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Abstract Mechanism design theory strongly relies on the concept of Nash equilib-
rium. However, studies of experimental games show that Nash equilibria are rarely
played and that subjects may be thinking only a finite number of iterations. We study
oneof themost influential benchmarks ofmechanismdesign theory, the expected exter-
nality mechanism (D’Aspremont and Gerard-Varet, J Public Econ 11:25–45, 1979) in
a finite-depth environment described by the Level-k model. While the original mech-
anism may fail to implement the efficient rule in this environment, it can be adjusted
to restore efficiency.

Keywords Expected externality · Externality mechanisms · Level-k · Bounded
rationality

JEL Classification C72 · D71 · D82

1 Introduction

Mechanism design theory studies institutions with privately informed agents. Using
the tools of game theory, it proposes rules of interactions such that the participants’
strategic behavior complies with the designer’s objective. In a leading example, the
designer’s purpose is to implement the socially efficient outcome, that is, to find
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the allocation that maximizes total welfare. The major challenge to efficient imple-
mentation is the fact that information about individual preferences is private.1 In a
setting with quasi-linear utilities, D’Aspremont and Gérard–Varet (1979) construct
an ingenious mechanism that aligns the agents’ individual incentives with total wel-
fare maximization. In a Bayes–Nash equilibrium, the agents reveal their types to the
principal and thus efficiency can be achieved. The AGV mechanism has become an
essential building block for the mechanism design theory (Athey and Segal 2013).

Since the AGV mechanism is tailored to the concept of Bayes–Nash equilibrium,
its success in inducing truth-telling and, therefore, efficiency in practice depends on
(1) whether the participants’ behavioral response to the mechanism coincides with the
Bayes–Nash prediction and, if it does not, (2) whether efficiency still obtains under
the possible deviations. While the first question has not been addressed directly in the
literature, the experimental results in (simpler) complete information games suggest
that the answer may be negative. As to the second question, little is known as to the
loss of efficiency if the participants do not play equilibrium. This paper tries to fill
this gap by studying how the mechanism performs in a behavioral framework where,
contrary to the requirement of Bayes–Nash equilibrium, the agents conduct only a
limited number of iterations of reasoning. The choice of the behavioral setting follows
a large body of evidence from experimental games. Recent surveys by Crawford et al.
(2009) and Camerer and Ho (2015) show that non-equilibrium models with finite
depth of reasoning, such as the Level-k model (Lk; Nagel 1995; Stahl and Wilson
1994; Costa-Gomes et al. 2001; Costa-Gomes and Crawford 2006) and the cognitive
hierarchy model (CH; Camerer et al. 2004), systematically outperform equilibrium in
predicting human behavior. Along with closely fitting the lab data, these models are
able to predict some frequently observed field phenomena such as the winner’s curse
in common-value auctions: see Crawford and Iriberri 2007. We choose the Lk model
due to its tractability, but most of our results also hold in the CH model.2

Lk is a model of reasoning prior to a game, where the agent maximizes his payoff
against a non-equilibrium belief about other agents’ strategies. The belief is con-
structed in the following iterative process. An agent of level k = 1 (“L1 agent”)
believes that his opponents (“L0”) behave non-strategically. In incomplete informa-
tion games, such as the AGV mechanism, L0’s can be modeled in two distinct ways:
either they truthfully reveal their type (”truthfulL0”) or draw their actions (type reports)
from a random distribution (“random L0”). An L2 agent best replies to the profile of
L1 strategies, L3 best replies to L2, and so on. In general, an Lk strategy is best reply
to the profile of L(k − 1), suggesting the interpretation that agents try to “outguess”
their opponents.3 To illustrate, consider a seminal game in this literature,4 where play-
ers pick a number between 0 and 100 and the one whose number is closest to some

1 In this literature, all private information is summarized in a type: a parameter that enters the agent’s utility
function (and has to be elicited by the mechanism).
2 Propositions 1, 2.1, 3, and 4 hold in the cognitive hierarchy model.
3 The cognitive hierarchy model features ‘smoother’ beliefs: a positive probability is assigned to all levels
lower than one’s own.
4 This guessing game is used byNagel (1995) to explain the Lk model. It was alsomentioned in e.g.Moulin
(1986) and Simonsen (1988).
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fraction, say one half, of the average wins the game. In this guessing game, if L0s ran-
domize uniformly between 0 and 100, L1s will choose 50/2=25, L2s will choose 25/2,
etc. As k increases, the best response of Lk approaches 0, the only Nash equilibrium
of the game.

This paper applies the Lk model to the AGV mechanism with one-dimensional
types. We look at the case where the principal knows the type distribution and expects
equilibrium behavior on part of the agents. Such principal is ignorant of the fact that he
operates in an Lk environment. In this setting we conduct a positive exercise and find
conditions under which the mechanism remains robust to Lk. Throughout the paper
we assume independent private valuations and utilities that are strictly concave with
respect to the allocation.5 First, we observe that in the truthful-L0 specification of
the Lk model the mechanism never produces a loss in efficiency. In that specification,
the L1 best reply is given by the equilibrium condition of AGV which implies truth-
telling. By induction, this result extends to any higher level k, therefore the mechanism
chooses the efficient allocation irrespective of the levels prevailing in the population.

Further, in the random-L0 specification of Lk, we show that if the distribution of ran-
dom actions (L0) coincides with the distribution of payoff types, then the participants
at any level larger than zero report truthfully to the mechanism. Next, we analyze
the more interesting case where the type distribution used by the planner to assign
transfers differs from L1s’ expectation of the opponents’ actions. In this case, the
externality payment generally fails to align the agent’s incentives with total expected
welfare maximization. As a result, the AGV mechanism does not induce truth-telling
and produces a sub-optimal allocation. Denoting the distribution of random L0 strate-
gies by � and the distribution of types by F , we study how the relation between �

and F affects the Lk strategies in the mechanism.
We focus on the case where � dominates F (in the sense of first-order stochas-

tic dominance) or vice versa. This corresponds to scenarios where players believe a
salient strategy is to systematically under- or over-report one’s type. The main result
characterizes the deviations from equilibrium behavior for the case that the efficient
choice rule is linear in agents’ types (the environment we call neutral). If L0 agents are
expected to under-report their types, then all types of an L1 agent will over-report their
types to the mechanism, and vice versa. Therefore L1 agents display compensatory
bias in reports. The distortion carries over to higher levels, but the expected absolute
value of the distortion of type decreases as level k goes up; in the case of quadratic
utilities, the rate of decrease is exponential. Interestingly, the direction of the bias (i.e.,
whether the agents over-report or under-report their types) alternates at each iteration
from k to k + 1. This result has two interesting implications for the outcome of the
mechanism. First, if the pool of agents is a mixture of two subsequent levels (e.g., L2
and L3), the distortion of efficiency is lower than in a group where only one of these
levels is present. Second, as Lk goes up, the outcome approaches efficiency.

The results extend partially to the non-neutral case where types are complements or
substitutes with respect to the efficient choice of allocation. Non-neutrality means that
the marginal effect of one agent’s type on the efficient allocation is not invariant in the

5 We use the assumption of strict concavity to assure that the equilibrium of the AGVmechanism is unique.
For an account of the problem of non-uniqueness, see Mathevet (2010).
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other agent’s type. In particular, when the other agent’s type is high, themarginal effect
is stronger in case of complements and weaker in case of substitutes. In either of these
environments reports have two counter-veiling effects on the choice of allocation. The
first direct effect of compensating bias pushes the allocation in the direction ofmarginal
payoff increase. The second indirect effect changes the choice rule’s sensitivity to the
opponent’s report. Therefore, compensating bias remains best reply in type ranges
where the direct effect dominates. We demonstrate by means of example that the
dominance of the indirect effect changes the prediction.

While the main interest of this paper is positive, we conduct a separate normative
analysis of the AGVmechanism. This part is concerned with a principal who is aware
of the Lk environment and seeks the appropriate AGV-type mechanism for efficient
implementation. In particular, we change the transfer rule to reflect the actual expected
externality (under the level-k strategy profile) and thus to elicit the information cor-
rectly.6 The Lk environment is characterized by three components: type distribution
F , random actions distribution � and agents’ levels k. When all three components are
known, the efficient Lk mechanism differs from the original AGV in its transfer to L1
agents only. By correcting the incentives at level 1 the principal restores truth-telling
at all levels and achieves efficiency. When the information on F,� or k is missing,
the principal can expand the mechanism to elicit the agents’ knowledge. One way to
do this is to add a betting round where the agents guess each others’ reports. Ex post,
the principal rewards correct guesses. Betting is a powerful tool for the elicitation of
correlated information7 and turns out to be instrumental in the Lk environment. We
show how betting can be used to elicit levels k and other information necessary to
construct the efficient mechanism.

This paper is among the first studies ofmechanisms in anLk environment. Crawford
(2015) looks at the double auctionmechanismand revisitsMyerson andSatterthwaite’s
(1983) impossibility result in the Lk framework. He finds, in particular, that revelation
principle does not hold in this framework since the choice of mechanism influences
the correctness of Lk beliefs. Similar to his paper, the normative part of our analysis
exploits the predictably incorrect beliefs of Lk agents. De Clippel et al. (2014) provide
a characterization of implementable choice functions in a general setup with finite
depth of reasoning. They consider the expected externality mechanism as an example
and show that it achieves efficient implementation under the assumption that L0 report
truthfully. In contrast, the present paper allows for L0 to be random and arbitrarily far
from truthtelling.

The rest of this paper is organized as follows. Section 2 presents the key assump-
tions, the Lk model in incomplete information games and in the AGV mechanism in
particular. Section 3 describes the properties of Lk strategies in the AGV mechanism:
equivalence of Lk and equilibrium models in the AGV mechanism, the biases due to
first order stochastic dominance and convergence in the neutral environment. Section 4
shows how the AGV mechanism can be adjusted to the Lk environment, and Sect. 5
concludes.

6 This was pointed out by an anonymous referee.
7 See Myerson (1981), Crémer and McLean (1985, 1988).
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2 The model

Preferences The preference environment is characterized by the following assump-
tions:

A1 Utilities are linear in money.
A2 Values are private.
A3 Values are independent draws from a commonly known distribution F with
density f .

Assumptions A1 and A2 imply that the utility function of a given agent i ∈ I =
{1, 2 . . . n} , n ≥ 2, can be represented as:

vi (x, θi ) + Ti , (1)

where vi (x, θi ) is the utility derived from allocation x ∈ X ⊆ R, θi is the privately
known preference parameter that we refer to as the agent’s type, and Ti is the monetary
transfer to agent i . Agent types θi are drawn independently from�, a compact subset of
R, according to a distribution F . We assume that vi (x, θi ) is strictly concave in x and
continuously differentiable with respect to both arguments on the entire domain. Some
of our results require that the preferences satisfy a single crossing (Spence–Mirrlees)
condition. The condition postulates that the cross-derivative of vi (x, θi ) with respect
to allocation x and type θi has constant sign over the function’s domain:

A4. vi (x, θi ) satisfies the Spence–Mirrlees condition, i.e., either A4.1 or A4.2
holds:

A4.1 ∂2vi
∂x∂θi

(x, θi ) > 0, for all i and (x, θi ) ∈ (X,�),

A4.2 ∂2vi
∂x∂θi

(x, θi ) < 0, for all i and (x, θi ) ∈ (X,�).

A1-A4 are the basic assumptions of mechanism design. A further standard assumption
is that agents play Bayes–Nash equilibrium: the profile of strategies is a fixed point of a
best reply correspondence. In this paper, we consider a frameworkwith a finite number
of best-reply iterations that do not generally start at equilibrium. This framework is
described by the following model (Nagel 1995; Crawford and Iriberri 2007).

Level-k Consider a game of incomplete information where the payoffs are given by
ui (s; θi ), for each agent i ∈ I of type θi and strategy profile s = (s1, s2, . . . sn), where
si (θi ), or simply si , maps into an action. We look at agents who engage in iterations of
best reply. The Lk strategy s(k)

i (θi ) is recursively defined as function of agent’s type

θi that maximizes his expected payoff against level-(k − 1) profile s(k−1)
−i (θ−i ). The

agent believes with certainty that his opponents make exactly k − 1 iterations of best
reply.8 As starting point of the recursion, the model features nonstrategic L0 agents
whose actions s(0)

i are drawn from a given distribution �. By analogy, we say that

s(0)
i (θi ) ≡ s(0)

i is an unobserved random mapping such that the induced cumulative
distribution of actions is � and the density is ϕ.

8 In contrast, Cognitive hierarchy model assumes that Lk agents attributes strictly positive probabilities to
all the levels of rationality lower than k.
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Definition For k ≥ 1 the optimal strategy s(k)
i maximizes the expected payoff of agent

i against s(k−1)
−i :9

s(k)
i (θi ) = argmax

si

E

[
ui

(
si , s(k−1)

−i (θ−i ) ; θi

)]
, (2)

where θ−i is the residual profile of types. The expectation is taken over the residual
types and mappings s(0)

i . The following simple observation establishes the relation
between the Lk and equilibrium strategy profiles.10

Observation: If s(k) (θ) = s(k+1) (θ) for some k ≥ 1 and θ ∈ �, then s(k) (θ)

constitutes a Bayes-Nash equilibrium.

Choice rules and mechanisms For a quasi-linear utility representation (1), we define
a choice rule x∗ (θ) as efficient if it maximizes the total welfare for every profile of
agents’ types θ = (θ1, θ2, . . . θn):

x∗ (θ) ∈ argmax
x∈X

∑
i

vi (x; θi ) (3)

We look at a direct mechanism, where the agents report their types to the principal:
i’s report si is a member of �.11 A mechanism implements the choice rule x∗ (·) if the
profile of truth-telling reports is an equilibrium. The expected externality mechanism
introduced in d’ Aspremont and Gérard–Varet (AGV, 1979) is an example of such
mechanism. AGV chooses the efficient allocation x∗ (·) and assigns the following
monetary transfers to the participants:

Ti (s) = ti (si ) − 1

n − 1

∑
l �=i

tl (sl) , (4)

where
ti (si ) = E

∑
j �=i

v j
(
x∗ (si , θ−i ) ; θ j

)
. (5)

The transfer ti (si ) is constructed such that agent i internalizes the expected effect of
his report on the others’welfare, assuming they tell the truth. This guarantees that agent
i’s incentives are aligned with the total welfare maximization, therefore truth-telling
is Bayes–Nash equilibrium. Note that this implies immediately that in the truthful-L0
specification of the Lk model efficient implementation obtains for any k.

The second part of the transfer, 1
n−1

∑
l �=i tl (sl), guarantees that mechanism satis-

fies ex post budget balance. In particular, in the level-k model the transfers add up to

9 We consider problems where the solution is unique.
10 The observation follows immediately from the definition of the Bayes–Nash equilibrium as fixed point
of the best-reply correspondence (2).
11 Generally, the revelation principle may fail in Lk environments, such that the restriction to direct mech-
anisms is not without loss (see Crawford 2015). In particular, the space of admissible messages may affect
the beliefs of L1 players and consequently their best response in the mechanism.
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zero after any profile of reports s.12 Note that this part of transfer does not depend on
i’s own report si , therefore it can be omitted from the analysis of incentives.
Level-k in theMechanism In the expected externalitymechanism, anLk agent, k ≥ 1,
maximizes the expected gain in the mechanism:

E

[
vi

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
+ ti (si )

]
(6)

Given the incentive transfer (5), the optimal Lk strategy in themechanism is defined
by the following:13

s(k)
i (θi ) = argmax

si ∈�

E

⎡
⎣vi

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
+
∑
j �=i

v j
(
x∗ (si , θ−i ) ; θ j

)
⎤
⎦

(7)
Recall that a strategy profile that satisfies s(k) (θ) = s(k−1) (θ) for all k and θ is a

Bayes-Nash equilibrium. The following section demonstrates an example where this
is not the case and studies the differences between Lk and equilibrium behavior in the
AGV mechanism.

3 Unadjusted mechanism

This section takes the AGVmechanism as given and studies its outcomes in the Level-
k environment. We establish the conditions under which the mechanism still yields
efficient outcomes, and look at themisreporting of preferences that may arise in certain
stochastic environments.We start with a simple example to illustrate some of our main
findings.

Example Consider a setting with n agents and a quadratic utility representation
vi (x, θi ) = θi x − x2

2 , i ∈ I . In this setup, agent i has a bliss point at θi and incurs
quadratic loss if the allocation departs from it. It is easy to verify that the socially

efficient allocation is the average of individual bliss points: x∗ (θ1) =
∑

i θi
n . We prove

the following simple lemma (see “Appendix”).

Lemma 1 In the quadratic case, the optimal Lk strategy, k ≥ 1, for agent i is given
by the following:

s(k)
i (θi ) = θi + � ×

(
−n − 1

n

)k

, (8)

where � = ∫
θd F(θ) − ∫ sd�(s) denotes the difference between the average type

and the average random move of an L0 agent.

12 In this respect, the AGVmechanism improves over the VCGmechanism (Vickrey, Clarke, and Groves),
where ex post budget balance is generally impossible.
13 Recall that we assume strict concavity of vi (x, θi ) in x .
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The Lk strategy (8) has several interesting properties. First, the size of the distortion
diminishes as the level of rationality k increases. As k goes to infinity, the optimal
strategies converge to truth-telling. This holds for any pair of distributions F and �.
Second, if the distributions have equal means,

∫
θd F(θ) = ∫

sd�(s), then truth-
telling obtains at every level of rationality, starting from k = 1. Third, the absolute

size of the discrepancy �× ( n−1
n

)k
between the true type θ and the Lk report s(k)

i (θi )

increases in the number of agents.
Next we study these properties in a more general setup. We maintain, however, that

the efficient rule is linear in (a function of) types. Formally, we make the following
assumption of neutrality:

A5. ∂2x∗
∂θi ∂θ j

(·) ≡ 0 for all i, j ∈ I .

Level 1 is central to the entire analysis, since any distortion of truthtelling that
emerges at L1 propagates to higher levels. The analysis of L1 optimal strategy:

s(1)
i (θi ) = argmax

si ∈�

⎧⎨
⎩Es(0)

−i
vi

(
x∗ (si , s(0)

−i

)
; θi

)
+
∑
j �=i

Eθ−i v j
(
x∗ (si , θ−i ) ; θ j

)
⎫⎬
⎭
(9)

yields the following proposition.

Proposition 1 Under assumptions A1–A3, truth-telling is optimal at all levels of ratio-
nality if the distribution of random actions � and the distribution of types F coincide.

Proposition 1 establishes the equivalence between equilibrium and Lk predictions
of the AGV mechanism’s outcome. It shows that as long as the subjective distribution
of random actions coincides with the (objective) distribution of types, it is irrelevant
whether the agents stop at a finite level of reasoning or engage in equilibrium thinking.
Proposition 1 trivially extends to the cognitive hierarchy (CH) model, since both Lk
and CH models define level-1 equivalently. Overall, the AGV mechanism achieves
efficient implementation in four models of reasoning: Lk and CH with truth-telling
L0s; Lk and CH with random L0s and F ≡ �. Observe that the equivalence result
does not rely on either the linearity of the social choice rule nor the Spence-Mirrlees
condition.

If distributions F and � do not coincide, Lk agents do not report truthfully in
general. To study the report biases, we concentrate on the case where F and � can be
orderedwith respect to first-order stochastic dominance relation, denoted�F O SD . This
corresponds to scenarios where players believe a salient strategy is to systematically
under- or over-report one’s type. We have the following result.

Proposition 2 Under assumptions A1–A5, L1 agents distort their type reports
upwards if F �F O SD �, and downwards if � �F O SD F. If either F �F O SD

� or � �F O SD F, then lim
k
Eθi

∣∣∣s(k)
i (θi ) − θi

∣∣∣ = 0, ∫}\
(

s(k)
i (θi ) − θi

)
=

−∫}\
(

s(k−1)
i (θi ) − θi

)
for all i.

The proof of the proposition is given in the “Appendix”. We start with the observa-
tion that any n-agent problem can be reduced to a problem with two agents due to
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the fact that stochastic dominance is preserved under monotone transformations and
summation of random variables. Then, in the framework with two agents, we analyze
the first-order condition that corresponds to the payoff-maximization problem (9) to
obtain the result.

The first part of Proposition 2 states that L1 agents systematically (that is, for every
realization of type) misreport their types, if one distribution dominates the other in
the sense of first-order stochastic dominance. For example, if an L1 agent expects L0
agents’ reports to dominate the type distribution, then L1 will report a lower type than
he actually has (and vice versa), even if this induces a less preferred allocation. The
reason is that in the AGV mechanism, an agent’s report affects both (1) the expected
externality, which is calculated based on the true distribution F , and (2) the agent’s
own expected value from the allocationwhich depends on his own belief� about other
agents’ reports. If an agent believes the others over-report (� dominates), he concludes
that the allocation is on average higher than it would be under truthful reports by the
others. Given that the utility function is strictly concave, this reduces his perceived
marginal value of the allocation, therefore he under-reports. If higher types prefer
lower alternatives (‘negative cross-derivative’, as in A4.2), then L0s’ over-reporting
makes the chosen alternative lower and L1 over-reports to compensate. In either case,
an L1 agent compensates the opponents’ random behavior by misreporting his type in
the opposite direction.

The second part of the proposition states that the expected deviation of reported
from true types decreases in absolute value as the level of rationality increases. The
sign of the expected deviation alternates at every transition from k to k + 1. Thus the
optimal level-k strategies follow a pattern similar to the example of Sect. 2. If level-2
agents overstate their type in the game, then level-3 agents will understate them. Note
that this is good news for the AGV mechanism: if the group of agents is a mix of, say,
level-2 and level-3 agents, then the expected chosen alternative is closer to efficiency.

Non-neutrality

The assumption of neutrality implies that the marginal effect of an agent’s type on the
efficient allocation is invariant in other agents’ types. However, there are examples of
preferenceswhere this assumption is violated.Consider the casewith twoagentswhose
preferences are given by v1 = θ1x for Agent 1 and v2 = − x2

2θ2
(θ2 > 0) for Agent

2. The optimal allocation is x∗ = θ1θ2. Agent 1’s utility in mechanism (excluding

the budget balancing part)14 equals v1 + t1 = E

[
θ1x∗

(
θ̂1, s(0)

2

)
−
(

x∗
(
θ̂1,θ2

))2

θ2

]
=

θ1θ̂1Es(0)
2 − (θ̂1)

2
Eθ2. Suppose� dominates F such thatEs(0)

2 = 1 andEθ2 = 0, then
v1 + t1 = θ1θ̂1. Thus Agent 1 will over-report if θ1 > 0 and under-report if θ1 < 0,
which is not the prediction of Proposition 2.Contrary to the neutral environment,where
� � F would imply under-reporting by all types of an L1 agent (Proposition 2), this
example features types that are complements with respect to the optimal allocation:

14 Recall that the budget-balancing term does not depend on the agent’s own report.
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∂2x∗
∂θi ∂θ j

= 1 > 0. In such environments, the result of Proposition 2 holds only for a
subset of types, as we demonstrate below.

Agents’ types are complements15 with respect to the efficient rule ∂2x∗
∂θi ∂θ j

> 0 for

all i �= j . Agents’ types are substitutes16 with respect to the efficient rule ∂2x∗
∂θi ∂θ j

< 0
for all i �= j . When types are substitutes, a higher type by agent i lowers the marginal
effect of the opponent’s type. If types are complements, the interaction is the opposite:
the marginal effect of j’s type increases with the type of agent i.

In this part of the analysis, we distinguish between positive (A4.1) and negative
(A4.2) single crossing. Recall that, in the positive case, higher types receive higher
marginal utility from allocation. In the negative case, the marginal utility diminishes
with type. We separate the environments into four groups according to two criteria:
first, whether the single-crossing holds as positive or as negative, and, second, whether
the chosen alternative’s increment due to an increase in one agent’s report increases
or decreases with the other agent’s report (types are complements or substitutes). In
these propositions, we additionally assume the monotone likelihood ratio property
(MLRP). It says that the ratio of probability distribution functions f (t)

ϕ(t) decreases in t
if � �F O SD F , and increases in t if F �F O SD �.

Proposition 3 (a) Under A1–A4.1, MLRP and complements environment, ∃t∗i such
that for all types θi < t∗i of L1 agent i he distorts his report downwards if � � F
and upwards if F � �.

(b) Under A1–A4.1, MLRP and substitutes environment, ∃t∗i such that for all types
θi > t∗i of L1 agent i he distorts his report downwards if � � F and upwards if
F � �.

Proposition 4 (a) Under A1–A4.2, MLRP and complements environment, ∃t∗i such
that for all types θi > t∗i of L1 agent i he distorts his report downwards if � � F
and upwards if F � �.

(b) Under A1–A4.2, MLRP and substitutes environment, ∃t∗i such that for all types
θi < t∗i of L1 agent i he distorts his report downwards if � � F and upwards if
F � �.

Propositions 3 and 4 make four distinct claims. Consider the first claim, for exam-
ple: If high types tend to have high valuations (A4.1, positive single-crossing) and
the efficient social choice rule is more sensitive to i’s type if j’s type is high (i.e.,
types are complements), then low-valuation agents will tend to misreport their type
so as to compensate the bias in the other agent’s report. This claim is the same as
Proposition 2, except that it does not include a range of valuations above a threshold.
If there is first-order stochastic dominance in distributions, in the neutral case, an L1
displays compensating behavior: L1 systematically under- or over-reports, regardless
of whether his true type is high or low. However, in a non-neutral case this is different.
Observe that when types are complements or substitutes the mechanism may become

15 E.g.:vi (x, θi ) = θi x − 1
x , x > 0, θi < 0.

16 E.g.: vi (x, θi ) = θi x + 1
x , x < 0, θi > 0.
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more sensitive to L0’s misreporting in the extreme ranges of L1’s type when L1 misre-
ports. Therefore L1’s strategy of compensating report bias has a further indirect effect
on the allocation choice. For this reason, both Propositions 3 and 4 include only the
type ranges that correspond to low enough sensitivity of the social choice rule to the
other agent’s report. Types in the low-sensitivity regions display the compensating
behavior, similar to our benchmark result in Proposition 2.

Intuitively, the exclusion of some types in Propositions 3 and 4 can be understood as
follows. Consider the more intuitive case of positive single crossing (A4.1). Suppose
L1 agent’s type is high, so he prefers a high level of public good, and complements
environment. Then compensatory under-reporting makes the choice rule less respon-
sive to the opponent’s over-reporting and thus may lead to the allocation being too
low for his preferences. On the other hand compensatory over-reporting makes the
choice rule more responsive to the opponent’s under-reporting and thus, again, may
lead to the choice of allocation that is too low. Suppose now that the agent’s type is
low, so he prefers a low level of public good, and substitutes environment, as in the
example given at the beginning of this section. In the example the choice rule does
not respond to the opponent’s under-reporting and thus, if the agent over-reports his
type, he increases the probability that the project is undertaken, and that is against
his private interest. Therefore, the reaction of the choice rule to the opponent’s report
determines whether the compensating bias is a profitable strategy.

4 Adjusting the mechanism17

Our analysis so far assumed that the principal is unaware of the Lk environment. In
other words, the principal implements the allocation and transfers as if the agents
were infinitely rational. But what if the principal knows that the agents conduct only a
finite number of best-reply iterations? How can he adjust the mechanism and achieve
efficiency in this case? This section discusses this question. The answer depends
critically on the principal’s information about the setting. If the characteristics of
stochastic setting—the type distribution F , distribution of random actions �, and the
Lk identity of every agent—are known, then the principal can achieve efficiency by
adjusting the incentive transfer. However, if some of that information is missing, the
principal should expand the mechanism.

4.1 Known environment (F,�, k)

When F,�, and ki for all i ∈ I are known, the principal’s response to the Lk environ-
ment is to adjust the incentive transfers accordingly. Knowing that L1 agents expect
their opponents to behave non-strategically according to the distribution �, the prin-
cipal assigns the following transfer to any L1 agent:

t (1)i (si ) = E
s(0)
−i

∑
j �=i

v j

(
x∗ (si , s(0)

−i

)
; s(0)

j

)
(10)

17 I am grateful to the anonymous referee who suggested writing this section and offered some important
insights into adjusting the AGV mechanism.
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The expectation in (10) is taken over the L0 strategies s(0)
−i , as opposed to type distri-

butions as in the original AGV mechanism.
Thus, the incentive transfer to all higher-level agents Lk remains unchanged relative

to the original AGV mechanism:

t (>1)
i (si ) = Eθ−i

∑
j �=i

v j
(
x∗ (si , θ−i ) ; θ j

)
(11)

Let AGVk(F,�) refer to the AGV mechanism with transfers Eqs. (10) and (11).

Lemma 2 Any Lk player (k ≥ 1) is truthful in AGVk (F,�).

Proof Facing transfer (10), any L1 agents report their types truthfully, since si = θi

solves the utility maximization problem:

max
si ∈�

E
s(0)
−i

⎡
⎣vi

(
x∗ (si , s(0)

−i

)
; θi

)
+
∑
j �=i

v j

(
x∗ (si , s(0)

−i

)
; s(0)

j

)⎤⎦ . (12)

Provided that L1s receive transfers that make them reveal their types, L2s hold a belief
over the reports that coincides with F , the distribution of types. Similar to the Bayes
Nash equilibrium in the standard AGV mechanism L2 best replies to the incentives
by reporting his type truthfully. By induction, truthfulness extends to all subsequent
levels that face the standard AGV transfer (11). The induction relies on the fact that
L(k + 1) believe that Lk best reply to L(k − 1) and believe that L(k − 1) best reply
to L(k − 2) etc up to L1. 
�

Therefore, in case where the stochastic Lk environment is known, the principal can
implement the efficient allocation by changing the transfer toL1 agents only.As before,
budget balance ex post is achieved through an additional term that is independent of
agent i’s own report si : Ti (s) = ti (si ) − 1

n−1

∑
j �=i t j

(
s j
)
.

4.2 Unknown environment

The construction of transfers Eqs. (10) and (11) relies on the principal’s knowledge
of distributions � and F , respectively. The assignment of transfers to agents relies on
the knowledge of levels ki for i ∈ I . If any part of this information is not available to
the principal he has to elicit it from the agents. Unfortunately, there is little hope to
get the information “for free”. Suppose that the principal knew he was facing an L1
agent i and asked him to report �. The agent would benefit from misrepresenting �

as it determines his incentive transfer (10). For example, in the quadratic utility case
(Sect. 3) the agent gains in �-expected externality if � is such that the other agents’
preferences are very similar to his own preference report θ̂i . In the extreme case, the
agent reports a degenerate distribution�with amass point at θ̂i . Asking an L2 agent to
report � would not result in truthful elicitation either. Contrary to L1, misreporting �

does not affect L2’s incentive transfer, but it does affect his expectation of the resulting
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allocation choice. Since an L2 believes that others are L1 he also believes that their type
reports can be manipulated by falsely reporting�. Furthermore, since L2 believes that
he pays a fraction 1

n−1 of L1s’ total incentive transfers as part of the budget balance
program, his report of � also affects his monetary gain in the mechanism. These
considerations illustrate the need for a proper elicitation mechanism.

Let Pi denote agent i’s true belief about (i +1)’smoves18 and P̂i denote the reported
belief. We assume that beliefs are differentiable for simplicity. Observe that Pi = �,
if ki = 1. However if ki ≥ 2 then Pi = F under the assumption of truth-telling Lk.
Neither F, � or levels k are known to the principal.

Consider the following two-stage AGVk (TS-AGVk) mechanism:

Stage 1 Agent i reports P̂i .19

Stage 2 First-stage reports pin down the transfer schedule and i reports type θ̂i .

The principal implements the efficient allocation (3) and pays the transfer:20

ti + bi − 1

n − 1

∑
l �=i

tl − bi+1, (13)

where ti = ti (si ) = E
∑
j �=i

v j
(
x∗ (si , s−i ) ; s j

)
, expectation over s−i is taken w.r.t. P̂i

(incentive part); bi = bi
(

p̂i (si+1)
) = λ ln p̂i (si+1) (proper scoring or betting part), λ

is a scalar and p̂i (si+1) = ∂
∂si+1

P̂i (si+1).21 Note that compared to the standard AGV
mechanism, the budget balancing part in TS-AGVk includes an extra term −bi+1 to
balance the betting rewards.

Lemma 3 For any ε > 0 there exists λ > 0 in the TS-AGVk mechanism with n > 2,
such that truth-telling is ε-optimal for an Lk-agent, given that I/ i tell the truth.22

Under the assumption that all agents tell the truth, the lemmastates that no Lk-agent can
deviate and gain more than ε by lying to the principal if the betting transfer is appropri-
ately scaled. The proof is given in the “Appendix”. The proof relies on the observation
that the expectedbetting transfer:Ebi

(
si+1; p̂i

) = λ
∫
�
ln p̂i (si+1) d Pi (si+1) ismax-

imized at p̂i ≡ pi (Good 1952). However, since the report p̂i also affects i’s incentive
transfer ti (·), the loss in betting reward has to be sufficiently large to nullify any gain
from changing the allocation and ti (·) that i may achieve by misreporting pi and θi .

Remark TS-AGVk does not rely on the knowledge that the underlying model is Lk.
Specifically, the transfers are constructed to induce truth-telling as best response of an

18 If i = n, consider his beliefs about agent 1.
19 Since communicating the entire distribution function may not seem tractable, assume that the distribu-
tions belong to a known parametric class. In that case, the agents have to communicate only a finite number
of parameters. See, e.g., Brooks (2013) and Azar et al. (2012).
20 If i = n read “tn + bn − 1

n−1
∑
l �=n

tl − b1”.

21 If i = n read “ p̂n (s1) = ∂
∂s1

P̂n (s1)”.
22 In the standard setting, this corresponds to an ε-equilibrium.
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agent with arbitrary beliefs, not necessary an Lk agent. In contrast, the mechanisms
introduced below are tailored to the particular setting of Lk and are therefore less
robust to the change of environment.23

If F and � are known but levels k are unknown, then the first stage of the
mechanism above can be simplified. Here, we use the fact that in the Lk model, agent
i’s level ki can be inferred from his belief about another agents’ level k j , j �= i . At
the first stage of TS-AGVk(F,�) the principal asks each agent to guess the level of
another participant. To fix ideas, let agent 1 report on k2, agent 2 reports on k3, and
so on until agent n who reports on k1. In the Lk model, agent i’s report k̂i

i+1 about

agent (i + 1)’s level is truthful, if it is just below the agent’s own level: k̂i
i+1 = ki − 1.

The true belief may not be correct (i.e., k̂i
i+1 may or may not equal ki

i+1); moreover,
at least one agent’s belief must be incorrect.

The structure of transfers in TS-AGVk(F,�) is given by (13), where the incentive
part ti is given by (10), if k̂i

i+1 = 0, and (11), if k̂i
i+1 ≥ 1; the betting transfer

bi = bi

(
k̂i

i+1

)
is 0, if k̂i

i+1 = ki
i+1, and −λ otherwise.

Lemma 4 There exists λ > 0 in TS-AGVk(F,�) with n > 2, such that truth-telling
is Lk-optimal for agent i ∈ I , given that I/ i tell the truth.

Unlike the TS-AGVk mechanism, TS-AGVk(F,�) with the appropriately chosen
“punishment level” λ induces exact truth-telling. This is achieved because the reported
levels k take on only discrete values (0, 1, 2, . . .).

If F and k are known but � is unknown, then we can exploit the fact that � is
common knowledge among the agents. The principal can use a shoot-the-liar protocol
by asking the agents to report � and punishing them if there is no unanimity. In
this mechanism, reporting � truthfully is best reply to the residual profile of truthful
reports. However, truth-telling is not a unique solution. Establishing uniqueness could
involve using “nuisance” strategies, as in Maskin (1985), or additional stages, as in
Moore and Repullo (1988).

5 Conclusion

The idea of relaxing the pervasive common knowledge assumption, often referred to as
the Wilson doctrine, has motivated recent research in mechanism design. Significant
progress was made in studying implementation in frameworks approaching the uni-
versal type space, where higher-order beliefs are virtually unrestricted.24 Kets (2012)
extends the notion of type space further to allow finite depths of reasoning, as in the
level-k model. The next natural step for mechanism design is to accommodate the
extended notion of type space and search for mechanisms that are robust with respect
to changes not only in the structure of beliefs, but also in the depth of reasoning (as
mentioned in the discussion, learning to play the mechanism is a related issue). This

23 I thank an anonymous referee for this remark.
24 This literature stems from Bergemann and Morris (2005).
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paper, first, studies one of the most influential existing mechanisms, d’Aspremont and
Gerard-Varet (1979), in the Lk environment.

The AGV mechanism implements the efficient choice rule in Bayes-Nash equi-
librium. It is conceptually similar to the Vickrey-Clarke-Groves (VCG) mechanism
that taxes the agents with the amount of negative externality their preference report
exerts on the welfare of other agents. The VCG mechanism implements the efficient
social choice rule in dominant strategies, and hence is independent of the beliefs.25

On the downside, the VCG mechanism fails to satisfy the overall budget constraint.
The expected externality mechanism has the advantage of being exactly budget bal-
anced, but it comes at the cost of achieving Bayesian, as opposed to dominant-strategy
implementation. In the light of the Lk model, this is not entirely innocuous.

Using the setup of the Lk model we start by conducting a positive analysis of
the mechanism in the behavioral environment. We show that if there is a systematic
difference in the perceptions of random-L0 actions and true types, then the agents
distort their types at the first level and, by extension, also at the higher levels of ratio-
nality. Thereby we observe compensating behavior of finite-level agents in an AGV
mechanism, that is, distorting one’s report in the opposite direction to the opponents’
anticipated bias. This is due to the fact that the AGV mechanism rewards for the
expected externality, where the expectation is measured with respect to the true types.
A simple implication of this result is that the AGV mechanism could use the distribu-
tion of random actions, as opposed to types, to achieve truth-telling among Lk agents.
Consequently, we adjust the AGV mechanism by changing transfer for L1 agents in
the case where the principal’s has sufficient information. Otherwise, we introduce a
betting scheme to elicit the agents’ knowledge of the environment that the principal
uses at a subsequent stage to induce truth-telling.

Altogether, our results suggest that the AGV mechanism is fairly robust to the
iterative thinking environment. First, in the truthful-L0 specification there is no dis-
tortion of truth-telling and efficiency. Second, if there is distortion of truth-telling, its
sign alternates and its absolute value decreases with k. Therefore, in mixed groups of
agents with various levels k the biases cancel out and the mechanism’s outcome is
close to efficiency. This also implies that starting from L2 in the cognitive hierarchy
model best replies are located within a smaller neighborhood of truth-telling. Third,
the mechanism can be adjusted to the Lk framework in a way that maintains its key
properties.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

25 Dominant-strategy implementation guarantees that the VCGmechanism achieves truthful revelation and
efficiency in the Lk model (k > 0).
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Appendix

Lemma 1

Statement s(k)
i (θi ) = θi +�×(− n−1

n

)k
, k ≥ 1, where� = ∫ θd F(θ)−∫ sd�(s).

Proof We proceed by induction. Suppose that for k − 1 it holds that:

s(k−1) (θ j
) = θi +

(
−n − 1

n

)k−1

� (14)

Level-k optimal strategy is best reply to the profile of strategies s(k−1)
(
θ j
)
, where the

expectation is taken with respect to the opponents’ types θ−i .

s(k)
i (θi ) = argmax

si ∈�

Eθ−i

⎡
⎣θi

(
si +∑ j �=i s(k−1)

(
θ j
)

n

)
− 1

2

(
si +∑ j �=i s(k−1)

(
θ j
)

n

)2

+
∑
j �=i

Eθ−i

⎡
⎣θ−i

(
si +∑ j �=i θ−i

n

)
− 1

2

(
si +∑ j �=i θ−i

n

)2
⎤
⎦
⎤
⎦

= θi + n − 1

n

(
Eθ j − Es(k−1) (θ j

))
(15)

= θi + n − 1

n

(
Eθ j − E

[
θ j +

(
−n − 1

n

)k−1

�

])
= θi +

(
−n − 1

n

)k

�

(16)

Thus, if (14) holds on level k −1 it also holds on level k. Level-1 strategy is best reply
to the profile of random actions:

s(1)
i (θi ) = argmax

si ∈�

E
s(0)
−i

⎡
⎣θi

(
si +∑ j �=i s(0)

j

n

)
− 1

2

(
si +∑ j �=i s(0)

j

n

)2

+
∑
j �=i

Eθ−i

⎡
⎣θ j

(
si +∑ j �=i θ j

n

)
− 1

2

(
si +∑ j �=i θ j

n

)2
⎤
⎦
⎤
⎦

= θi − n − 1

n
�, (17)

Thus for L1 the induction formula (14) applies. 
�

Proposition 1

Statement Under assumptions A1–A3, if F ≡ � then s(k)
i (θi ) = θi for all k, i ∈ I .
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Proof The first-order condition (henceforth f.o.c.) for the maximization problem (9)
is the following:

E
s(0)
−i

[
∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)]

+
∑
j �=i

Eθ−i

[
∂v j

∂x
(x∗(si , θ−i ); θ j )

∂x∗

∂si
(si , θ−i )

]
= 0 (18)

Given that x∗(si , s−i ) is the efficient choice rule, it must hold that

∑
j �=i

∂v j

∂x
(x∗(si , θ−i ); θ j ) + ∂vi

∂x
(x∗(si , θ−i ); si ) = 0. (19)

Then the second term of (18) can be rewritten, such that the f.o.c. becomes:26

E
s(0)
−i

[
∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)]

−Eθ−i

[
∂vi

∂x
(x (si , θ−i ) ; si )

∂x∗

∂si
(si , θ−i )

]
= 0 (20)

Therefore, if F(t) = �(t) (i.e. s(0)
−i and θ−i is the same random variable), then

si = θi satisfies the first order condition (20) and thus s(1)
i (θi ) = θi . 
�

Lemma A Let us denote the following L1 maximization problem with n agents by
Pn:

max
si ∈�

E

⎡
⎣vi

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
+
∑
j �=i

v j
(
x∗ (si , θ−i ) ; θ j

)
⎤
⎦ (21)

Statement Suppose that A1–A5 hold. Consider an L1 problem Pn with n agents and
F ≺F O SD � (� ≺F O SD F). There exists an L1 problem P2 with 2 agents and a pair
of distribution functions F
,�
 satisfying F
 ≺F O SD �
 (�
 ≺ F
) such that
the solution to P2 is also a solution to Pn .

Proof First,weobserve that ∂2x∗
∂si ∂s j

≡ 0 (A5) implies that x∗ (s1, . . . sn) =∑i λi hi (si )

for some scalars λi , λi > 0 and monotone functions hi . Without loss of generality,

26 The second order condition (s.o.c.) E
s(0)
−i

[ ∂2vi
∂x2

(x∗(si , s(0)
−i ); θi )[ ∂x∗

∂si
(si , s(0)

−i )]2 + ∂vi
∂x (x∗(si , s(0)

−i );

θi )
∂2x∗
∂s2i

(si , s(0)
−i )] − Eθ−i

[ ∂2vi
∂x2

(x∗(si , θ−i ); si )[ ∂x∗
∂si

(si , θ−i )]2 + ∂vi
∂x (x∗(si , θ−i ); si )

∂2x∗
∂s2i

(si , θ−i ) +
∂2vi
∂x∂θi

(x∗(si , θ−i ); si )
∂x∗
∂si

(si , θ−i )]| si =θi
F(·)=�(·)

= −Eθ−i
[ ∂2vi
∂x∂θi

(x∗(si , θ−i ); si )
∂x∗
∂si

(si , θ−i )] < 0 (see

Lemma C).
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consider hi (si ) ≡ si . Condition (20) can be rewritten as follows:

E
s(0)
−i

⎡
⎣∂vi

∂x

⎛
⎝∑

j �=i

λ j s
(0)
j + λi si ; θi

⎞
⎠ ∂x∗

∂si

(
si , s(0)

−i

)⎤⎦

= Eθ−i

⎡
⎣∂vi

∂x

⎛
⎝∑

j �=i

λ jθ j + λi si ; si

⎞
⎠ ∂x∗

∂si
(si , θ−i )

⎤
⎦ . (22)

si that satisfies this condition is a solution to Pn . From Theorem 1.A.3 in Shaked
and Shanthikumar (2007): if distribution � of s(0)

j dominates distribution F of θ j ,

then distribution �
 of s(0)

 ≡ ∑

j �=i λ j s
(0)
j dominates distribution F
 of θ
 ≡∑

j �=i λ jθ j , and vice versa. s(0)

 and θ
 correspond to the random action and type of

a fictitious second agent in P2. In this problem P2 the first order condition writes as
follows:

E
s(0)



[
∂vi

∂x

(
s(0)

 + λi si ; θi

) ∂x∗

∂si

(
si , s(0)




)]
= Eθ


[
∂vi

∂x
(θ
 + λi si ; si )

∂x∗

∂si
(si , θ
)

]
.

(23)

It is then clear that the solutions to problems Pn and P2 coincide. 
�

Lemma B

Statement The L1 strategy in the AGV mechanism is given by (n = 2):

s(1)
i (θi ) = θi +

∫
(F(t) − �(t)) d

∂vi

∂x

(
x∗ (s(1)

i (θi ), t
)

; s(1)
i (θi )

) ∂x∗

∂si

(
s(1)

i (θi ), t
)

∫
∂2vi

∂x∂θi

(
x∗ (s(1)

i (θi ), s(0)
−i

)
; θ̂i

) ∂x∗

∂si

(
s(1)

i (θi ), s(0)
−i

)
d�(s(0)

−i )

(24)

Proof Rewrite (20) as follows:

0 = E
s(0)
−i

[
∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)]

−Eθ−i

[
∂vi

∂x
(x∗(si , θ−i ); si )

∂x∗

∂si
(si , θ−i )

]
(25)

=
∫

∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)
d�(s(0)

−i )

−
∫

∂vi

∂x
(x∗(si , θ−i ); si )

∂x∗

∂si
(si , θ−i )d F(θ−i ) (26)
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Integrate the second term of Equation (26) by parts:

∫
∂vi

∂x
(x∗(si , θ−i ); si )

∂x∗

∂si
(si , θ−i )d F(θ−i )

= ∂vi

∂x
(x∗(si , θ−i ); si )

∂x∗

∂si
(si , θ−i )F(θ−i )

∣∣∣∣
�

−
∫

F(θ−i )d
∂vi

∂x
(x∗(si , θ−i ); si )

∂x∗

∂si
(si , θ−i ) (27)

Modify thefirst termofEquation (26) by takingTaylor expansion under the integral:

∫
∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)

=
∫ [

∂vi

∂x

(
x∗ (si , s(0)

−i

)
; si

)
+ ∂2vi

∂x∂θi

(
x∗ (si , s(0)

−i

)
; θ̂i

)
(θi − si )

]

×∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)
(28)

where θ̂i is between si and θi ,

=
∫

∂vi

∂x

(
x∗(si , s(0)

−i ); si

) ∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)

+
∫

∂2vi

∂x∂θi

(
x∗ (si , s(0)

−i

)
; θ̂i

)
(θi − si )

∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)
= (29)

and integrate by parts:

= ∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)
�
(

s(0)
−i

)∣∣∣∣
�

−
∫

�(t)d
∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

+
∫

∂2vi

∂x∂θi

(
x∗ (si , s(0)

−i

)
; θ̂i

)
(θi − si )

∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)
(30)

Observe that due to the equal support of the two distribution functions F and �:

∂vi

∂x

(
x∗ (si , s(0)

−i

)
; θi

) ∂x∗

∂si

(
si , s(0)

−i

)
�
(

s(0)
−i

)∣∣∣∣
�

= ∂vi

∂x

(
x∗ (si , θ−i ) ; si

) ∂x∗

∂si
(si , θ−i )F(θ−i )

∣∣∣∣
�

(31)
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Thus, the f.o.c. becomes:

∫
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

+(θi − si )

∫
∂2vi

∂x∂θi

(
x∗ (si , s(0)

−i

)
; θ̂i

) ∂x∗

∂si

(
si , s(0)

−i

)
d�
(

s(0)
−i

)
= 0 (32)

We can rewrite the solution as follows:

s(1)
i (θi ) − θi ≡

∫
(F(t) − �(t)) d ∂vi

∂x

(
x∗
(

s(1)
i (θi ), t

)
; s(1)

i (θi )
)

∂x∗
∂si

(
s(1)

i (θi ), t
)

∫
∂2vi
∂x∂θi

(
x∗
(

s(1)
i (θi ), s(0)

−i

)
; θ̂i

)
∂x∗
∂si

(
s(1)

i (θi ), s(0)
−i

)
d�(s(0)

−i )

(33)
If F(t) − �(t) ≡ 0, then s(1)

i (θi ) = θi , hence the lemma. 
�

Lemma C

Statement The Spence–Mirrlees condition (A4) implies the following, for all
θi , θ̂i , s(0)

−i :

∂2vi

∂x∂θi

(
x∗ (s(1)

i (θi ), s(0)
−i

)
; θ̂i

) ∂x∗

∂si

(
s(1)

i (θi ), s(0)
−i

)
> 0. (34)

Proof The efficiency of the social choice rule x∗ implies that for all ti , t−i :

∂vi

∂x
(x∗(ti , t−i ), ti ) + ∂v−i

∂x
(x∗(ti , t−i ), t−i ) ≡ 0 (35)

Differentiate with respect to θi :

∂x∗

∂si
(ti , t−i )

[
∂2vi

∂x2
(x∗(ti , t−i ), ti ) + ∂2v−i

∂x2
(x∗(ti , t−i ), t−i

]

+ ∂2vi

∂x∂θi
(x∗(ti , t−i ), ti ) = 0 (36)

From the s.o.c. of the same problem,

∂2vi

∂x2
(
x∗(ti , t−i ), ti

)+ ∂2v−i

∂x2
(
x∗(ti , t−i ), t−i

)
< 0 (37)
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Thus, sgn( ∂x∗
∂si

(ti , t−i )) = sgn( ∂2vi
∂x∂θi

(x∗(ti , t−i ), ti ). Substitute ti by s(1)
i (θi ), t−i by

s(0)
−i and obtain:

sgn

(
∂x∗

∂si
(s(1)

i (θi ), s(0)
−i )

)

= sgn

(
∂2vi

∂x∂θi
(x∗(s(1)

i (θi ), s(0)
−i ), s(1)

i (θi ))

)
. (38)

Given A4 (i.e., sign of ∂2vi
∂x∂θi

(x, θi ) is the same for all (x, θi )) the result is proven. 
�

Proposition 2

Statement 2.1 Suppose A1–A5 hold. If F �F O SD � then s(1)
i (θi ) > θi , and if

� �F O SD F then s(1)
i (θi ) < θi .

Proof From Lemma B, the first-order condition for the L1 maximization problem
when n = 2 is given by Eq. (33). Lemma C (p. 25) shows that the denominator of the
expression is positive. Let us transform the nominator as follows:

∫
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

=
∫

(F(t) − �(t))

⎡
⎢⎢⎢⎣

∂2vi

∂x2
(x∗(si , t); si )

︸ ︷︷ ︸
−(1)

∂x∗

∂s−i
(si , t)

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
+(2)

+∂vi

∂x
(x∗(si , t); si )

∂2x∗

∂si∂s−i
(si , t)

︸ ︷︷ ︸
=0(3)

⎤
⎥⎥⎥⎦ dt (39)

The signs marked above are determined by the following.

1. ∂2vi
∂x2

(x∗(si , t); si ) < 0 by the concavity of preferences;

2. By Lemma C (p. 25), ∂2vi
∂x∂θi

(x∗; θi )
∂x∗
∂si

> 0 for all i, θi , si , s−i ; by A4, the signs

of ∂2vi
∂x∂θi

(x∗; θi ) and
∂2v−i
∂x∂θ−i

(x∗; θ−i ) are invariant for all θi , si , s−i ;

3. ∂2x∗
∂si ∂s−i

(si , t) = 0 by neutrality.

Therefore, the term

[
∂2vi

∂x2
(x∗(si , t); si )

∂x∗

∂s−i
(si , t)

∂x∗

∂si
(si , t) + ∂vi

∂x
(x∗(si , t); si )

∂2x∗

∂si∂s−i
(si , t)

]
(40)
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is negative. Given that � � F implies F(t) − �(t) > 0 for all t and � ≺ F implies
F(t) − �(t) < 0 Proposition 2 follows immediately. 
�
Statement 2.2 Suppose thatA1–A5hold, and F �F O SD � or� �F O SD F . Then for

all i, limEθi [
∣∣∣s(k)

i (θi ) − θi

∣∣∣] = 0 and sgn
(

s(k)
i (θi ) − θi

)
= −sgn

(
s(k−1)

i (θi ) − θi

)
.

Proof Recall that by definition:

s(k)
i (θi ) = argmax

si ∈�

Eθ−i

[
vi

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
+ v−i (x∗(si , θ−i ); θ−i )

]

(41)
The first-order condition for level-k strategy s(k)

i (θi ) is as follows (s
(k)
i (θi ) = si ):27

0 = Eθ−i

[
∂vi

∂x

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

) ∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)

+∂v−i

∂x
(x∗(si , θ−i ); θ−i )

∂x∗

∂si
(si , θ−i )

]
(42)

= Eθ−i

[[
∂vi

∂x

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

) ∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)]

−∂vi

∂x

(
x∗ (si , θ−i ) ; si

) ∂x∗

∂si
(si , θ−i )

]
(43)

(∗)= Eθ−i

[(
∂vi

∂x

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
− ∂vi

∂x

(
x∗ (si , θ−i ) ; si

))

×∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)

+∂vi

∂x

(
x∗ (si , θ−i ) ; si

) (∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)

− ∂x∗

∂si
(si , θ−i )

)]

︸ ︷︷ ︸
=0

. (44)

∂x∗
∂si

(si , s(k−1)
−i (θ−i ))− ∂x∗

∂si
(si , θ−i ) = 0 since by neutrality assumption ∂2x∗

∂si ∂s−i
(si , t) =

0 and x∗(·, ·) is continuously differentiable.

Apply the Taylor expansion to the first term:

0 = Eθ−i

[(
∂vi

∂x

(
x∗ (si , s(k−1)

−i (θ−i )
)

; θi

)
− ∂vi

∂x

(
x∗ (si , θ−i ) ; si

))

× ∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)]

(45)

= Eθ−i

[
∂2vi

∂x2
(
x∗ (si , ŝ−i ) ; θ̂i

) ∂x∗

∂si
(si , ŝ−i )

(
s(k−1)
−i (θ−i ) − θ−i

)

+ ∂2vi

∂x∂θi

(
x∗ (si , ŝ−i ) ; θ̂i

)
(θi − si )

]
∂x∗

∂si

(
si , s(k−1)

−i (θ−i )
)

(46)

27 To perform transition (∗) we add and subtract ∂vi
∂x (x∗(si , θ−i ); si )

∂x∗
∂si

(si , s(k−1)
−i (θ−i )).
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where θ̂i ∈ [min(θi , si );max(θi , si )], and ŝ−i ∈ [min(s(k−1)
−i (θ−i ), θ−i );max(s(k−1)

−i
(θ−i ), θ−i )]

Since ∂x∗
∂si

(si , s(k−1)
−i (θ−i )) �= 0 we get:

si − θi = Eθ−i

⎡
⎢⎢⎢⎢⎣

∂2vi
∂x2

(x∗(si , ŝ−i ); θ̂i )
∂x∗
∂si

(si , ŝ−i )

∂2vi
∂x∂θi

(
x∗ (si , ŝ−i ) ; θ̂i

)
︸ ︷︷ ︸

<0

(
s(k−1)
−i (θ−i ) − θ−i

)
⎤
⎥⎥⎥⎥⎦

,

Recall that si = s(k)
i (θi ); the distortion of type changes sign as k increases by 1.

Remark Recall from Proposition 2 that either s(1)
i (θi ) ≥ θi ∀θi , or s(1)

i (θi ) ≤ θi ∀θi .
By induction, the equation above implies that the same is true for all levels k: either
s(k)

i (θi ) ≥ θi ∀θi , or s(k)
i (θi ) ≤ θi ∀θi .

Moreover, from the proof of Lemma C we know that

− ∂2vi
∂x2

(x∗(si , ŝ−i ); si )
∂x∗
∂si

(si , ŝ−i ) − ∂2v−i
∂x2

(x∗(si , ŝ−i ); s−i )
∂x∗
∂si

(si , ŝ−i )

∂2vi
∂x∂θi

(x∗(si , ŝ−i ); si )
= 1, (47)

thus
− ∂2vi

∂x2
(x∗(si ,ŝ−i );si )

∂x∗
∂si

(si ,ŝ−i )

∂2vi
∂x∂θi

(x∗(si ,ŝ−i );si )
< 1.28

For θ̂i we have, by continuity,

− ∂2vi
∂x2

(x∗(si , ŝ−i ); θ̂i )
∂x∗
∂si

(si , ŝ−i )

∂2vi
∂x∂θi

(x∗(si , ŝ−i ); θ̂i )
< 1 (48)

as well. Take the expectation of both sides:

Eθi

[
s(k)
i (θi ) − θi

]
= Eθi Eθ−i

⎡
⎣

∂2vi
∂x2

(x∗(si , ŝ−i ); θ̂i )
∂x∗
∂si

(si , ŝ−i )

∂2vi
∂x∂θi

(x∗(si , ŝ−i ); θ̂i )
(s(k−1)

−i (θ−i ) − θ−i )

⎤
⎦

(49)
as types are independent and the distributions of types coincide,

28
− ∂2v−i

∂x2
(x∗(si ,ŝ−i );s−i )

∂x∗
∂si

(si ,ŝ−i )

∂2vi
∂x∂θi

(x∗(si ,ŝ−i );si )

∈]0, 1[.
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Eθi

[
s(k)
i (θi ) − θi

]
= Eθ−i

⎡
⎣(s(k−1)

−i (θ−i ) − θ−i )Eθi

∂2vi
∂x2

(x∗(si , ŝ−i ); θ̂i )
∂x∗
∂si

(si , ŝ−i )

∂2vi
∂x∂θi

(x∗(si , ŝ−i ); θ̂i )

⎤
⎦

(50)

Eθi

∣∣∣s(k)
i (θi ) − θi

∣∣∣ < Eθi

∣∣∣s(k−1)
i (θi ) − θi

∣∣∣ (51)

Consider the sequence
{
Eθi

∣∣∣s(k)
i (θi ) − θi

∣∣∣
}

k
. Since Eθi

∣∣∣s(k)
i (θi ) − θi

∣∣∣ ≥ 0, inequal-

ity (51) implies that the sequence converges. The proof is by contradiction. Let L
denote the limit of the sequence, and suppose slimsup

i (·) > slimin f
i (·) are such that

Eθi

(
slimsup

i (θi ) − θi

)
= −Eθi

(
slimin f

i (θi ) − θi

)
= L (take note of our remark on

page 28). By the continuity of the best reply correspondence, strategy slimsup
i (θi ) is best

reply to slimin f
i (θi ) andvice versa. Therefore, inequality 51 should apply to these strate-

gies as well. But this generates a contradiction—thus slimsup
i (θi ) = slimin f

i (θi ) = θi

(and L = 0).
This concludes the proof of Proposition 2. 
�

Proposition 3

Proposition 3a Under A1–A4.1, MLRP and complements environment, ∃t∗i such that

for all θi < t∗i if � � F then s(1)
i (θi ) < θi , and if F � � then s(1)

i (θi ) > θi .

Proposition 3b Under A1–A4.1, MLRP and substitutes environment, ∃t∗i such that

for all θi > t∗i if � � F then s(1)
i (θi ) < θi , and if F � � then s(1)

i (θi ) > θi .

Proof Given the non-neutrality, ∂2x∗
∂si ∂s−i

(si , t), we need to decompose the denominator
of Eq. (33). Start with the case of Proposition 3a:

∂2vi
∂x∂θi

(x, θi ) > 0, ∂2x∗
∂si ∂s−i

(si , t) ≥ 0. The nominator:
∫ +∞

t
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

=
∫ +∞

si

(F(t) − �(t))

⎡
⎢⎢⎢⎢⎣

∂2vi

∂x2
(x∗(si , t); si )

︸ ︷︷ ︸
−(1)

∂x∗

∂s−i
(si , t)

︸ ︷︷ ︸
+(2)

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
+(2)

+ ∂vi

∂x
(x∗(si , t); si )

︸ ︷︷ ︸
−(3)

∂2x∗

∂si ∂s−i
(si , t)

︸ ︷︷ ︸
+(4)

⎤
⎥⎥⎥⎥⎦

dt

︸ ︷︷ ︸
“first term”

+
∫ si

t
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
“second term”

(52)

It is convenient to separate the integral into two parts since ∂vi
∂x (x∗(si , t); si ) decreases

in t29 and ∂vi
∂x (x∗(si , si ); si ) = 0. Consider the first term in brackets:

29 ∂2vi
∂x2

(x∗(si , t); si )
∂x∗
∂t (si , t) < 0.
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1. ∂2vi
∂x2

(x∗(si , t); si ) < 0 by the concavity assumption

2. ∂x∗
∂s−i

(si , t) > 0, ∂x∗
∂si

(si , t) > 0 from A4.1 and Lemma C

3. ∂vi
∂x (x∗(si , t); si ) < 0 for t ≤ si

4. ∂2x∗
∂si ∂s−i

(si , t) > 0 by the complementarity.

Thus we obtain that

⎡
⎢⎢⎢⎣

∂2vi

∂x2
(x∗(si , t); si )

︸ ︷︷ ︸
−

∂x∗

∂s−i
(si , t)

︸ ︷︷ ︸
+

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
+

+ ∂vi

∂x
(x∗(si , t); si )

︸ ︷︷ ︸
−

∂2x∗

∂si∂s−i
(si , t)

︸ ︷︷ ︸
+

⎤
⎥⎥⎥⎦

(53)
is negative. The second term can be rewritten as follows:

∫ si

t
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

= ∂vi

∂x
(x∗(si , t); si )

︸ ︷︷ ︸
=0

∂x∗

∂si
(si , si ) (F(si ) − �(si ))

+∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

(
F(t) − �(t)

)
︸ ︷︷ ︸

=0

−
∫ si

t
(F(t) − �(t))

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)d (F(t) − �(t))

= −
∫ si

t
(F(t) − �(t))

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t) ( f (t) − ϕ(t)) dt, (54)

where
∂vi

∂x
(x∗(si , t); si ) ≥ 0, (55)

for t ≤ si
∂x∗

∂si
(si , t) > 0. (56)

First, suppose � �F O SD F : F(t) − �(t) > 0 ∀t ⇒ the first term is negative. If
f (si )−ϕ(si ) > 0, then the second term is negative, due to the following. By theMLRP
assumption, f (t)

ϕ(t) decreases in t ; thus, there exists a t∗i such that f (t∗i ) − ϕ(t∗i ) = 0.

This implies that, for θi such that s(1)
i (θi ) ≤ t∗i , the result is established: the L1s with

sufficiently low types distort their reports downwards.
Now suppose that F �F O SD �. Then, the first term is positive. By MLRP, ϕ(t)

f (t)
decreases in t and by the same reasoning for θi low enough the second term is positive,
too, hence type reports are distorted upwards.

Proposition 3a is now proven. 
�
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To prove Proposition 3b ( ∂2x∗
∂si ∂s−i

(si , t) ≤ 0), we change the decomposition of the
nominator as follows:

∫ +∞

t
(F(t) − �(t)) d

∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t)

=
∫ si

t
(F(t) − �(t))

⎡
⎢⎢⎢⎣

∂2vi

∂x2
(x∗(si , t); si )

︸ ︷︷ ︸
−

∂x∗

∂s−i
(si , t)

︸ ︷︷ ︸
+

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
+

+∂vi

∂x
(x∗(si , t); si )

︸ ︷︷ ︸
+

∂2x∗

∂si∂s−i
(si , t)

︸ ︷︷ ︸
−

⎤
⎥⎥⎥⎦ dt

+
∫ +∞

si

(F(t) − �(t)) d
∂vi

∂x
(x∗(si , t); si )

∂x∗

∂si
(si , t) (57)

Given that ∂vi
∂x (x∗(si , t); si ) decreases in t,we have that for t ≤ si ,

∂vi
∂x (x∗(si , t); si )

≥ 0 and thus the term in brackets is negative. Integrating the second term by part, we
obtain:

−
∫ +∞

si

∂vi

∂x
(x∗(si , t); si )

︸ ︷︷ ︸
−

∂x∗

∂si
(si , t)

︸ ︷︷ ︸
+

( f (t) − ϕ(t)) dt. (58)

Similarly to the argument in 3a, we identify the condition under which both parts
of the nominator have the same sign. Given the decomposition (57), we can see that
for this to hold si has to be sufficiently high (or θi such that s(1)

i (θi ) ≥ t∗i ). Proposition
3b proven. 
�

Proof of Proposition 4 The statement and proof are symmetric to Proposition 3. 
�

Proof of Lemma 3 Fix an arbitrary ε > 0. The subjective expected gain in deviation
from truthfully reporting (Pi , θi ) to (P̂i , θ̂i ) amounts to:

D
(

P̂i , θ̂i ; Pi , θi

)
≡ �W

(
P̂i , θ̂i ; Pi , θi

)

+λ

∫ [
ln p̂i (si+1) − ln pi (si+1)

]
pi (si+1) dsi+1, (59)
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where

�W
(

P̂i , θ̂i ; Pi , θi

)
≡
∫∫

�n−1

[
vi

(
x∗ (θ̂i , s−i

)
; θi

)
− vi

(
x∗ (θi , s−i ) ; θi

)]

×pi (s−i ) dn−1s−i

+
∫∫

�n−1

∑
j �=i

v j

(
x∗ (θ̂i , s−i

)
; s j

)
p̂i (s−i ) dn−1s−i

−
∫∫

�n−1

∑
j �=i

v j
(
x∗ (θi , s−i ) ; s j

)
pi (s−i ) dn−1s−i . (60)

The classic result of Good (1952) implies that

∫ [
ln p̂i (si+1) − ln pi (si+1)

]
pi (si+1) dsi+1 ≤ 0. (61)

Therefore, D
(

P̂i , θ̂i ; Pi , θi

)
≥ ε only if �W

(
P̂i , θ̂i ; Pi , θi

)
≥ ε. Consider set �

containing all P̂i , Pi such that for �W
(

P̂i , θ̂i ; Pi , θi

)
≥ ε for a least some

(
θ̂i , θi

)
∈

�2 and assume that � is non-empty. Then we can define

C = max(
P̂i ,Pi

)
∈�

max(
θ̂i ,θi

)
∈�2

�W
(

P̂i , θ̂i ; Pi , θi

)
(62)

and

− c = max(
P̂i ,Pi

)
∈�

∫ [
ln p̂i (si+1)− ln pi (si+1)

]
pi (si+1) dsi+1. (63)

C is the greatest reward for misreporting within� and c > 0 is the lowest punishment
(before scaling) for misreporting within �. The total gain from deviation (59) is
capped:

D
(

P̂i , θ̂i ; Pi , θi

)
≤ C − λc, (64)

hence one can always find λ > 0 such that C − λc < 0. Thus D
(

P̂i , θ̂i ; Pi , θi

)
< 0

and the premise of non-empty � is false for the given λ. We have shown that for

all ε > 0 there exists λ > 0 such that there exists no
(

P̂i , θ̂i ; Pi , θi

)
such that

D
(

P̂i , θ̂i ; Pi , θi

)
≥ ε. 
�
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Proof of Lemma 4 The subjective expected gain in deviation from truthfully reporting
(ki

i+1, θi ) to (k̂i
i+1, θ̂i ), where k̂i

i+1 �= ki
i+1 = ki − 1, amounts to:

D
(

k̂i
i+1, θ̂i ; ki

i+1, θi

)
≡
∫∫

�n−1

[
vi

(
x∗ (θ̂i , s−i

)
; θi

)
− vi

(
x∗ (θi , s−i ) ; θi

)]

×pi (s−i ) dn−1s−i

+
∫∫

�n−1

∑
j �=i

v j

(
x∗ (θ̂i , s−i

)
; s j

)
p̂i (s−i ) dn−1s−i

−
∫∫

�n−1

∑
j �=i

v j
(
x∗ (θi , s−i ) ; s j

)
pi (s−i ) dn−1s−i

−λ (65)

where p̂i and pi are implied by k̂i
i+1 and ki

i+1, respectively (k̂i+1 = 0 implies p̂i ≡ φ

and k̂i+1 ≥ 1 implies p̂i ≡ f ). For any k̂i
i+1 �= ki

i+1, letC
(

k̂i
i+1, ki

i+1

)
be themaximal

value of D(k̂i
i+1, θ̂i ; ki

i+1, θi )+λ̃, where themaximization is over (θ̂i , θi ) ∈ �2. Then,

for any (θ̂i , θi ) ∈ �2

D
(

k̂i
i+1, θ̂i ; ki

i+1i+1, θi

)
≤ C

(
k̂i

i+1, ki
i+1

)
− λ. (66)

Clearly, one can always find λi (k̂i
i+1, ki

i+1) > 0 such that D(k̂i
i+1, θ̂i ; ki

i+1, θi ) < 0

if λ = λi (k̂i
i+1, ki

i+1). Let λ = max
i,k̂i

i+1,k
i
i+1

{λi (k̂i
i+1, ki

i+1)}, then for all k̂i
i+1, θ̂i , ki

i+1, θi

we obtain: D(k̂i
i+1, θ̂i ; ki

i+1, θi ) < 0. 
�
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