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Abstract

Bayesian Networks are a flexible and intuitive tool associated with a robust

mathematical background. They have attracted increasing interest in a large vari-

ety of applications in different fields. Furthermore, the fast growing availability of

computational power on the one side and the implementation of efficient inference

algorithms on the other, have additionally promoted the success of this method. In

spite of this, inference in traditional Bayesian Networks is generally limited to only

discrete variables or to probabilistic distributions (adopting approximate inference

algorithms) that cannot fully capture the epistemic imprecision of the data avail-

able. In order to overcome these limitations, Credal Networks have been proposed

to integrate Bayesian Networks with imprecise probabilities which, adopting non-

probabilistic or hybrid models, allow to fully represent the information available

and its uncertainty.

In this study a novel computational tool, implemented in the general purpose open

software OpenCossan, is proposed. The tool provides the reduction of Credal Net-

works through the use of structural reliability methods, in order to limit the cost

associated with the inference computation without impoverishing the quality of the

information initially introduced. Novel algorithms for the inference computation
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of networks involving probability bounds are provided. In addition, a novel sensi-

tivity approach is proposed and implemented into the Toolbox in order to identify

the maximum tolerable uncertainty associated with the inputs.

Keywords Credal Networks, Bayesian Networks, Decision Making, System Relia-

bility

1 Introduction

The fast technological growth that has characterized the last century has progressively

provided more efficient and advanced instruments for everyday life as well as for indus-

trial and scientific applications. This progress goes along with an ever increasing grade

of complexity which concerns the engineering field on any level, leading to face new and

more challenging tasks from both mathematical and computational points of view. As

a consequence of this, novel and efficient tools are strongly needed to adequately predict

the behaviour of complex systems, optimize their performance, estimate their reliabil-

ity and evaluate the risks they are subject to, especially with regards to safety-critical

installations (e.g., reservoirs, dams, nuclear and chemical installations etc.).

The accuracy in estimating the actual risks to which a system is subject is clearly bound

by our ability of capturing and representing reality. This means that any engineering

analysis has to face the challenging task of formulating suitable numerical models in

a quantitative manner without ignoring significant information on the one hand, and

without introducing unwarranted assumptions on the other [4]. If this balance is vio-

lated, computational results may deviate significantly from reality and the associated

decisions may lead to serious consequences due to risk underestimation or, conversely,

to unnecessary costs in the case of over-conservative approach.

This challenging task implies two main bottlenecks: the first one is associated with the

technological complexity of the systems under study. This includes the representation

of elaborate networks of dependencies among subsystems and components interacting

directly or indirectly with each other and determining the correct functioning of the

overall system. To provide an oversimplified representation of these mechanisms, hence

to introduce large model errors, can easily result in misleading estimates of the system
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state or its reliability. The criticality of this task is also worsened by the difficulty of

adequately quantifying the significance of the model error introduced and hence the

weight of the simplifications adopted in the analysis. For this reason, it is of extreme

importance to be able to adequately reproduce these interconnections in order to take

into account the possible failure of each individual component and its consequences on

a more or less wide range of others, potentially triggering a chain of events and leading

to more serious accidents scenarios or failure modes.

Several methods (e.g., Fault Tree, Event Trees, Reliability Block Diagrams etc.) are

available in the scientific literature and widely used in several fields of engineering for

the representation and analysis of complex systems. Among these, Bayesian Networks

(BNs) have attracted an increasing interest in the last decades spreading to several

industrial and scientific application fields. The large success of BNs is linked to their

capability of providing efficient factorization of joint probability distributions exploiting

information about the conditional dependencies existing among the variables involved

on the basis of a robust mathematical background such as Bayesian Statistics. In

addition, their intuitive graphical framework has consolidated their attractiveness in

quite different fields of science and engineering, from artificial intelligence to medical

and economic areas [40]. They can be considered as the general case of more common

methodologies, such as Fault Tree analysis [17], with respect to which they offer sev-

eral advantages. Indeed, Bayesian Networks can model complex dependencies among

components, uncertainty can be included in modelling and both forward and backward

analysis is allowed, making them particularly attractive for both diagnosis and inference

purposes [6].

The second of the bottlenecks previously mentioned refers to the necessity to deal with

our ignorance, in terms of uncertainty, scarcity of data or even a more general lack of

knowledge regarding the actual mechanisms of interaction involved in the analysis. This

must be explicitly included in the analysis in order to be able to quantify its impact on

the accuracy and robustness of the results obtained. Nevertheless, information avail-

able in real-world application involves sparse data, poor measurements and subjective

information, hence results difficult to quantify and model. The adoption of traditional
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mathematical models built on poor or scarce data, can lead the information modelled

to be far from that actually available, introducing biases that lower the credibility and

can even invalidate the results of the analysis [4]. For instance, this can occur when the

samples related to certain event are not enough, or not robust enough, to be clearly at-

tributed to a particular distribution family or to be associated confidently with precise

parameter values for the distribution selected. A wide range of solutions are avail-

able to adequately represent different degrees of information without introducing biases

or strong assumptions but reflecting in the predictions the uncertainty in input. The

definition of imprecise probabilities embraces a wide set of approaches (e.g., interval

probability, fuzzy probabilities, p-boxes) which provide a mathematical basis to deal

with the representation of information when it is not sufficient for probabilistic mod-

elling or rather suggests a set-theoretical approach.

The aim of this work is to provide a novel computational tool for the efficient computa-

tion of Credal Networks (CNs). The approach proposed is based on the use of system

reliability methods to integrate traditional Bayesian Networks with probabilistic, non-

probabilistic and hybrid frameworks without renouncing to the robustness of traditional

inference algorithms. The proposed algorithms have been implemented in the general

purpose software OpenCossan [28] [16]. They allow to reduce the initial user defined

models into a simpler but equivalent network. This, conversely from the initial model

which can include a wide variety of variables type, embraces only crisp and interval

probabilities and hence results into a BN containing probability bounds. The integra-

tion of these two approaches (namely BNs and probability intervals), strongly enhances

the robustness of the analysis, but also introduces significant challenges. First, the in-

ference computation on these models can easily become highly demanding. Second, the

capability to track the propagation of uncertainty within the model is essential in order

to ensure the significance of the output and to obtained the desired level of accuracy of

the analysis at the lowest cost. This study aims to analyse and propose novel solutions

to deal with these issues. Few available software packages for manipulation of graphical

models with imprecise probabilities are available, so that this field is highly open to new

contributions [10] and this study is characterized by strong novelty.
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In the following, the theoretical background of the proposed method is analysed. The

methodologies implemented in the toolbox and related to the reduction procedure, the

inference computation and the sensitivity analysis of the reduced models are then shortly

introduced. Finally, the structure of the toolbox and its main capabilities are accurately

described, followed by a simple numerical example.

2 Theoretical Background

In this section, the theoretical background on which the present study relies is intro-

duced. The theory of Bayesian Networks is outlined in Section 2.1. The main imprecise

probability approaches available in the toolbox (Section 2.2) and their integration within

cutting-edge system reliability methods (Section 2.3) are then briefly described as well

as the state of the art for Credal Networks (Section 2.4).

2.1 Bayesian Networks

The graphical structure of a Bayesian Network consists mainly of nodes, which generally

represent the individual variables of the problem modelled, and edges, which link the

previous to each other and are characterized by specific directions (hence represented as

arrows). According to their mutual relationships, nodes are referred through different

definitions. If the edge linking two nodes, X1 and X2, is originated in the first and

points toward the second, X1 is defined as the parent of X2 and, coherently, X2 as the

child of X1. Conversely, a node without parents is referred as a root of the network.

The edges connecting the nodes represent the causal relationships existing among them.

If no edge exists between two nodes, those are considered conditionally independent

to each other. More precisely, each node is conditionally independent of its non-

descendants given its parent variables, satisfying the local Markov property [33].

The numerical framework associated with the graphical structure consists of Condi-

tional Probability Distributions (CPDs). As the definition suggests, these are distribu-

tions which quantify the strength of the conditional dependencies existing among the

variables of the model. Each node is associated with a CPD, which contains the values

of the probability of each possible outcome of the node given those of its parents. If the
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values are crisp probabilities, the CPDs are also referred as CPTs (Conditional Proba-

bility Tables).

Overall, the simple scheme described, allows to easily compose complex models which,

on the basis of the local information available (i.e., conditional probability values asso-

ciated to every single node given its parents), provide the representation and quantifica-

tion of much more elaborate events. Indeed, the probability of any query, e.g. marginal

or complex event, can be calculated combining the numerical information of the CPDs

on the basis of the Bayes’ theorem. This process, generally referred as inference com-

putation, is accomplished through the use of computational algorithms, a wide range

of which is available in literature.

The main classification of inference algorithms refers to the nature of their outcome:

exact inference algorithms provide the exact value of the probability query, hence ob-

tained through an analytical approach, while approximation algorithms provide values

which only approximate the true value of the probability. The adoption of an approx-

imate approach is generally unavoidable in the case of continuous variables, but it is

associated to unknown rate of convergence which can compromise the robustness of the

analysis. Conversely, exact inference algorithms are restricted to the use of discrete

variables.

Beyond the simple inference computation, the key feature of BNs is the so called belief

updating. Indeed, BNs allow to revise the value of the posterior probability of a query

if additional information (i.e., evidence) is available regarding the state of any node

involved in the computation. This capability, together with the high flexibility and in-

tuitive nature of the approach, have led to a large success of the method in many fields

of science and engineering. Please refer to the work of Pearl and Russell for a complete

overview on BNs [30].

2.2 Imprecise Probability

In engineering practice and more generally in real-world applications, it is common to

deal with the availability of only scarce data or little information or the disagreement

of experts involved in the analysis. In such cases, the adoption of precise probability
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distributions or crisp probability values could imply the necessity of adopting subjective

hypothesis which is not provided (e.g., when the experimental samples are not sufficient

for a robust calculation of the distribution parameters) or fully justified. This means

not only to introduce biases in the analysis, which in worst cases can undermine the

trustfulness of the results, but also to neglect the degree of uncertainty affecting the

value. Failing in representing this latter results in the lost of information regarding the

accuracy of the output, which would be intrinsically affected by an unknown degree of

imprecision due to the "hidden" uncertainty of the input.

Several solutions to this problem have been proposed in the literature adopting differ-

ent mathematical concepts, such as Bayesian approaches, interval probabilities, random

sets, evidence theory, fuzzy stochastic concepts, info-gap theory etc. [4]. An overall

analysis of all these concepts, generally embraced within the definition of imprecise

probabilities, is beyond the purpose of this work.

Nevertheless, the methodologies adopted in this work rely on the use of interval proba-

bilities and p-boxes, which are briefly presented in this section.

Interval Probabilities Interval probabilities specify bounds on probability for an

uncertain quantity with underlying randomness that is not known in detail and, thus,

they represent a special kind of imprecise probabilities. This would imply a more

accurate depiction of the information and data available, avoiding the introduction of

biases and assumptions which can lower significantly the accuracy of the analysis [41].

In practice, this approach is particularly preferable when no probabilistic information

is available to specify univocally distribution functions so that modelling as probability

sets is most appropriate. A complete overview of the historical developments of interval

probabilities is provided by Kyburg [21].

According to interval probabilities, an event A can be characterized by a range of

probability encloses between a lower limit p(A) an upper limit p(A). Since any value

within the interval
[
p(A), p(A)

]
⊆ [0, 1] is a plausible estimate of the probability of A, it

derives that the interval must belong to the space of intervals on [0, 1] [4]. Hence, if the

outcome A with probability bounds [p(A), p(A)] is defined as the negation of an event

B, the bounds for the probability of A can be calculated through the complementation
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rule:

P (B) = [1− p(A), 1− p(A)] (1)

Similarly, other logical operations can be easily computed with probability intervals

adopting suitable formulations. For instance, the probability of the conjunction event

P (A ∩ B), given two independent events A (p(A) =
[
p(A), p(A)

]
) and B (p(B) =[

p(B), p(B)
]
), will belong to the interval:

P (A ∩B) =
[
p(A)× p(B), p(A)× p(B)

]
(2)

More generally, if no assumption of independence is made, the interval can be calculated

adopting Fréchet inequalities:

p(A ∩B) =
[
max (0, p(A) + p(B)− 1) ,min

(
p(A), p(B)

)]
(3)

Likewise, the bounds for the probability of the disjunction event p(A ∪B), can be

calculated according to Eq.(4), or with the formulation in Eq.(5) if the events A and B

are assumed independent.

p(A ∪B) =
[
1− (1− p(A)) (1− p(B)) , 1−

(
1− p(A)

) (
1− p(B)

)]
(4)

p(A ∪B) =
[
max(p(A), p(B)),min(p(A), p(B))

]
(5)

Probability Boxes Epistemic uncertainty, i.e. the component of uncertainty related

to the lack of knowledge on the data, can affect the information available on differ-

ent levels. As mentioned in Section 2.2, only coarse specifications can be available

for certain events (e.g., complex events observed phenomenologically); in other cases,

probabilistic information, such as parameters of a probabilistic model, distribution type

or, in a non-parametric description, the curve of the cumulative distribution function,

may be available but only specified within some bounds. This latter case can be ade-

quately described through the adoption of probability boxes. This definition refers to a

numerical approach that allows the calculation of bounds on arithmetic combinations
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of probability distributions when perhaps only bounds on the input distributions are

known [4]. This kind of analysis can be considered as the integration of traditional

probability theory with standard interval analysis, hence it is a generalization of the

two: when the information regarding the distribution is large, the bounds will result

very thigh, approximating the precise distribution; conversely, when only poor data is

provided the bounds will be much wider, coherently with the weaker confidence about

the specification of this distribution. A p-box represents a class of probability distribu-

tions consistent with constraints associated to the cumulative probability distribution

function of a quantity: lower and upper bounds can be defined regarding the quantity’s

mean, variance and distributional shape, which hence are represented as intervals in-

stead of crisp values, taking into account the epistemic uncertainty affecting them [15].

Let D represent the space of distribution functions on the real numbers R, so that

D = {D|D : R → [0, 1], D(x) ≤ D(y)ifx < y, ∀x, y ∈ R}, and I the space of real

intervals so that I = {[i1, i2]|i1 ≤ i2,∀i1, i2 ∈ R}. In light of this, a p-box is define as a

set of distribution functions F ∈ D verifying the constraints:

F ∈ F (6)

F (x) ≤ F (x) ≤ (F )(x) (7)∫ ∞
−∞

xdF (x) ∈ m (8)(∫ ∞
−∞

x2dF (x)

)
−
(∫ ∞
−∞

xdF (x)

)2

∈ v (9)

where F , F ∈ D, while m, v ∈ I and F ⊆ D [4]. The results of mathematical calculations

on p-boxes rigorously enclose all possible distributions of the output variable so long as

the input p-boxes were all sure to enclose their respective distributions.

This work have been focused on the adoption of distributional p-boxes, hence the de-

scription of variables through the adoption of this approach is restricted to the case

in which the particular shape of the distribution (e.g., normal, uniform, beta, Weibull,

etc.) is known, while its parameters are affected by imprecision, and hence represented

by intervals. Such parameters will be referred as hyperparameters from now on. Further

research will focus in the future to overcome this limitation, through the adoption of
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suitable computational algorithms for the computation of non-parametric p-boxes.

2.3 Structural Reliability Methods

In the field of structural reliability, the domain bounding failure events is generally

described by the so-called limited state functions G(x), which represent the failure

modes of the system under study. In light of this, considering an event F defined as

a domain in the outcome space of m stochastic variables x = (x1, x2, ..., xm), the m-

dimensional space can be divided in a safe region, represented by the domain Ωs =

{x : G(x) > 0}, whilst the failure domain can be expressed as Ωf = {x : G(x) ≤ 0}.

Hence, the probability of occurrence of the event F can be quantified solving the integral

of the form:

P (f) =

∫
x∈Ωf (x)

f(x)dx (10)

where f(x) is the joint probability density function associated to the m stochastic vari-

ables x. Various methods for the solution of the integral in Eq.(10) are available such

numerical integration techniques, Monte Carlo simulations [18] and asymptotic Laplace

expansions [31]. Other common solutions (e.g., First-Order and Second-Order Reliabil-

ity Methods) rely instead on the transformation of the reliability problem previously

described into an optimization one [19]. In this case, the random variables in the vector

x are mapped into independent standard normal variables and the minimum distance

β between the limit state and the origin of the transformed space identified (i.e., the so

called reliability index). The probability of failure is then computed on the basis of the

assumption introduced. For example, in case of First Order Reliability Method (FORM)

a linear approximation of the limit-state function is adopted leading to Pf = Φ(−β). A

more generalized approach which aims to take into account epistemic uncertainty has

to allow for uncertainty in both the structural parameters and those of the probabilistic

models. As for the probabilistic structural reliability, different methods are available,

although the related literature is by far more limited than the previous case. One of

the most common approach consists of treating epistemic uncertainty using set of de-

scriptor values, such as in the case of intervals [25], convex models [5], random sets [38]

and fuzzy sets [42].
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In this study the epistemic uncertainty affecting both the structural parameters of the

model and the hyperparameters of the random variables have been taken into account.

The current implementation has been restricted to the adoption of two main system

reliability methods: the first, developed by Luo et al. [23], is based on a nested mini-

mization problem. Thanks to the combination of uncertain parameters in the form of

interval variables (v) represented by convex models [20] and precise random variables

(u), the limit state can be expressed as a function of both the sets (G(u,v) = 0). This

results in a cluster of limit-state surfaces in the standard normal space. The method al-

lows to seek the worst-case combination of interval variables value, identifying the limit

state surface on which the most probable failure point lies. The inverse of the normal

cumulative distribution function of the distance between the identified point and the

origin of the standard normal space is assumed to be the upper bound of the failure

probability. This approach can be considered a more general case of the probabilistic

method FORM. When the epistemic uncertainty drops the intervals representing the

uncertain variables collapse into single values leading back to the traditional FORM

procedure. The second method adopted has been developed by De Angelis et al. [13]

and provides the estimation of set-valued failure probabilities. The approach consists of

coupling advanced Monte Carlo methods (i.e., Adaptive Line Sampling) with optimiza-

tion methods, in order to estimate the lower and upper bounds of the failure probability.

Moreover, the method allows for both imprecise probability distribution functions (i.e.,

credal sets) and sets of bounded variables.

2.4 Credal Networks

The BN approach implies that every variable conditional on any configuration of the

variables parents must be associated with an unique probability distribution. Never-

theless, in case of incomplete or vague beliefs, poor information or contradictory data,

it may be not straightforward to identify point estimates of an event probability. To

overcome this limitation, Credal Networks (CNs) have been introduced [12]. These

are graphical models that realize the integration of BNs with credal sets, i.e. set of

probability measures. In other words, a CN can be regarded as the representation of a
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set of Bayesian networks which share the same graphical structure but are associated

to different probability measures. Each of the BNs of the set represented by the CN

is a plausible instantiation of the problem under study, hence there is no commitment

as to whether one of these Bayesian networks is the ’correct’ one [12]. In the case of

CNs, each node of the network represents a random variable Xi which can be associated

with conditional credal sets K(Xi | pa(Xi)), defined by the conditional distributions

p(Xi | pa(Xi)).

The aim of the inference computation is to combine the local credal sets of the network

into a set of joint distributions. Generally, there may be more then one set of joint

distributions that are coherent with the marginal and conditional credal sets associated

with the network: each of these joint distributions set will be referred as an extension

of the marginal and conditional credal sets in input. In this work, the term inference is

used with regards to CNs to indicate the computation of the probability bounds of the

largest extension that satisfies the Markov condition (i.e., independence of each node of

its non-descendant non-parents given its parents, as mention in Section 2.1) under the

assumption of strong independence [11]. This is generally referred as strong extension,

and results to be the convex hull of the set containing all joint distributions that factor-

ize the overall joint probability of the network, as for BNs, but where the conditional

distributions p(Xi|pa(Xi) = πk) are selected from the local sets K(Xi|pa(Xi) = πk).

Both exact and approximate algorithms are available in literature [7] [1]. In spite of

this, only polytree-shape networks with binary variables are suitable for efficient exact

inferences while other types face extremely high computational challenges [14]. On the

other hand, both outer or inner approximations can be computed through approximate

algorithms: the first provides probability bounds which enclose the correct probability

interval between lower and upper probabilities; the second provides in output intervals

that are enclosed by the correct probability interval. Limited literature is available

regarding CNs applications [2] [43].
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3 Methodology

The toolbox presented in this paper integrates traditional and cutting-edge methods

well established in the literature with novel proposed algorithms. This section is dedi-

cated to the description of such novel approaches, introducing the methodologies behind

them. They cover three main aspects of Credal Networks computation: the first is re-

lated to the reduction of the initial model, in order to remove part of the non-traditional

variables simplifying the graphical structure of the network without impoverishing the

information initially available (Section 3.2). The resulting reduced network contains

only nodes associated with crisp values or interval probability. Several inference meth-

ods are available for the inference computation on this kind of networks: among these, a

naive approach for the derivation of precise bounds on a query variable of interest con-

sists of applying the standard Bayesian exact inference methods for each combination

of probability bounds, and finally to minimize and maximize the results. However this

approach can result highly expensive and suffers from combinatorial explosion. Section

3.3 briefly describes a novel algorithm for the computation of inference on the reduced

network which aims to provide a valid solution to this issue. Finally, in Section 3.4, a

novel approach to sensitivity analysis for the reduced network is proposed.

3.1 Aim and Motivation

The aim of the proposed methodology and related computational tool is to offer a novel

approach for the implementation of credal networks able to include different mathemat-

ical frameworks for the representation of the available data. In spite of the restricted

number of CNs applications available in the literature, the limitations of such approach

in terms of data representation are blatant: most of the inference algorithms and soft-

ware available for the computation of Credal Networks are indeed restricted to random

variables which assume finitely many values (also called discrete or categorical vari-

ables). In many cases, this implies the necessity to adapt the representation of data to

a discrete number of possible outcome states regardless the nature of the information

available and hence potentially impoverishing its quality and the accuracy of the overall

analysis.
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LandUse

ChannelWidthPrecipitation WatershedAreaLocalSlope
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WaterDepth
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DebrisThickness

Figure 1: CN model for hazard assessment of debris flows proposed by Antonucci et al.

As an example, Antonucci et al. [3] propose a CN model for the hazard assessment

of debris flows, as shown in Fig.??. The model, developed for the Ticino canton in

Switzerland, allows to fully exploit the advantages offered by CNs, such the potential

of credibly dealing with qualitative uncertainty through the use of imprecise probabil-

ities, enhancing the robustness of the inference computation. On the other hand, the

authors highlight computational issues related to the updating process which could be-

come widely more expensive and require different solutions in the case of application of

the model to other geographical areas; moreover, the treatment of continuous variables

in the network, in order to avoid the loss of information introduced by discretizations,

is also strongly suggested. In spite of the large dataset available for the mentioned

application and the random nature of some phenomenon modelled (e.g. precipitation

intensity, granulometry), which would be more accurately captured through the use of

continuous probabilistic variables, for computational reason the model is restricted to

discrete nodes.

The computational approach implemented in the present study offers a solution strategy

for both these issues: on the one hand it allows to depict the data available through the

use of continuous variable, representing the randomness of the phenomenon involved as

well as the imprecision affecting the available knowledge. On the other hand, it allows

to simplify the initial network, reducing significantly the computational costs of updat-

ing, even for identical inference algorithms.
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For instance, according to the nature of the underlying information in terms both of

data availability and nature of the related physical phenomenon, soils characteristics

such as Permeability and Granulometry, as well as the precipitation intensity (i.e. node

Precipitation) would be better captured by continuous probabilistic distributions; sim-

ilarly, features such as LocalSlope, WatershedArea, SoilCapacity and ChannelWidth can

be reasonably known only with some imprecision and hence would be better represented

as interval variables. Finally, the actual available debris thickness (node ActualThick-

ness), obtained from observations and hence subject to a certain imprecision, could be

represented as an imprecise random variable. The model modified according to such

considerations is shown in Fig.2 and can be computed through the computational tool

implemented resulting in the reduced CN shown in Fig.3. The network obtained involves

only 4 of the 14 nodes of the initial model, and this ensures a sensible reduction of the

inference computation costs, whatever inference algorithm would be adopted. This also

suggests the possibility of using exact inference on reduced models even when the an-

alytical approach on the initial network would results computationally prohibitive. In

the event that the updating process involves a larger number of nodes, such as the

width of the channel and the soil granulometry, these could be included in the reduced

network implementing a low-invasive discretization procedure (as discussed in Section

4.1) resulting in the model of Fig.4 and subsequently in the CN shown in Fig.5. This

approach ensures the possibility to introduce evidence in the nodes of interest still re-

ducing the costs of computation as well as the impact of discretization. Hence, the

most appealing aspects of the proposed approach lie with its ability to fully capture the

nature of the data available, offering a wide and flexible range of mathematical frame-

works suitable for the representation of the information available and hence reducing

the need for discretization and underlying simplifying assumptions; at the same time,

such methodology offers a robust strategy for the reduction of the computational costs

associated with belief updating, which is commonly recognized as the main drawback

of the CN approach. These advantages can be interpreted as the introduction, at a

reduced computational cost, of a further degree of freedom in the representation of the

uncertainty underlying the available information.
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Geology Permeability

LandUse

ChannelWidthPrecipitation WatershedAreaLocalSlope

Granulometry

SoilType
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DebrisThickness

Figure 2: Modified CN model for hazard assessment of debris flows implemented in the
proposed computational tool

Geology

LandUseSoilType

DebrisThickness

Figure 3: Reduced model for hazard assessment of debris flows obtained with the sug-
gested methodology
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Geology Permeability

LandUse

PrecipitationWatershedArea LocalSlope

SoilType

ActualThickness

SoilCapacity

WaterDepth

TheoreticalThickness

DebrisThickness

ChannelWidthDiscrete

ChannelWidthBounded GranulometryDiscrete

GranulometryProbabilistic

Figure 4: Modified CN model for hazard assessment of debris flows including additional
discrete nodes for the variables ChannelWidth and Granulometry

Geology

LandUseSoilType

DebrisThickness

ChannelWidthdiscrete

Granulometrydiscrete

Figure 5: Reduced version of the model shown in Fig.3 obtained with the implemented
computational tool
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3.2 Credal Network Reduction

The aim of the methodology is to reduce the initial Credal Network in order to simplify

the computation of inference. The initial model can contain both discrete or continuous

variables: the first can be associated with crisp probabilities values, as in traditional

BNs, or with probability bounds, and will be referred from now on as discrete nodes.

The second can be interval variables (i.e., interval nodes) or continuous variables whose

distribution is described by sets of probabilistic distributions (i.e., probabilistic nodes)

or parametric p-boxes (i.e., hybrid nodes). Table 7 summarizes the types of nodes al-

lowed in the analysis.

The key assumption for the application of the method is that each node, if child of at

least one continuous node, has to be defined as a domain or a set of domains in the

outcome space of its parents. Under this assumption, system reliability methods can be

adopted to compute the probability of such nodes, cutting the number of non-discrete

variables and thus reducing the initial model to an equivalent network containing only

discrete nodes characterized by crisp and interval probabilities. This simplification is

obtained without impoverishing the information available but storing the data provided

by the continuous variables in input into their discrete children. Indeed, since each

discrete child of at least one probabilistic, bounded or hybrid node is characterized by

domains in the outcome space of its parents, the probability value associated to it can be

computed as a reliability problem where its parents appear to be the variables in input.

If the node under study has only probabilistic nodes as parents, the methodology leads

back to the so called Enhanced Bayesian Network approach, suggested by Straub and

Kiureghian [34]. In this case, the probability measure computed is a crisp value and the

resulting node a discrete one. If also bounded and hybrid nodes are involved, the output

of the reduction is a discrete node characterized by probability bounds. After the reli-

ability computation is carried out, the information initially provided by the continuous

parents is stored in the probability measure of the child node, hence the dependency

links between the continuous parents and the computed child become meaningless and

can be erased. Repeating this procedure for each node child of probabilistic, bounded

or hybrid nodes, it is possible to progressively remove the edges linking the continuous
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Variable Type CPD Node Definition Graph
Discrete Crisp probabilities Discrete Rectangle
Discrete Probability bounds Discrete Rectangle
Random Probability Distributions Probabilistic Circle
Interval Crisp probabilities Bounded Ellipse
Hybrid Parametric p-boxes Hybrid Trapezoid

Table 1: Types of nodes allowed

variables to the network: when these nodes are fully isolated from the rest of the model,

they can be removed without consequences since they do not contribute any more to

the joint probability distributions associated with the reduced CN.

The overall procedure described consists of the following steps:

1. Identification and computation of continuous nodes children of bounded, prob-

abilistic or hybrid nodes. As for discrete nodes, also continuous nodes children

of non-discrete nodes are defined as domains in the outcome space of their con-

tinuous parents and must be derived from their parent’s distributions. Once the

computation is completed the links among the continuous parents and the con-

tinuous child are removed. In this case no system reliability analysis is required

and the result are continuous distributions.

2. Identification of Markov blankets of bounded, probabilistic and hybrid nodes. The

Markov blanket of a node A is a set of nodes including the parents, children and

spouses of the node itself. In other words, it contains all the variables that shield

the node from the rest of the network. The variables within the Markov blanket

of a node are the only needed to predict the behaviour of that node. Hence, in

the case of the reduction procedure, the Markov blankets of non-discrete nodes

of the network identify the groups of variables to be involved in system reliability

computations in order to reduce the initial CN. The Markov blankets identified

embrace both the input variables and the definition of the reliability problem,

expressed as the domains associated with the children nodes of the blanket.

3. System reliability analysis computations and removal of unnecessary edges. Once

the former steps are completed, the reliability analysis problems identified can be
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computed. Let consider the example in Fig.6: the model on the left hand side of

the figure shows the initial CN while on the right hand side the reduced network is

represented. Assuming the variables independent, the joint probability associated

D1

D2

Figure 6: Example of an elementary CN and its reduced network, where C1 refers to a
probabilistic node, B1 to an interval node, U1 to an hybrid node, D1 and D2 to discrete
nodes, respectively

to the initial CN can be computed solving the integral in Eq.(11):

P (D1, D2) =

∫
B1,C1,U1

p(D1)p(D2|B1, D1, C1, U1)f(B1)f(C1)f(U1)dB1dC1dU1

(11)

where p(D1) and p(D2|B1, D1, C1, U1) are the probability values associated with

the discrete nodes D1,D2 whilst f(B1), f(C1), f(U1) are the probability density

function associated to the continuous interval node B1, the probabilistic node C1

and the hybrid node U1, respectively. Considering the Markov condition, hence

the independence of the node D1 from the continuous node C1, the solution of

the integral in Eq.(11) is reduced to:

P (D1|D2) =

∫
B1,C1,U1

p(D2|B1, D1, C1, U1)f(B1)f(C1)f(U1)dB1dC1dU1 (12)

Since the state of the node D2 can be expressed as domain in the outcome space

of the nodes B1 D1 C1 and U1, the integral in Eq.(12) can be than expressed as:

P (D1|D2) =

∫
Ωd2

D2,d1

f(B1)f(C1)f(U1)dB1dC1dU1 (13)

where Ωd2
D2,d1 is the domain that defines the event D2 = d2 in the space of B1 ,C1

and U1 given D1 = d1. The integral in Eq.(13) appears in the form common to
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structural reliability problems and can be easily solved using structural reliabil-

ity methods, e.g. Monte Carlo methods, Line Sampling, First Order Reliability

method etc. [34]. The evaluation of Eq.(13) allows to remove the dependency of

D2 from B1, C1 and U1.

4. Identification and removal of barren nodes. These latter are nodes of any nature

which do not have children and do not receive any evidence. They can be removed

from the initial network without any consequence for the overall analysis (B1 ,C1

and U1 in the previous example). The removal of these leads to the structure of

the reduced network shown on the right hand side of Fig.6.

The use of reliability methods to reduce the initial network present the further advantage

of relaxing the hypothesis of strong independence among non-discrete variables not

linked by edges. Well known methods (e.g., Rosenblatt, Nataf transformations etc.) are

available in literature to deal with the computation of reliability involving correlated

variables. The general approach for addressing this issue is to convert the correlated

variables into uncorrelated standard Gaussian variables. This allows hence to take into

account in the computation the correlation existent among continuous nodes even if

not directly connected by causal links, as far as they are input of the same reliability

problem (i.e., have a common child). This is clearly valid also for the computation of

continuous variables.

3.3 Inference computation

A CN containing only interval probabilities can be interpreted as an infinite series of

traditional BNs sharing the same graph but characterized by different crisp values of

conditional probabilities. In a BN the probability of any instantiation e, P (e), is a

linear function of any CPTs parameter p(x|u) [8] [9]. This allows to identify a finite

number of significant crisp networks (as they will referred from now on) each of which

is associated with a different combination of the initial interval probability bounds, so

with one traditional BN embraced by the CN.

A naive approach for the derivation of exact probability bounds on a query variable

of interest for a CN including only crisp and interval probabilities, consists of applying
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standard exact inference methods to each of these crisp networks and finally to minimize

and maximize the results obtained. For instance, a CN containing n boolean nodes (i.e.,

with only two complementary outcomes) described through probability intervals can be

decomposed in 2n traditional BNs (or crisp networks). Each of these networks shares

the same graphical structure of the initial model and is associated with a set of CPTs

whose parameters are selected among the bounds of the initial conditional probability

intervals, according to the 2n possible combinations available. This approach is available

in the toolbox proposed, but it is largely ineffective and can become easily prohibitive

for larger networks due to combinatorial explosion.

In order to overcome this limitation, a further method, previously defined [36], has been

included in the toolbox. This is based on the identification of the crisp networks (and

hence the combinations of probability bounds in input) that actively contribute to the

calculation of the query bounds. On the contrary, most of the combinations result in

probability values lying within the query interval and are hence ineffective with regards

to the aim of the calculation. The method proposed allows to compute the exact bounds

of the query probability when no evidence is introduced in the network. In the case of

evidence instead, it provides intervals defining the exact location of the true bounds of

the query probability. The methodology is limited to the use of boolean variables. The

approach can be summed out in the following steps:

1. Firstly, the computation of the upper bounds for the joint probability of the inter-

val probability variables is carried out. This step implies the inference computa-

tion of two ’artificial’ crisp networks (containing respectively all the upper bounds

and all lower bounds of the initial interval parameters) that can be carried out

using any traditional exact inference algorithm.

2. The second phase consists in the identification of the bounds combinations which

are more likely to maximize and minimize the bounds of the query variable in

output. This is realized analysing the joint probability matrix previously obtained,

trough the verification of specific conditions [36].

3. Computation of outer bounds of the query variables. The query probability

bounds are computed through the marginalization of the joint probability dis-
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tribution computed on the ’artificial’ networks (step 1). This low-cost calculation

results in an outer approximation of the true bounds of the query variables, which

are hence included within the probability interval identified.

4. Computation of inner bounds of the query variables. Inference is computed for

the query variable on the crisp networks identified in step 3, through the use

of well-known exact inference algorithms. The results of this analysis coincide

with the true bounds of the query probability if no evidence is introduced in the

network. Otherwise, the bounds identified are an inner approximation of the true

values, hence lying within the true probability interval.

3.4 Sensitivity Analysis

Sensitivity analysis can be performed on the reduced network to identify the uncertain-

ties in input that need to be reduced so that the resulting model satisfies the constraint

posed by the user regarding the uncertainty of the output. In other words, given a CN

including interval probabilities, the purpose of the computation is to quantify the max-

imum imprecision level of the input that satisfies the constraint on the uncertainty of

the probabilistic query, according to a method previously developed [35]. The method-

ology adopted focuses on single parameter changes, where only one network parameter

is modified in order to satisfy the uncertainty constraint. Hence, each change involves a

single probability bound of one node’s CPT entry and the co-varying bound that must

be changed coherently in order to satisfy the sum-to-one constraint.

In a traditional Bayesian Network, the marginal probability P (E1) of a generic node

state E1 is a linear function of any parameter p(Xj |Ul) in the network [8]. This makes

possible to investigate the global impact of parameter changes, by first bounding the

derivative of a query with respect to the parameter under study, then bounding the

change in a query due to an arbitrary parameter change [9].

The method adopted is based on the extension of this consideration to the case of CN

including only crisp and interval probabilities. On this basis, it can be demonstrated [37]

that, given a constraint k on the length of the confidence interval of the query E1, such

that P (E1) − P (E1) < k, and identified the crisp network m which results in such
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bounds, the parameter change ∆pm(X1|Ul) to be applied on the input associated with

node X1 to satisfy the constraint is:

∆pm(X1|Ul) ≥
P (E1)− P (E1)− k

(P (E1) + k)(π
E2

X|Ul
− πE1

X|Ul
)

(14)

where Ul represents the instantiation of the parents of X1, P (E1) and P (E1) the bounds

of the interval of the query E1 to be reduced; πE2

X|Ul
and πE1

X|Ul
are the derivatives of the

query bounds P (E2) and P (E1) respectively, with respect to the parameter pm(X1|Ul).

These can be calculated as:

π
E2

X|Ul
≡

δP (E2)

δpm(X1|Ul)
=
pm(E2, X1, Ul)

pm(X1|Ul)
− pm(E2, X2, Ul)

1− pm(X1|Ul)
(15)

πE1

X|Ul
≡ ∂P (E1)

∂pm(X|Ul)
=
pm(E1, X1, Ul)

pm(X1|Ul)
− pm(E1, X2, Ul)

1− pm(X1|Ul)
(16)

if pm(X1|Ul) 6= 0 and pm(E1, X2, Ul) 6= 0.

4 Computational Toolbox

The methods described in Section 3 have been implemented into the open computational

framework of the Cossan software, i.e. OpenCossan. OpenCossan is a collection of

methods and tools under continuous development, coded exploiting the object-oriented

MATLAB programming environment [24], hence ensuring programming flexibility and

avoiding code duplication. It provides efficient computational methods and allows to

define specialized solution sequences including optimisation, uncertainty quantification,

reliability based optimisation etc. Furthermore, thanks to the strong flexibility, new

reliability methods or optimization algorithms can be easily added.

The toolbox is organized in classes, i.e. data structures consisting of data fields and

methods together with their interactions and interfaces [29]. Objects (i.e., instances

of classes) can be then easily aggregated, forming more complex objects and being

processed according to the related methods in order to obtain the output of interest.

The numerical implementation consists mainly of two classes: the first, Node, provides

the basic input of the graphical model. The combination of more Node objects allows
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Figure 7: Simplified representation of the computational toolbox
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Property Type Required Description
Sname String Yes Name of the node
CSparents Cell array of strings Yes Name of parent nodes
CSchildren Cell array of strings No Name of children nodes
CPD Cell array Yes Conditional Probability

Distribution
Nsize Integer No Size of the node
Stype String Yes Type of node, i.e. discrete,

probabilistic, bounded or hybrid
V bounds Array of doubles No Vector of bound values (in case of

discrete or discretized nodes)
Evidence Integer No Value of the evidence eventually

introduced in the node

Table 2: Main properties of the Node object

the construction of CredalNetwork objects, defined by their namesake class. This is a

general class which includes, as a particular case, Enhanced Bayesian Networks (where

all the non-discrete variables are of the probabilistic type [34]), as well as traditional

Bayesian Networks (where all the variables are discrete). The combination of the class

Node with the class Credal Network provides the graphical and numerical implementa-

tion of the CN models defined by the user.

The reduction of the initial models is realized through the interaction of the classes

implemented with reliability methods available in the OpenCossan framework. Finally,

the computation of inference in the network can be carried out thanks to the interac-

tion of the tool with the Bayes’ Toolbox for MATLAB [26] or using built-in inference

algorithms. Fig.7 depicts the main structure of the computational tool presented.

This section aims to give an overall description of the computational tool and methods

implemented for the reduction, inference and sensitivity analysis of the initial models.

In the following, Sections 4.1 and 4.2 are dedicated to the description of the two main

classes of the toolbox and their methods.

4.1 Class Node

The basic objects defined by the user in the network design phase belong to the class

Node. The main properties associated to an object Node are shown in Table 2. The

standard name convention of OpenCossan has been adopted.
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The nature of the Conditional Probability Distribution (CPD) depends on the node

type: for discrete nodes characterized by crisp probabilities the CPDs coincide with

traditional CPTs; in the case of discrete nodes associated with probability bounds, the

CPDs contain probability intervals; likewise, the CPD of probabilistic nodes can contain

one or more random variables and, for hybrid nodes, one or more p-boxes. OpenCos-

san offers a further grade of flexibility providing the option of defining the family of

probabilistic distributions from a set of well-known functions specifying the moments,

from data available or even from user defined functions. This option can be adopted

in the case of probabilistic as well as hybrid nodes. The main methods associated to

the class are briefly described in the following. When the node is child of at least one

continuous node, according to the initial hypothesis (Section 3) it must be defined as a

domain in the outcome space of his non-discrete parents. From a computational point

of view, this results in the CPD of the Node object to be characterized by one or more

scripts, representing the user defined models to be evaluated (through system reliabil-

ity methods if discrete, through Monte Carlo methods if probabilistic etc.). These are

expressed in the form of strings in which the variables involved are named according

to the parent nodes’ name. Once the analysis for the node to compute is concluded,

the initial scripts in the CPD property are substituted with the resulting output: if the

initial node was of the probabilistic type, the output will be a probabilistic distributions

defined on the data obtained from the Monte Carlo analysis of the model; similarly, if

the node is defined as hybrid, the final CPD will include parametric p-boxes; if the

node is defined as discrete, the updated CPD will contain the reliability analysis results

which are crisp values if the variable involved where only discrete or probabilistic, or

probability bounds otherwise.

4.2 Class CredalNetwork

The object CredalNetwork, which contains the overall model and the related informa-

tion, is built introducing as input the node objects previously defined. Correlations

among continuous variables sharing a child are considered through correlation factors,

even if the relative nodes are not directly connected by causal links. This tool can be
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Property Type Required Description
CXnodes Cell array Yes Cell array of Node objects
CSnames Cell array of strings No Cell array of nodes names
CStypes Cell array of strings No Cell array of nodes type
V size Cell array Yes Array of nodes size
Mdag Matrix of integers No Directed acyclic graph adjacency

matrix
Cevidence Cell array No Cell array of evidence values
CSobserved Cell array of strings No Cell array of observed nodes

names
Nnodes Integer No Number of nodes in the network
Mcorrelation Matrix of doubles No Correlation matrix

Table 3: Main properties of the CredalNetwork object

extremely attractive for those cases in which a certain degree of correlation between

two variables is detected but the characterization of the causal mechanisms behind it

are unknown, poorly characterized or difficult to model (e.g., the correlation among

some weather extremes, such as between extreme precipitations and extreme sea water

level [44]). The Nataf transformation is adopted as a default method in the toolbox in

order to take into account the variable correlation. These factors are stored in the node

object through the use of a correlation matrix: this way it is possible to consider the

correlation among random variables or among interval variables (in the form of convex

sets) involved in the same reliability analysis as mentioned in previous sections.

Apart form the correlation matrix and the node objects, other properties which char-

acterize the CN object can either be defined by the user or extrapolated from the input

node objects. Overall, the main property of an CN object are defined in Table 3. The

methods of the class CredalNetwork can be divided in four categories according to the

nature of the task to be carried out: methods dedicated to the modelling of the network,

involved in the reduction procedure, in the inference computation or in the sensitivity

analysis computation. Not included in this classification is the method dedicated to

the visualization of the graphical model, based on the use of the biograph toolbox for

MATLAB.

Modelling The methods of this category have the capability of directly modify the

graphical structure (and subsequently the associated numerical values) of the network.
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(a)
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A2discrete

A2continuous
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(b)

Figure 8: Graphical representation of the discretization procedure: on the left hand side
the initial structure, on the right hand side the structure resulting from the discretization
of the node A2

Hence, this includes

• barrenNodes: method for the identification and removal of barren nodes (namely

those which do not receive any inference and have no children and so do not give

any contribution towards the computation of the model)

• addNodes: method for the inclusion of new nodes (e.g., those newly defined from

the reduction procedure)

• removeNodes: method for the elimination of nodes from the network (e.g., prob-

abilistic, hybrid and bounded nodes after the reduction procedure)

• discretizeNode: method for the dicretization of continuous nodes

The latter, plays an essential role when a non-discrete variable needs to be included

in the reduced network. More generally, it is an important tool of modelling strategy

(e.g., to preserve causal links in the reduced network, to take into account the inference

introduced in continuous nodes).
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Listing 1: Definition of the network in Fig.8a and its discretization

% DEFINITION OF THE NETWORKS NODE

XA1=Node(’Sname’,’A1’,’CPD’,CPD_A1 ,’Stype’,’discrete ’ ,...

’Nsize ’,2, ’Lroot’, true);

XA2=Node(’Sname’,’A2’,’CPD’,CPD_A2 ,’Stype’,’probabilistic ’ ,...

’Nsize ’,2, ’CSparents ’,{’A1’});

XA3=Node(’Sname’,’A3’,’CPD’,CPD_A3 ,’Stype’,’discrete ’ ,...

’Nsize ’,2, ’CSparents ’,{’A2’});

XA4=Node(’Sname’,’A4’,’CPD’,CPD_A4 ,’Stype’,’probabilistic ’ ,...

’Nsize ’,2, ’CSparents ’,{’A2’});

% BUILT THE NETWORK

XCN=CredalNetwork(’Sdescription ’,’Example of CN in Fig.3a’ ,...

’CXnodes ’,{XA1 ,XA2 ,XA3 ,XA4 });

% GRAPHICAL REPRESENTATION (Fig.3a)

XCN.makeGraph

% DISCRETIZATION OF THE NETWORK

XCNdiscretized=XCN.discretizeNode(’Snodename ’,’A2’);

% GRAPHICAL REPRESENTATION (Fig.3b)

XCNdiscretized.makeGraph

The procedure suggested by Straub and Kiureghiam [34] has been implemented com-

putationally and further extended to the discretization of interval variables. It consists

in the substitution of the initial node to discretize (A2 in the example in Fig.8a) with

two nodes: the first generally discrete (referred as primary node from now on), which

inherits the parents of the initial node (A2discrete in Fig.8b) and the second continuous

(A2continuous in Fig.8b), referred as secondary node. This latter results to be a child

of the first one and inherits the children of the initial node (A3 and A4 in Fig.8). The

related code is shown in Listing 1.

Any discretization process implies splitting the initial continuous domain into more sub-

domains (which correspond to the outcome states of the discretized node), each of which

is defined by bounds. These bounds can be either defined by the user or computed on

the basis of the initial domain. In this latter case, the default setting consists of splitting

the initial domain into five sub-domains of equivalent length. If the initial domain is

unbounded, a numerical approximation is assumed for the external bounds, assumed to

30



be equal to −1022 and 1022. With regards to the discretization of probabilistic nodes,

such as that shown in the example of Fig.8, the probability measures stored in the CPD

associated with the primary node (A2discrete) are computed as the cumulative proba-

bility values over the sub-domains defined. Conversely, in the case of bounded nodes,

the sub-domains obtained according to the bounds provided are assumed to be equally

possible. Finally, if the node to discretize is hybrid, the primary node will be a bounded

node and its CPD will contain interval probabilities associated to each state.

In the cases mentioned, with the only exception of hybrid nodes, the information carried

by the initial continuous variables is not lost but rearranged along the new sub-domains

associated with the secondary node: each outcome state of the primary node is associ-

ated to a random variable stored in the CPD of the secondary node, which in the new

set-up results to be its child. The distributions stored in the secondary nodes are built

from the distribution of the initial node subject to discretization and can be considered

sections of this latter over the specific sub-domains of discretization. This way neither

the parents of the node to discretize neither its children are significantly affected by the

discretization procedure and their CPDs remain unchanged.

Reduction The main method included in this group is reduce2BN, which provides

the reduction of the initial network according to the procedure described in Section 3.2.

This is accomplished trough the use of a wide range of secondary methods which are

invoked within reduce2BN and hence remain hidden to the user:

• computeContinuousNodes. This provides the computation of probabilistic, bounded

and hybrid nodes which are children of non-discrete nodes and hence initially

characterized as domains in the outcome space of their parents. According to

the nature of the node to compute and to the parent variables involved, different

approaches can be adopted:

– probabilistic nodes: Monte Carlo methods are used to collect and process

samples from the parent nodes distributions for the construction of the re-

sulting probabilistic distributions. As default, a sample 106 large is adopted

for such purpose, aiming to find a balance between the accuracy of the anal-
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ysis and its computational cost.

– bounded nodes: a random search is carried out in the parents domain in

order to find the bounds of the new interval variables.

– hybrid nodes: the current implementation of the toolbox does not provide

the computation of hybrid nodes: since the algorithms here presented are

limited to the use of parametric p-boxes no methods for the computation

of p-boxes as a result of operations involving p-boxes or probabilistic and

interval variables are available. Nevertheless, hybrid nodes can be modelled

as children of probabilistic nodes and interval variables as far as these latter

refer to uncertain parameters of the probabilistic distributions stored in the

CPD of the first.

Due to the limitations of the current implementation in terms of hybrid nodes

computation, any continuous node child of at least one hybrid node is computed

as a bounded node (e.g., through random search), hence loosing part of the infor-

mation available.

• probabilisticSRM. It provides the computation of discrete nodes whose parent

nodes are characterized exclusively by probabilistic distributions or crisp proba-

bility values. In this case, probabilistic models are built for each combination of

the parents instantiation and the analysis can be carried out adopting approxi-

mate methods (e.g., First Order Reliability Method) or simulation based methods,

such as a range of Monte Carlo, Line Sampling and Importance Sampling.

• hybridSRM. This method provides the computation of discrete nodes whose parent

nodes are associated with both probabilistic and non-probabilistic variables. If

interval and random variables are involved, the entries of the new discrete CPT can

be computed using either the Advanced Line Sampling method (default option)

or the generalized FORM, briefly described in Section 2.3. If hybrid nodes are

involved, the only option currently available relies on the adoption of the Advanced

Line Sampling method.

The selection of the approach adopted in the computation, when more than one is

32



Node
Type

Parent
Nodes

Method New CPD

Discrete Probabilistic
Discrete

Monte Carlo or FORM Crisp values

Discrete Probabilistic
Bounded
Discrete

FORM with convex
sets

Probability upper bounds

Discrete Probabilistic
Bounded
Discrete

Advanced Line
Sampling

Probability bounds

Discrete Probabilistic
Hybrid
Bounded
Discrete

Advanced Line
Sampling

Probability bounds

Bounded∗ Probabilistic
Hybrid
Bounded
Discrete

Random Search Interval(s)

Probabilistic∗Probabilistic
Discrete

Monte Carlo Probabilistic Distribution(s)

*to be removed after children computation

Table 4: Methods for the reduction of the initial CN according to the nature of the
nodes involved in the reliability analysis

suitable, is driven by the user choice of focusing on near-real time output rather than

more accurate results or vice versa. Table 4 summarizes the methods available for the

computation of nodes according to their nature and that of their parents.

Inference The main method of this group is called computeInference, and allows the

user to select among three main degrees of accuracy for the inference computation of

the reduced network:

• option ApproximateCoarse: invokes the computation of the outer approximation

of true bounds, as described in Section 3.3, which is associated with the lowest

computational cost among the methods available.

• option ApproximateFine: invokes the computation of the inner approximation of

true bounds, as described in Section 3.3. When no evidence is introduced in the

network, the computation results in the identification of the true bounds of the

query probability.
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• options Exact or BNT. Both the options refer to the adoption of a combinatorial

approach for exact inference computation. While the first option refers to the use

of the built-in inference algorithm (i.e., Variable Elimination), the second allows

the interaction of the toolbox with the Bayes’ toolbox for MATLAB [26]. In this

case, the user can further specify the preferred exact inference algorithm among

those included in the software (e.g., Variable Elimination, Junction Tree, etc.).

This option ensures the maximum accuracy of the analysis.

Sensitivity analysis The method tuneParameter allows to identify the suitable pa-

rameters changes which verify the constraint imposed by the user, according to the

methodology described in Section 3.4. The method requires the definition of a con-

straint on the length of the confidence bounds (i.e., upper limit to the uncertainty

affecting the output of interest) of a target node. Candidate nodes can be also defined,

in order to restrict the search for possible changes only to specific variables. If this in-

formation is not entered in the analysis, the method scans each conditional probability

interval in input in order to find the possible network modifications which would ensure

the respect of the query constraint. The results provide an intuitive understanding of

when parameter changes do or do not matter in terms of query robustness. The main

computational cost is related to the computation of inference for the query variable of

interest and the subsequent identification of the relevant crisp networks.

4.3 Limits of the current implementation

The current implementation of the toolbox presents some limitations. First, as men-

tioned in Section 3, the algorithms available do not provide the computation of non

parametric p-boxes. This restricts the models implemented to the use of parametric

p-boxes for the characterization of user-defined hybrid nodes. Moreover, the method

available for the sensitivity analysis is currently restricted to the tuning of single network

parameters and relies on exact inference computation, which can result high expensive

for not-elementary CNs. Nevertheless, the limitations of the current toolbox are com-

pensated by the high flexibility of the computational implementation, which can easily

integrate new and more efficient methods when available. Further research is being
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Figure 9: Overview of the CN for sea wave overtopping risk assessment

carried out to overcome the mentioned restrictions and enhance the current implemen-

tation.

5 Numerical Example

This section is dedicated to the description of the implementation and analysis of a

simple CN model carried out using the computational toolbox proposed in this study.

The network analysed is a modified version of a model previously implemented for the

sea wave overtopping hazard quantification [35]. The model takes into consideration the

effect of sea level rise and future surge trends on the probability of sea wave overtop-

ping. In the following, the network structure is briefly explained followed by a detailed

description of the data adopted for the case study and the results obtained.

5.1 Model Implementation

The network shown in Fig.9, consists of 17 nodes. As shown in Listing 2, a matrix

(Mcorrelation) and a cell array (CNodes) are initially defined in order to collect the

correlation factors and the Node objects respectively. Table 7 sums up the characteristics

of the model nodes.
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Table 5: Storylines of the SRES emission scenarios considered

Emission
Scenario Social Change Economic Change Technological

change
A1B Global population

that peaks in
mid-century then

declines

Very rapid economic
growth

Balanced progress
across all resources

and technologies from
energy supply to end

use, as well as
balanced land-use

changes
A1f1 Global population

that peaks in
mid-century then

declines

Very rapid economic
growth

Fossil fuel-intensive
future, with

significant rise of
global carbon dioxide

emissions

Listing 2: Definition of Initial Variables

%% INITIALISE VARIABLES

Nnodes = 17; % Nodes in the net

Mcorrelation = eye(Nnodes ); % Correlation Matrix

CNodes = cell(1,Nnodes ); % Cellarray of Node objects

n = 0; % Node index

The discrete nodes TimeScenario and EmissionScenario allow to model different time

periods and emission scenarios, respectively. Each of these is based on several assump-

tions about future emissions of greenhouse gases and other pollutants from human

activities, according to the UKCP09 classification. The analysis of different time sce-

narios and possible emission trends allows to make projections of UK climate change

over the next century. SRES provide a set of comprehensive global narratives, or story-

lines, that define local, regional and global socio-economic driving forces of change such

as economy, population, technology, energy and agriculture — key determinants of the

future emissions pathway [27].

In order to test the computational algorithms implemented, the model has been applied

to a case study similar to that proposed by Reis et al. [32] and refers to a hypotheti-

cal structure sited in Liverpool Bay in the south-eastern corner of the Irish Sea. Nine

outcome states referring to as many decades between 2020 to 2100 have been adopted
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Table 6: Characteristics of the distributions adopted for the probabilistic nodes of the
network

Node Type Mean STD Lower
Limit

Correlation Factor

WindWavePeakPeriod Weibull 6.4 1.15 4.2 0.6
(WindWaveHeight)

SwellPeakPeriod Weibull 13.12 3.51 0 −0.1
(SwellHeight)

WindWaveHeight Weibull 1.2 0.7 0.45 0.6
(WindWavePeakPeriod)

0.2
(SwellHeight)

SwellHeight Weibull 0.342 0.221 0 −0.1
(SwellPeakPeriod)

0.2
0.2

(WindWaveHeight)

for the node TimeScenario. Similarly, two different emission scenarios have been con-

sidered, namely A1B, generally known as medium emission scenario, and A1f1, which

assumes a high emission trend. The assumptions behind these scenarios are described

in Table 5. Moreover, the A1B scenario has been assumed to be potentially more likely,

with probability bounds [0.6, 0.9], while the high emission scenario has been associ-

ated with a probability interval of [0.1, 0.4]. All this info is stored in the Node objects

TimeScenario and EmissionScenario as shown in Listing 3.
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Listing 3: Definition of scenarios nodes

%% SCENARIOS NODES

%01- TimeScenario: [2020:10y:2100]

n=n+1;

CPDXTimeScenario = cell (1,9);

CPDXTimeScenario (:) = {1/9};

CNodes{n} = Node(’Sdescription ’,’Time scenarios ’ ,...

’Sname ’,’TimeScenario ’,’Lroot ’,true ,...

’CPD’,CPDXTimeScenario ,’Nsize ’,9,’Stype’,’discrete ’);

%02- EmissionScenario: 1= medium(A1B), 2=high(A1f1)

n=n+1;

CPDXEmissionScenarioLow = cell (1,2);

CPDXEmissionScenarioUp = cell (1 ,2);

CPDXEmissionScenarioLow (1,1) = {0.6};

CPDXEmissionScenarioLow (1,2) = {0.1};

CPDXEmissionScenarioUp (1,1) = {0.9};

CPDXEmissionScenarioUp (1,2) = {0.4};

CNodes{n} = Node(’Sdescription ’,’Emission Scenarios ’ ,...

’Sname ’,’EmissionScenario ’,’Lroot’,true ,’Lpbounds ’,true ,’CPD’ ,...

{CPDXEmissionScenarioLow ,CPDXEmissionScenarioUp },...

’Nsize ’,2,’Stype’,’discrete ’);

WindWavePeakPeriod, SwellPeakPeriod, SignificantWindWaveHeight, SignificantSwell-

Height, SurgeLevel are the roots of the network and represented by probabilistic distri-

butions. This is justified by the large record dataset usually available for sea conditions

and their variability, which can be well described by random variables. Nevertheless,

it is possible to substitute probabilistic nodes with bounded or hybrid ones if the data

available are not suitable for the construction of precise probabilistic distributions.

To each combination of the outcomes of the nodes TimeScenario and EmissionSce-

nario corresponds a specific sea level rise interval (stored in the nodes SeaLevelRise)

and SurgeTrend), which takes into consideration the uncertainty associated with the

predictions available adopting as lower and upper bound the 5%ile and 95%ile of the

projected values respectively. The nodes SeaLevelRise and SurgeTrend are combined

with the baseline distributions for the extreme tide and extreme surge: the interval

38



Tide Level [m AOD]

-6 -4 -2 0 2 4 6 8

D
e
n
s
it
y

0

0.1

0.2

Tide Level [m AOD]

-6 -4 -2 0 2 4 6 8

C
D

F

0

0.5

1

Empirical

GEV

Figure 10: Density of data available for the tide level in Liverpool Bay and related
generalized extreme value distribution (compared to the empirical CDF) adopted in the
model as baseline for the node ExtremeTide

values stored in these nodes are assumed as means for the distributions of the hybrid

nodes ExtremeTide and ExtremeSurge adopted in the analysis.

The probability distribution of extreme tide level at Liverpool has been implemented on

the basis of the data provided by the the British Oceanographic Data Centre and com-

bined with the sea level rise projections obtaining a parametric p-box. Fig. 10 shows

the empirical probability distribution for the data and the relative p-boxes assumed to

represent the nowadays distribution for each emission scenario considered. The related

code implemented is shown in Listing 4.
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Listing 4: Definition of nodes associated to extreme tide levels

%% EXTREME TIDE LEVEL

n=n+1;

%Load Data from external sources

Mmedium = importdata(’MediumEmissionScenario.txt’);

Mhight = importdata(’HighEmissionScenario.txt’);

Vyears =30:10:110; %2020:10:2100;

CPDXSeaLevelRise = cell (9,2,1);

for itime =1:9

% lowerBound =5%ile upperBound =95% ile

CPDXSeaLevelRise(itime ,1 ,1)=...

{Interval(’lowerBound ’,Mmedium(Mmedium (: ,1)== Vyears(itime ),2),...

’upperBound ’,Mmedium(Mmedium (: ,1)== Vyears(itime ) ,4))};

CPDXSeaLevelRise(itime ,2 ,1)=...

{Interval(’lowerBound ’,Mhight(Mhight (: ,1)== Vyears(itime ),2),...

’upperBound ’,Mhight(Mhight (: ,1)== Vyears(itime ) ,4))};

end

CNodes{n} = Node(’Sdescription ’,’Emission Scenarios ’ ,...

’Sname ’,’SeaLevelRise ’,’CPD’,CPDXSeaLevelRise ,....

’CSparents ’,{’TimeScenario ’,’EmissionScenario ’},...

’Nsize ’,1,’Stype’,’bounded ’);

%04- TideLevel

n=n+1;

CPDXTideLevel {1 ,1}= RandomVariable(’Sdistribution ’,’gev’ ,....

’par1’ ,-0.3591,’par2’ ,2.3791,’par3’ , -0.4063);

CNodes{n}=Node(’Sdescription ’,’Surge contribution to water level ’ ,...

’Sname ’,’ExtremeHighTide ’,’CSparents ’,{’SeaLevelRise ’},...

’CPD’,CPDXTideLevel ,’Nsize ’,1,’Stype’,’hybrid ’ ,...

’Cmapping ’,{’sealevelrise ’,’extremehightide ’,’mean’});

A similar procedure has been followed for the implementation of the node ExtremeSurge:

the baseline for extreme surge events has been combined with the UKCP09 projections

regarding the surge trend for the scenarios considered. Unfortunately only predictions

regarding the medium emission scenario (A1B1) are available, while most studies aiming

to quantify future surge trends have resulted in high model disagreement for the geo-

graphical area of interest with regards to the other emission scenario considered [39] [22].
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To take into account our ignorance, a symmetric interval centred in the baseline mean

has been considered for the low and high emission scenarios in the representation of the

node ExtremeSurge. See Listing 5 for details about the related computational code.

Listing 5: Definition of nodes associated to extreme surge levels

%05- ExtremeSurgeTrend > 5% and95%ile of 10y return period

n=n+1;

CPDXSurgeLevel=cell (9,2,1);

for itime =1:9

CPDXSurgeLevel(itime ,1 ,1)=...

{Interval(’lowerBound ’ ,0.019 -0.123*(2+(( itime -1)*10))*0.001 ,...

’upperBound ’ ,0.019 +0.728*(31+(( itime -1)*10))*0.001)};

CPDXSurgeLevel(itime ,2 ,1)=...

{Interval(’lowerBound ’ ,0.019 -0.08 ,...

’upperBound ’ ,0.019+0.08)};

end

CNodes{n}=Node(’Sdescription ’,’Surge contribution to water level ’ ,...

’Sname ’,’SurgeTrend ’,’CPD’,CPDXSurgeLevel ,...

’CSparents ’,{’TimeScenario ’,’EmissionScenario ’},...

’Nsize ’,1,’Stype’,’bounded ’);

%06- ExtremeSurge

n=n+1;

CPDXSurge {1,1}= RandomVariable(’Sdistribution ’,’Gumbel ’ ,...

’mean’ ,0.019,’std’ ,0.192);

CNodes{n}=Node(’Sdescription ’,’Surge contribution to water level ’ ,...

’Sname ’,’ExtremeSurge ’,’CSparents ’,{’SurgeTrend ’},...

’CPD’,CPDXSurge ,’Nsize’,1,’Stype’,’hybrid ’ ,...

’Cmapping ’,{’surgetrend ’,’extremesurge ’,’mean’});

The values adopted for the probabilistic user-defined nodes of the model are coherent

with those provided by Reis et al. [32] and are summarized in Table 6. A linear coef-

ficient of 0.6 has been adopted to take into account the correlation between the peak

period and the significant wave height of wind sea waves. Moreover, lower limits have

been considered for the distributions of these variables to account for calm conditions

(i.e., assuming that no wave overtopping occurs when there are no locally generated

waves). A correlation factor of 0.2 has been considered to represent the correlation
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Table 7: Characteristic of the nodes involved in the analysis

Node Type Size
SeaWallInclination Bounded 1
CrestLevel Discrete 1
SlopeRoughness Bounded 1
WindWavePeakPeriod Probabilistic 1
SignificantWindWaveHeight Probabilistic 1
SwellPeakPeriod Probabilistic 1
SignificantSwellHeight Probabilistic 1
IncidentWaveHeight Probabilistic 1
IncidentWavePeriod Probabilistic 1
SurgeLevel Hybrid 1
TideLevel Hybrid 1
MeanPermissibleDischarge Discrete 1
Overtopping Probabilistic 1
TimeScenario Discrete 9
EmissionScenario Discrete 3
SeaLevelRise Bounded 1
SurgeTrend Bounded 1

between the wind-sea and the swell [32]. For simplification purposes no near shore wave

transformation model has been adopted. Furthermore, all the waves are supposed to

approach the seawall normally. Listings 6 and 7 show the sections of the computational

code defining the wind waves and swell waves nodes, respectively.

The overall behaviour of the sea waves, resulting from the combination of wind waves

and swell characteristics, is represented by the nodes IncidentSignificantHeight and In-

cidentPeakPeriod. These are computed according to the model suggested in Reis et

al. [32], which is explicitly implemented within the network, as shown in Listing 8.

The bounded roots of the network refer to the slope characteristics such as the an-

gle at which the seawall front slope is built (SeaWallInclination) and its roughness

(SlopeRoughness); indeed, intervals allow to model construction tolerances. The node

(CrestLevel) refers to the seawall characteristic and it is also an input of the model (i.e.,

defined by the user) together with the MeanPermissibleDischarge and the root nodes

previously mentioned.
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Listing 6: Definition of nodes associated with wind waves

%% SEA WAVE CONDITIONS

%07- WINDWAVEPeakPeriod

n=n+1;

CPDXWavePeakPeriod {1}= RandomVariable(’Sdistribution ’,’Weibull ’ ,...

’Parameter1 ’ ,6.868,’Parameter2 ’ ,6.511,’lowerBound ’ ,4.2);

CNodes{n}=Node(’Sdescription ’,’Wind waves peak period ’ ,...

’Sname ’,’WindWavePeakPeriod ’,’Lroot’,true ,’CPD’,CPDXWavePeakPeriod ,...

’Nsize ’,1,’Stype’,’probabilistic ’,’censoring ’ ,4.2);

%08- WINDWAVESignificantWaveHeight

n=n+1;

CPDXSignificantWindWaveHeight {1}=

RandomVariable(’Sdistribution ’,’Weibull ’ ,...

’Parameter1 ’ ,1.348,’Parameter2 ’ ,1.771,’lowerBound ’ ,0.45);

CNodes{n}=Node(’Sdescription ’,’Wind waves significant height ’ ,...

’Sname ’,’SignificantWindWaveHeight ’,’Lroot’ ,...

true ,’CPD’,CPDXSignificantWindWaveHeight ,’Nsize ’ ,1,...

’Stype ’,’probabilistic ’,’censoring ’ ,0.45);

Mcorrelation(n,n -1)=0.6;

Mcorrelation(n-1,n)=0.6;%correlation between Hw and Tw

The wall is assumed characterized by a slope roughness between 0.7 and 0.8 over a range

[0, 1] and the seawall slope is supposed to be gentle, with an inclination angle between

0.4 and 0.6 rad. Due to possible failures or wearing of the structure, the probability for

the maximum height of the wall to remain equal to 10 m AOD along with all time sce-

narios is assumed to fall in the interval [0.3, 0.5]. A second more conservative outcome

refer to a maximum height guaranteed to be not lower than 8 m and is associated with

probability value between 0.5 and 0.7.

The discrete node Overtopping is associated with the probability of overcoming the

MeanPermissibleDischarge, which represents the mean permissible overtopping dis-

charge per unit length of seawall and has been considered equal to 0.1 l/s. The definition

of these two nodes within the toolbox is shown in Listing 10. Finally, once all the nodes

of the model are defined, the object of the class CredalNetwork can be implemented

(see Listing 11).

43



Listing 7: Definition of nodes associated with swell waves

%09- SWELLWAVEPeakPeriod

n=n+1;

CPDXSwellPeakPeriod {1}= RandomVariable(’Sdistribution ’,’Weibull ’ ,...

’Parameter1 ’ ,1.443e+01,’Parameter2 ’ ,4.215e+00);

CNodes{n}=Node(’Sdescription ’,’Swell peak period ’ ,...

’Sname ’,’SwellPeakPeriod ’,’Lroot’,true ,’CPD’,CPDXSwellPeakPeriod ,...

’Nsize ’,1,’Stype’,’probabilistic ’);

%10- SWELLWAVESignificantWaveHeight

n=n+1;

CPDXSignificantSwellHeight {1}= RandomVariable(’Sdistribution ’,’Weibull ’ ,...

’Parameter1 ’ ,3.811e-01,’Parameter2 ’ ,1.583e+00);

CNodes{n}=Node(’Sdescription ’,’Swell significant height ’ ,...

’Sname ’,’SignificantSwellHeight ’,’Lroot’,true ,...

’CPD’,CPDXSignificantSwellHeight ,’Nsize’,1,’Stype ’,’probabilistic ’);

Mcorrelation(n,n-1)= -0.1;

Mcorrelation(n-1,n)= -0.1; %correlation between Hs and Ts

Mcorrelation(n,n -2)=0.2;

Mcorrelation(n-2,n)=0.2; %correlation between Hs and Hw
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Listing 8: Definition of nodes associated with combined sea waves

%11- COMBINED INCIDENT SIGNIFICANT HEIGHT

n=n+1;

CPDIncidentWaveHeight (1 ,1 ,1)=...

{’sqrt(( TableInput.significantswellheight .^2)+...

(TableInput.significantwindwaveheight .^2))’};

CNodes{n}=Node(’Sdescription ’,’Combined incident significant height ’ ,...

’Sname ’,’IncidentWaveHeight ’,’CPD’,CPDIncidentWaveHeight ,...

’CSparents ’,{’SignificantSwellHeight ’,’SignificantWindWaveHeight ’},...

’Nsize ’,1,’Stype’,’probabilistic ’);

%12- COMBINED INCIDENT PEAK PERIOD

n=n+1;

CPDXIncidentWavePeriod (1,1,1,1,1)=

{’((( TableInput.significantswellheight .^2)./...

(( TableInput.significantswellheight .^2)+...

(TableInput.swellpeakperiod .^4))).*...

(TableInput.significantswellheight .^2)+...

(( TableInput.significantwindwaveheight .^2)./...

(( TableInput.significantswellheight .^2)+...

(TableInput.significantwindwaveheight .^2))).*...

(TableInput.windwavepeakperiod .^4)).^1/4 ’};

CNodes{n}=Node(’Sdescription ’,’Combined incident peak period ’ ,...

’Sname ’,’IncidentWavePeriod ’,’CPD’,CPDXIncidentWavePeriod ,...

’CSparents ’,{’SignificantSwellHeight ’,’SignificantWindWaveHeight ’ ,...

’SwellPeakPeriod ’,’WindWavePeakPeriod ’},’Nsize ’ ,1,...

’Stype ’,’probabilistic ’);
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Listing 9: Definition of nodes associated with the structure

%% SEA WALL CHARACTERISTICS

%13- Sea Wall Inclination

n=n+1;

CPD_alpha (1 ,1)={ Interval(’lowerBound ’ ,0.4,’upperBound ’ ,0.6)};

CNodes{n}=Node(’Sdescription ’,’Inclination of the sea wall’ ,...

’Sname ’,’SeaWallInclination ’,’Lroot’,true ,’CPD’,CPD_alpha ,...

’Nsize ’,1,’Stype’,’bounded ’);

upperCOT=cot(CPD_alpha {1 ,1}. lowerBound );

lowerCOT=cot(CPD_alpha {1 ,1}. upperBound );

%14- CrestLevel state #1= 8m, state #2=10m

n=n+1;

CPDXCrestLevelLow = cell (1,2);

CPDXCrestLevelUp = cell (1,2);

CPDXCrestLevelLow (1,1) = {0.5};

CPDXCrestLevelLow (1,2) = {0.3};

CPDXCrestLevelUp (1,1) = {0.7};

CPDXCrestLevelUp (1,2) = {0.5};

CNodes{n} = Node(’Sdescription ’,’Sea wall crest level’ ,...

’Sname ’,’CrestLevel ’,’Lroot ’,true ,...

’CPD’,{CPDXCrestLevelLow CPDXCrestLevelUp},’Nsize ’ ,2,...

’Stype ’,’discrete ’,’Lpbounds ’,true); %,’Value ’,10

%15- Roughness

n=n+1;

CPD_r (1 ,1)={ Interval(’lowerBound ’ ,0.7,’upperBound ’ ,0.8)};

CNodes{n} = Node(’Sdescription ’,’Sea wall Roughness ’ ,...

’Sname ’,’SlopeRoughness ’,’Lroot ’,true ,...

’CPD’,CPD_r ,’Nsize’,1,’Stype ’,’bounded ’);
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Listing 10: Definition of nodes involved in the overtopping model

%% EXTERNAL MODELS

%16- MeanPermissibleOvertoppingDischarge

n=n+1;

CNodes{n}=Node(’Sdescription ’,’Parameter C of the model’ ,...

’Sname ’,’MeanPermissibleDischarge ’,’Lroot’,true ,...

’CPD’ ,{1},’Nsize’,1,’Stype ’,’discrete ’,’Vvalues ’ ,0.1);

%17- Overtopping

n=n+1;

CPDXOvertopping (1,1,1,1,1,1,1,1,1)={[]};

CPDXOvertopping (1,1,1,1,1,1,1,1,2)=

{’TableInput.meanpermissibledischarge -...

ComputeOvertoppingRateEBNJournal(TableInput.incidentwaveheight ,...

TableInput.incidentwaveperiod ,( TableInput.extremehightide +...

TableInput.extremesurge),8,TableInput.seawallinclination ,...

TableInput.sloperoughness)’};

CPDXOvertopping (1,1,1,1,1,1,2,1,1)={[]};

CPDXOvertopping (1,1,1,1,1,1,2,1,2)=

{’TableInput.meanpermissibledischarge -

ComputeOvertoppingRateEBNJournal(TableInput.incidentwaveheight ,...

TableInput.incidentwaveperiod ,( TableInput.extremehightide +...

TableInput.extremesurge ),10, TableInput.seawallinclination ,...

TableInput.sloperoughness)’};

Cparent ={’MeanPermissibleDischarge ’,’ExtremeHighTide ’ ,...

’ExtremeSurge ’,’IncidentWaveHeight ’,’IncidentWavePeriod ’ ,...

’SlopeRoughness ’,’CrestLevel ’,’SeaWallInclination ’};

MImpDir =[-[1 1 1 1 1 1];1 1 1 1 1 1];

CNodes{n} = Node(’Sdescription ’,’Overtopping event’ ,...

’Sname ’,’Overtopping ’,’CSparents ’,Cparent , ’CPD’ ,...

CPDXOvertopping ,’Nsize’,2,’Stype ’,’discrete ’ ,..

’MimportantDirection ’,MImpDir ,’Lboolean ’,true);
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Figure 11: Overview of the reduced network

Listing 11: Definition of the Credal Network object

%% BUILD CN

XCN=CredalNetwork(’Sdescription ’,’Overtopping risk assessment ’ ,...

’CXnodes ’,CNodes ,’Mcorrelation ’,Mcorrelation );

5.2 Analysis

The reduction of the initial network (9) has been invoked as shown in Listing 12, and

was performed adopting the Adaptive Line Sampling method. The resulting reduced

network (XCNreduced in the computational code) is shown in Fig.11. It consists of only

5 nodes, 3 of which (i.e., EmissionScenario, CrestLevel, Overtopping) are associated

with interval probabilities. The remaining nodes, TimeScenario and MeanPermissi-

bleDischarge, are characterized by crisp probabilities.

Listing 12: CN reduction

XALS=AdaptiveLineSampling(’Nlines ’,20,’NmaxPoints ’ ,14);

XCNreduced=XCN.reduce2BN(’Cxsimulation ’,{XALS });

A complete analysis has been carried out on the model proposed, starting from the

inference computation of the network. This was carried out focusing on the marginal

probability of the event Overtopping and adopting both exact and approximate algo-

rithms, comparing the results obtained by the three approaches described in Section
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Figure 12: Exact upper (square) and lower (circle) bounds and related inner and outer
approximations (error bars) for the probability of occurrence of overtopping for each
time scenario analysed

3.3. The related part of the code is presented in Listing 13.

Listing 13: Inference analysis

XCNreduced.computeInference(’CSmarginal ’,{’Overtopping ’},...

’Lbnt’,true);

XCNreduced.computeInference(’CSmarginal ’,{’Overtopping ’},..

’LapproximateInner ’,true);

XCNreduced.computeInference(’CSmarginal ’,{’Overtopping ’},...

’LapproximateOuter ’,true);

Regardless the scenario of reference, hence not introducing any evidence, the marginal

probability of overtopping occurrence results bound by the interval [0.173, 0.316], ac-

cording to the exact inference analysis. The output obtained through the adoption

of the inner approximation algorithm perfectly matches these values, while the outer

approximation results equal to 0.0783 and 0.538, respectively for the lower and upper

bounds. These estimates refer to the overall scenarios considered, providing a general

value for the probability of sea wave overtopping over the entire century considered.

Introducing evidence in the node TimeScenario, it is instead possible to visualize the

trend of the risk over more specific time domains.

As shown in Fig.12 and from the results in Table 8, both the upper and lower bounds of

the probability of overtopping occurrence generally tend to grow in time regardless the

inference computation method adopted. Also the length of the intervals grows along

the time domain (e.g., from a minimum of 0.1186 in the first scenario to 0.1695 in the
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Table 8: Probability intervals for the marginal probability of overtopping occurrence
associated with the time scenario of reference

Scenario Exact Inner Outer
2010− 2020 [0.1689, 0.2875] [0.1689, 0.2875] [0.0764, 0.5047]
2020− 2030 [0.1695, 0.2928] [0.1695, 0.2928] [0.0770, 0.5108]
2030− 2040 [0.1713, 0.3022] [0.1713, 0.3022] [0.0780, 0.5225]
2040− 2050 [0.1711, 0.3083] [0.1711, 0.3083] [0.0777, 0.5292]
2050− 2060 [0.1737, 0.3143] [0.1737, 0.3143] [0.0786, 0.5357]
2060− 2070 [0.1731, 0.3219] [0.1731, 0.3181] [0.0784, 0.5448]
2070− 2080 [0.1750, 0.3293] [0.1750, 0.3249] [0.0792, 0.5529]
2080− 2090 [0.1751, 0.3402] [0.1751, 0.3358] [0.0792, 0.5650]
2090− 2100 [0.1781, 0.3476] [0.1781, 0.3426] [0.0807, 0.5730]

last, referring to the exact intervals) coherently with the increasing uncertainty of the

climate projections. In all the scenarios considered, the inner approximation values

matches the estimate of the exact probability bounds, while the outer approximation

provides only a coarse estimation of these, in particular with regards to the upper values

of the probability. In spite of this, the information provided by this analysis, in par-

ticular when coupled with that provide by the inner approximation, can be extremely

useful in case of complex networks where an exact estimate would require a much larger

computational power.

Fig.13 shows the results according not only to the time scenario but also to the two

different emission scenarios considered. The probability bounds results slightly higher

for the high emission scenario, as expected. Moreover, the length of the intervals is

generally larger for the high emission scenario, highlighting an higher degree of uncer-

tainty related to the projections associated with this assumption. Finally the sensitivity

analysis of the network has been carried out, according to the methodology previously

described (see Listing 14).

Listing 14: Inference analysis

XCNreduced.tuneParameter(’Starget ’,’Overtopping ’ ,...

’query ’,InitialUncertainty *0.80);

Regardless the scenario of reference (i.e., without introducing any evidence in the net-

work), the possible parameter changes which can reduce the length of the exact proba-

bility interval for the overtopping event to 80% of its initial value (i.e., a length of the
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Figure 13: Exact and approximate probability bounds for the different time periods
and for the medium and high emission scenarios
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interval equal to 0.1145) involve the node CrestLevel. Two solutions are possible in this

case, as shown in Table 9: the first involves the reduction of the upper bound regarding

the probability of the maximum height of the structure to reach 8 m of 21.92% of its ini-

tial value (i.e., reducing the probability interval associated with the event of 76.39% of

its initial value); in this case the marginal probability interval associated with the event

Overtopping would be [0.173, 0.287]. In the second case, the upper bound associated to

the maximum height of the structure to reach 10 m is reduced of 38.46% (i.e., 95% of

the initial uncertainty affecting the parameter), resulting in a marginal probability for

the event Overtopping of [0.201, 0.316]. Hence, even if both options guarantee the same

Table 9: Parameter changes for reducing Overtopping marginal probability uncertainty
to 80%

Parameter (τ) Absolute Change Relative Change
p(CrestLevel=8) −0.15346 −21.92%

p(CrestLevel=8) −0.1923 −38.46%

reduction of uncertainty in output, they are not equivalent in terms of reliability of the

structure: the first option implies a reduction of the overall probability of overtopping

while the second the increase. In order to enhance the accuracy of the information

in output, reducing the imprecision affecting the marginal probability obtained, more

precautions could be taken in order to increase the confidence in the robustness of the

structure (hence its capability of keep a maximum height of 10 m for all the time do-

main considered), decreasing the probability of overtopping occurrence as well as the

uncertainty affecting its estimate.

6 Conclusions

A novel computational toolbox for the manipulation of Credal Networks and their anal-

ysis has been presented. The toolbox integrates well-known traditional, cutting-edge

and novel methods and allows to interact with external software (such as the reliability

toolbox in OpenCossan and the Bayes’ Toolbox for MATLAB) ensuring extreme flex-

ibility in the analysis. Algorithms are provided for the reduction of the initial Credal

Networks including probabilistic, discrete, bounded and hybrid nodes to equivalent

52



simplified models. The reduced networks include only nodes which are associated with

crisp probability values and interval probabilities, streamlining the structure of the net-

work. The inference computation can be carried out adopting different methods (both

built-in or from third parties) characterized by different degrees of accuracy and, hence,

associated to different computational costs. Finally, sensitivity analysis methods allow

identifying the best possible strategy, in terms of tuning of single network parameters

with regards to the required maximum level of imprecision in output. Thanks to the

high flexibility of the computational tool, new methods can be integrated easily in the

existent framework, making room for constant improvements of the implementation. A

numerical example based on a simple CN model for the risk assessment of sea waves

overtopping is analysed in order to fully test the capabilities of the toolbox implemented.
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