → b̄b decay rate and verified the result of ref. [4]. A somewhat

more demanding but closely related computation is that of the N4LO corrections to the

electromagnetic R-ratio for the process e+e− → hadrons. So far these corrections were

determined only by one group [19–22]. We have also re-calculated this quantity to the fourth

order, and find complete agreement for both the non-singlet and singlet contributions.

Our N4LO computations employ the same overall strategy as those by the Karlsruhe-

Moscow group mentioned above (see also ref. [23]): the pole terms of the relevant correlation

function are calculated in dimensional regularization [24,25] at five loops, and subsequently

the absorptive part is extracted. Our use of this approach has been made possible by the

development of (a) Forcer [26–28], a Form [29–31] program for the parametric reduc-

tion of four-loop self-energy integrals, and (b) a program [32] efficiently implementing the

R∗ operation, see refs. [33–37], locally for the evaluation of L -loop pole terms in terms of

(L−1)-loop integrals. In order to cope with the computations for H → gg, which are far

more demanding than those required to determine the five-loop beta function [38, 39], the

latter program has undergone substantial modifications and extensions.

The remainder of this article is organized as follows: in section 2 we define our notations

and briefly address some computational details. Our new N4LO result for the H → gg

decay width is presented and discussed in section 3. Due to the rather large higher-order

coefficients in the expansion in αs, it is interesting to compare the results in the standard
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MS scheme [40, 41] to those in a fairly common (and, in certain contexts, more physical)

alternative, the miniMOM scheme [42, 43]. The transformation to this scheme, in contrast

to other MOM schemes, is known to N4LO [44]; it has argued to be preferable to MS for

H → gg in a recent N3LO study [45].

In section 4 we briefly address the decay H → b̄b. We present the N4LO correction for a

general gauge group and a general renormalization scale which has not been written down in

the literature so far. The N4LO results in QCD, which show a far less problematic behaviour

at the only relevant case of αs ≈ 0.1 than their H → gg counterparts, have been known and

discussed for more than ten years. Hence there is no need to go into more detail in this case.

This is somewhat different for the R-ratio addressed in section 5, despite its even smaller

coefficients in the expansion in αs, since this quantity is of physical relevance down to rather

low scales and correspondingly high valus of αs. Hence the size and scale (in-) stabilily of this

quantity is illustrated in both the MS and the miniMOM scheme at two low-scale reference

points. We briefly summarize our results in section 6.

2 Theoretical framework and calculations

Inclusive Higgs-boson decay to gluons

In the limit of a large top-quark mass and nf effectively massless flavours, the decay of the

Higgs boson to hadrons can be calculated using the effective Lagrangian [5, 18]

Leff = LQCD(n
f
) − 21/4G

1/2
F C1HG

µν
a Ga

µν . (2.1)

Here H is the Higgs field, and Gµν
a the renormalized gluon field-strength tensor for QCD with

nf flavours and the Lagrangian LQCD(n
f
). The renormalized coefficient function C1 includes

the top-mass dependence. GF ≃ 1.1664 · 10−5GeV−2 denotes the Fermi constant.

At the leading order (LO) of perturbative QCD, eq. (2.1) implies that the Higgs decays

to hadrons only via H → gg. At the (next-to-)n-leading order, NnLO, up to n additional

partons occur in the final state. As usual, we will refer to the inclusive decay induced by

eq. (2.1) as H → gg also beyond LO. The corresponding partial decay width ΓH→ gg can be

related, via the optical theorem, to the imaginary part of the Higgs-boson self energy:

ΓH→ gg =

√
2GF

MH

|C1|2 ImΠGG(−M 2
H − iδ) , (2.2)

where MH is the Higgs boson mass, δ is an infinitesimally small positive real parameter and

ΠGG denotes the contribution to the self energy of the Higgs boson which is induced by its

effective gluonic couplings as produced by eq. (2.1).

The Wilson coefficient C1 can be extracted via a low-energy theorem from a decoupling

relation [9] which relates the value of the strong coupling in a theory with nf light flavours,

αs(µ
2) ≡ α

(n
f
)

s (µ2) , (2.3)
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to its value α
(n

f
+1)

s in the corresponding theory with nf light flavours and one heavy flavour.

The analytic QCD expression for C1 up to N4LO has been provided in ref. [13] as a function of

α
(n

f
+1)

s at the renormalization scale µ = µt, where µt = mt(µt) is the scale invariant (SI) top

quark mass, i.e., the MS mass evaluated at scale µt. Using the decoupling relation [10–13],

the renormalization group and the three-loop relation between the MS mass and the on-

shell (OS) mass [46, 47], we have rewritten the four-loop Wilson coefficient as a function of

α
(n

f
)

s (µ2) at an arbitrary renormalization scale µ for the SI, MS and OS top quark masses.

The same has recently been done to three loops for the OS scheme in ref. [3].

For the convenience of the reader we include the resulting analytic expressions for C1.

These are presented in the form

C1,X = − 1
3 as

(
1 +

∑

n=1

cn,X a
n
s (µ

2)
)

with as ≡ αs

4π
. (2.4)

Here X labels the mass scheme employed, and we have indicated the reduced coupling as
that we employ for all analytic expressions. The first two coefficients are the same in the

above top-mass schemes up to the different definitions of masses entering Lt = ln(µ2/m2
t ),

c1 = 11 , c2 =
2777

18
+ 19Lt − nf

[
67

6
− 16

3
Lt

]
. (2.5)

The N3LO and N4LO coefficients in the SI scheme read

c3, SI = −2892659

648
+

897943

144
ζ3 +

4834

9
Lt + 209L2

t

+ nf

[
40291

324
− 110779

216
ζ3 +

2912

27
Lt + 46L2

t

]

− n2
f

[
6865

486
− 77

27
Lt +

32

9
L2
t

]
, (2.6)

c4, SI = −854201072999

2041200
+

28121193841

75600
ζ3 +

4674213853

28350
ζ 22 +

913471669

3780
ζ5

− 577744954

4725
ln2 ζ 22 +

93970579

567
ln22 ζ2 −

84531544

2835
ln32 ζ2

− 93970579

3402
ln42 +

42265772

14175
ln52− 375882316

567
a4 −

338126176

945
a5

− 47987641

216
Lt +

9364157

48
ζ3Lt +

29494

3
L2
t + 2299L3

t

+ nf

[
76094378783

2041200
− 12171659669

151200
ζ3 +

608462731

113400
ζ 22 − 22104149

1890
ζ5

+
37273868

4725
ln2 ζ 22 − 11679301

1134
ln22 ζ2 +

5453648

2835
ln32 ζ2

+
11679301

6804
ln42− 2726824

14175
ln52 +

23358602

567
a4 +

21814592

945
a5

+
5343385

162
Lt −

258056

9
ζ3 Lt +

12547

9
L2
t +

1100

3
L3
t

]
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+ n2
f

[
− 48073

108
+

4091305

1296
ζ3 −

576757

540
ζ 22 − 230

3
ζ5 −

685

27
ln22 ζ2

+
685

162
ln42 +

2740

27
a4 −

42302

27
Lt +

28297

36
ζ3 Lt −

5107

54
L2
t −

628

9
L3
t

]

+ n3
f

[
− 270407

5832
+

844

27
ζ3 +

1924

81
Lt −

77

27
L2
t +

64

27
L3
t

]
, (2.7)

where ζn denotes the values of the Riemann ζ-function and an = Lin(
1
2
) =

∑
∞

k=1(2
kkn)−1.

The corresponding expressions for the MS and OS masses are given by

c
3,MS

= c3, SI − 152Lt − nf
128

3
Lt , (2.8)

c
4,MS

= c4, SI −
50186

9
Lt −

12692

3
L2
t − nf

[
31282

27
Lt +

8408

9
L2
t

]

− n2
f

[
136

27
Lt −

640

9
L2
t

]
(2.9)

and

c3,OS = c3, SI +
608

3
+ nf

512

9
, (2.10)

c4,OS = c4, SI +
297587

27
+ 1216 ζ2 −

304

3
ζ3 +

1216

3
ln2 ζ2 + 6688Lt

+ nf

[
189238

81
+

416

3
ζ2 −

256

9
ζ3 +

1024

9
ln2 ζ2 + 1472Lt

]

− n2
f

[
4352

81
+

512

9
ζ2 +

1024

9
Lt

]
. (2.11)

Our first calculation of the second component of eq. (2.2), ImΠGG, to N4LO is addressed

below; for a typical Feynman diagram see the left part of Figure 1. The results are presented

and combined with C1 to N4LO results for ΓH→ gg in section 3.

Higgs decay to bottom quarks and the R-ratio

As ref. [4], we compute the inclusive Higgs decay to bottom quarks at N4LO in the limit of

a small bottom mass, keeping only the leading term proportional to the Yukawa coupling.

The corresponding partial decay width can be extracted, again via the optical theorem, from

the imaginary part of the bottom-Yukawa induced Higgs-boson self energy ΠBB,

ΓH→ b̄b =
GFMHm

2
b

4
√
2π

R̃(M 2
H) with R̃(s) =

ImΠBB(−s− iδ)

2 πs
. (2.12)

A diagram contributing to this process is shown in the right part of figure 1.
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H H H H

Figure 1: 5-loop Feynman diagrams evaluated for the H → gg and H → b̄b decay rates.

γ⋆ γ⋆ γ⋆ γ⋆

Figure 2: Sample non-singlet (left) and singlet (right) Feynman diagrams for which the 1/ε
pole terms were computed in our re-calculation of the electromagnetic R-ratio at N4LO.

The third observable we consider is the hadronic R-ratio, see refs. [19–22] and references

therein, defined as

R(s) =
σe+e−→hadrons

σe+e−→µ+µ−

. (2.13)

Away from the Z-pole, the most important contribution to R(s) is given by the partial

decay width of an off-shell photon into massless quarks. Here we re-compute the N4LO

QCD corrections to this electromagnetic contribution. Analogous to the Higgs decay, this

quantity can be extracted from the imaginary part of the photon self energy

Πµν(q2) = (−gµνq2 + qµqν) Π(q2) (2.14)

via

R e.m.(s) = 12π ImΠ(−s− iδ) = NR

[(∑

f

e2f
)
r(s) +

(∑

f

ef
)2
rS(s)

]
(2.15)

with NR = 3 in QCD. The sum runs over nf quark flavours f with electromagnetic charges ef .

The functions r(s) and rS(s) represent the respective non-singlet and singlet contributions

to the R-ratio. Example diagrams for these two contributions are shown in Figure 2.

Calculations

For all three observables under consideration, we are interested in the imaginary parts of self

energies. These can be readily obtained by analytic continuation,

Im Π(−q2 − iδ) = Im eiπεLΠ(q2) = sin(Lπε) Π(q2) , (2.16)
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where ε = 1
2
(4 − D) is the dimensional regulator and L the number of loops. The crucial

point is now that the imaginary part of the self energy is suppressed by a factor of ε:

sin(Lπε) = Lπε
(
1− 1

3! (Lπε)
2 + 1

5! (Lπε)
4 + . . .

)
. (2.17)

Consequently the finite part of Im Π(−q2) can be obtained from the 1/ε term of Π(q2).

To compute the single poles we employ the R∗-operation for Feynman diagrams with

arbitrary numerators [32] to express the poles of five-loop diagrams in terms of four-loop

diagrams. The R∗-operation thus allows us to compute all ingredients required here using

the Forcer program [26–28], which automates the reduction and calculation of massless

four-loop self energy diagrams. The same approach was used in ref. [39] to compute the

five-loop beta function for an arbitrary simple compact gauge group.

However, the Higgs decay to gluons poses a much greater computational challenge: the

diagrams are all quartically divergent. In order to infrared rearrange the diagrams, the

superficial degree of divergence of the diagrams must be logarithmic. We achieve this by

computing the fourth order coefficient of the Taylor expansion in the external momentum q

about the point q = 0, i.e. we apply the differential operator

1

4!
qµ1qµ2qµ3qµ4

∂

∂qµ1

∂

∂qµ2

∂

∂qµ3

∂

∂qµ4
( • )

∣∣∣∣
q=0

(2.18)

to all Feynman diagrams. As a result, an ‘explosion’ of terms, with complicated numerator

structures, is created. To deal with this complexity, we have significantly improved our

algorithms, in particular for the reduction of high rank tensor vacuum graphs.

The Feynman diagrams for all three cases have been generated using QGRAF [48] and

were then processed by a Form [29–31] program that assigns the topology and determines

the colour factor using the program of ref. [49]. Diagrams of the same topology, colour

factor, and maximal power of nℓ have been combined to meta diagrams for computational

efficiency. Lower-order self-energy insertions have been treated as described in ref. [50].

In the case of ΠGG, this procedure leads to 1 one-loop, 5 two-loop, 38 three-loop, 394

four-loop and 6405 five-loop meta diagrams. These are fewer meta diagrams than for our

calculation of the 5-loop beta function using the background-field method (by a factor 0.68 to

0.69 beyond two loops), but the present diagrams are much harder, as discussed above. The

computations were performed on the same set of a modern and somewhat dated machines

as used for our five-loop beta function [39], and required an order of magnitude more time.

In the much more modest cases of ΠBB and Π in eqs. (2.12) and (2.15), for which we

can use the same diagram set which different external vertices and projections, we computed

1 one-loop, 2 two-loop, 9 three-loop, 64 four-loop and 804 five-loop meta diagrams.

We have checked our results by computing all diagrams by at least two different infrared

rearrangements. A different rearrangement results in the computation of a different set of

counterterms, but should give the same result in the end. This therefore constitutes a highly

non-trivial consistency check of our setup.

6



The first strategy of IR rearrangement consists of attaching external momenta around

the line with the worst IR divergence, for example

µν

ν µ

→
µν

ν µ

. (2.19)

The resulting integral is an L-loop ‘carpet’ integral, which can be reduced to a L −1 loop

propagator integral [28]. By attaching the external momenta around the worst IR divergent

line, the number of counterterms that include this line is limited.

The second IR rearrangement consists of inserting a mass into the worst IR divergent

propagator:

µν

ν µ

→
µν

ν µ

. (2.20)

The resulting counterterm diagrams can always be split up into a massive one-loop vacuum

bubble and an L−1 loop massless propagator integral which can be computed using Forcer.

The advantage of this method is that the massive line cannot be part of any IR counterterm

and that the ‘carpet’ rule reduction is avoided. Overall, this rearrangement is about 20% to

50% faster than attaching external momenta.

3 Higgs decay to gluons

After the calculation of the Feynman diagrams, the extraction of the absorptive part and its

renormalization, the coefficients gn up to N4LO in

4π

NAq4
ImΠGG(q2) ≡ G(q2) = 1 +

∑

n=1

gna
n
s , (3.1)

with NA = 8 in QCD, are found to be

g1 =
73

3
CA − 14

3
nf , (3.2)

g2 = C 2
A

[
37631

54
− 242

3
ζ2 − 110 ζ3

]
− CA nf

[
6665

27
− 88

3
ζ2 + 4 ζ3

]

− CF nf

[
131

3
− 24 ζ3

]
+ n2

f

[
508

27
− 8

3
ζ2

]
, (3.3)
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g3 = C 3
A

[
15420961

729
− 45056

9
ζ2 −

178156

27
ζ3 +

3080

3
ζ5

]

− C 2
A nf

[
2670508

243
− 8084

3
ζ2 −

9772

9
ζ3 +

80

3
ζ5

]

− CFCA nf

[
23221

9
− 572

3
ζ2 − 1364 ζ3 − 160 ζ5

]

+ C 2
F nf

[
221

3
+ 192 ζ3 − 320 ζ5

]
+ CA n

2
f

[
413308

243
− 1384

3
ζ2 +

56

9
ζ3

]

+ CF n
2
f

[
440 − 104

3
ζ2 − 240 ζ3

]
− n3

f

[
57016

729
− 224

9
ζ2 −

64

27
ζ3

]
(3.4)

and

g4 = C 4
A

[
5974862279

8748
− 58922654

243
ζ2 −

25166402

81
ζ3 +

292556

45
ζ 22 +

266200

9
ζ2ζ3

+
1817200

27
ζ5 +

121000

9
ζ 23 − 96250

9
ζ7

]

− d abcd
A d abcd

A

NA

[
6416

27
− 54160

9
ζ3 −

1408

5
ζ 22 +

13760

3
ζ5 −

19360

3
ζ 23 +

6160

3
ζ7

]

− C 3
A nf

[
1025827736

2187
− 41587004

243
ζ2 −

8812352

81
ζ3 +

211736

45
ζ 22 + 9680 ζ2ζ3

+
109220

9
ζ5 −

8800

9
ζ 23 +

3500

9
ζ7

]

− C 2
ACF nf

[
348948545

2916
− 22340 ζ2 −

1869710

27
ζ3 +

656

15
ζ 22 +

19360

3
ζ2ζ3

− 35540

3
ζ5 +

17600

3
ζ 23 − 7000

3
ζ7

]

+ CAC
2
F nf

[
609521

162
− 484

3
ζ2 +

450374

27
ζ3 +

352

15
ζ 22 − 63040

3
ζ5 − 5600 ζ7

]

+ C 3
F nf

[
1034

3
− 388 ζ3 − 4560 ζ5 + 5600 ζ7

]

+
d abcd
F d abcd

A

NA
nf

[
44864

27
− 140128

9
ζ3 −

3328

5
ζ 22 +

20800

3
ζ5 −

14080

3
ζ 23 +

2240

3
ζ7

]

+ C 2
A n

2
f

[
26855351

243
− 3479386

81
ζ2 −

83536

9
ζ3 +

19472

15
ζ 22 +

1760

3
ζ2ζ3 −

1240

9
ζ5 +

160

9
ζ 23

]

+ CFCA n
2
f

[
29816212

729
− 71888

9
ζ2 −

563948

27
ζ3 +

224

15
ζ 22 +

7040

3
ζ2ζ3 −

7000

3
ζ5 −

640

3
ζ 23

]

+ C 2
F n

2
f

[
90491

81
− 200

3
ζ2 −

138968

27
ζ3 −

352

15
ζ 22 + 4400 ζ5 + 640 ζ 23

]

− d abcd
F d abcd

F

NA
n2
f

[
68096

27
− 39424

9
ζ3 −

1024

5
ζ 22 + 1280 ζ5 −

2560

3
ζ 23

]
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− CA n
3
f

[
46491973

4374
− 1099028

243
ζ2 −

23720

81
ζ3 +

1408

9
ζ 22 − 320

9
ζ2ζ3 −

800

27
ζ5

]

− CF n
3
f

[
2282351

729
− 6224

9
ζ2 −

5200

3
ζ3 +

640

3
ζ2ζ3

]

+ n4
f

[
773024

2187
− 40640

243
ζ2 −

2240

81
ζ3 +

64

9
ζ 22

]
. (3.5)

Eqs. (3.2) – (3.4) agree with the previous results in refs. [5, 14–18] (nℓ instead of nf is often

used for the number of light flavours) eq. (3.5) represents the main new result of the present

article. In all these equations TF = 1/2 has been inserted; this factor can be re-instated by

substituting nf → 2 TF nf in all terms that do not involve quartic group invariants.

The coefficients (3.2) – (3.5) are valid for the standard choice µ2 = q2 of the renormal-

ization scale. The additional terms for µ2 6= q2 can be obtained from the scale invariance of

(β(as)/as)
2 ImΠGG(q2) [5,14]. This can be done, e.g., by inserting the expansion of as(q

2) in

terms of as(µ
2) which can be read off to the order required here, for example, from eq. (2.9)

and footnote 2 of ref. [51]. The resulting generalizations of eqs. (3.2) – (3.5) read

g1(Lq) = g1 − 2β0 Lq ,

g2(Lq) = g2 − (4β1 + 3β0g1)Lq + 3β 2
0 L

2
q ,

g3(Lq) = g3 − (6β2 + 5β1g1 + 4β0g2)Lq + (13β0β1 + 6β 2
0 g1)L

2
q − 4β 3

0 L
3
q ,

g4(Lq) = g4 − (8β3 + 7β2g1 + 6β1g2 + 5β0g3)Lq

+ (12β 2
1 + 22β0β2 + 43/2β0β1g1 + 10β 2

0 g2)L
2
q

− (83/3β 2
0 β1 + 10β 3

0 g1)L
3
q + 5β 4

0 L
4
q (3.6)

in terms of the above coefficients gn, the coefficients βn of the MS beta function up to

N3LO [52, 53] and Lq ≡ ln(q2/µ2). The resulting explicit coefficients up to g3 agree with

eq. (26) of ref. [3], where the definitions of L and as are slightly different.

At the scale µ2 = q2 the numerical expansion of the function G(q2) in eq. (3.1) is given by

nf = 1 : 1 + 5.4377939αs + 20.720313α 2
s + 58.92184α 3

s + 118.0078α 4
s + . . . ,

nf = 3 : 1 + 4.6950708αs + 13.472440α 2
s + 20.66395α 3

s − 15.96239α 4
s + . . . ,

nf = 5 : 1 + 3.9523478αs + 6.9555141α 2
s − 6.851753α 3

s − 75.25914α 4
s + . . . ,

nf = 7 : 1 + 3.2096247αs + 1.1695355α 2
s − 24.45788α 3

s − 76.99773α 4
s + . . . ,

nf = 9 : 1 + 2.4669016αs − 3.8854956α 2
s − 32.98703α 3

s − 37.30247α 4
s + . . . (3.7)

for QCD with up to 5 quark families, i.e., nf = 1, . . . , 9 light flavours. In the only physically

relevant case of nf = 5 the effect of the fourth-order correction is larger than that of the

previous order for αs
>
∼ 0.1. It is clear from eqs. (3.7), though, that this is not a generic

feature of the QCD perturbation series, but a consequence of the ‘accidentally’ small size of

the third-order term for this number of flavours. A similar situation has been observed for

Higgs decay to bottom quarks, see eq. (8) of ref. [4] and eq. (4.6) below.
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The fourth-order coefficient g4 in eq. (3.5) is the first to receive contributions from quartic

group invariants. The overall effect of these terms is small in the range of nf considered above;

nullifying all these terms changes the coefficients of α 4
s in eqs. (3.7) by about 5% or less for

nf 6= 3. For nf = 3, the relative effect is larger since the coefficient is atypically small.

As discussed in ref. [14], the ζ2 = π2/6 contributions in eqs. (3.3) – (3.4) only arise from

the analytic continuation (2.16) and are predictable from lower-order results. The same

holds for the terms linear in ζ2 in eq. (3.5). However, the ‘genuine’ five-loop contributions

from the functions ΠGG(q2) include terms with ζ 22 , so not all powers of π2 are ‘kinematical’

from this order onwards. The numerical decomposition of the expansion in eq. (3.1) into the

‘genuine’ and ‘kinematical’ contributions (underlined below) reads

G(q2) = 1 + 3.952348αs + (10.629125− 3.673611)α 2
s

+ (28.57606− 35.42782)α 3
s + (89.55798− 164.81711)α 4

s (3.8)

for the physical case of nf = 5. The numbers up to order α 3
s agree, of course, with ref. [14];

the nf -dependent decomposition of our new coefficient g4 in eq. (3.5) is

g4 = 1267.05129− 1048.43622− (394.681626− 281.704409)nf

+ (37.9589880− 25.1937144)n2
f − (1.28868582− 0.89082162)n3

f

+ (0.01284135− 0.01026045)n4
f . (3.9)

The cancellations between the genuine and kinematic contributions are somewhat less strik-

ing than for the corresponding contribution to H → b̄b, see eq. (7) of ref. [4], yet the

conclusion remains the same: it is not possible to obtain reliable results without computing

the genuine contributions.

The decay rate ΓH→ gg in the limit of a heavy top quark and nf effectively massless

flavours is obtained by combining eqs. (3.1) – (3.6) with the corresponding expansion of

the coefficient function C1 in eqs. (2.4) – (2.11) above. The resulting K-factors, defined by

Γ = KΓBorn at µ2 =M 2
H, see eq. (3.12) below, are given by

KSI(nf =1) = 1 + 7.188498αs + 32.65167α 2
s + 112.015α 3

s + 298.873α 4
s + . . . ,

KSI(nf =3) = 1 + 6.445775αs + 23.74728α 2
s + 56.0755α 3

s + 62.4363α 4
s + . . . ,

KSI(nf =5) = 1 + 5.703052αs + 15.57384α 2
s + 12.5520α 3

s − 72.0916α 4
s + . . . ,

KSI(nf =7) = 1 + 4.960329αs + 8.131350α 2
s − 19.3879α 3

s − 123.853α 4
s + . . . ,

KSI(nf =9) = 1 + 4.217606αs + 1.419805α 2
s − 40.5769α 3

s − 110.998α 4
s + . . . (3.10)

for a scale-invariant top mass µt = 164 GeV, and by

KOS(nf =1) = 1 + 7.188498αs + 32.61874α 2
s + 112.031α 3

s + 300.278α 4
s + . . . ,

KOS(nf =3) = 1 + 6.445775αs + 23.69992α 2
s + 56.1329α 3

s + 64.5259α 4
s + . . . ,

KOS(nf =5) = 1 + 5.703052αs + 15.51204α 2
s + 12.6660α 3

s − 69.3287α 4
s + . . . ,

KOS(nf =7) = 1 + 4.960329αs + 8.055116α 2
s − 19.2021α 3

s − 120.458α 4
s + . . . ,

KOS(nf =9) = 1 + 4.217606αs + 1.329135α 2
s − 40.3039α 3

s − 107.042α 4
s + . . . (3.11)
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for an on-shell top mass of Mt = 173 GeV. The effect of the coefficient functions is positive,

except for their N3LO and N4LO contributions at large nf .

The mass- and scale-dependent expansion coefficients γn for the physical case nf = 5 in

ΓH→gg =
GF M

3
H

36π 3
√
2

∑

n=0

γn(MH, mt, µ)
(
αs(µ

2)
)n+2

(3.12)

(the n = 0 contribution is the Born result) are given by γ0 = 1 and

γ1,SI = 5.703052− 1.220188LH ,

γ2,SI = 15.887961− 0.578375LtH − 10.927911LH + 1.116644L2
H ,

γ3,SI = 14.59257− 3.94891LtH + 0.352863L2
tH

− (43.14427− 1.41145LtH)LH + 13.78227L2
H − 0.908344L3

H ,

γ4,SI = − 66.75046− 11.35498LtH + 2.91649L2
tH − 0.215280L3

tH

− (62.02230− 12.61251LtH + 1.07640L2
tH)LH

+ (71.32360− 2.15280LtH)L
2
H − 14.37869L3

H + 0.692719L4
H (3.13)

with LH = ln(M 2
H/µ

2) and LtH = ln(µ2
t/M

2
H) in terms of the scale-invariant top-quark mass.

The corresponding OS-mass coefficient have the same form at NLO and NNLO, and read

γ3,OS = γ3,SI + 0.490940 ,

γ4,OS = γ4,SI + 4.21311− 0.89856LtH − 1.49760LH , (3.14)

where the top-mass logarithms are now given by LtH = ln(M2
t /M

2
H).

The size of the higher order corrections and the improvement of the renormalization scale

dependence from NLO to N4LO is illustrated in Fig. 3 for (β(as)/as)
2 ImΠGG(M 2

H), recall

the discussion above eq. (3.6), and for ΓH→ gg in eq. (3.12). The first term in the expansion

has been normalized for both quantities, i.e., Γ0 in the figure is given by

Γ0 = GFM
3
H/(36π

3
√
2) · (αs(M

2
H))

2 with αs(M
2
H) = 0.11264 (3.15)

which corresponds to αs(M
2
Z) = 0.118. The normalized decay rate is shown for an SI mass

of 164 GeV. The very similar results for an OS mass of 173 GeV are shown below.

The effect of the N4LO correction to ΓH→ gg is −0.6% at µ =MH, and −0.8%/ +0.9% at

µ = 0.5 / 2MH, respectively. The total N4LO result at µ =MH is 1.846 Γ0, and its range in

the above scale interval is (1.836 − 1.848) Γ0. The N
4LO scale variation between µ = 1/3MH

and µ = 3MH is as small as 0.9% (full width), a reduction of almost a factor of four with

respect to the corresponding N3LO result. The dependence of ΓH→ gg on the top mass is very

weak: changing µt by 4 GeV [54] changes the result by only 0.04%. The largest uncertainty

at N4LO is due to αs: changing αs(M
2
Z) by 1% changes the result by 2.5%.

Averaging the result at µ = MH and the central value of the above scale interval, and

using the shift at µ =MH from N3LO to N4LO (or twice the width of the above scale range)
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Figure 3: The renormalization-scale dependence of G̃ = (β(as)/as)
2G(M 2

H), with G(q
2) defined

in eq. (3.1), at nf = 5 (left panel), and of the decay width ΓH→ gg (right panel), both normalized as

discussed in the text, up to N4LO in MS for αs(M
2
Z ) = 0.118, MH = 125 GeV and µt = 164 GeV.
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Figure 4: The renormalization scale dependence of the decay width ΓH→ gg, normalized as the
right part of fig. 3, for an on-shell top mass of 173 GeV in MS and the miniMOM scheme.
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for a conservative estimate of the series expansion uncertainty, the N4LO result – without

1/mt corrections and light-quark mass effects – can be summarized as

ΓN4LO(H → gg) = Γ0

(
1.844 ± 0.011 series ± 0.045αs(MZ),1%

)
. (3.16)

The uncertainty due to the truncation of the perturbation series at N4LO is definitely much

smaller than the uncertainty due to that of αs(MZ) which may exceed the value of 1% quoted

by the Particle Data Group [55]; see ref. [54] for a recent deviating analysis.

We conclude our discussion of ΓH→ gg by re-expressing its perturbative expansion in

another renormalization scheme, the miniMOM scheme [42, 43]. The transformation from

MS to miniMOM and the beta function in this scheme have been derived at N4LO in ref. [44].

The decay width (3.12) in the OS scheme for the top mass can be readily transformed

by expressing αs in terms of αs,MM. For the Landau-gauge miniMOM scheme one finds

KMM
OS (nf =1) = 1 + 5.123905αs + 10.56499α 2

s − 7.47722α 3
s − 112.155α 4

s + . . . ,

KMM
OS (nf =3) = 1 + 4.734860αs + 7.406951α 2

s − 14.9763α 3
s − 91.2437α 4

s + . . . ,

KMM
OS (nf =5) = 1 + 4.345814αs + 4.379443α 2

s − 21.5506α 3
s − 71.9231α 4

s + . . . ,

KMM
OS (nf =7) = 1 + 3.956769αs + 1.482460α 2

s − 27.1850α 3
s − 53.7325α 4

s + . . . ,

KMM
OS (nf =9) = 1 + 3.567723αs − 1.283997α 2

s − 31.8645α 3
s − 36.2907α 4

s + . . . (3.17)

in terms of αs = αs,MM (here) at µ =MH for Mt = 173 GeV. The miniMOM version of the

nf = 5 OS-scheme expansion coefficients in eq. (3.12) is given by

γMM
1,OS = 4.345814− 1.220188LH ,

γMM
2,OS = 4.755361− 0.578375LtH − 8.443784LH + 1.116644L2

H ,

γMM
3,OS = −20.15349− 2.37892LtH + 0.352863L2

tH

− (15.98471− 1.41145LtH)LH + 10.75116L2
H − 0.908344L3

H ,

γMM
4,OS = − 72.28293− 0.47286LtH + 1.71919L2

tH − 0.215280L3
tH

+ (52.95134 + 7.82332LtH + 1.07640L2
tH)LH

+ (27.68353− 2.15280LtH)L
2
H − 11.29660L3

H + 0.692719L4
H (3.18)

The value of the strong coupling in this miniMOM scheme is larger than that in MS with

αs,MM(M
2
Z) = 1.0960αs(M

2
Z) for αs(M

2
Z) = 0.118 [44], or more generally for nf = 5:

αs,MM = αs + 0.67862α 2
s + 0.91231α 3

s + 1.5961α 4
s + 3.1629α 5

s +O(α 6
s ) . (3.19)

This is compensated by lower-order coefficients in eqs. (3.17) and (3.18) that are smaller

than their MS counterparts. The N3LO and N4LO terms for nf = 5 are not smaller, though.

The resulting perturbative expansion of ΓH→ gg in the Landau-gauge miniMOM scheme

is shown in fig. 4. The general pattern in miniMOM is somewhat different from that in MS

– qualitatively the curves appear shifted to the right. Yet the overall scale range for the

interval in µ displayed in the figure is very similar to (if slightly wider than) that in the

MS scheme and covered by eq. (3.16). Given this small uncertainty, further investigations of

‘optimized scale settings’, as performed at N3LO in ref. [45] are not warranted.
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4 Higgs decay to bottom quarks

We denote the perturbative expansion of the function R̃(q2) in eq. (2.12) by

1

NR

R̃(q2) = 1 +
∑

n=1

r̃n a
n
s (q

2) (4.1)

in terms of the reduced coupling defined in eq. (2.4). The coefficients up to order a 4
s read,

for QCD and its generalization to any simple compact gauge group,

r̃1 = 17CF , (4.2)

r̃2 = C 2
F

[
691

4
− 36 ζ2 − 36 ζ3

]
+ CACF

[
893

4
− 22 ζ2 − 62 ζ3

]

− CF nf

[
65

2
− 4 ζ2 − 8 ζ3

]
, (4.3)

r̃3 = C 3
F

[
23443

12
− 648 ζ2 − 956 ζ3 + 360 ζ5

]
+ CAC

2
F

[
13153

3
− 1532 ζ2 − 2178 ζ3 + 580 ζ5

]

+ C 2
ACF

[
3894493

972
− 6860

9
ζ2 −

4658

3
ζ3 +

100

3
ζ5

]

− CACF nf

[
267800

243
− 2284

9
ζ2 −

704

3
ζ3 +

48

5
ζ 22 − 80

3
ζ5

]
(4.4)

− C 2
F nf

[
2816

3
− 260 ζ2 − 520 ζ3 −

48

5
ζ 22 + 160 ζ5

]
+ CFn

2
f

[
15511

243
− 176

9
ζ2 − 16 ζ3

]
,

r̃4 = C 4
F

[
915881

48
− 8388 ζ2 − 15218 ζ3 + 288 ζ 22 + 1296 ζ2ζ3 + 7770 ζ5 + 768 ζ 23 − 1890 ζ7

]

+ CAC
3
F

[
11553691

144
− 70445

2
ζ2 −

331541

6
ζ3 +

7602

5
ζ 22 + 6192 ζ2ζ3

+ 31975 ζ5 + 3960 ζ 23 − 32949

2
ζ7

]

+ C 2
AC

2
F

[
830983045

7776
− 953327

18
ζ2 −

450971

6
ζ3 +

7758

5
ζ 22 + 9724 ζ2ζ3

+ 21955 ζ5 +
880

7
ζ 32 + 856 ζ 23 +

41517

4
ζ7

]

+ C 3
ACF

[
2087145095

23328
− 672739

27
ζ2 −

238519

6
ζ3 +

1739

3
ζ 22 +

15004

3
ζ2ζ3

− 93875

9
ζ5 −

880

7
ζ 32 + 5976 ζ 23 − 10899

4
ζ7

]

− d abcd
F d abcd

A

NR

[
144− 1300 ζ3 − 72 ζ 22 + 2440 ζ5 − 4896 ζ 23 + 1680 ζ7

]
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+ C 3
F nf

[
− 151297

9
+ 6889 ζ2 +

46399

3
ζ3 −

66

5
ζ 22 − 1584 ζ2ζ3

− 9380 ζ5 −
480

7
ζ 32 − 1368 ζ 23 + 3360 ζ7

]

− CAC
2
F nf

[
83380613

1944
− 162944

9
ζ2 −

79736

3
ζ3 +

3444

5
ζ 22 + 3128 ζ2ζ3

+
23314

3
ζ5 −

80

7
ζ 32 + 652 ζ 23 + 1680 ζ7

]

− C 2
ACF nf

[
72695765

1944
− 11949 ζ2 −

158515

18
ζ3 +

2123

5
ζ 22 + 1936 ζ2ζ3

− 65812

9
ζ5 −

400

7
ζ 32 + 700 ζ 23 − 280 ζ7

]

+
d abcd
F d abcd

F

NR

nf

[
348− 2008 ζ3 − 144 ζ 22 − 1152 ζ 23 + 2560 ζ5

]

+ C 2
F n

2
f

[
7009861

1944
− 13210

9
ζ2 −

8146

3
ζ3 +

204

5
ζ 22 + 352 ζ2ζ3 + 192 ζ 23 +

2848

3
ζ5

]

+ CACFn
2
f

[
18248293

3888
− 16031

9
ζ2 −

4972

9
ζ3 +

324

5
ζ 22 + 304 ζ2ζ3 − 32 ζ 23 − 10484

9
ζ5

]

− CF n
3
f

[
520771

2916
− 2200

27
ζ2 −

260

9
ζ3 +

8

3
ζ 22 +

64

3
ζ2ζ3 −

160

3
ζ5

]
. (4.5)

Eqs. (4.2) – (4.4) agree with the literature, see refs. [56, 57] and references therein. The

N4LO coefficient r̃4 has been computed in ref. [4] for the case of QCD. Accordingly setting

CA = 3, CF = 4/3, d abcd
F d abcd

A /NR = 5/2 and d abcd
F d abcd

F /NR = 5/36 in eq. (4.5), we find

complete agreement with their result.

Only the case of nf = 5 is phenomenologically relevant, yet it is instructive to briefly con-

sider the numerical dependence of R̃ on the number of light flavours nf over a wide range,

nf = 1 : 1 + 1.8037560αs + 3.5038193α 2
s + 4.470933α 3

s − 1.765010α 4
s + . . . ,

nf = 2 : 1 + 1.8037560αs + 3.3661592α 2
s + 3.664830α 3

s − 3.736264α 4
s + . . . ,

nf = 3 : 1 + 1.8037560αs + 3.2284991α 2
s + 2.875431α 3

s − 5.511190α 4
s + . . . ,

nf = 4 : 1 + 1.8037560αs + 3.0908390α 2
s + 2.102737α 3

s − 7.091048α 4
s + . . . ,

nf = 5 : 1 + 1.8037560αs + 2.9531789α 2
s + 1.346747α 3

s − 8.477010α 4
s + . . . , (4.6)

nf = 6 : 1 + 1.8037560αs + 2.8155188α 2
s + 0.607462α 3

s − 9.670604α 4
s + . . . .

The main trend is similar to that of the larger coefficients for ΓH→ gg in eqs. (3.10) and (3.11):

the nf -dependent coefficients decrease with increasing nf . The main difference is that the

fourth-order term is already negative at nf = 1. The α 3
s -term changes sign close to nf = 7,

leading to the large fourth-order / third-order ratio at nf = 5 already observed in ref. [4].
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The break-up of the coefficients r̃ for QCD into ‘genuine’ and ‘kinematic’ contributions

can be found in eq. (7) of ref. [4]. The numerical scale dependence of R̃ has been included

in the comprehensive study of Higgs decays to hadrons to order α 4
s in ref. [3]. However, the

scale dependence of the coefficients r̃n is available in the literature only to order α 3
s [57].

For the convenience of the reader, we therefore conclude our brief account of ΓH→ b̄b by

writing down the generalization of the coefficients (4.2) – (4.5) to a general scale µ2 :

r̃1(Lq) = r̃1 − 2γ0 Lq ,

r̃2(Lq) = r̃2 − ( 2γ1 + 2r̃1γ1 + r̃1β0 )Lq + ( 2γ 2
0 + β0γ0 )L

2
q ,

r̃3(Lq) = r̃3 − ( 2γ2 + 2r̃2γ0 + 2r̃2β0 + 2r̃1γ1 + r̃1β1 )Lq

+ ( 4γ0γ1 + β1γ0 + 2β0γ1 + 2r̃1γ
2
0 + 3r̃1β0γ0 + r̃1β

2
0 )L2

q

− 1/3 ( 4γ 3
0 + 6β0γ

2
0 + 2β 2

0 γ0 )L
3
q ,

r̃4(Lq) = r̃4 − ( 2γ3 + 2r̃3γ0 + 3r̃3β0 + 2r̃2γ1 + 2r̃2β1 + 2r̃1γ2 + r̃1β2 )Lq

+ ( 2γ 2
1 + 4γ0γ2 + β2γ0 + 2β1γ1 + 3β0γ2 + 2r̃2γ

2
0 + 5r̃2β0γ0

+ 3r̃2β
2
0 + 4r̃1γ0γ1 + 3r̃1β1γ0 + 4r̃1β0γ1 + 5/2 r̃1β0β1 )L

2
q

− 1/3 ( 12γ 2
0 γ1 + 6β1γ

2
0 + 18β0γ0γ1 + 5β0β1γ0 + 6β 2

0 γ1

+ 4r̃1γ
3
0 + 12r̃1β0γ

2
0 + 11r̃1β

2
0 γ0 + 3r̃1β

3
0 )L3

q

+ 1/6 ( 4γ 4
0 + 12β0γ

3
0 + 11β 2

0 γ
2
0 + 3β 3

0 γ0 )L
4
q , (4.7)

in terms of Lq = ln(q2/µ2), r̃n in eqs. (4.2) - (4.3), the coefficients βn of the beta function,

and the coefficients γn of the mass anomalous dimension in the MS scheme up to N3LO, see

refs. [58,59] and references therein. The coefficients to r̃3(Lq) agree with eq. (17) of ref. [57].

5 The electromagnetic R-ratio

The non-singlet and singlet contributions to the electromagnetic R-ratio, r(q2) and rS(q
2) in

eq. (2.15), can be expanded in the same manner as N−1
R R̃(q2) in eq. (4.1). At µ2 = q2 the

coefficients for the dominant non-singlet part read

r1 = 3CF , (5.1)

r2 = − 3

2
C 2

F + CACF

[
123

2
− 44 ζ3

]
− CFnf

[
11− 8 ζ3

]
, (5.2)

r3 = −69

2
C 3

F − CAC
2
F

[
127 + 572 ζ3 − 880 ζ5

]

+ C 2
ACF

[
90445

54
− 242

3
ζ2 −

10948

9
ζ3 −

440

3
ζ5

]
− C 2

F nf

[
29

2
− 152 ζ3 + 160 ζ5

]

− CACF nf

[
15520

27
− 88

3
ζ2 −

3584

9
ζ3 −

80

3
ζ5

]
+ CF n

2
f

[
1208

27
− 8

3
ζ2 −

304

9
ζ3

]
, (5.3)
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r4 = C 4
F

[
4157

8
+ 96 ζ3

]
− CAC

3
F

[
2024 + 278 ζ3 − 18040 ζ5 + 18480 ζ7

]

− C 2
AC

2
F

[
592141

72
− 121 ζ2 +

87850

3
ζ3 −

104080

3
ζ5 − 9240 ζ7

]

+ C 3
ACF

[
52207039

972
− 16753

3
ζ2 −

912446

27
ζ3 +

10648

3
ζ2 ζ3 −

155990

9
ζ5

+ 4840 ζ 23 − 1540 ζ7

]

+
d abcd
F d abcd

A

NR

[
48− 64 ζ3 − 320 ζ5

]
− nf

d abcd
F d abcd

F

NR

[
208 + 256 ζ3 − 640 ζ5

]

+ C 3
F nf

[
1001

3
+ 396 ζ3 − 4000 ζ5 + 3360 ζ7

]

+ CAC
2
F nf

[
32357

108
+ 66 ζ2 +

42644

3
ζ3 −

41240

3
ζ5 − 1056 ζ 23 − 1680 ζ7

]

− C 2
ACF nf

[
4379861

162
− 2988 ζ2 −

137744

9
ζ3 + 1936 ζ2 ζ3 −

75220

9
ζ5 + 704 ζ 23 − 280 ζ7

]

+ C 2
Fn

2
f

[
5713

27
− 16 ζ2 −

4648

3
ζ3 +

4000

3
ζ5 + 192 ζ 23

]

+ CACF n
2
f

[
340843

81
− 520 ζ2 −

20906

9
ζ3 + 352 ζ2 ζ3 −

10880

9
ζ5 − 32 ζ 23

]

− CF n
3
f

[
49048

243
− 88

3
ζ2 −

3248

27
ζ3 +

64

3
ζ2 ζ3 −

160

3
ζ5

]
. (5.4)

Additional singlet contributions enter from the third order in αs, viz

r3,S =
d abc
F d abc

F

NR

[
176

3
− 128 ζ3

]
, (5.5)

r4,S =
d abc
F d abc

F

NR

(
CA

[
31144

9
− 5408 ζ3 + 2880 ζ5 − 1408 ζ 23

]

− CF

[
832 + 1024 ζ3 − 2560 ζ5

]
− nf

[
4768

9
− 832 ζ3 + 640 ζ5 − 256 ζ 23

])
(5.6)

with d abc
F d abc

F /NR = 5/18 in QCD; for the ‘time-dependent’ normalization of this colour factor

see the discussion below eq. (30) of ref. [62]. The above results are in complete agreement

with previous calculations, see refs. [19–22, 60, 61] and references therein. The fourth-order

coefficients (5.4) and (5.6) had not been verified by a second calculation before.

The numerical expansion of the non-singlet contribution r(q2) in QCD is given by

nf = 1 : 1 + 0.3183099αs + 0.1895124α 2
s − 0.252925α 3

s − 1.422960α 4
s + . . . ,

nf = 2 : 1 + 0.3183099αs + 0.1778305α 2
s − 0.213173α 3

s − 1.253232α 4
s + . . . ,

nf = 3 : 1 + 0.3183099αs + 0.1661486α 2
s − 0.331673α 3

s − 1.097226α 4
s + . . . ,
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nf = 4 : 1 + 0.3183099αs + 0.1544668α 2
s − 0.371548α 3

s − 0.953617α 4
s + . . . ,

nf = 5 : 1 + 0.3183099αs + 0.1427849α 2
s − 0.411757α 3

s − 0.821078α 4
s + . . . ,

nf = 6 : 1 + 0.3183099αs + 0.1311030α 2
s − 0.452301α 3

s − 0.698289α 4
s + . . . . (5.7)

The physically relevant numbers of effectively massless flavours are nf = 3, . . . , 6. The overall

effect of the quartic group invariants on the fourth-order coefficient is between 3% and 5%

for these values of nf .

The αs-corrections in eq. (5.7) are much smaller than their counterparts for H → gg in

eq. (3.7) and H → b̄b in eq. (4.6); as in the latter case the nf -dependent coefficients decrease

with increasing nf . The fourth-order correction is largest for low values of nf : r4 amounts

to 5.6 times r3 at nf = 1. For three flavours the α 4
s correction contributes as much as the α 3

s

terms at αs ≃ 0.3. This situation is at least exacerbated by the kinematic π2 contributions,

as can be seen from the example decompositions

nf = 1 : . . .+ (0.4551676− 0.7080921)α 3
s + (1.0596193− 2.4825797)α 4

s + . . . ,

nf = 3 : . . .+ (0.2054750− 0.5371479)α 3
s + (0.5038103− 1.6010363)α 4

s + . . . (5.8)

where, as above, those contributions have been underlined. For the full nf -dependence of

this decomposition see eq. (7) of ref. [19].

The generalization of the coefficients in eqs. (5.1) – (5.4) to µ2 6= q2 can be obtained from

eqs. (4.7) by dropping the terms with γn which arise from the Yukawa-coupling prefactor

m2
b ≡ m2

b(µ
2) in eq. (2.12). The resulting numerical dependence of r(q2) is very small at the

particularly important point q2 =M 2
Z , see figs. 2 and 3 of ref. [21].

The transformation of eqs. (5.7) to the miniMOM scheme yields, with αs = αs,MM (here),

nf = 1 : 1 + 0.3183099αs − 0.1390779α 2
s − 0.780651α 3

s − 0.511193α 4
s + . . . ,

nf = 2 : 1 + 0.3183099αs − 0.1226150α 2
s − 0.736947α 3

s − 0.342317α 4
s + . . . ,

nf = 3 : 1 + 0.3183099αs − 0.1061521α 2
s − 0.692733α 3

s − 0.190425α 4
s + . . . ,

nf = 4 : 1 + 0.3183099αs − 0.0896891α 2
s − 0.648007α 3

s − 0.054783α 4
s + . . . ,

nf = 5 : 1 + 0.3183099αs − 0.0732262α 2
s − 0.602769α 3

s + 0.065345α 4
s + . . . ,

nf = 6 : 1 + 0.3183099αs − 0.0567633α 2
s − 0.557020α 3

s + 0.170696α 4
s + . . . , (5.9)

in agreement with the corresponding parts of eq. (3.5) – (3.10) in ref. [63] (see also Ref. [64]),

where the expansion has been written down in terms of as = αs/(4π). The qualitative pattern

in eq. (5.9) is rather different from that in eq. (5.7): here the ratios of the third-order and

second-order coefficients are large. If the fourth-order results were not known, one might by

tempted to expect a further rapid growth of the coefficients at this order. Yet, the actual

numbers are much smaller than their third-order counterparts for the physical values of nf .

The generalization of eq. (5.9) to µ2 6= q2 is again given by eqs. (4.7) with γn = 0, but

with the MS beta function replaced by its miniMOM counterpart [42,43]. The µ-dependence

of the R-ratio up to order α 4
s is shown for both schemes in figs. 5 and 6 at two low-q2 reference
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Figure 5: The renormalization scale dependence of the non-singlet R-ratio for nf = 4 at a reference

scale, specified by αs(q
2) = 0.2 in MS, below the Υ threshold in the MS and miniMOM schemes.
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Figure 6: As fig. 5, but for a scale below the J/ψ threshold with αs = 0.3 in MS and nf = 3.

The curves have been cut off at low scales where the respective values of αs at N
3LO exceed 0.7.
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points. The first is above the c̄c resonances but below the Υ threshold, where an analysis

with nf = 4 is appropriate [21]. The second is below the J/ψ resonance with nf = 3.

The respective scales are specified via (order-independent) MS values of αs(q
2), the cor-

responding miniMOM values of αs are rounded results of the N4LO conversion of ref. [44].

The MS scale variation in fig. 6 amounts to Rns−1 = (6.51±0.11) ·10−2 at N4LO. The corre-

sponding miniMOM band is consistent with this result, and only slightly wider if the small-µ

spike is not taken into account. For a very low q2 with αs(q
2) = 0.3, the results become

unstable below about µ = q in MS and µ = 2q in miniMOM. Disregarding these regions, the

N4LO results are fairly stable with a 3% uncertainty and Rns −1 = (9.5± 0.3) · 10−2 in the

MS scheme.

6 Summary

We have completed the N4LO corrections, i.e., the contributions of order α 6
s , for the decay

of the Higgs boson to hadrons via H → gg at the leading order in the heavy-top limit.

This correction is slightly smaller than the 1/mtop effects at NNLO [7] but, in all likelihood,

larger than the presently unknown 1/mtop correction at N3LO. Hence our result provides

an improvement of the overall accuracy of ΓH→ gg. The remaining uncertainty due to the

truncation of the perturbation series can be estimated, rather conservatively, as ±0.6%.

This is much smaller than the uncertainty of 2.5% induced by a 1% uncertainty of αs(M
2
Z).

An experimental uncertainty of 1% is, of course, not feasible at the LHC. However, a future

linear e+e− collider may be able to address the coupling of the Higgs boson to gluons at this

level, see section 2.3 of ref. [65].

Furthermore we have calculated, also for a general gauge group, the fourth-order cor-

rections to H → b̄b in the massless limit and to the electromagnetic R-ratio for e+e− →
hadrons. These corrections have been computed by one group before in refs. [4] (where

the result is presented only for the gauge group SU(3)) and [19–22], respectively; we find

complete agreement with those results.

Our calculations have been performed using the Forcer program [28] and, at five loops,

a Form implementation of the R∗-methods introduced very recently in ref. [32]. These

methods differ substantially from the global R∗-method used in refs. [4,19–22,38]. Up to four

loops we were easily able to keep all powers of the gauge parameter. This was prohibitively

expensive at the five-loop level where we worked in the Feynman gauge. These results have

been checked in two ways. The first is verifying the correctness of the higher poles in ε, which

have to cancel against the effect of lower-order diagrams in the renormalization procedure.

The second check is the computation of all five-loop diagrams in at least two different ways.

We have illustrated the size and renormalization-scale dependence of ΓH→ gg and the

R-ratio in both the standard MS scheme and the miniMOM scheme. The N4LO results and

their stability in these two schemes are comparable for ΓH→ gg and R-ratio at high scales q2 ;

the miniMOM results for the R-ratio at renormalization scale µ2 ≃ q2 become unstable at

20



higher q2 than their MS counterparts. Overall the miniMOM scheme does not appear to be

preferable over MS in cases, such as the ones considered here, where the perturbation series

is known to a high order.

Form files with our results can be obtained from the preprint server http://arXiv.org by

downloading the source of this article. They are also available from the authors upon request.
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[13] K. Chetyrkin, P. Baikov and J. Kühn, The β-function of Quantum Chromodynamics

and the effective Higgs-gluon-gluon coupling in five-loop order, PoS LL 2016 (2016) 010.

[14] P.A. Baikov and K.G. Chetyrkin, Top Quark Mediated Higgs Boson Decay into Hadrons

to Order α5
s , Phys. Rev. Lett. 97 (2006) 061803, hep-ph/0604194

[15] S. Moch and A. Vogt, On third-order timelike splitting functions and top-mediated Higgs

decay into hadrons, Phys. Lett. B659 (2008) 290, arXiv:0709.3899

[16] J. Davies, M. Steinhauser and D. Wellmann, Hadronic Higgs boson decay at order α 4
s

and α 5
s , PoS (DIS 2017) 295, arXiv:1706.00624

[17] A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders:

QCD corrections, Phys. Lett. B264 (1991) 440

[18] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α4
s ,

Phys. Rev. Lett. 79 (1997) 353, hep-ph/9705240

[19] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Order α4
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