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Abstract—Cognitive Radio (CR) systems utilize spectrum sens-
ing to decide transmission time in an opportunistic manner.
Spectrum sensing can also be used not only to determine the
instantaneous on/off state of the channel but also to monitor
the statistics of primary user to gain information on occupancy
pattern. This knowledge can be exploited in many ways to
improve CR systems. In this paper, we propose an analytical
model to link the sensing period with the observed spectrum
occupancy. Moreover, the effect of spectrum sensing periods on
the estimated primary activity pattern is analysed. Simulation
results show that the proposed model captures with reasonable
accuracy the spectrum occupancy observed at the CR.
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I. INTRODUCTION

Dynamic spectrum access (DSA)/Cognitive Radio (CR)

networks aim to solve the spectrum scarcity problem by

increasing radio spectrum utilization. This can be achieved

by allowing secondary (unlicensed) users (SUs) of DSA/CR

to access the spectrum of primary (licensed) users (PUs) in an

opportunistic and non-interfering manner during PU idle times

(spectrum holes) [1, 2]. In essence, a CR is a smart device that

is capable of changing its transmission parameters according

to the surrounding environment. A detailed overview of CR

systems can be found in [3]. Owing to the opportunistic nature

of operation for DSA/CR, the SU behaviour is affected by the

PU transmission pattern. It is important from theoretical [4]

and practical points of view to have accurate knowledge of the

PU activity (busy and idle) periods distribution. This knowl-

edge can be exploited to access the spectrum more effectively

by selecting the most appropriate channel for transmission [5]

and enhancing the forecasting of PU occupancy patterns to

minimize the interference [6].

DSA/CR users utilize spectrum sensing decisions to obtain

information on PU channel activity. The PU channel is sensed

periodically by DSA/CR users to decide the channel state

(busy or idle) at every sensing event based on a signal

detection algorithm [7]. These spectrum decisions can be used

to estimate the durations of the idle and busy periods. Unfor-

tunately, the estimation of PU activity periods and statistics

by means of spectrum sensing (periodic channel observations)

suffers from practical limitations. These limitations reduce the

statistical estimation accuracy of PU parameters at DSA/CR

users. The interest and focus of this work is on analysing

the impact of spectrum sensing period on the accuracy of

the estimated PU activity statistics (in particular, in the distri-

bution of PU busy/idle periods). Despite being an elemental

problem of crucial importance for CR systems, this has never

been considered or analysed before in the existing literature.

The impact of sensing errors (i.e., false alarms and missed

detections) is out of the scope of this work and therefore

a high signal-to-noise ratio (SNR) scenario with no sensing

errors is here considered. The mathematical analysis of the

low SNR scenario with sensing errors requires a significantly

more complex study and will be addressed in future work.

The contribution of this work is threefold:

1) Analytical expressions are derived for both the probability

density function (pdf) and the cumulative distribution

function (cdf) observed at the SU taking into account

the effect of the spectrum sensing period.

2) Analytical expressions are derived for the maximum error

with different distributions taking into account the effect

of the spectrum sensing period.

3) The effect of the spectrum sensing period on the distri-

bution observed at the SU is studied.

The remainder of this paper is organised as follows. First,

Section II describes the system model and provides a formal

description of the problem of estimating the PU activity statis-

tics based on spectrum sensing. Section III provides closed-

form expressions for the pdf and cdf of the periods observed at

the SU as a function of the original distribution at the PU and

the sensing period employed by the SU. Section IV provides a

closed form expression for the maximum observed error as a

function of sensing period and distribution parameters. Section

V validates the proposed pdf/cdf models with simulations

and analyses thoroughly the effects of the sensing period and

distribution parameters on the distribution estimation. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, an SU is considered to detect a single PU

activity signal using spectrum sensing. The results of sensing

decisions are introduced as a binary alternating state: busy

when the PU signal is present and idle when the PU signal is

absent. Based on the sequence of busy/idle spectrum sensing

decisions, it is possible to estimate the durations of the idle978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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Fig. 1. Considered model. Ts, T1, ̂T1 represent the sensing duration, original
busy period duration and estimated busy period duration, respectively. Tx

e and
T y
e are the errors in period estimation.

(T0) and busy (T1) periods as shown in Fig. 1. The same model

was considered in [8].

The average busy period is E {T1} and the average idle time

is E {T0}. The duty cycle (Ψ) can be estimated as:

Ψ =
E {T1}

E {T0}+ E {T1} (1)

As discussed in Section I, we assume a high SNR scenario

with no sensing errors so that the only degrading effect

considered in this study is the impact of the finite sensing

period Ts, which is the aspect of interest in this work. The

PU activity periods Ti (i ∈ {0, 1}, i = 0 for idle periods and

i = 1 for busy periods) can be sensed accurately in case the

channel is sensed exactly at the points of PU state change.

In practice the SU is de-synchronised with the PU channel

activity and the PU channel is sensed at arbitrary time instants

every Ts time units (t.u.). As a result, the estimated periods

T̂i depend not only on the original periods Ti but also on the

employed sensing period Ts. The main objective of this work

is to explore the relation between the original periods Ti and

the estimated periods T̂i as a function of the sensing period

Ts. To this end, closed-form expressions are developed for the

pdf/cdf of T̂i as a function of the pdf/cdf of Ti and Ts.

III. DISTRIBUTION OF THE ESTIMATED PERIODS

The estimated periods T̂i can be expressed as a function

of the original periods Ti as T̂i = Ti + Te, where Te is the

error component, which according to the model of Fig. 1 is

given by Te = T y
e − T x

e . As it can be appreciated from Fig.

1, both T x
e and T y

e can take any value between 0 and Ts. A

ressonable and intuitive assumption is that both of them follow

a uniform distribution (i.e., T x
e and T y

e ∼ U(0, Ts)). This

assumption can be verified from Fig. 2, which was obtained

by simulating the sensing of a sufficiently high number of

exponentially distributed periods Ti using a sensing period

Ts = 5 t.u., recording the error components T x
e and T y

e , and

computing their normalized histograms (i.e., pdfs). As it can

be observed, the assumption of uniform distribution for the

T x
e and T y

e error components is correct.

Assuming T x
e and T y

e are independent, the pdf of the

combined error Te (which is the sum of T y
e and −T x

e )

can be obtained as the convolution of the distributions of

T y
e ∼ U(0, Ts) and −T x

e ∼ U(−Ts, 0) [9], which leads

(a) (b)

Fig. 2. The pdf of the error components: (a) fTx
e
(t), (b) fTy

e
(t).

Fig. 3. The pdf of the combined error component fTe (t).

to a symmetric triangular distribution with width 2Ts, Te ∼
Δ(−Ts, Ts). The pdf for the triangular distribution of Te is:

fTe
(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 t < − Ts

Ts+t
T 2
s

−Ts ≤ t ≤ 0
Ts−t
T 2
s

0 ≤ t ≤ Ts

0 t > Ts

, (2)

This model can be verified from simulation results as shown

in Fig. 3.

The PU state holding times (T0 and T1) are random vari-

ables assumed to be independent and exponentially distributed

[10]. The exponential distribution is the most common model

used to describe the periods of the on/off states in the

literature [11, 12] even though it is proven not to be the

most accurate since other distributions provide better fit for

real scenarios such as the generalized Pareto, Gamma or even

more complicated distributions [13]. We use the exponential

distribution because it is a special case of the generalized

Pareto distribution with a simpler mathematical form. The pdf

and cdf for the exponential distribution are given as [14]:

fTi(t) =

{
0 t < μi

λie
−λi(t−μi) t ≥ μi

(3)



f
̂Ti
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < μi − Ts

Ts + t− μi

T 2
s

− 1

λiT 2
s

[
1− 1

λi
fTi

(t+ Ts)

]
μi − Ts ≤ t < μi

Ts − t+ μi

T 2
s

+
1

λiT 2
s

[
1 +

1

λi
fTi

(t+ Ts)− 2

λi
fTi

(t)

]
μi ≤ t ≤ μi + Ts

1

(λiTs)2

[
fTi

(t+ Ts)− 2fTi
(t) + fTi

(t− Ts)

]
t > μi + Ts

(6)

F
̂Ti
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < μi − Ts

t2 − (μi − Ts)
2

2T 2
s

−
[
1− λi(Ts − μi)

]
(t+ Ts − μi)

λiT 2
s

+
1

(λiTs)2
FTi(t+ Ts) μi − Ts ≤ t < μi

μ2
i − t2

2T 2
s

− 2− λiTs

2λiTs
+

[
1 + λi(Ts + μi)

]
(t− μi)

λiT 2
s

+
1

(λiTs)2

[
FTi

(t+ Ts)− 2FTi
(t)

]
μi ≤ t ≤ μi + Ts

1 +
1

(λiTs)2

[
FTi

(t+ Ts)− 2FTi
(t) + FTi

(t− Ts)

]
t > μi + Ts

(8)

FTi
(t) =

{
0 t < μi

1− e−λi(t−μi) t ≥ μi

(4)

where λi is the distribution scale parameter and μi is the

distribution location parameter (also the smallest value for the

PU activity period).

Since T̂i = Ti+Te, the pdf of the estimated periods can be

obtained as [9]:

f
̂Ti
(t) = fTi

(t) ∗ fTe
(t) =

∫ ∞

−∞
fTi

(τ) · fTe
(t− τ)dτ (5)

where fTi(t) and fTe(t) are given by (3) and (2) respectively.

The operator ∗ refers to the convolution operation. The result-

ing expression for the pdf f
̂Ti
(t) is shown in (6) while the cdf

F
̂Ti
(t) can be obtained through the direct integration of f

̂Ti
(t)

as shown below:

F
̂Ti
(t) =

∫ t

−∞
f
̂Ti
(τ)dτ (7)

The final cdf expression can be seen in (8).

Note that the distributions in (6) and (8) have a continuous

domain, while the actual distributions of the periods observed

at a SU are discrete since the periods estimated from spectrum

sensing as shown in Fig. 1 are integer multiples of the

employed sensing period (i.e., T̂i = kTs, k = 1, 2, 3 . . .). Such

discrete distribution can be obtained by evaluating (6) and (8)

at the right points of each interval/bin of the pdf and cdf,

respectively, as:

g
̂Ti
(k) = f

̂Ti
(kTs) (9)

G
̂Ti
(k) = F

̂Ti
((k + 1/2)Ts) (10)

The set of obtained expressions provide closed-form re-

lations between the distributions of the original periods Ti

resulting from the PU transmission (and its parameters μi, λi),

the distribution of the estimated periods T̂i as observed by the

SU based on spectrum sensing decisions, and the employed

sensing period Ts. These mathematical results are useful to

evaluate the impact of the employed sensing period on the

accuracy of the distributions estimated by the SU and can

find many practical applications such as mathematical analysis,

simulation or system design (e.g., determine the maximum

value of Ts required for a given level of estimation accuracy).

IV. ERROR OF THE ESTIMATED DISTRIBUTION

To better understand the sensing period effect on

the observed distribution cdf, we utilize the well-known

Kolmogorov-Smirnov (KS) distance. This is the most com-

monly used metric to quantify the error between two distribu-

tions. The KS distance is defined as the largest absolute error

between two continuous cdfs and given as follows [15]:

DKS = sup
t

∣∣∣FTi(t)− F
̂Ti
(t)

∣∣∣ (11)

To find the value of t that returns the maximum distance

(DKS), the partial derivative of the absolute difference in the

KS distance is taken and equated to zero as follows:

∂[FTi
(t)− F

̂Ti
(t)]

∂t
= 0 (12)

The largest difference occurs at t = μi. Since FTi
(μi) is

zero at t = μi, the final expression of KS distance will be:

DKS = F
̂Ti
(μi)

=
1

2
− 1

λiTs
+

1− e−λiTs

(λiTs)2
(13)

Expression (13) provides an easy and accurate tool to math-

ematically calculate the KS distance between the estimated and

original cdfs as a function of the employed sensing period.

Moreover, expression (13) can be used to calculate the Ts

required for a given target estimation error.



Fig. 4. Validation of the pdf of the estimated periods (λ1 = 0.15, μ1 = 10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)
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Fig. 5. Validation of the cdf of the estimated periods (λ1 = 0.15, μ1 = 10 t.u,E {T1} = 16.66 t.u. and Ψ = 0.5.)

V. NUMERICAL RESULTS

In this section, first we will assess the accuracy of the

proposed model for both pdf and cdf, then the effect of

the sensing period on the distribution estimation. For all

the considered cases the sensing period is lower than the

minimum PU activity time (Ts < μi). This is required to

ensure that no activity periods are missed in the sensing

process (the shortest detectable period is Ts), which would

otherwise lead to significant estimation errors. Notice that this

consideration implicitly assumes that the minimum PU activity

time μi is known to the SU so that the value of Ts can be

configured not to exceed μi. This assumption is realistic since

the value of μi is available for some well-known standardised

radio technologies (e.g., the time-slot duration of GSM or

LTE) or can be obtained with other methods such as blind

recognition/estimation [16] or from PU beacon signals [17].
Fig. 4 shows the busy periods pdfs f

̂Ti
(t) obtained from

simulation and analytical expression versus the original dis-

tribution fTi
(t) for multiple values of sensing periods (Ts

= 1, 3 and 5 t.u.). The discrete expression g
̂Ti
(k) has not

been included for clarity but its corresponding values can be

easily obtained as the values of the analytical expression f
̂Ti
(t)

at kTs. It can be appreciated that the closed form analysis

provides an excellent fit with the simulation results for all

the considered scenarios, which verifies the validity of of the

mathematical expression obtained for the pdf. Moreover, Fig. 4

shows the effect of sensing period Ts on the discrete estimated

pdf g
̂Ti
(k). High sensing periods give higher estimation errors

and vice versa.

Fig. 5 shows the busy periods cdfs obtained from simulation

G
̂Ti
(t) (discrete) and analytical expression F

̂Ti
(t) versus the

original distribution FTi
(t) for multiple values of sensing

periods (Ts = 1, 3 and 5 t.u.). The closed form analysis

provides an excellent fit with the simulation results for all the

considered scenarios, which verifies the validity of the math-

ematical expression obtained for the cdf. The stair shape of

the observed cdf G
̂Ti
(t) represents the effect of the spectrum

sensing operation and the resulting discrete observed periods.

Fig. 6 shows the KS distance for the simulated and analyt-

ical cdf with respect to the original distribution. The x-axis

represents the duration of sensing period in time units and

the y-axis represents the KS distance. Since the sensed cdf

is a discrete distribution G
̂Ti
(t), it is to be transformed to

a continuous form for comparison purposes. To this end, we

utilize the cdf frequency polygons [18], where the mid points

of the discrete cdf are joined together and extended to include

the zero frequency cases from left of the normalised histogram

and hence obtain the continuous form of the cdf. As it can be

appreciated from Fig. 6, the analytical expression (13) gives

an excellent prediction of the estimation error. High Ts values

will result in larger errors in the estimation of the PU activity

pattern, however the resulting estimation error can be reduced

by decreasing Ts.

Fig. 7 analyses the impact of different λi values (λi =
0.15, 0.25, 0.35 and 0.45) on the KS distance based on (13).

Fig. 7 implies that not only the value of Ts has an impact

on the estimated error (KS distance) but also the value of

λi (distribution scale). The KS distance increases with higher
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Fig. 6. KS distance for the observed and analytical model cdfs.
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Fig. 7. KS distance for the observed and analytical model cdfs.

values of λi. The analytical result in (13) can be used as shown

in Fig. 7 to determine the maximum value of Ts required for

a given level of estimation accuracy of the distribution.

VI. CONCLUSION

CR utilizes spectrum sensing to periodically monitor PU

channel activity states (idle/busy). A CR benefits from this

knowledge to improve the general system/device performance.

However spectrum sensing uses a finite sensing period which

imposes limitations on the measured durations of busy/idle

periods and hence the resulting distribution for PU activity.

This work focuses on the analytical perspective of how this

limitation affects the estimation of PU distribution. Closed

form expressions are derived to show the relationship between

the employed sensing period and the resulting estimated distri-

bution under finite sensing periods, as well as the correspond-

ing estimation error in terms of the KS distance. The analytical

results showed a good agreement with simulation results and

can be used in the design and analysis of CR systems.
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