
NETCS: A New Simulator of Population Protocols
and Network Constructors ?

Dimitrios Amaxilatis1, Marios Logaras1, Othon Michail1, and Paul G. Spirakis1,2

1 Computer Technology Institute & Press “Diophantus” (CTI), Patras, Greece
{amaxilat,logaras,michailo}@cti.gr

2 Department of Computer Science, University of Liverpool, UK
P.Spirakis@liverpool.ac.uk

Abstract Network Constructors are an extension of the standard popu-
lation protocol model in which finite-state agents interact in pairs under
the control of an adversary scheduler. In this work we present NETCS,
a simulator designed to evaluate the performance of various network
constructors and population protocols under different schedulers and
network configurations. Our simulator provides researchers with an intu-
itive user interface and a quick experimentation environment to evaluate
their work. It also harnesses the power of the cloud, as experiments are
executed remotely and scheduled through the web interface provided. To
prove the validity and quality of our simulator we provide an extensive
evaluation of multiple protocols with more than 100000 experiments for
different network sizes and configurations that validate the correctness of
the theoretical analysis of existing protocols and estimate the real values
of the hidden asymptotic coefficients. We also show experimentally (with
more than 40000 experiments) that a probabilistic algorithm is capable
of counting the actual size of the network in bounded time given a unique
leader.

Keywords: distributed network construction, distributed protocol simulation,
network simulation, random schedule, probabilistic counting

1 Introduction

Network Constructors [9] are an extension of the standard population protocol
model [1] in which finite-state agents interact in pairs under the control of an
adversary scheduler. The automata (also called nodes) reside in a well-defined
area without being capable of moving or change the form of the network. One
of the main characteristics of such networks is the limited resources both in
processing power and storage capacity. However, the nodes can cooperate by
? Supported in part by the project “Foundations of Dynamic Distributed Computing
Systems” (FOCUS) which is implemented under the “ARISTEIA” Action of the
Operational Programme “Education and Lifelong Learning” and is co-funded by the
European Union (European Social Fund) and Greek National Resources.

ar
X

iv
:1

50
8.

06
73

1v
1

 [
cs

.D
C

]
 2

7
A

ug
 2

01
5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/131169682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

interacting in pairs. Every such interaction may result in an update of the local
states of the nodes or communication links to form the desired configuration.
Their basis of their behavior is of a dynamic distributed computing system with
applications to the operation of computers inside the world wide web, processes
inside an operating system or mobile phones using technologies like Bluetooth or
Nfc to exchange information in a distributed manner.

In this work, we present an experimentation platform that simulates the
behavior of such automata for any given protocols and under different conditions
or network sizes. One of the main novelties of our work, concerns the ease of
testing and validating assumptions with minimal effort and hassle to help identify
errors and better understand the behavior of protocols in different scenarios
and under different schedulers according to the overall model. To highlight the
advantages of our simulator we present a thorough analysis of existing network
constructor protocols, showcase their behavior and compare their performance
to their theoretically computed time complexities as well as to existing protocols.
This is the first experimental study of network constructors and one of the very
few in the area of population protocols.

1.1 Motivation and Contribution

Our main motivation for this work, was the findings of [7,9], and the performance
of the network formation protocols reported via their theoretical analysis. Our first
goal is a novel simulator capable of processing and executing network constructors
protocols with minimal effort from the side of the researcher. In particular, we
introduce NETCS, a cloud service capable of simulating the performance of network
constructors, store the results of the experiments and compare them to other
protocols that solve the same problem. For example, two researchers working
on the same problem can upload their work to NETCS and quickly see how it
performs in networks of different sizes and under various schedulers, compare
their results and understand how they could improve the performance of their
work or even easily visualize the network to identify problems with their solution.
This is, from our own experience, very convenient during the development of
new protocols. Results from experiments guide us to further develop our work
and improve overall efficiency of the protocols we use. More than that, in one
specific case our experimental evaluation revealed a certain configuration that
seemed highly unlikely in the theoretical analysis that would lead the network to
a non terminating condition. We therefore used simulation traces to adapt the
transition map of our protocol and overcome this problematic configuration.

Moreover, population protocols and network constructors are used to model
real world systems that are not always expressed by completely random or
independent interactions (like the blood flow inside the circulatory system). As
park of our work, we made it possible to extended on different interaction schemes
other than the typical random uniform model in order to investigate how existing
protocols are affected by time or space locality by selecting the nodes that interact
using information about their connectivity, location or interaction history.

NETCS: A New Simulator of Population Protocols and Network Constructors 3

In Section 2 we provide a more formal definition of network constructors and
the main differences from similar models. Section 3 offers insights on operation
of the NETCS Simulator while Section 4 presents results from the experimental
evaluation of various existing protocols. Finally, in Section 5 we conclude and
give further research directions that are opened by our work.

2 Network Constructors Model

The network construction model is strongly inspired by the population proto-
col model [1] where nodes have states that change based on the interactions
performed. The mediated population protocol model [8] introduced states on
the connections between nodes to help solve more complex problems. The main
difference is that in all previous cases the focus was on the computation of func-
tions of some input values and not on network construction. Another important
difference is that network constructors allow the edges to choose between only two
possible states which is not the case in [8], thus simulating an active or inactive
communication link in the final configuration. Fields where population protocols
and network constructors can be applied include Algorithmic Self-Assembly,
Cellular Automata [2], Social Networks, and Network Formation in Nature [3].

A more formal description of network constructors is a set of n processes
that are capable of performing local computation (via pairwise interactions) and
of forming and deleting connections between them. In the most general case, a
connection between two processes can be in one of a finite number of possible
states. For example, state 0 could mean that the connection does not exist while
state i ∈ 1, 2, ..., k, for some finite k, that the connection exists and has strength
i. NETCS focuses in the simplest case, called the on/off case, in which, at any
time, a connection can either exist or not exist. If a connection exists we also
say that it is active and if it does not exist we say that it is inactive. Initially
all connections are inactive and the goal is for the processes, after interacting
and activating/deactivating connections for a while, to end up with a desired
stable network. In the simplest case, the output-network is the one induced by
the active connections (e. g., a line, a ring, a star or a cycle cover) and it is stable
when no connection changes state any more.

The communication model of the system in question is also very minimal,
yet highly extensible. In particular, processes are inhabitants of an adversarial
environment that has total control over the inter-process interactions. This envi-
ronment is modeled by an adversary scheduler that operates in discrete steps
selecting in every step a pair of processes that then interact according to the
common program. This represents very well systems of (not necessarily compu-
tational) entities that interact in pairs whenever two of them come sufficiently
close to each other. When two processes interact, the program takes as input
the states of the interacting processes and the state of their connection and
outputs a new state for each process and a new state for the connection. The
only restriction imposed on the scheduler in order to guarantee the constructive
power of the model is that it is fair, by which we mean the weak requirement

4 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

that, at every step, it assigns to every reachable configuration of the system a
non-zero probability to occur. In other words, a fair scheduler cannot forever
conceal an always reachable configuration of the system.

What renders this model interesting is its ability to achieve complex global
behavior via a set of notably simple, uniform (i. e., with codes that are independent
of the size of the system), homogeneous, and cooperative entities.

3 The Network Constructors Simulator

A lot of work has been devoted in the past years to develop tools that simulate
the behavior of computer networks [10] and wireless sensor networks [5, 6].
Nevertheless, such tools remain mostly domain-specific and extremely hard to
modify in order to prove useful in domains that maintain the same principles
with computer or sensor networks but introduce their own characteristics.

To the best of our knowledge, most attempts to simulate the behavior of
population protocols (the base model) use custom tools developed with minimal
re-usability and limited functionality. Actually, in most papers the analysis of new
protocols remains only theoretical and when experimental results are provided
little insight is given to the tools used to simulate their behavior. As a result,
comparing different results is hard or even impossible as there is no common
basis for the performance or validity of the experiments.

NETCS is a cloud service designed for simulating network constructors protocols
and storing experimental results from the simulations executed. It is split in three
independent components the Experiment Execution Engine, the Experiment
Storage System and the Web UI that provides access to the functionality of
the two other components. All three components are implemented in Java and
are available on Github3 under the BSD 3-Clause License. NETCS is built using
well-established cloud technologies like the SpringBoot framework for the cloud
services and MongoDB for storing the experimental and user data.

The overall experimenting flow is described in Figure 1. Users submit their
protocols in the service and then they can easily configure a set of experiments
by specifying the size of the network, the number of iterations and the schedulers
to simulate. The data provided are forwarded to the Experiment Execution
Engine that takes over the executions of the experiments. While the experiments
are being executed, users can view the progress of each experiment and see a
visualization of the network at the current state of the execution. Also another
view is available where various aspects of the experimental results (interactions,
success rates, deviation from mean results) are presented graphically.

The execution of the experiments is split in three stages. The first stage is
the initialization of the network. Nodes are created and the initial configuration
of the protocol is applied to the nodes and links. The second stage is the
execution of multiple interactions between nodes of the network until the expected
configuration is reached. After the network has reached its final state, the third
3 https://github.com/amaxilat/netcs

NETCS: A New Simulator of Population Protocols and Network Constructors 5

Figure 1. The internal architecture of NETCS.

stage of each experiment is about extracting the experimental results concerning
information like the number of iterations executed or the states of all nodes in
the network. At this point, the data is forwarded to the Experiment Storage
Engine for the data to be saved in the database.

NETCS is capable of simulating network constructors using different schedulers
to perform the interactions in each step of the execution. Thee simplest fair
probabilistic scheduler commonly used is the uniform random scheduler that
selects in every step independently and uniformly at random a pair of processes to
interact from all such pairs. Adding new schedulers is fairly easy as users simply
need to add the code that selects the nodes for each interaction and NETCS will
identify it and include it to the system. As part of this work we present 3 more
schedulers apart from the Random uniform. All of them select the first node (A) of
the interaction uniformly and then the second node (B) using a different strategy.
History selects B with a 75% probability as one of the 50 last nodes A interacted
with and as a random node otherwise (25% probability). ReverseHistory uses a
(25%,75%) probability instead to achive the opposite effect. Finally Connection
selects B from the active links of A with an 80% probability and uniformly
otherwise. Based on the characteristics of each protocol, different schedulers are
expected to affect differently the running times required.

More detailed information about the internal operations of NETCS is available
in the project’s wiki on Github.

4 Experimental Evaluation

In the rest of this section we present the experimental evaluation performed
on existing network constructors and showcase the results of more than 100000
experiments to validate the operation of NETCS as well as innovative results
that extend the knowledge on the behavior of the protocols themselves. In some
cases, we even present variations that perform better than the existing ones.
Section 4.1 presents the evaluation of constructors that generate Lines, Rings,
Stars and Cycle Covers and their respective performance for different population
sizes and schedulers. Section 4.2 evaluates on the probabilistic counting problem

6 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

introduced in [7]. Our results show how the nodes of a set of distributed processes
can estimate the size of the their network using a unique leader or not with an
upper bound on execution time.

4.1 Specific Network Constructions

For each problem considered in this work we here provide formal definitions,
protocols and bounds. We also evaluate their performance under 4 different sched-
ulers (Random, History, ReverseHistory and Connection) to investigate if
and how much they affect their total execution time.

Figure 2. The experimental behavior of Fast (up to 300 nodes) and Faster (up to 600
nodes) GlobalLine protocols.

GlobalLine The goal is for the n distributed processes to construct a spanning
line, i. e., a connected graph in which 2 nodes have degree 1 and n − 2 nodes

NETCS: A New Simulator of Population Protocols and Network Constructors 7

have degree 2. As proven in [9] the expected convergence time of any protocol
that constructs a spanning line is Ω(n2). We here present the evaluation of two
protocols (Fast and Faster GlobalLine). We begin with a short description of the
Protocol 1:

Protocol 1 Fast-GlobalLine

Q = {q0, q1, q2, q
′
2, l, l

′, l′′, f0, f1}
δ:

(q0, q0, 0) → (q1, l, 1)
(l, q0, 0) → (q2, l, 1)

(l, l, 0) → (q′
2, l

′, 1)
(l′, q2, 1) → (l′′, f1, 0)
(l′, q1, 1) → (l′′, f0, 0)
(l′′, q′

2, 1) → (l, q2, 1)
(l, f0, 0) → (q2, l, 1)
(l, f1, 0) → (q′

2, l
′, 1)

The configuration is always a collection of awake (with an l leader) and
sleeping (with an f1 leader) lines and isolated nodes (either awake in q0 or
sleeping in f0). When two disjoint lines interact, the corresponding leaders play
a game in which only one survives. The winner grows by one towards the other
line and the loser sleeps. In particular, when two l leaders interact one of them
becomes l′ and the other becomes q′

2. The l′ waits to interact with its q2 (or
q1) neighbor to convert it to f1 (or f0, resp.) and detach from it, leaving it
the endpoint of a sleeping line (or a sleeping isolated node, resp.). Then the
leader, which is now in l′′, waits to meet again its q′

2 neighbor to convert it to
q2 and update itself to l. This completes the operation of a line growing one
step towards another line and making the other line sleeping. A sleeping line
cannot increase any more and only loses nodes by lines that are still awake by
a similar operation as the one just described. A single leader is guaranteed to
always win and this occurs quite fast. Then the leader makes progress (by one)
in most interactions and every such progress is in turn quite fast. As long as
there are at least two awake lines, eventually another line becomes sleeping, so
eventually a single line remains awake with all other nodes sleeping (either part
of a sleeping line or isolated). The protocol ensures that an awake line can always
grow towards sleeping nodes (either by stealing them from sleeping lines or by
expanding towards isolated nodes), so eventually the unique awake line becomes
spanning.

FasterGlobalLine operates similarly but uses some kind of parallel execution:
As in FastGlobalLine, many lines grow in parallel. When the leaders of two lines
interact, one of them becomes a follower f . The follower starts deactivating
its own line, releasing its nodes, while the l that survived does not change its

8 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

Protocol 2 Faster-GlobalLine
Q = {q0, q1, q2, q, l, f}
δ:

(q0, q0, 0) → (q1, l, 1)
(l, q0, 0) → (q2, l, 1)
(l, q, 0) → (q2, l, 1)
(l, l, 0) → (l, f, 0)

(f, q2, 1) → (q, f, 0)
(f, q1, 1) → (q, q, 0)

behavior. Observe the contrast to the FastGlobalLine protocol: in that protocol
sleeping lines could only lose nodes by interacting with awake leaders, while now
sleeping lines keep releasing their own nodes to make them available to the awake
leaders. Eventually, a single l will remain and all other lines will have an f .

As part of this experiment we focus here on proving that the parallel releasing
of the nodes of the f -lines allows the l leader to be able to rapidly expand towards
free nodes. Also we observe that the description of this protocol is quite simpler
than the description of FastGlobalLine yet its performance proves to be a lot
better than the first one. Figure 2 and Table 1 show the performance of the two
global line constructors. Both, based on the results of [9], have a theoretical time
complexity of O(n3) but as it is clear from our experiments FasterGlobalLine is
clearly much faster due to the speedup we described above.

Table 1. Hidden coefficient of the Fast and Faster GlobalLine protocols

Fast Global Line O(n3) Faster Global Line O(n3)
N Random History RHistory Connection Random RHistory History Connection
100 0.82 0.84 1.10 0.43 0.12 0.16 0.13 0.09
200 0.90 0.92 1.32 0.32 0.10 0.13 0.11 0.05
300 0.90 0.76 1.09 0.32 0.09 0.12 0.10 0.03
400 0.08 0.11 0.09 0.02
500 0.06 0.09 0.08 0.02
600 0.08 0.06 0.06 0.02

GlobalStar The idea behind the protocol [9] is that nodes may play one of the
following two roles during an execution: a center (state c) or a peripheral (state
p). The unique output-stable configuration Cf whose active network is a spanning
star, has one center and n− 1 peripheral nodes, and a uv edge is active iff one of
u, v is the center. Initially all nodes are centers. When two centers interact one of
them remains a center and the other becomes a peripheral. No other interactions
eliminate a center, which implies that not all centers can be eliminated, and once

NETCS: A New Simulator of Population Protocols and Network Constructors 9

a center becomes a peripheral it never becomes a center again. Due to fairness,
eventually all pairs of centers will interact and, as no new centers appear, a single
center will prevail. Thus from some point on there is a single center and n− 1
peripheral nodes leading to the construction of a spanning star.

Figure 3. The experimental behavior of the GlobalStar protocol.

Analysis of the GlobalStar protocol presented in [9] shows that its expected
running time is O(n2 logn) a bound that is confirmed by our experimental results
(over 7000 experiments) presented in Figure 3. The coefficients of the big-o
notation under all used schedulers are available in Table 2 and remain relatively
stable for all of them. GlobalStar targets to connect all nodes of the network to
the leader node so that they are deactivated by him and the protocols finishes
its execution. This makes it necessary for the center node to communicate with
nodes that are across the whole network and results to a deteriorated performance
with the ReverseHistory scheduler while History is slightly worse than Random.
This is also expected as nodes should communicate only a limited number of
times before they reach their final state and communicating with already visited
nodes does not offer any speedup. For similar reasons the Connection scheduler
has also a small negative impact on the performance of the protocol.

CycleCover presented in [9] operates by preserving the following invariant: the
degree of a node in state qi, 0 ≤ i ≤ 2, is i. All interactions (qi, qj , 0) with
i, j ∈ {0, 1} result in (qi+1, qj+1, 1), that is an activation and a corresponding
increase in the recorded degrees. As a result, as long as there are at least two
disconnected nodes with degrees smaller than two, these two nodes can become
connected. It follows that any component with at least three nodes eventually
becomes a cycle and in the final stable configuration there can be at most one
component that is not a cycle: either an isolated node, or two nodes connected by

10 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

Table 2. Hidden coefficient of the CycleCover and GlobalStar protocols

Cycle Cover O(n2) Global Star O(n2 logn)
N Random History RHistory Connection Random History RHistory Connection
100 3.93 29.56 3.26 2.72 7.77 0.98 2.83 1.43
200 0.74 6.09 2.76 2.75 0.85 0.93 2.80 1.51
300 0.71 0.88 4.35 2.73 0.83 0.92 2.76 1.39
400 0.70 0.91 2.98 1.81 0.81 0.91 2.78 1.47
500 0.70 0.82 2.70 3.55 0.81 0.90 2.63 1.42
600 0.67 0.91 2.62 3.32 0.80 0.91 2.52 1.39

an active edge. Its expected running time under the uniform random scheduler is
Θ(n2), and is optimal with regard to time. Every process in VI eventually has a
degree of 2 and the result is a collection of node-disjoint cycles spanning VI .

From out experimental evaluation presented in Figure 4 (a total of 5000
simulations) we confirm that the operation of the CycleCover protocol is limited
by Θ(n2) for the Random and History schedulers but deteriorates when we use
ReverseHistory or Connection. This behavior is expected as the protocol does
not deactivate any connections of the network during its operation and as a result
Connection and ReverseHistory schedulers tend to introduce more interactions
that do not create any change to the network. Table 2 shows the big-o hidden
coeficients for the CycleCover protocol and confirms the adherence to the O(n2)
complexity under the Random and History schedulers.

Figure 4. The experimental behavior of the CycleCover protocol.

GlobalRing was originally presented in [9] but from our experimental evaluation
we were able to identify some cases where the protocol failed to create an actual
ring in the network. Using the feedback from the experiments we were able to

NETCS: A New Simulator of Population Protocols and Network Constructors 11

make the required changes and introduce a new state that helps to overcome the
problem and generate a global ring in all experiments. Furthermore, the current
set of experiments act as a first result towards specifying the time complexity of
the protocol since there has been no theoretical analysis before. GlobalRing is a
clear example about how schedulers like Connection or History can significantly
affect the performance of protocol.

Using the Random scheduler the number of interactions required for the
ring to form is extremely high. Using a scheduler like Connections that favors
interactions between nodes that have communicated in the past significantly
reduces the number of interactions required and leads to lower execution times.
More information on the execution times required by the GlobalRing protocol are
available in Table 3.

Table 3. Execution times in millions of interactions for the GlobalRing protocol

N Random Connection RHistory History
100 4.4 0.32 7.8 4.7
200 381 1.54 20 20
300 1000 5.9

4.2 Probabilistic Counting

In this section we focus on the probabilistic counting problem. We assume a
uniform random scheduler and we want to give protocols that always terminate
but still w.h.p. count n correctly (or a satisfactory upper bound on n). The
following is a protocol with a unique leader that solves w.h.p. the counting
problem and always terminates [7].
Counting-Upper-Bound Protocol: There is initially a unique leader l and
all other nodes are in state q0. Assume that l has two n-counters in its memory,
initially both set to 0. So, the state of l is denoted as l(r0, r1), where r0 is the
value of the first counter and r1 the value of the second counter, 0 ≤ r0, r1 ≤ n.
The rules of the protocol are (l(r0, r1), q0)→ (l(r0 + 1, r1), q1), (l(r0, r1), q1)→
(l(r0, r1 + 1), q2), and (l(r0, r1), ·)→ (halt, ·) if r0 = r1.

Observe that r0 counts the number of q0s in the population while r1 counts
the number of q1s. Initially, there are n− 1 q0s and no q1s. Whenever l interacts
with a q0, r0 increases by 1 and the q0 is converted to q1. Whenever l interacts
with a q1, r1 increases by 1 and the q1 is converted to q2. The process terminates
when r0 = r1 for the first time. We also give to r0 an initial head start of b,
where b can be any desired constant. So, initially we have r0 = b, r1 = 0 and
i = #q0 = n− b− 1, j = #q1 = b (this can be easily achieved by the protocol).
So, we have two competing processes, one counting q0s and the other counting
q1s, the first one begins with an initial head start of b and the game ends when
the second catches up the first. As it was proved in [7], when this occurs the

12 Dimitrios Amaxilatis, Marios Logaras, Othon Michail, and Paul G. Spirakis

leader will almost surely have already counted at least half of the nodes. This is
captured in the following theorem:

Theorem 1 ([7]). The above protocol halts in every execution. Moreover, if
the scheduler is a uniform random one, when this occurs, w.h.p. it holds that
r0 ≥ n/2.

Remark 1. For the Counting-Upper-Bound protocol to terminate, it suffices for
the leader to meet every other node twice. This takes twice the expected time of a
meet everybody (cf. [9]), thus the expected running time of Counting-Upper-Bound
is O(n2 logn) (interactions).

We conducted more than 42000 experiments for various sizes ranging from 10
to 1000 nodes and in 99% of the experiments the nodes terminated after having
calculated over 90% of the total size of the network. Also the experimentally
calculated time to converge is bounded by O(n2 logn) with a hidden coefficient
of 0.70 to 0.74.

Additional experiments we performed, showed that any given network con-
structor, where nodes start from a common state, reaches a configuration where
every state q ∈ Q exists in the network with a constant multiplicity of size
Θ(n) (a fact implied by [4]) and this configuration continuous to exist in the
network for Θ(n) interactions. In more detail, we observed that the lower the
number of states is the longer the configuration described above is detected (15n
when |Q| = 4, 6n when |Q| = 5 and 2n when |Q| = 6). To validate our result we
experimented with over 40 random protocols with |Q| ∈ [4, 6] and network sizes
ranging from 100 to 1000 nodes. These results, provide some first experimental
evidence that it might be impossible for any protocol to estimate the size of any
network without the existence of a unique leader (this is an intriguing theoretical
question left open by [7]).

5 Conclusions and Further Research

Our experience from implementing and evaluating the performance of NETCS
has provided us with a lot of insight on the difficulties of simulating population
protocols and variations. The behavior and requirements of each protocol can be
quite different and maintaining a common tool is challenging yet possible from
our findings. Also the usage of such a tool has proven to be extremely useful
during all stages of a protocol development.

As part of our future work we would like to focus on the ability to execute
simulations in a distributed manner over multiple machines in order to extend
the computational platform. This has proven to be the most difficult part to
improve in a single server environment. Additionally, we would like to continue
extending the basis of the available schedulers and protocols so that we can
provide a rich experimental platform for researchers not only in the basis of
population protocols and network constructors but in highly dynamic distributed
systems and self-assembly systems in general.

NETCS: A New Simulator of Population Protocols and Network Constructors 13

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

2. Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.: Ameba-inspired self-organizing
particle systems. arXiv preprint arXiv:1307.4259 (2013)

3. Doty, D.: Theory of algorithmic self-assembly. Communications of the ACM 55(12),
78–88 (2012)

4. Doty, D.: Timing in chemical reaction networks. In: SODA 2014: Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2014)

5. Kröller, A., Pfisterer, D., Buschmann, C., Fekete, S.P., Fischer, S.: Shawn: A new
approach to simulating wireless sensor networks. arXiv preprint cs/0502003 (2005)

6. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: Accurate and scalable simulation
of entire tinyos applications. In: Proc. of the 1st International Conference on
Embedded Networked Sensor Systems. pp. 126–137. SenSys ’03

7. Michail, O.: Terminating distributed construction of shapes and patterns in a fair
solution of automata. In: Proceedings of the 34th ACM Symposium on Principles of
Distributed Computing (PODC). pp. 37–46. ACM (2015), http://doi.acm.org/
10.1145/2767386.2767402

8. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols.
Theoretical Computer Science 412 (2011)

9. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable
network construction. In: Proc. of the 33rd ACM Symposium on Principles of
Distributed Computing. PODC’14

10. Riley, G., Henderson, T.: The ns-3 network simulator. In: Modeling and Tools for
Network Simulation (2010), http://dx.doi.org/10.1007/978-3-642-12331-3_2

http://doi.acm.org/10.1145/2767386.2767402
http://doi.acm.org/10.1145/2767386.2767402
http://dx.doi.org/10.1007/978-3-642-12331-3_2

