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Abstract. We show that any planar drawing of a forest of three stars
whose vertices are constrained to be at fixed vertex locations may require

Ω(n
2
3 ) edges each having Ω(n

1
3 ) bends in the worst case. The lower

bound holds even when the function that maps vertices to points is not a
bijection but it is defined by a 3-coloring. In contrast, a constant number
of bends per edge can be obtained for 3-colored paths and for 3-colored
caterpillars whose leaves all have the same color. Such results answer to
a long standing open problem.

1 Introduction

A pioneering paper by Pach and Wenger [9] studied the problem of computing a
planar drawing of a graph G with the constraint that the mapping of the vertices
to the points in the plane, that represent the vertices of G, is given as part of
the input. Pach and Wenger proved that, for any given mapping, a planar graph
with n vertices admits a planar drawing such that the curve complexity, i.e. the
number of bends per edge, is O(n). Furthermore, they proved that the bound
on the curve complexity is (almost surely) tight as n tends to infinity when G
has O(n) independent edges. This implies that the curve complexity of a planar
drawing with vertices at fixed locations may be Ω(n) even for structurally very
simple graphs such as paths or matchings, for which the number of independent
edges is linear in n.

These results have motivated the study of a relaxed version of the problem
where the function that associates vertices of the graph to points of the plane
is not a bijection. Namely, an instance of the k-colored point set embeddability
problem receives as input an n-vertex planar graph G such that every vertex is
given one of k distinct colors and a set S of n distinct points, such that, each
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point is given one of the k distinct colors. The number of points of S having a
certain color i is the same as the number of vertices of G having color i. The goal
is to compute a planar drawing of G with curve complexity independent of n
where every vertex of a specific color is represented by a point of the same color.
When k = n the k-colored point set embeddability problem coincides with the
problem of computing a drawing with vertices at fixed locations and thus the
lower bounds by Pach and Wenger hold. Therefore several papers have focused
on small values of k (typically k ≤ 3) to see whether better bounds on the curve
complexity could be achieved in this scenario (see, e.g., [1, 4–7]).

For k = 1, Kaufmann and Wiese [8] proved that every planar graph admits a
1-colored point set embedding onto any point set with curve complexity at most
2. For k = 2, outerplanar graphs always admit a 2-colored point set embedding
with O(1) curve complexity [2]. However, for k ≥ 2, there are 2-connected k-
colored planar graphs for which a k-colored point set embedding may require
Ω(n) bends on Ω(n) edges [1]. This result extends the lower bound of Pach
and Wenger [9] to a much more relaxed set of constraints on the location of
the vertices, but it does so by using 2-connected graphs instead of just (not
necessarily connected) planar graphs. For example, the problem of establishing
tight bounds on the curve complexity of k-colored forests for small values of
k ≥ 3 is a long standing open problem (see, e.g., [1]). We explicitly address this
gap in the literature and consider the k-colored point set embeddability problem
for acyclic graphs and k ≥ 3. Our main results are as follows.

– In Section 3, we prove that a planar drawing of a forest of three stars and
n vertices may require Ω(n

2
3 ) edges with Ω(n

1
3 ) bends each, even if the

mapping of the vertices to the points is defined by using a set of k colors
with k ≥ 3. In contrast, a constant number of bends per edge can always be
achieved if the number of stars is at most two (for any number of colors) or
the number of colors is at most two (for any number of stars).

– Since the above result implies that 3-colored point set embeddings of 3-
colored caterpillars may have a non-constant curve complexity, in Section 4
we study subfamilies of 3-colored caterpillars for which constant curve com-
plexity is possible. We prove that every 3-colored path and every 3-colored
caterpillar whose leaves all have the same color admit a 3-colored point-set
emebdding with constant curve complexity onto any 3-colored point set.

– Finally, still in Section 4, we prove that any 4-colored path π such that the
vertices of colors 0 and 1 precede all vertices of colors 2 and 3 when moving
along π has a 4-colored point set embedding with at most five bends per
edge onto any 4-colored point-set.

Concerning the lower bound, it is worth mentioning that the argument by
Pach and Wenger [9] does not apply to families of graphs where the number
of independent edges is not a function of n. Hence, our lower bound extends
the one by Pach and Wenger about the curve complexity of planar drawings
with vertices at fixed locations also to those graphs for which the number of
independent edges does not grow with n. For reasons of space some proofs are
omitted in this paper and can be found in [3].



2 Preliminaries

Let G = (V,E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V . The integers 0, 1, . . . , k − 1 are called colors and G is called a k-colored
graph. For each vertex v ∈ Vi we denote by col(v) the color i of v.

Let S be a set of distinct points in the plane. For any point p ∈ S, we
denote by x(p) and y(p) the x- and y-coordinates of p, respectively. We denote
by CH(S) the convex hull of S. Throughout the paper we always assume that
the points of S have different x-coordinates (if not we can rotate the plane so
to achieve this condition). A k-coloring of S is a partition {S0, S1, . . . , Sk−1}
of S. A set of points S with a k-coloring is called a k-colored point set. For
each point p ∈ Si, col(p) denotes the color i of p. A k-colored point set S is
compatible with a k-colored graph G if |Vi| = |Si| for every i. If G is planar we
say that G has a topological point-set embedding on S if there exists a planar
drawing of G such that: (i) every vertex v is mapped to a distinct point p of
S with col(p) = col(v), (ii) each edge e of G is drawn as simple Jordan arc.
We say that G has a k-colored point-set embedding on S if there exists a planar
drawing of G such that: (i) every vertex v is mapped to a distinct point p of
S with col(p) = col(v), (ii) each edge e of G is drawn as a polyline λ. A point
shared by any two consecutive segments of λ is called a bend of e. The maximum
number of bends along an edge is the curve complexity of the k-colored point-set
embedding. A k-colored sequence σ is a sequence of (possibly repeated) colors c0,
c1, . . . , cn−1 such that 0 ≤ cj ≤ k−1 (0 ≤ j ≤ n−1). We say that σ is compatible
with a k-colored graph G if color i occurs |Vi| times in σ. Let S be a k-colored
point set. Let p0, . . . , pn−1 be the points of S with x(p0) < . . . < x(pn−1). The
k-colored sequence col(p0), . . . col(pn−1) is called the k-colored sequence induced
by S, and is denoted as seq(S). A set of points S is one-sided convex if they are in
convex position and the two points with minimum and maximum x-coordinate
are consecutive along CH(S). In a k-colored one-sided convex point set, the
sequence of colors encountered clockwise along CH(S), starting from the point
with minimum x-coordinate, coincides with seq(S).

A Hamiltonian cycle of a graph G is a simple cycle that contains all vertices
of G. A graph G that admits a Hamiltonian cycle is said to be Hamiltonian.
A planar graph G is sub-Hamiltonian if either G is Hamiltonian or G can be
augmented with dummy edges (but not with dummy vertices) to a graph aug(G)
that is Hamiltonian and planar. A subdivision of a graph G is a graph obtained
from G by replacing each edge by a path with at least one edge. Internal vertices
on such a path are called division vertices. Every planar graph has a subdivision
that is sub-Hamiltonian. Let G be a planar graph and let sub(G) be a sub-
Hamiltonian subdivision of G. The graph aug(sub(G)) is called a Hamiltonian
augmentation of G and will be denoted as Ham(G). Let C be the Hamiltonian
cycle of a Hamiltonian augmentation Ham(G) of G. Let e be an edge of C,
let P = C \ e be the Hamiltonian path obtained by removing e from C, and let
v0, v1, . . . , vn′−1 be the vertices of G in the order they appear along P. Finally, let
σ = c0, c1, . . . , cn′−1 be a k-colored sequence. P is a k-colored Hamiltonian path
consistent with σ if col(vi) = ci (0 ≤ i ≤ n′ − 1). C is a k-colored Hamiltonian



cycle consistent with σ if there exists an edge e ∈ C such that P = C \ e is
a k-colored Hamiltonian path consistent with σ. Ham(G) is called a k-colored
Hamiltonian augmentation of G consistent with σ. The following theorem has
been proved in [2] (see also [1, 6]).

Theorem 1. [2] Let G be a k-colored planar graph and S be a k-colored point
set consistent with G. If G has a k-colored Hamiltonian augmentation consistent
with seq(S) and at most d division vertices per edge then G admits a k-colored
point-set embedding on S with at most 2d+ 1 bends per edge.

The next lemma can be easily derived from Theorem 1.

Lemma 1. Let G be a k-colored graph, and S be a k-colored one-sided convex
point set compatible with G. If G has a topological k-colored point-set embedding
on S such that each edge crosses CH(S) at most b times, then G admits a
k-colored point-set embedding on S with at most 2b+ 1 bends per edge.

Let G = (V,E) be a planar graph. A topological book embedding of G is a
planar drawing such that all vertices ofG are represented as points of a horizontal
line `, called the spine. Each of the half-planes defined by ` is a page. Each edge
of a topological book embedding is either in the top page, or completely in the
bottom page, or it can be on both pages, in which case it crosses the spine.
Each crossing between an edge and the spine is called a spine crossing. It is
also assumed that in a topological book embedding every edge consists of one or
more circular arcs, such that no two consecutive arcs are in the same page3. Let
G be a k-colored graph and let σ be a k-colored sequence compatible with G. A
topological book embedding of G is consistent with σ if the sequence of vertex
colors along the spine coincides with σ. Let S be a k-colored point set compatible
with a k-colored planar graphG and let seq(S) be the k-colored sequence induced
by S. The following lemma can be proved similarly to Lemma 1.

Lemma 2. If G admits a topological book embedding consistent with seq(S) and
having at most h spine crossing per edge, then G admits a point-set embedding
on S with curve complexity at most 2h+ 1.

3 Point-set Embeddings of Stars

In this section we establish that a 3-colored point-set embedding of a forest of
three stars may require Ω(n

1
3 ) bends along Ω(n

2
3 ) edges by exploiting a previous

result about biconnected outerplanar graphs. We start by recalling the result
in [2]. An alternating point set Sn is a 3-colored one-sided convex point set such
that: (i) Sn has n points for each color 0, 1, and 2, and (ii) when going along the
convex hull CH(Sn) of Sn in clockwise order, the sequence of colors encountered
is 0, 1, 2, 0, 1, 2, . . .. Each set of consecutive points colored 0, 1, 2 is called a triplet.

3 The more general concept of h-page topological book embedding exists, where each
arc can be drawn on one among h different pages. For simplicity we use the term
topological book embedding to mean 2-page topological book embedding.
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Fig. 1: A 3-fan Gn for n = 12.

A 3-fan, denoted as Gn, is a 3-colored out-
erplanar graph with 3n vertices (n ≥ 2) and
defined as follows. Gn consists of a simple cycle
formed by n vertices of color 0, followed (in the
counterclockwise order) by n vertices of color 1,
followed by n vertices of color 2. The vertex of
color i adjacent in the cycle to a vertex of color
i− 1 (indices taken modulo 3) is denoted as vi.
Also, in Gn every vertex colored i is adjacent
to vi (i = 0, 1, 2) and vertices v0, v1, v2 form a

3-cycle of Gn. See, e.g. Fig. 1. The following theorem has been proved in [2].

Theorem 2. [2] Let h be a positive integer and let Gn be a 3-fan for n ≥ 79h3,
and let Sn be an alternating point set compatible with Gn. In every 3-colored
point-set embedding of Gn on Sn there is one edge with more than h bends.

The forest of stars that we use to establish our lower bound is called a 3-sky
and is denoted by Fn. It consists of three stars T0, T1, T2 such that: (i) each Ti
(i = 0, 1, 2) has n vertices (n ≥ 2); (ii) all the vertices of each Ti (i = 0, 1, 2)
have the same color i.

Let Γn be a point-set embedding of Fn on Sn. An uncrossed triplet of Γn

is a triplet pi, pi+1, pi+2 of points of Sn such that, when moving along CH(Sn)
in clockwise order, no edge of Γn crosses CH(Sn) between pi and pi+1 and
between pi+1 and pi+2. A triplet is crossed k times if the total number of times
that CH(Sn) is crossed by some edges between pi and pi+1 and between pi+1

and pi+2 is k. A leaf triplet of Γn is a triplet of Sn whose points represent leaves
of Fn. Analogously, a root triplet is a triplet of Sn whose points represent the
three roots of Fn. The following lemma establishes the first relationship between
the curve complexity of some special types of 3-colored point-set embeddings of
Fn and those of a 3-fan Gn.

Lemma 3. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn. If Γn has
an uncrossed leaf triplet and each edge of Γn crosses CH(Sn) at most b times,
then the 3-fan Gn has a 3-colored topological point-set embedding on Sn such
that each edge crosses CH(Sn) at most 3b+ 2 times.

Proof. We show how to use Γn to construct a topological point-set embedding
of the 3-fan Gn on Sn with at most 3b+ 2 crossings of CH(Sn) per edge.

Let pj , pj+1, pj+2 be an uncrossed leaf triplet. Every point of the triplet
represents a leaf of a different star (because they have different color). Denote
by qi the point of Γn representing the root of Ti (i = 0, 1, 2) and denote by ei
the edge connecting qi to pj+i. The idea is to connect the three points q0, q1, q2
with a 3-cycle that does not cross any existing edges. For each edge ei we draw
two curves that from qi run very close to ei until they reach CH(Sn). The two
curves are drawn on the same side of ei such that they are consecutive in the
circular order of the edges around qi (see Fig. 2(a) for an illustration). These two
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Fig. 2: Insertion of a cycle connecting q0, q1 and q2. (a) Drawing of the curves
following the edge e1. (b), (c), and (d) Connection of the six curves to form a
cycle.

curves do not intersect any existing edges and cross CH(Sn) the same number of
times as ei. The six drawn curves are now suitably connected to realize a cycle C
connecting q0, q1, q2. Depending on which side the various curves reach CH(Sn),
the connections are different. However in all cases we can connect two curves
to form a single edge by crossing CH(Sn) at most two additional times and
without violating planarity (see Fig. 2(b), 2(c), and 2(d)). Thus, we have added
to Γn three edges e′i connecting qi to qi+1 (indices taken modulo 3), each crossing
CH(Sn) at most 2b+2 times. Also, since the two curves that follow an edge ei are
both drawn on the same side of ei, the cycle C does not have any vertices inside.
Notice that, depending on the case with respect to the connection of the curves,
q0, q1, and q2 appear along C either in the clockwise or in the counterclockwise
order. W.l.o.g. we assume that the clockwise order is q0, q1, and q2.

The obtained drawing is not yet a topological point-set embedding of Gn

because the cycle C ′ connecting all the vertices is missing. We first add edges
connecting leaves of the same color. Let e′i = e0, e1, . . . , en−2 = e′i−1 be the
edges incident to qi in the circular order around qi (this is the counterclockwise
order under our assumption that q0, q1, and q2 are located in the clockwise
order along C). We add an edge between the leaf of ej and the leaf of ej+1

(for j = 0, 1, . . . , n− 3) as follows. Starting from the leaf of ej , we draw a curve
following the edge ej until we arrive very close to qi and then we follow ej+1 until
we reach the leaf of ej+1. The added edges do not cross any existing edges and
cross CH(Sn) a number of times equal to the number of times that ej crosses
CH(Sn) plus the number of times that ej+1 crosses CH(Sn), so at most 2b.

It remains to add the edges of C ′ connecting vertices of different colors. There
are three such edges and they connect vertex vi (i = 0, 1, 2) of Gn to a vertex
of color i+ 1 (indices taken modulo 3). We add an edge connecting qi to a leaf
of color i + 1 as follows. Let e′′i+1 be the edge incident to qi+1 that follows e′i
in the clockwise order around qi+1 (this is an edge connecting qi+1 to a leaf of
color i + 1). Starting from qi we draw a curve following the edge e′i until we
arrive very close to qi+1 and then we follow e′′i+1 until we reach the leaf of e′′i+1.
The constructed curve connects qi to a leaf of color i+ 1 and does not cross any
existing edge. It crosses CH(Sn) at most the number of times that e′i+1 crosses



CH(Sn) (that is 2b + 2) plus the number of times that e′′i+1 crosses CH(Sn)
(that is b). Thus the total number of crossing of CH(Sn) is at most 3b+ 2. ut

The next two lemmas explain how to obtain a 3-colored topological book
embedding that satisfies Lemma 3.

Lemma 4. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn with a
root triplet. If Γn has a leaf triplet τ that is crossed c times (c < n) and each
edge crosses CH(Sn) at most b times, then there exists a 3-sky Fn′ which is a
subgraph of Fn and an alternating point set Sn′ which is a subset of Sn such
that: (i) n′ ≥ n − c; (ii) there exists a 3-colored topological point-set embedding
Γn′ of Fn′ on Sn′ such that each edge crosses CH(Sn′) at most b+ 1 times; (iii)
τ is an uncrossed leaf triplet of Γn′ .

Lemma 5. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn. If each
edge of Γn crosses CH(Sn) at most b times, then there exists a 3-sky Fn′ which
is a subgraph of Fn and an alternating point set Sn′ which is a subset of Sn such
that: (i) n′ ≥ n

3 − 3; (ii) there exists a 3-colored topological point-set embedding
Γn′ of Fn′ on Sn′ such that each edge crosses CH(Sn′) at most b+ 2 times; (iii)
Γn′ has a root triplet.

Lemma 6. Let h be a positive integer, Fn be a 3-sky for n = 520710h3, and
Sn be an alternating point set compatible with Fn. In every 3-colored point-set
embedding of Fn on Sn there exist at least h2 edges with more than h bends.

Proof (sketch). Let Fni , i = 1, 2, . . . , h2, be a 3-sky for ni = 520689h3+21h·i and
let Sni

be an alternating point set compatible with Fni
. We prove by induction

on i that in every 3-colored point-set embedding of Fni
on Sni

there exist i edges
with more than h bends. Notice that for i = h2, we have ni = n.

Base case: i = 1: We have to prove that in any 3-colored point-set em-
bedding of Fn1 on Sn1 with n1 = 520689h3 + 21h, there exists one edge with
more than h bends. Suppose as a contradiction that there exists a 3-colored
point-set embedding Γn1

of Fn1
on Sn1

with curve complexity h. Γn1
is also

a 3-colored topological point-set embedding of Fn1
on Sn1

such that each edge
crosses CH(Sn1

) at most 2h times (each edge consists of at most h+1 segments).
By Lemma 5 there exists a 3-colored point-set embedding Γn′ of a 3-sky Fn′ on
an alternating point set Sn′ such that: (i) n′ ≥ n1

3 ; (ii) each edge of Γn′ crosses
CH(Sn′) at most 2h+ 2 times; (iii) Γn′ has a root triplet.

Since each edge of Γn′ crosses CH(Sn′) at most 2h + 2 times and there are
3(n′ − 1) ≥ n1 − 3 edges in total, there are at most (2h+ 2)(n1 − 3) crossings of
CH(Sn1

) in total. The number of leaf triplets in Γn′ is n′−1 ≥ n1

3 −1. It follows

that there is at least one leaf triplet τ crossed at most 3(2h+2)(n1−3)
(n1−3) = 6h+6 ≤ 7h

times. By Lemma 4 there exists a 3-colored point-set embedding Γn′′ of a 3-sky
Fn′′ on an alternating point set Sn′′ such that: (i) n′′ ≥ n′−7h; (ii) each edge of
Γn′′ crosses Sn′′ at most 2h+3 times; (iii) τ is uncrossed. By Lemma 3, the 3-fan



Gn′′ has a 3-colored topological point-set embedding on Sn′′ such that each edge
crosses CH(Sn′′) at most 6h + 11 times and by Lemma 1 a 3-colored point set
embedding with curve complexity at most 12h + 23. On the other hand, since

n1 = 520689h3+21h, we have that n′′ ≥ n′−7h ≥ n1

3 −7h = 520689h3+21h
3 −7h =

520689
3 h3 ≥ 520689

3 h3 = 79(13h)3 and by Theorem 2, in every 3-colored point-set
embedding of Gn′′ on Sn′′ at least one edge that has more than 13h bends – a
contradiction.

Inductive step: i > 1. We have to prove that in any 3-colored point-set
embedding of Fni

on Sni
with ni = 520689h3 + 21h · i, there exist i edges with

more than h bends.
We first prove that there exists at least one edge with more than h bends.

Suppose as a contradiction that there exists a 3-colored point-set embedding Γni

of Fni
on Sni

with curve complexity h. With the same reasoning as in the base
case, there would exist a 3-colored point set embedding with curve complexity at
most 12h+23 of a 3-fan Gn′′ , with n′′ ≥ ni

3 −7h. Since ni = 520689h3+21h·i, we

have that n′′ ≥ ni

3 −7h = 520689h3+21h·i
3 −7h = 520689

3 h3+7h(i−1) ≥ 520689
3 h3 =

79(13h)3 and by Theorem 2, in every 3-colored point-set embedding of Gn′′ on
Sn′′ at least one edge has more than 13h bends – again a contradiction.

This proves that there is at least one edge e crossed more than h times. We
now remove this edge and the whole triplet that contains the point representing
the leaf of e. We then arbitrarily remove 21h− 1 triplets. The resulting drawing
is a 3-colored point-set embedding Γn′′′ of Fn′′′ on Sn′′′ for n′′′ = ni−1. By
induction, it contains i− 1 edges each having more than h bends. It follows that
Γni has i edges each having more than h bends. Since for i = h2 we have ni = n,
the statement follows. ut

Theorem 3. For sufficiently large n, there exists a 3-colored forest Fn consisting
of three monochromatic stars with n vertices and a 3-colored point set Sn in
convex position compatible with Fn such that any 3-colored point-set embedding
of Fn on Sn has Ω(n

2
3 ) edges having Ω(n

1
3 ) bends.

We conclude this section with some results deriving from Theorem 3 and/or
related to it. Firstly, Theorem 3 extends the result of Theorem 2 since it implies
that a 3-colored point set embedding of Gn may require Ω(n

2
3 ) edges with Ω(n

1
3 )

bends each. Moreover, the result of Theorem 3 implies an analogous result for a
k-colored forest of at least three stars for every k ≥ 3. In particular, when k = n
we have the following result that extends the one by Pach and Wenger [9].

Corollary 1. Let F be a forest of three n-vertex stars. Every planar drawing of
F with vertices at fixed vertex locations has Ω(n

2
3 ) edges with Ω(n

1
3 ) bends each.

One may wonder whether the lower bound of Theorem 3 also holds when
the number of colors or the number of stars is less than three. However, it is
immediate to see that this is not the case, i.e., the following theorem holds.

Theorem 4. Let F be a k-colored forest of h stars and S be a set of points
compatible with F . If max{k, h} = 2 then F has a k-colored point-set embedding
on S with curve complexity at most 2.



Since a caterpillar can be regarded as a set of stars whose roots are con-
nected in a path, the lower bound of Theorem 3 also holds for caterpillars. This
answers an open problem in [1] about the curve complexity of k-colored point-set
embeddings of trees for k ≥ 3. Note that O(1) curve complexity for 2-colored
outerplanar graphs has been proved in [2].

Corollary 2. For sufficiently large n, a 3-colored point-set embedding of a 3-
colored caterpillar may require Ω(n

2
3 ) edges having Ω(n

1
3 ) bends.

4 Point-set Embeddings of Paths and Caterpillars

In the light of Corollary 2, one may ask whether there exist subclasses of 3-
colored caterpillars for which constant curve complexity can be guaranteed. In
this section we first prove that this is the case for 3-colored paths and then we
extend the result to 3-colored caterpillars whose leaves all have the same color.

Based on Lemma 2, we prove that a 3-colored path P has a topological
book embedding consistent with seq(S) and having a constant number of spine
crossings. Namely, we first remove the vertices and points of one color from
P and S, obtaining a 2-colored path P ′ and a compatible 2-colored point set
S′. Next, we construct a topological book embedding γP ′ of P ′ consistent with
seq(S′) with at most two spine crossings per edge and with suitable properties.
Then we use such properties to reinsert the third color and obtain a topological
book embedding of P consistent with seq(S).

P ′ and σ′ = seq(S′) can be regarded as two binary strings of the same size
where one color is represented by bit 0 and the other one by bit 1. P ′ and σ′

are balanced if the number of 0’s (1’s, resp.) in P ′ equals the number of 0’s (1’s,
resp.) in σ′. P ′ and σ′ are a minimally balanced pair if there does not exist a
prefix of P ′ and a corresponding prefix of σ′ that are balanced.

Lemma 7. Let P and σ be a minimally balanced pair of length k > 1. Let bj(P )
denote the j-th bit of P and bj(σ) denote the j-th bit of σ. Then b1(P ) 6= bk(P ),
bk(P ) = b1(σ), and b1(P ) = bk(σ).

Let Γ be a topological book embedding, ` be the spine of Γ , and p be a point
of ` (possibly representing a vertex). We say that p is visible from above (below)
if the vertical ray with origin at p and lying in the top (bottom) page does not
intersect any edge of Γ . We say that the segment pq is visible from above (below)
if each point r in the segment is visible from above (below). Let u and v be two
vertices of Γ that are consecutive along the spine `, we say that segment uv is
accessible if it contains a segment that is visible from below. A vertex v of Γ
is hook visible if there exists a segment pq of the spine such that pq is visible
from below and for any point r of pq we can add an edge in the top page of Γ
connecting v with r without crossing any other edges of Γ (see Fig. 3(a)); pq is
the access interval for vertex v. If the access interval is to the right (left) of v
we say that v is hook visible from the right (left).
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Fig. 3: (a) Illustration of the hook visibility property. The bold segment is the
access interval. (b)-(d) Proof of Lemma 8: (b) Base cas; (c) Case 1; (d) Case 2.

Lemma 8. Let P be a 2-colored path and σ be a 2-colored sequence compatible
with P . Path P admits a topological book embedding γ consistent with σ and
with the following properties: (a) Every edge of γ crosses the spine at least once
and at most twice. (b) For any two vertices u and v that are consecutive along
the spine ` of γ, segment uv is accessible from below. (c) Every spine crossing
is visible from below. (d) The first vertex v1 of P is visible from above; the last
vertex vn of P is hook visible from the right; to the right of its access interval
there is only one vertex and no spine crossing.

Proof. We prove the statement by induction on the length n of P (and of σ). If
n = 1 the statement trivially holds. If n = 2 we draw the unique edge of P with
one spine crossing immediately to the left of the leftmost vertex in the drawing
(see Fig. 3(b)). Also in this case the statement holds. Suppose that n > 2 and
that the statement holds for every k < n. We distinguish between two cases.

Case 1: P and σ are a minimally balanced pair. By Lemma 7 the first
vertex of P has the same color as the last element of σ, the last element of P has
the same color as the first element of σ and these two colors are different. This
means that by removing the first and the last elements from both P and σ, we
obtain a new 2-colored path P ′ of length n− 2 and a new 2-colored sequence σ′

compatible with P ′. By induction, P ′ admits a topological book embedding γ′

consistent with σ′ and satisfying properties (a)–(d). To create a topological book
embedding of P consistent with σ, we add a point p1 before all the points of γ′,
whose color is the same as the last vertex vn of P , and a point p2 after all points
of γ′, whose color is the same as the first vertex v1 of P . Vertex v1 is mapped to
p2 and vertex vn is mapped to p1. We connect v1 to the first vertex u1 of P ′ with
an edge incident to p2 from above, crossing the spine once immediately before
p1 and once immediately after p1 and arriving to u1 from above (by property
(d), u1 is visible from above). We then connect the last vertex un′ of P ′ to vn.
Since un′ is hook visible by property (d), we connect it to vn with an edge that
starting from un′ reaches the access interval of un′ , crosses the spine between the
last vertex of γ′ and p2 and reaches p1 from above. As shown in Fig. 3(c) the two
edges (v1, u1) and (un′ , vn) can be added without creating any crossing. Property
(a) holds by construction. About properties (b) and (c), we added two arcs in the
bottom page. The first one connects a point immediately before vn and a point
immediately after it, so the segment of the spine between vn and its following
vertex is accessible from below; also, the addition of this arc does not change



the accessibility of the spine crossing of γ′. The second arc added in the bottom
page connects a point q in the access interval of un′ with a point immediately
after u1; by property (d) of γ′ there is no vertex or spine crossings between q
and u1. Thus the segments connecting u1 to its preceding and to its following
vertices are visible from below and property (b) holds; furthermore the addition
of this arc does not change the accessibility to existing spine crossings. Since the
new created spine crossings are visible from below, property (c) also holds. It is
immediate to see that also property (d) holds; see for example Fig. 3(c).

Case 2: P and σ are not a minimally balanced pair. In this case there
exists a prefix (i.e. a subpath) P ′ of P and a corresponding prefix σ′ of σ that
are balanced. P ′ is 2-colored path and σ′ is a 2-colored sequence compatible
with P ′ and their length is less than n. By induction, P ′ admits a topological
book embedding γ′ consistent with σ′ and statisfying properties (a)–(d). On
the other hand, P ′′ = P \ P ′ is also a 2-colored path and σ′′ = σ \ σ′ is a 2-
colored sequence consistent with P ′′. Thus, P ′′ also admits a topological book
embedding γ′′ consistent with σ′′ and statisfying properties (a)–(d). Since the
last vertex un of P ′ is hook visible in γ′ and the first vertex w1 of P ′′ is visible
from above in γ′′, the two vertices can be connected with an edge that crosses
the spine twice (see Fig. 3(d)), thus creating a topological book embedding γ
of P consistent with σ. Property (a) holds by construction. The only arc added
in the bottom page connects a point q in the access interval of un and a point
q′ immediately after the first vertex u1 of P ′. By property (d) of γ′ there is no
vertex or spine crossing between q and u1 and between u1 and q′, thus properties
(b) and (c) hold for γ. Property (d) holds because it holds for γ′ and γ′′. ut

Lemma 9. A 3-colored path admits a topological book embedding with at most
two spine crossings per edge consistent with any compatible 3-colored sequence.

Proof (sketch). Let c2 be a color distinct from the colors of the end-vertices of
P . Let v1, v2, . . . , vk be a maximal subpath of P colored c2. Let u1 and u2 be
the vertices along P before v1 and after vk, respectively. We replace the subpath
u1, v1, v2, . . . , vk, u2 with an edge (u1, u2). We do the same for every maximal
subpath colored c2. Let P ′ be the resulting 2-colored path and σ′ be the 2-colored
sequence obtained from σ by removing all elements of color c2.

By Lemma 8, P ′ admits a topological book embedding γ′ consistent with σ′

that satisfies properties (a), (b), (c) and (d). We add to γ′ a set Q of points
colored c2 to represent the removed vertices that will be added back. These
points must be placed so that the sequence of colors along the spine coincides
with σ. By property (b) of γ′ all these points can be placed so that they are
accessible from below. We now have to replace some edges of P ′ with paths of
vertices colored c2. Let (u1, u2) be an edge that has to be replaced by a path
u1, v1, v2, . . . , vk, u2. For each vertex vi to be added (i = 1, 2, . . . , k) we add an
image point to the drawing. The image points are added as follows. By property
(a), the edge (u1, u2) crosess the spine at least once. Let χ be the point where
(u1, u2) crosses the spine for the first time when going from u1 to u2. By property
(c) χ is visible from below. This means there is a segment s of ` with χ as an



endpoint that is visibile from below. We place k−1 image points p1, p2, . . . , pk−1
inside this segment, while χ is the k-th image point pk (it is the leftmost if s
is to the left of χ, while it is the rightmost if s is to the right of χ). The first
arc of the edge (u1, u2) is replaced by an arc connecting u1 to p1. Each image
point pi is connected to the pi+1 (i = 1, 2, k − 1) by means of an arc in the top
page. Finally, the last image point pk is already connected to u2 by means of the
remaining part of the original edge (u1, u2). Notice that the edge (u1, p1) does
not cross the spine, and the same is true for any edge (pi, pi+1), while the edge
(pk, u2) crosses the spine at most once (the original edge had at most two spine
crossing one of which was at χ = pk). We have replaced the edge (u1, u2) with a
path π = 〈u1, p1, p2, . . . , pk, u2〉 with k+1 edges, as needed. However, the points
representing the intermediate vertices of this path are not the points of the set
Q. The idea then is to “connect” the image points to the points of Q. To this
aim, we add matching edges in the bottom page between the image points and
the points of Q. Since both the points of Q and the image points are visible from
below, these matching edges do not cross any other existing edge. Moreover, by
using a simple brackets matching algorithm, we can add the matching edges so
that they do not cross each other. Finally the matching edges can be used to
create the actual path that represent u1, v1, v2, . . . , vk, u2. ut

The following theorem is a consequence of Lemmas 2 and 9.

Theorem 5. Every 3-colored path admits a 3-colored point-set embedding with
curve complexity at most 5 on any compatible 3-colored point set.

Theorem 5 can be extended to a subclass of 3-colored caterpillars.

Theorem 6. Every 3-colored caterpillar with monochromatic leaves admits a
3-colored point-set embedding with curve complexity at most 5 on any compatible
3-colored point set.

The above results motivate the study of 4-colored graphs, in particular a
natural question is whether 4-colored paths admit point-set embedding on any
set of points with constant curve complexity.

Theorem 7. Let P be a 4-colored path with n vertices and let S be a 4-colored
point set compatible with P . If the first h ≥ 2 vertices along P only have two
colors and the remaining n − h only have the other two colors, then P has a
4-colored point-set embedding on S with curve complexity at most 5.

5 Open Problems

Motivated by the results of this paper we suggest the following open problems:
(i) Investigate whether the lower bound of Theorem 3 is tight. We recall that
an upper bound of O(n) holds for all n-colored planar graphs [9]. (ii) Study
whether constant curve complexity can always by guaranteed for 4-colored paths.
(iii) Characterize the 3-colored caterpillars that admit a 3-colored point-set em-
bedding with constant curve complexity on any given set of points.
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