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Abstract

The model of population protocols refers to the growing in popularity theoretical framework suit-
able for studying pairwise interactions within a large collection of simple indistinguishable entities,
frequently called agents. In this paper the emphasis is on the space complexity in fast leader elec-
tion via population protocols governed by the random scheduler, which uniformly at random selects
pairwise interactions from the population of n agents.

The main result of this paper is a new fast and space optimal leader election protocol. The new
protocol operates in parallel timeO(log2 n) equivalent toO(n log2 n) sequential pairwise interactions,
in which each agent utilises O(log log n) states. This double logarithmic space utilisation matches
asymptotically the lower bound 1

2 log logn on the number of states utilised by agents in any leader
election algorithm with the running time o( n

polylog n), see [6].
Our solution takes an advantage of the concept of phase clocks, a fundamental synchronisation

and coordination tool in Distributed Computing. We propose a new fast and robust population
protocol for initialisation of phase clocks to be run simultaneously in multiple modes and intertwined
with the leader election process. We also provide the reader with the relevant formal argumentation
indicating that our solution is always correct and fast with high probability.

In a very recent work on majority problem in population protocols [7], Alistarh et al. show a
lower bound of Ω(log n) states for any protocol which stabilises in O(nc) time, for any constant
c ≤ 1. They also match this bound from above by an algorithm which uses O(log n) states, and
stabilises in O(log2 n) time. Our new algorithm together with the lower bound from [6] and the new
results in [7] provide a complete suit of protocols for space optimal leader election and majority
computation.
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1 Introduction

The model of population protocols adopted in this paper was introduced in the seminal paper of
Angluin et al. [2]. Their model provides a universal theoretical framework for studying pairwise
interactions within a large collection of anonymous (indistinguishable) entities, very often referred
to as agents equipped with fairly limited communication and computation ability. The agents are
modelled as finite state machines. When two agents engage in a direct interaction they mutually
access the contents of their local states. On the conclusion of the encounter their states are modified
according to the transition function that forms an integral part of the population protocol. In the
probabilistic variant of population protocols, considered in [2] and adopted in this paper, in each
step the random scheduler selects a pair of agents uniformly at random. In this variant in addition
to the space utilisation determined by the maximum number of distinct states used by each agent,
one is also interested in the running time of considered algorithmic solutions. More recent studies
on population protocols focus on performance in terms of parallel time defined as the total number
of pairwise interactions leading to stabilisation divided by the size (in our case n) of the population.
Please note that the parallel time can be also interpreted as the local time observed by agents.

A population protocol terminates with success if the whole population eventually stabilises, i.e.,
arrives at and stays indefinitely in the final configuration of states reflecting the desired property of
the solution. For example, in protocols targetting majority in the population, the final configuration
corresponds to each agent being in the unique state representing the colour of the majority, see,
e.g., [3, 5, 30, 31, 39]. In leader election, however, in the final configuration a single agent is expected
to conclude in a leader state and all other agents must stabilise in follower states. The leader
election problem received in recent years greater attention in the context of population protocols
thanks to several important developments in closely related problems [19, 23]. In particular, the
results from [19, 23] laid down the foundation for the proof that leader election cannot be solved in
sublinear time with agents utilising a fixed number of states [25]. In further work [8], Alistarh and
Gelashvili studied the relevant upper bound, where they proposed a new leader election protocol
stabilising in time O(log3 n) assuming O(log3 n) states at each agent.

In a very recent work Alistarh et al. [6] consider a general trade-off between the number of states
used by agents and the time complexity of the stabilisation process. In particular, the authors pro-
vide a separation argument distinguishing between slowly stabilising population protocols which
utilise o(log log n) states and rapidly stabilising protocols requiring O(log n) states at each agent.
This result nicely coincides with another fundamental observation by Chatzigiannakis et al. [18]
which states that population protocols utilising o(log log n) states can cope only with semilinear
predicates while the use O(log n) states admits computation of symmetric predicates.

Our results In this paper we show that the space complexity lower bound in fast leader election
proved in [6] is asymptotically tight. The lower bound states that any leader election algorithm with
the time complexity o( n

polylog n) requires 1
2 log log n states in each agent. In this paper we present

a new fast leader election algorithm which stabilises in time O(log2 n) in populations with agents
utilising c log logn states, for a small positive constant c.

In the most recent work on majority problem in population protocols [7], Alistarh et al. show
a lower bound of Ω(log n) states for any protocol which stabilises in O(nc) time, for any constant
c ≤ 1. They also match this bound from above by an algorithm which utilises O(log n) states at
each agent, and stabilises in time O(log2 n). Our new algorithm, the lower bound from [6] and the
new results in [7] provide a complete suit of protocols for the time and space optimal leader
election and majority computation.
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Our algorithm utilises a fast and small space reduction of potential leaders (candidates) in the
population. The reduction process is intertwined with a robust initialisation and further utilisation
of phase clocks, a synchronisation tool developed and explored in self-stabilising community [35].
This includes the seminal work on clock synchronisation by Arora et al. [9], further extension by
Dolev and Welsh [22] to distributed systems prone to Byzantine faults, and related study on pulse
synchronisation by Daliot et al. [24]. Our variant of the phase clock refers directly to the work
of Angluin et al. [4] in which the authors propose efficient simulation of a virtual register machine
supporting basic arithmetic operations. The simulation in [4] assumes availability of a single leader
which coordinates the relevant exchange of information. In the same paper, the authors provide also
some intuition behind the phase clock coordinated by a junta of nε leaders, for some small positive
constant ε. In this work we formally prove that the phase clock based on junta of cardinality nε,
for any ε < 1, allows to count Θ(log n) time units assuming a constant number of states at each
agent. We also consider an extension of the phase clock allowing to compute time Θ(logc n), for
any integer constant c. Our main result is based on rapid computation of junta of leaders followed
by fast election of a single leader, all in time O(log2 n) and O(log log n) states available at each agent.

Related work Leader election is one of the fundamental problems in the field of Distributed
Computing on par with other core problems in the field including broadcasting, mutual-exclusion,
consensus, see an excellent text book by Attiya and Welch [12]. The problem was originally studied
in networks with nodes having distinct labels [37], where an early work focuses on the ring topology
in synchronous [27, 36] as well as in asynchronous models [17, 41]. Also, in networks populated by
mobile agents the leader election was studied first in networks with labeled nodes [34]. However,
very often leader election is used as a powerful symmetry breaking mechanism enabling feasibility
and coordination of more complex protocols in systems based on uniform (indistinguishable) enti-
ties. There is a large volume of work [1, 10, 11, 15, 16, 42, 43] on leader election in anonymous
networks. In [42, 43] we find a characterisation of message-passing networks in which leader election
is feasible when the nodes are anonymous. In [42], the authors study the problem of leader election
in general networks under the assumption that node labels are not unique. In [26], the authors study
feasibility and message complexity of leader election in rings with possibly non-unique labels, while
in [21] the authors provide solutions to a generalised leader election problem in rings with arbitrary
labels. The work in [29] focuses on space requirements for leader election in unlabeled networks.
In [28], the authors investigate the running time of leader election in anonymous networks where
the time complexity is expressed in terms of multiple network parameters. In [20], the authors
study feasibility of leader election for anonymous agents that navigate in a network asynchronously.
Also, an interesting study on trade-offs between the time complexity and knowledge available in
anonymous trees can be found in recent work of Glacet et al. [33].

Finally, a good example of recent extensive studies on the exact space complexity in related
models refers to plurality consensus. In particular, in [14] Berenbrink et al. proposed a plurality
consensus protocol for C original opinions converging in O(logC · log logn) synchronous rounds
using only logC + O(log logC) bits of local memory. They also show a slightly slower solution
converging in O(log n · log log n) rounds using only logC + 4 bits of local memory. This disproved
the conjecture by Becchetti et al. [13] implying that any protocol with local memory logC +O(1)
has the worst-case running time Ω(k). In [32] Ghaffari and Parter propose an alternative algorithm
converging in time O(logC log n) in wich messages and local memory utilise logC + O(1) bits. In
addition, some work on the application of the random walk in plurality consensus protocols can be
found in [13, 30].

Please note that due to the recommended structure several proofs of lemmas and theorems have
been moved towards the end in this version of the paper.
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2 Preliminaries

We consider population protocols defined on the complete graph of interactions where the random
scheduler picks uniformly at random pairs of agents drawn from the population of size n. The
agents are anonymous, i.e., they don’t have identifiers. The protocol assumes all agents start in the
same initial state. Our protocol utilises the classical model of population protocols [2, 4] where the
consecutive interactions refer to ordered pairs of agents (responder, initiator). On the conclusion
of each interaction the two participating agents change their states (a, b) into (a′, b′) according to a
fixed deterministic transition function denoted by (a, b)→ (a′, b′).

We focus here on two complexity measures: (1) the space complexity defined as the number
of states required by each agent, and (2) the time complexity reflecting the number of interactions
needed to stabilise the population protocol. Similarly to other recent work in the field, the emphasis
in this paper is on parallel time of the solution defined as the total number of interactions divided by
the size of the population. This time can be also seen as the local time observed by an agent, i.e., the
number of pairwise interactions in which the agent is involved in. In this work we aim at protocols
formed of O(n · poly log n) interactions equivalent to the parallel running time O(poly log n).

Our leader election algorithm is always correct and it runs fast with high probability (whp) which
we define as follows. Let η be a universal constant referring to the quality of our protocols. We say
that an event occurs with negligible probability if it occurs with probability at most n−η, and an
event occurs with high probability (whp) if it occurs with probability at least 1−n−η. Similarly, we
say that an algorithm succeeds with high probability if it succeeds with probability at least 1−n−η.
When we refer to a probability of failure p different from n−η, we say explicitly whp 1 − p. Our
results are of asymptotic nature, i.e., we assume n is large enough to validate the results.

Throughout the paper in the analysis of the intermediate results and studied protocols we utilise
several standard probabilistic tools including the Union bound, the Chernoff bound, the Markov’s
inequality and the Bayes rule which definitions can be found in any probability theory text book.

2.1 One-way epidemics

In our solution we adopt the notion of one-way epidemic introduced in [4]. One-way epidemic refers
to the population protocol with the state space {0, 1} and the transition rule x, y → max{x, y), y.
One interprets 0’s as susceptible agents and 1’s as infected ones. This protocol corresponds to a
simple epidemic in which transmission of the infection occurs if and only if the initiator is infected
and the responder is susceptible. We will use the following theorem introduced in [4].

Theorem 1 ([4]) In order to conclude one-way epidemic (infect all agents) one needs Θ(n log n)
pairwise interactions with high probability.

3 Phase clock revisited

In [4] Angluin et al. defined and further analysed the concept of phase clocks capable of counting
parallel time Θ(log n) approximately, in which each agent participating in the population protocol
utilises a constant number of states. The phase clocks studied in [4] work under the assumption of
having already determined a unique leader in the population. In the same paper, the authors argue
without giving a formal proof that phase clocks should also work when the unique leader is replaced
by a junta of nε leaders, for some unspecified constant ε. Further on, the authors suggest also that
once the phase clock is in motion the leadership team can be reduced to a single leader with the
help of coin flipping combined with propagation via one-way epidemic. This would allow election
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of a single leader in expected O(n log2 n) interactions after the phase clock stabilises. In this paper
we adopt a similar mechanism to determine a single leader, however here the junta team has to be
computed first. We implement this process in two loops, one nested inside the other. The internal
loop operates in (parallel) time Θ(log n) equivalent to Θ(n log n) interactions allowing to distribute
1’s via one-way epidemic. This internal loop in principle mimics actions of a finite state phase clock.
The external loop is used to count Θ(log n) executions of the internal loop. The external loop is
controlled by a finite state phase clock too. However this time the agents execute clock operations
more seldom, i.e., only when they act as responders for the first time after each full execution of
the internal loop. This way a single execution of the external phase clock refers to time Θ(log n)
counted by the internal loop, which is in turn equivalent to the total time O(log2 n).

In this section we propose and analyse a modified version of phase clocks capable of counting
approximately time Θ(log n), under assumption that each agent utilises a constant number of states
and the junta of leaders is of cardinality n1−ε, for any constant ε : 0 < ε < 1. Without loss of
generality and for some technical reasons we assume ε = ε(k) = 3

3k+1 , for a positive integer k.
The states of agents controlling the phase clock protocol are structured in pairs (x, b). The entry

b has value leader for leaders in the junta and follower for all other agents. The entry x represents
a phase denoted by a number of an agent drawn from the set Zm = {0, 1, 2, . . . ,m − 1}, for some
integer constant m. The phases can be interpreted as hours on the dial of an analogue clock. The
increment of clock phases is periodic and computed using the arithmetic modulo m denoted by +m.
We also define the maximum of two phases x, y in set Zm as:

maxm{x, y} =

{
max{x, y} if |x− y| ≤ m/2
min{x, y} if |x− y| > m/2

Finally we define the circular order (which is not partial) on Zm as x ≤m y iff maxm{x, y} = y.
Now we are ready to formally define the transition function in our version of phase clocks as

(x, follower), (y, b)→ (maxm{x, y}, follower), (y, b)

and
(x, leader), (y, b)→ (maxm{x, y +m 1}, leader), (y, b).

In this paper we study phase clocks which operate in two modes: the ordinary mode (referring to
the internal loop) and the external mode (referring to the external loop). For each mode, we say the
phase clock passes through 0 whenever its current phase x is reduced in absolute terms (e.g., changes
from phase 5 to phase 3). As hinted earlier the two modes differ in choosing pairwise interactions
to the relevant phase clock actions. We are ready now to define meaningful interactions.

Definition 1 The first interaction of an agent after its ordinary phase clock passes through 0 in
which the agent acts as the responder is a meaningful interaction.

In the ordinary mode all interactions trigger actions of the phase clock. In the external mode
only meaningful interactions are used to propel actions of the phase clock, and all others are ignored.
The meaningful interactions are chosen, s.t., they are arranged into series of n interactions in which
every agent acts as the responder exactly once. In each subsequent series the initiators are chosen at
random (by the random scheduler) and the order in which agents appear as responders is arbitrary.

Before we proceed with the full proof of Theorem 2, which is the main result of this section,
we provide the reader with several useful lemmas. In the proofs for the ordinary mode we utilise
Theorem 1 showing that one-way epidemic protocol concludes after Θ(n log n) whp. In the proofs
for the external mode we need an analogue of this theorem in which only meaningful interactions
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for one way epidemic are selected. In other words they form a series of n interactions for which each
agent acts as the responder exactly once, responders are arranged in an arbitrary order and their
initiators are chosen at random.

Lemma 1 One-way epidemic applied in the external mode requires O(n log n) interactions whp.

For the simplicity of presentation we assume in the next few lemmas that the agents start in
phase 0. The main purpose of these lemmas is to bound from above the sizes of sets of agents in
phases 1, 2, 3, . . . on the conclusion of O(n log n) interactions. There are separate sets of lemmas for
the ordinary and the external modes. Also here we assume ε = 3

3k+1 and k < m/4. In what follows
we state two lemmas with similar proofs for phase clocks in the ordinary and the external modes.

Lemma 2 Assume j ≤ k and interactions of the phase clock are performed in the ordinary mode.
Assume also that at some point the number of agents in phase x ≥m i is at most A · n1−iε, for all
i = 0, 1, . . . , j and some value A ∈ [1, nε/3]. Then after n/4 interactions the number of agents in
phase x ≥m i is at most 3A · n1−iε, for all i = 0, 1, . . . , j and whp at least 1− 2jn−10.

We formulate now the analogous lemma for the external mode.

Lemma 3 Assume j ≤ k and interactions of the phase clock are performed in the external mode.
Assume also that at some point the number of agents in phase x ≥m i is at most A · n1−iε, for all
i = 0, 1, . . . , j and some value A ∈ [1, nε/3]. Consider a series of at most n/4 interactions in which
at most n1−iε/4 leaders act as responders. After this series of interactions, the number of agents in
phase x ≥m i is at most 3A · n1−iε, for all i = 0, 1, . . . , j and whp at least 1− 2jn−10.

All lemmas below apply to both (the ordinary and the external) modes of the phase clock.

Lemma 4 Assume all agents start in the clock phase 0. The probability that after 1
8(3k+1)n log3 n

interactions (in either of the phase clock modes) there are at least n2/(3k+1) agents in phase x ≥m k
is at most 2(ε/3)k log3 n · n−10.

Lemma 5 Assume all agents start in the clock phase 0. The probability that on the conclusion
of n log3 n

8(3k+1) interactions (in either of the phase clock modes) there are some agents in clock phase
x ≥m k + 1 is O(n−ε/3 log n).

Lemma 6 Assume all agents start in clock phase x = 0 and d is a positive constant. Then there
exists an integer constant K < m/2, s.t., the first agent enters phase x = K before interaction
t+ dn log n with negligible probability at most n−η, for sufficiently large n .

Lemma 7 For any constant d there is another constant K, s.t., if K < m/6 and after interaction
t there is an agent in phase i and all other agents are in phases x : i− 2K ≤m x ≤m i, then whp

• the first interaction t′ when an agent enters phase i+K satisfies t′ > t+ dn log n, and

• during interaction t′ all agents are in phases x, s.t., i ≤m x ≤m i+K.

Consider now the interactions in which phase clocks in different agents pass through 0. We say
that passes through 0 of two agents are equivalent if they occur during a period in which all agents
are in phases x : 3m/4 <m x <m m/4. This notion defines an equivalence relation which is reflexive,
symmetric and transitive, and in turn passes of agents through 0 form equivalence classes. This
allows us to use argumentation similar to the one proposed in [4], however this time for the junta
of leaders rather than for a single leader.
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Theorem 2 Assume all agents start the phase clock protocol from the initial phase 0 when n1−ε

leaders and n − n1−ε followers are already selected. For any fixed ε, η, d1, d2 > 0, there exists a
constant m, s.t., the finite-state phase clock with parameter m completes nη passes through 0, s.t.,
the following conditions are satisfied with high probability 1− n−η, for sufficiently large n.

• The passes through 0 form equivalence classes for all agents and the number of interactions
between closest passes through 0 in different equivalence classes is at least d1n log n.

• The number of interactions between two subsequent passes through 0 in any agent is smaller
than d2n log n whp.

Proof: If d = d1, by Lemma 7 there exists K, s.t., or m = 10K the thesis of this Lemma holds.
We consider ten subsets A0, A1, A2, . . . , A9 of Z10K defined as Ai = {iK, iK + 1, . . . , iK +m K}.
By Lemma 7 phases of all agents progress whp from Ai to Ai+101 (modulo 10) in at least d1n log n
interactions whp. This implies that agents’ passes through 0 form equivalence classes whp and the
number of interactions between closest passes through 0 in different equivalence classes is at least
d1n log n whp. Since one way epidemic operates in O(n log n) interactions whp each agent incre-
ments its phase in O(n log n) interactions. Thus the number of interactions between two subsequent
passes through 0 in any agent is smaller than d2n log n whp. �

In conclusion, we formulate two useful facts related to phase clocks. Fact 1 states that if some
leaders become followers during the phase clock protocol, then the phase clock can only slow down,
but the upper bound on the number of interactions remains O(n log n). Fact 2 states that any
unsuccessful interactions can only slow down the phase clock.

Fact 1 The reduction of the number of leaders during execution of the phase clock protocol can only
slow down phase progression of agents on their clocks. And if at least one agent remains as leader
the number of interactions between two subsequent passes through 0 in any agent is still bounded by
O(n log n) whp.

Fact 2 If some interactions of the phase clock are faulty, i.e., they do not result in progression,
then the phases of all agents do not become larger comparing to the protocol without faults.

4 Forming a junta

In this section we describe Forming_junta protocol. The purpose of this protocol is to rapidly elect
from n agents a junta of O((n log n)1/2) leaders assuming each agent utilises O(log log n) states. This
junta of leaders will be used to support phase clocks and eventual election of a unique leader.

The states of agents are represented as pairs (l, a) where a ∈ {0, 1}. The value l is a non-negative
integer which we refer to as level. During execution of the protocol agents with a = 0 do not update
their states. However, any agent v with value a = 1 increments its level l by 1 or changes its value
a to 0 during all interactions v participates in. The protocol stabilises when all agents conclude
with a = 0. The transition function is defined, s.t., on the conclusion of this protocol there are
O((n log n)1/2) agents are equipped with the highest computed value l whp. These agents form the
desired junta of leaders.

All agents start in the same state (l, a) = (0, 1). As agents in states (l, 0) do not get updated,
we only need to specify how to update agents in states (l, 1) during pairwise interactions. The
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transition function at level l = 0 differs from levels l > 0. When an agent in state (0, 1) interacts
with any agent in state (0, 1), the final state of the initiator is (1, 1) and (0, 0) of the responder, i.e.,

(0, 1), (0, 1)→ (0, 0), (1, 1).

When an agent v in state (0, 1) interacts with any agent in state (l, a), for levels l > 0, or with an
agent in state (0, 0), the resulting state of v is (0, 0). If for any l > 0 an agent v in state (l, 1),
participates in an interaction, its state changes only if v acts as the responder. If the initiator is
in state (l′, a) such that l ≤ l′, the responder’s state becomes (l + 1, 1). If the initiator is in state
(l′, a) such that l > l′, the responder’s state becomes (l, 0).

Let Bl be the number of agents which reach level l during execution of Forming_junta. The
value of Bl depends on the execution thread of the protocol. We first prove an upper bound on B1.

Lemma 8 For n large enough 1 ≤ B1 ≤ n/2.

Proof: During an interaction of two agents in states (0, 1) exactly half of the participating agents
increase their level l to 1. The remaining half ends up in state (0, 0) which becomes their final state.
During any other interaction in which an agent v in state (0, 1) participates, v changes its state to
(0, 0). So at least half of the agents end up in state (0, 0). Finally, since the first interaction of the
protocol is between two agents in states (0, 1), so at least one agent results in a state with l > 0. �

Due to the reduction property of the protocol we have B1 ≥ B2 ≥ B3 ≥ B4 ≥ . . ., and in
turn there exists the last L for which value BL > 0. We prove that L = O(log log n) and in turn
BL = O(

√
n log n). We obtain this result by limiting values of Bl, for all l > 1.

Lemma 9 Assume n−1/3 ≤ A < 1 and Bl ≤ A · n, then Bl+1 ≤ 11
10A

2 · n whp 1− e−n/300.

Proof: An agent v contributing to value Bl results in state (l, 1) as soon as it gets to level l dur-
ing the relevant interaction t. Consider the first interaction ι succeeding t in which v acts as the
responder. During this interaction the initiator is on level l′ ≥ l with probability pι ≤ Bl/n ≤ A.
Thus v moves to level l + 1 with probability at most A as otherwise the responder would end up
in state (l, 0) and would not contribute to Bl+1. Consider now the sequence of all Bl interactions
ι, in which agents in state (l, 1) act as responders. We can attribute to this sequence a binary 0-1
sequence σ of length Bl, s.t., if during interaction ι an agent ends up in state (l+1, 1) the respective
entry in σ becomes 1. Otherwise, this entry becomes 1 with probability (1−A)/(1− pι) and 0 with
probability A/(1− pι). Thus the probability of each entry being 1 is independently equal to A and
the number of 1s in σ is at least Bl+1. The expected number of these 1s is A · Bl ≤ A2n. By the
Chernoff bound Bl+1 >

11
10A

2 · n with probability at most e−A2n/300. �

Lemma 10 If Bl ≤ n1/3 we get Bl+1 > 0 with probability at most n−1/3.

Proof: If Bl ≤ n1/3, the probability for any agent on level l to get to level l is at most n−2/3. Thus
by the Union bound the probability of some agent getting to level l is at most n−1/3. �

Lemma 11 There exists a constant c > 0, for which if Bl ≥ c
√
n log n, the probability of Bl+1 = 0

is negligible.
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Proof: Consider a group of c
√
n log n/2 agents which move to level l after this level is already

reached by c
√
n log n/2 other agents. Any agent in this group moves to level l+ 1 with probability

at least c
√

log n/4n. Since all these agents advance to level l+1 independently, the probability that
Bl+1 = 0 is at most (

1− c
√

log n/4n
)c√n logn/2

< e−c
2 logn/4 < n−c

2/4

This last value is smaller than n−η, for c large enough. �

Theorem 3 In protocol Forming_junta the largest level L for which BL > 0 satisfies L = O(log log n)
and BL = O(

√
n log n) whp.

Proof: By Lemma 8 we have B1 ≤ n/2. By Lemma 9 we conclude B2 ≤ 11
10 ·

n
4 whp e−n/300.

Furthermore, B3 ≤ (1110)3 · n
24

whp 2e−n/300. And in general Bl ≤ (1110)2
l−1 · n2l whp le−n/300. Thus

for some L′ = O(log log n) we get BL′ ≤ n1/3, and by Lemma 10 the value B′L, where L’=L+c,
equals 0, for some constant c, whp 1− n−η−1. By Lemma 11 on the last level L for which BL > 0
we have BL = (

√
n log n) whp 1− n−η−1. Thus both conditions hold whp 1− n−η. �

The last lemma bounds from above the running time of protocol Forming_junta.

Lemma 12 The protocol Forming_junta stabilises in O(n log n) iteractions whp.

Proof: Recall from Lemma 8 that B1 ≤ n/2 and the number of agents with the final state (0, 0) is
at least n/2. Each agent in this group ends up in this state during its first interaction. Since every
agent interacts at least once during the first O(n log n) interactions of the protocol whp, all agents
ending up in state (0, 0) do so during this time. One can show that an agent does not experience
an interaction during the first cn lnn interactions, for a constant c, with probability(

1− 2

n

)cn lnn

≤ n−2c.

Thus there exists a positive constant c for which after cn lnn interactions each agent experiences its
first interaction whp 1 − n−η−1. Any agent that interacts as the responder with an agent in state
(0, 0) sets its value a to 0 which concludes the transition process. And after at least n/2 agents
are in state (0, 0), the probability that the current interaction is one of such interactions w.r.t. a
particular responder is at least 1

4n . Thus the probability that a given agent does not have a = 0
after c′n lnn iterations is (

1− 1

4n

)c′n lnn

≤ n−c′/4,

and for the constant c′ big enough n−c
′/4 < −η − 1. Thus the number of interactions needed to

obtain a = 0 in all agents is O(n log n) whp. �

Finally we prove a corollary stating that “spoiling” (for the definition check below) protocol
Forming_junta does not affect validity of statements of Theorem 3 and Lemma12. Using the
notion of a spoiled protocol instead of the flawless one is needed to bound the total number of
states in the leader election protocol to O(log log n). Let spoiled Forming_junta protocol be any
protocol obtained by changing spontaneously some states from (l, a) to (0, 0), where l is not the
highest level reached so far in the population. We denote the total numbers of agents that reach
level l in this spoiled protocol by B∗l , and the highest level for which B∗l > 0 by L∗. Observe that
in the spoiled protocol all agents at level L∗ never go through state (0, 0).
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Corollary 1 Level L∗ satisfies the condition L∗ = O(log log n) and B∗L∗ = O(
√
n log n) whp. Also

spoiled Forming_junta protocol stabilises after O(n log n) interactions whp.

Proof: The numbers of agents B∗l reaching level l in the spoiled protocol are not larger respectively
than numbers Bl from the flawless protocol, thus L∗ = O(log log n). Also Lemma 11 still bounds
from above B∗L∗ by O(

√
n log n) whp. Thus the running time of the spoiled protocol is not larger

than the flawless one. �

5 Leader election

In this section we describe how to combine the protocols described in the two previous sections to
obtain a new fast population protocol for leader election. This new leader election protocol operates
in (parallel) time O(log2 n) on populations with agents equipped with Θ(log log n) states.

The new leader election protocol assumes that at the beginning there is a non-empty subset
(possibly the whole population) of agents which are candidates for leaders, and this subset is grad-
ually reduced to a singleton. The protocol consists of Θ(log n) repetitions of the external loop, each
formed of Θ(n log n) interactions controlled by the ordinary mode of the phase clock. During each
repetition every candidate picks independently at random either bit 0 or 1 by tossing a fair coin.
In real terms, the coin tossing process relies on the initiator versus responder selection performed
by the random scheduler. The candidates which pick 1 broadcast message "1" to all other agents.
And when a candidate with chosen 0 receives message "1" it stops being a candidate for the leader.

Theorem 4 The protocol proposed above selects a unique leader during Θ(log n) repetitions whp.

The main problem with utilisation of the protocol described above is the need of implementing
a counter of Θ(log n) repetitions utilising a very small memory. We also need to implement multi-
broadcast of 1s which requires Θ(n log n) interactions whp. The multi-broadcast can be implemented
via one-way epidemic described in section 2. The two processes can be controlled by the phase clock
run in both the external and the ordinary modes respectively, using a constant number of states.
This is conditioned by forming a junta of at most n1−ε leaders. In Section 4 we described the
relevant Forming_junta protocol which reduces the number of leaders to O(

√
n log n) and which

utilises Θ(log log n) states at each agent. Our leader election protocol starts with a single execution
of protocol Forming_junta which is followed by the leader reduction mechanism allowing to reduce
the original junta team to a single leader.

All agent enter the leader election protocol in the same state. The current state of an agent is rep-
resented by a vector (l, a, b, x, y, z). A non-negative integer l refers to the number of levels bounded
by O(log log n). Other positions contain small integer constants a ∈ {0, 1}, b ∈ {leader, follower},
which refer to the leadership status, and x, y ∈ Zm are utilised for the phase clock’s ordinary and
external modes respectively. The remaining state overheads imposed by our protocol are encoded
in z which is limited to a constant number of values, and is not discussed explicitly here. Thus the
number of states utilised by our protocol is O(log log n).

Spoiled Forming_junta protocol. All agents start the leader election protocol with (l, a, b, x, y) =
(0, 1, leader, 0, 0), and they run Forming_junta protocol in state (l, a), for as long as b = leader.
As soon as b gets value follower, which is irreversible, according to Forming_junta protocol the
state of the relevant agent becomes (0, 0). This happens only when l is not at the highest level

9



in the population, thus the protocol Forming_junta gets spoiled this way only occasionally. The
relevant detail will be described in the next paragraph. According to Corollary 1 each agent should
conclude spoiled Forming_junta protocol in the first Θ(n log n) interactions whp.

Phase clocks on different levels. Once value a becomes 0, the agent starts its phase clocks on
level l as the leader with parameters x = y = 0. When an agent at level l interacts with an agent with
the phase clocks on a higher level l′ > l, its state is rewritten (l, a, b, x, y) ← (l′, 0, follower, 0, 0).
This way the agent aligns its phase clocks in phase 0 on level l′ and ends up in state (0, 0) in the
spoiled variant of Forming_junta protocol. The level of the phase clock can be incremented this way
many times until it attains the maximum level L∗ ever reached by the population. Thus eventually
all agents run together the phase clock on level L∗. All agents which advance to level L∗ in spoiled
Forming_junta protocol are the leaders of the phase clocks and others act as followers. We run the
phase clock in the ordinary mode and in the external mode simultaneously to implement the two
loops described in the beginning of Section 3. The phase clock in the ordinary mode is driven by
all interactions in which the responder has value a = 0. If the responder interacts with an initiator
on a higher level it advances its clock level as described above. If the responder has the same clock
level as the initiator, they both perform one interaction in the ordinary mode. If the responder
interacts with the initiator on a lower level or having a = 1, then this interaction is void in the
ordinary mode. The phase clock operates in the ordinary mode until it passes through 0 for the
first time. And it counts for each agent the first Θ(n log n) interactions by Fact 2.

Random coin tosses. Each remaining leader v picks randomly 0 or 1 during the first interaction
with a non-leader after the phase of v (in the ordinary mode of the clock) passes through 0. If the
non-leader is the initiator v chooses 1, otherwise v picks 0. This gives a truly random value to each
leader, and since there are O(

√
n log n) leaders, this process is completed whp during a constant

number of interactions.

Leader candidate elimination on the highest level. After choosing a value 0 or 1 at ran-
dom, the leaders multi-broadcast 1s to the whole population via one-way epidemic. The required
Θ(n log n) interactions are counted with the help of the phase clock in the ordinary mode. In order
to obtain a unique leader whp, this process is iterated Θ(log n) times by the external loop and
controlled by the phase clock in the external mode. The protocol concludes at each agent, when its
external clock attains phase m− 1. The following theorem holds.

Theorem 5 The protocol described above finds a unique leader in O(n log2 n) interactions whp.

Now we formulate a Las Vegas variant of our algorithm to more accurately match the existing
lower bound Ω(log logn) on the number of states in fast leader election [6].

Theorem 6 For agents equipped with O(log log n) states, there exists a leader election protocol
which always gives the correct answer and works in parallel time O(log2 n) whp.

Proof: In the Las Vegas variant of our protocol the external clock utilises the set of transitions
defined as before. However, we replace maxm by the standard maximum as we assume that the
external clock stops after reaching phase m − 1. We also need to impose here the level limit L′ =
Θ(log log n) in Forming_junta protocol. If this level L′ is achieved, which occurs with a negligible
probability, the agent’s level is no longer incremented as it plays the role of L∗. We also permit
an agent v to utilise in its external clock all subsequent interactions as meaningful after v (in a
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very unlikely event) interacts with any other agent with a distant ordinary phase clock value. This
happens when the relevant phase clock values x and x+m a satisfy m/5 < a < 4m/5. In addition,
after an agent starts using all interactions as meaningful (in the external clock), it also infects with
this setting all other agents it interacts with subsequently. By Theorem 5 we can construct a fast
leader election protocol with the clock phases drawn from Zm, s.t., a single leader is elected and the
external phase clocks in all agents conclude in phase m− 1 during the first O(n log2 n) interactions
whp 1−n−10. Thanks to Lemma 7 used in the proof of correctness of the relevant clock construction
we can derive an extra observation that no two agents can have distant ordinary phase clock values
during execution of the protocol whp 1− n−10.

If a leader enters external phase m − 1 in the fast protocol we have just described, it can no
longer be eliminated by this protocol. Independently, all agents run from the beginning a slow
two-state based leader election protocol with the expected number of interactions O(n2 log n) [25].
In this slow protocol, whenever two leader candidates interact directly the initiator eliminates the
responder. If a leader candidate of this slow protocol reaches phase m− 1 in the external mode, it
stops being a candidate for the leader, unless it is still a leader in the fast protocol. The leaders
reaching external phase m − 1 in the external clock eliminate other leaders in the fast protocol in
direct pairwise interactions according to the slow protocol principle.

Note that all agents complete Forming_junta protocol with expected O(n log n) interactions.
Assume this part of leader election is already completed. Let E be the expected number of interac-
tions in the leader election algorithm. We have

E ≤ (1− n−10) · cn log2 n+ n−10 max{E′, E′′}.

In this formula E′ and E′′ are the expected numbers of interactions if we start from the worst case
configurations respectively not containing (E′) and containing (E′′) distant ordinary clock phases.
If we start from the configuration not containing distant ordinary clock phases, the external phase
clock reaches phase m− 1 in all agents or all leaders disappear during O(n log2 n) interactions whp
1 − n−10, unless an interaction between agents with distant ordinary clock phases occurs at some
point. This can be proved using Lemma 7 and argument analogous to the proof of Theorem 5.
In the latter case the external clock reaches phase m − 1 whp in O(n log n) interactions (after a
distant interaction takes place) unless all leaders in the fast protocol disappear. When the fast
leader election protocol fails, i.e., it either produces multiple leaders or all candidates for leaders
disappear, the leader election process is completed during O(n2 log n) interactions of the slow leader
election protocol. Thus

E′ ≤ (1− n−10) · cn2 log n+ n−10 max{E′, E′′}.

If E′ ≥ E′′ we get E′, E′′ = O(n2 log n) from this inequality. When we start in the worst case
configuration in which there are two agents with distant ordinary phase clock values, they meet
during the first interaction of the protocol with probability at least n−2. And when this happens,
the external clock reaches phase m − 1 in O(n log n) interactions whp and also in this case the
unique leader is selected whp during O(n2 log n) interactions of the slow protocol. Thus

E′′ ≤ n−2 · cn2 log n+ (1− n−2)(max{E′, E′′}+ 1).

If E′′ ≥ E′, we get E′, E′′ = O(n2 log n) from this inequality. And since E′, E′′ = O(n2 log n) we
conclude E = O(n log2 n). �
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6 Conclusion

We studied in this paper fast and space efficient leader election in population protocols. Our new
protocol stabilises in (parallel) time O(log2 n) when each agent is equipped with O(log log n) states.
This double logarithmic space utilisation matches asymptotically the lower bound 1

2 log log n on
the minimal number of states required by agents in any leader election algorithm with the running
time o( n

polylog n), see [6]. For the convenience of the reader we provide the logical structure of the
full argument in the form of a diagram, see Figure 1. We also provide the reader with a diagram

T1 T5

T2

T3
T4

F1

T6

L1

L2 L3

L4 L5

L6

L7

L8
L9 L10

L12

L11

C1

F2

OM

OM
EM

EM

OM ordinary mode
EM external mode

C Corollary, F Fact
L Lemma, T Theorem

Figure 1: The structure of the argument

illustrating transitions between states during leader election protocol, see Figure 2.

The first round of
the internal loop

Pre-Phase Clock
Leader candidate
located @ level L
in Forming-Junta

S
T
A
R
T

O(log n) rounds of
the internal loop

Initiate
Phase Clock
@ level L

Phase Clock
Leaders @ level L
computed by
Forming-Junta

Phase Clock
Followers @ level L
having state (0,0)
in Forming-Junta

“Spoiling”
Level L meets
Level L’ > L

“Leader 
elimination”
@ Level L*

Unique Leader
@ Level L*

n-1 followers
@ Level L*

Figure 2: Transitions between states

Further extensions. In this paper we propose a Las Vegas type algorithm which achieves sta-
bilisation in the sense, that eventually a single (unique) agent arrives in a leader state and all other
agents arrive in follower states. More precisely, in some (unlikely) scenarios the chosen leader can
hover between different leader states and similarly all other agents can switch between different fol-
lower states indefinitely. The stabilisation process can be also considered in a stronger sense where
the states of all agents finally freeze. In what follows we explain briefly how our algorithm can be
modified to meet this stronger requirement.
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In the enhanced variant of our algorithm on the conclusion of spoiled Forming_junta protocol
we run three different phase clocks including: (1) the ordinary clock run by all leaders computed
by Forming_junta protocol; (2) an external clock run by all leaders computed by Forming_junta
protocol; and (3) an external clock run by all leaders that remain active.

Similarly to the protocols proposed in this paper the leaders are eliminated using coin tossing.
The outcome of coin tosses is communicated via one-way epidemic protocols controlled by the
ordinary clock (1), and the number of the relevant loop repetitions is controlled by clock (3). Once
a leader makes a losing coin toss (picks value 0), it is not instantly eliminated. Instead, the leader
becomes inactive and awaits any motion of clock (3). When clock (3) eventually moves the leader
gets eliminated. Alternatively, with negligible probability clock (3) does not move during two
consecutive passes through 0 of clock (2) the leader informs others via one-way epidemic that all
remaining leaders are in the inactive state. This process guarantees that at least one leader survives.
Finally if there is more than one leader, the remaining leaders elect a unique leader using the slow
leader election protocol.

This process finishes in expected time Θ(log2 n) assuming flawless performance of clocks (1) and
(2). A problem may occur in an unlikely event there are agents for which phase clocks of type (1) or
(2) are in distant phases. And indeed if during an interaction of two agents their respective phase
clocks of type (1) or (2) are in distant phases, these two agents inform all other agents (including
leaders) about broken (out of phase) clocks via one-way epidemic. And when this happens the
remaining leaders conclude leader election by adopting the slow leader election protocol.

Open problems. There are some interesting unanswered questions left for further consideration.
For example, whether one can select whp a unique leader in time o(log2 n) with O(log log n) states
available at each agent. Another question refers to the exact space complexity of majority as well
as plurality consensus in deterministic population protocols considered recently, see, e.g., [31].

Acknowledgements. We would like to thank Dave Doty, Rati Gelashvili and Dominik Kaaser
for helpful comments on earlier versions of this paper.

7 Missing proofs

Proof of Lemma 1: Let v be the first infected agent. By the Chernoff bound, for any constant
c1 > 0 the number of meaningful interactions agent v needs to infect directly c1 log n agents is
bounded by O(n log n) whp 1−n−η−1. Thus the number of infected agents after O(n log n) interac-
tions is at least c1 log n whp 1−n−η−1. Also by the Chernoff bound, there exists a constant c2 > 0,
s.t., if the number of infected agents before a series of n interactions is A, where c2 log n < A < n/2,
then on the conclusion of the series the number of infected agents is at least 5

4 · A whp 1− n−η−1.
Thus if we take c1 ≥ c2, thanks to the exponential growth, the number of infected agents after
O(n log n) interactions is at least n/2 whp 1 − O(n−η−1 log n). Furthermore, by taking an extra
c3n log n pairwise interactions each uninfected (yet) agent interacts c3 log n times as the responder.
One can choose a constant c3, s.t., the probability of not getting infected during these interactions
is at most n−η−1 for a fixed uninfected agent. Finally, by the Union bound the probability of failure
in any of these steps is at most n−η−1 +O(n−η−1 log n) + n−η−1 · n/2 < n−η. �

Proof of Lemma 2: We prove this lemma by induction on j. For j = 0 the thesis holds since
the number of agents in phase x ≥m 0 is at most n < 3A · n1−0·ε with probability 1. Assume now,
the thesis is true for j − 1 and we prove it for j. By the inductive assumption after the series of
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interactions interactions the number of agents in phase x ≥m i is bounded from above by 3A ·n1−iε,
for all i = 0, 1, . . . , j − 1 whp 1− 2(j − 1)n−10. Two types of agents can enter phase x ≥m j during
these interactions.

The first type refers to the leaders. A leader can enter phase x ≥m j if it acts as the responder
in the interaction with some initiator in phase y ≥m j − 1. Assume the number of the potential
initiators is at most 3A ·n1−(j−1)ε, which happens according to the inductive hypothesis whp. Thus
the probability pι that a new leader enters phase x ≥m j during each of n/4 interactions ι is at
most 3A · n1−(j−1)εn1−ε/n2 = 3A · n−jε. We attribute a binary 0-1 sequence σ of length n/4 to
these interactions. Initially σ is empty and during each interaction ι we pad σ with one bit as
follows. If a new leader in phase x ≥m j occurs, we add 1 to σ. If no new leader in phase x ≥m j
is selected, 1 is inserted to σ but only with probability (3A · n−jε − pι)/(1 − pι) and 0 otherwise.
This way all entries of σ are independently equal to 1 with probability 3An−jε. If the number of
1s in σ is smaller or equal to A · n1−jε, the number of new leaders in phase x ≥m j is not larger
than A · n1−jε. The expected number of 1s in σ is 3

4A · n
1−jε < nε/3. By the Chernoff bound, the

probability this number is larger than A · n1−jε is negligible and smaller than e−nε/3/27 < n−10, for
sufficiently large n. Thus the number of new leaders in phase x ≥m j is not larger than A · n1−jε
whp 1− n−10.

The second type of new agents in phase x ≥m j refers to followers. A follower enters phase
x ≥m j, if it is a responder to an initiator in phase y ≥m j. Also here we attribute a 0-1 sequence ρ
of length n/4 to the relevant interactions. Prior to these n/4 interactions ρ is empty. During each
interaction ι gets extended ρ by a single bit. Let pι be the probability of getting a new follower in
phase x ≥m j in a subsequent interaction ι. If pι > 3A ·n−jε, then 1 is inserted to ρ with probability
3A · n−jε and 0 otherwise. If pι ≤ 3A · n−jε and a new follower in phase x ≥m j occurs, 1 is added
to ρ. If pι ≤ 3A · n−jε and no new follower in phase x ≥m j appears, then 1 is added to ρ with
probability (3An−jε−pι)/(1−pι) and 0 otherwise. Note that until more than A ·n1−jε new followers
occur in phase x ≥m j, pι ≤ 3A ·n1−jε/n = 3A ·n−jε. If the number of 1s in ρ is smaller or equal to
A · n1−jε, the number of new followers in phase x ≥m j is not larger than A · n1−jε. The expected
number of 1s in ρ is 3

4A · n
1−jε < nε/3. By the Chernoff bound the probability that this number is

larger than A · n1−jε is negligible and smaller than e−nε/3/27 < n−10, for sufficiently large n. Thus
the number of new followers in phase x ≥m j is not larger than A · n1−jε whp at least 1 − n−10.
This concludes the proof that the number of agents in phase x ≥m i is at most 3A · n1−iε, for all
i = 0, 1, . . . , j whp at least 1− 2jn−10. �

Proof of Lemma 3: We prove the lemma by induction on j. For j = 0 the thesis holds since
the number of agents in phase x ≥m 0 is at most n < 3A · n1−0·ε with probability 1. Assume now,
the thesis is true for j − 1 and we prove it for j. By the inductive assumption after our series of
interactions interactions the number of agents in phase x ≥m i is bounded from above by 3A ·n1−iε,
for all i = 0, 1, . . . , j − 1 whp 1− 2(j − 1)n−10. Two types of agents can enter phase x ≥m j during
these interactions.
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The first type refers to the leaders. A leader can enter phase x ≥m j if it acts as the responder
in the interaction with some initiator in phase y ≥m j − 1. Assume the number of the potential
initiators is at most 3A ·n1−(j−1)ε, which happens according to the inductive hypothesis whp. There
are at most n1−ε/4 interactions ι in the series in which a leader is the responder. The probability pι
that such a leader enters phase x ≥m j during interaction ι is at most 3A ·n−(j−1)ε. We attribute a
binary 0-1 sequence σ of length n1−ε/4 to these interactions. Initially σ is empty and during each
interaction ι we pad σ with one bit as follows. If a new leader in phase x ≥m j occurs, we add
1 to σ. If no new leader in phase x ≥m j is selected, 1 is inserted to σ but only with probability
(3A · n−(j−1)ε − pι)/(1− pι) and 0 otherwise. This way all entries of σ are independently equal to
1 with probability 3A · n−(j−1)ε. If σ has less than n1−ε/4 entries we add lacking entries by coin
tosses resulting in 1’s with probability 3A · n−(j−1)ε. If the number of 1s in σ is smaller or equal to
A · n1−jε, the number of new leaders in phase x ≥m j is not larger than A · n1−jε. The expected
number of 1s in σ is 3

4A · n
1−jε < nε/3. By the Chernoff bound, the probability this number is

larger than A · n1−jε is negligible and smaller than e−nε/3/27 < n−10, for sufficiently large n. Thus
the number of new leaders in phase x ≥m j is not larger than A · n1−jε whp 1− n−10.

The second type of new agents in phase x ≥m j refers to followers. A follower enters phase
x ≥m j, if it is a responder to an initiator in phase y ≥m j. Also here we attribute a 0-1 sequence
ρ of length n/4 to the relevant interactions. Prior to these at most n/4 interactions ρ is empty.
During each interaction ι gets extended ρ by a single bit. Let pι be the probability of getting a new
follower in phase x ≥m j in a subsequent interaction ι. If pι > 3A ·n−jε, then 1 is inserted to ρ with
probability 3A · n−jε and 0 otherwise. If pι ≤ 3A · n−jε and a new follower in phase x ≥m j occurs,
1 is added to ρ. If pι ≤ 3A · n−jε and no new follower in phase x ≥m j appears, then 1 is added to
ρ with probability (3An−jε− pι)/(1− pι) and 0 otherwise. Note that until more than A ·n1−jε new
followers occur in phase x ≥m j, pι ≤ 3A · n1−jε/n = 3A · n−jε. If the number of 1s in ρ is smaller
or equal to A · n1−jε, the number of new followers in phase x ≥m j is not larger than A · n1−jε.
The expected number of 1s in ρ is 3

4A · n
1−jε < nε/3. By the Chernoff bound the probability that

this number is larger than A · n1−jε is negligible and smaller than e−nε/3/27 < n−10, for sufficiently
large n. Thus the number of new followers in phase x ≥m j is not larger than A ·n1−jε whp at least
1−n−10. This concludes the proof that the number of agents in phase x ≥m i is at most 3A ·n1−iε,
for all i = 0, 1, . . . , j whp at least 1− 2jn−10. �

Proof of Lemma 4: In the beginning the number of agents in phase x ≥m i is at most 3A·n1−iε, for
all i = 0, 1, . . . , k and A = 1. To conclude the proof we apply Lemma 2 (or Lemma 3, respectively
to the mode) 1

3k+1 log3 n times for the series of 1
8(3k+1)n log3 n subsequent interactions. For the

ordinary mode we apply Lemma 2 to subsequent series of n/4 interactions getting the thesis.
For the extended mode we can split each series of n interactions into eight subseries. In each

subseries there are at most n/4 interactions and in at most n1−ε interactions leaders are responders.
Note we can apply Lemma 3 such a subseries.

Namely A in these applications is equal 1, 3, 9, . . . , n1/(3k+1)/3 = nε/3/3, and by Lemmas 2,3 the
number of agents in phase x ≥m k after all 1

8(3k+1)n log3 n interactions exceeds nε/3n1−kε = n2/(3k+1)

with probability at most 2(ε/3)k log3 n · n−10. �
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Proof of Lemma 5: The (clock) phase x = k + 1 can be entered only by a leader which acts as
the responder in the interaction with an agent in clock phase x = k. Since the number of agents
in clock phase x = k is at most n2ε/3, the probability of having such interaction in each series of n
interactions is at most nn1−εn2ε/3/n2 = n−ε/3. By the Union bound the probability of having such
interaction during n log3 n

8(3k+1) subsequent interactions is O(n−ε/3 log n). �

Proof of Lemma 6: Assume K = κk. We can divide all phases x = 1, 2, . . .K into κ consecutive
chunks having k phases each. Let ti, for all i = 0, 1, 2, . . . , κ − 1, be the first interaction in which
an agent enters phase i · k + 1, where t0 = 0. Note that just before interaction ti all agents are
in phases x ≤m ik. Thus after each subsequent interaction all agent phases are not larger (≤m)
as if they all started from phase i · k just before interaction ti. By Lemma 5 the probability that
ti − ti−1 < n log3 n

8(3k+1) is smaller than cn−ε/3 log n, for some constant c > 0. The probability, that for

κ′ different values i we have ti − ti−1 ≤ n log3 n
8(3k+1) is by the binomial distribution smaller than

n

(
κ

κ′

)(
cn−ε/3 log3 n

)κ′
.

Now take κ′ > 3η/ε and κ− κ′ > d8(3k + 1). For sufficiently large n we obtain tκ ≤ dn log n with
probability at most n−η. �

Proof of Lemma 7: By Theorem 1 and Lemma 1 there exists a positive constant d′, s.t., one way
epidemic succeeds within d′ · n log n interactions whp. By Lemma 6, for a constant D = max{d, d′}
there is K, s.t., all agents starting in phase i move to phase smaller or equal i + K after Dn log n
interactions whp. Thus t′ > Dn log n ≥ dn log n whp. Since one way epidemic initiated by an agent
in phase i during interaction t succeeds whp, all agents after interaction t′ are in phase x ≥m i whp.
�

Proof of Theorem 4: If the number of candidates is at least 2, the probability that in the relevant
repetition of the external loop at least half of the candidates draw 0 is at least 1/2. Consider a
series of c log n consecutive repetitions and form a binary 0-1 sequence σ of length c log n, in which
the entries correspond to these repetitions. If prior to a repetition only one candidate remains, the
entry in σ is chosen uniformly at random by a single coin toss. If there are more candidates drawing
1s than 0s, then the relevant entry becomes 1. If there is more than one candidate and at least
half of them draw 0, en extra random selection is triggered, s.t., the probability of choosing 0 is
exactly 1/2. Note, that if the sequence has at least log n 1s, then exactly one leader remains. By the
Chernoff bound the probability, that σ contains less than log n 1s is smaller than e−(1−1/c)2c logn/2,
and in turn smaller than n−η, for a constant c large enough. �
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