
Introduction

Town centers form the core of many urban areas and are characterized by clustering of

various types of socio-economic activities with retail  and related services being pivotal.

They can be viewed as complex economic systems that  constantly  evolve (Thurstain-

Goodwin and Unwin 2000) and therefore their composition and spatial extent are likely to

expand or contract over time. This evolution has been linked to changes in the planning

system, rising property  values,  changing levels of  accessibility,  other  forces of change

such as economic shocks or more gradual  changes such as the rise of Internet sales

(Singleton et. al. 2016).

It  has  long  been  recognized  within  multiple  international  settings,  that  the  aggregate

national  structure  of  consumer  spaces  and  shopping  destinations  are  complex  (Berry

1967);  with retail  cluster  size and function relating to  their  attraction,  market potential,

competition  and  agglomeration  benefits.  Within  many  contexts  traditional  shopping

destinations that have evolved naturally and appear well-embedded within the urban fabric

(including town centers), are supplemented by purpose-created retail opportunities such

as regional shopping centers, retail  parks, strip malls or focused shopping destinations

such as designer outlets (Teller and Reutterer 2008). Although it has been argued that

depicting retail agglomerations for a national extent, and particularly accounting for more

granular temporal shopping patterns is very challenging (Mackaness and Chaudhry 2011);

the  classification  of  shopping  destinations  and  delineation  of  their  spatial  extent  is

essential to gaining a better understanding of the relationship between use of retail space

and  changing  consumer  behavior  (Guy  1998).  A consistent  and  rigorous  approach  to

defining town center boundaries enables systematic metrics of retail center morphology

and  performance  to  be  actualized  (Thurstain-Goodwin  and  Unwin  2000),  alongside

providing utility as input into many commonly implemented retail analytics tasks related to

store location and demand estimation (Newing et al. 2015).
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In  the  case  of  England  and  Wales,  a  national  set  of  town  center  boundaries  were

developed by Thurstain-Goodwin  and Unwin (2000)  and subsequently  adopted by  the

Department of Communities and Local Government (DCLG) in 2004. Their approach was

to  generate  surfaces  of  spatial  densities  using  kernel  density  estimation,  from  socio-

economic  variables  including  building  density,  diversity  of  building  use,  and  tourist

attraction  (Mackaness  and  Chaudhry  2011).  In  addition,  their  approach  aimed  at

delineating  town centers,  however,  such zones are  more  expansive  (e.g.  by  including

office  space)  than  those  that  might  be  related  mainly  to  retail.  As  such,  one  of  the

objectives of this work is to move away from a more general definition of town center

locations as centers for employment, to a more functional measure of spaces delineated

for retail and services. Furthermore, in many cases, the extent of the 2004 DCLG town

center boundaries will  likely have changed over the past decade, eroding the utility of

these  previous  models  for  contemporary  applications.  Finally,  the  availability  of  more

accurate and comprehensive spatial data on retail unit locations in Great Britain (G.B.) has

improved significantly since this time, which provides scope for exploring a new robust

method  of  defining  the  spatial  extent  of  retail  agglomerations.  As  such,  this  paper

highlights deficiencies in a number of existing cluster analysis methods for retail center

definition  before  presenting  a  density-based clustering  technique that  can  consistently

identify retail areas, is updatable over time and can be applied to wider national extents.

We implement this analysis using a national dataset of retail and service locations, and

evaluate the center definition outcomes at a local level.   

Where are retailers located?

A national occupancy dataset of 529,062 retail locations across G.B. was provided by the

Local Data Company (LDC) through the ESRC Consumer Data Research Centre and was

collected via a large pool of local surveying teams during 2015. The data contain detailed

information about the current occupier and location of retail  unit  and service premises.



While  a  full  postcode  was  available  for  all  surveyed  premises  (enabling  geocoding

proximal  to  ~13  properties),  more  precise  latitude  and  longitude  coordinates  were

available for 437,260 units (about 82%), which were retained for further analysis;  thus

providing building level of accuracy. Other collected information for each location included

the fascia (a surrogate for occupier) and the type of retail or service business (i.e. leisure,

comparison, service and convenience) including vacant outlets. For retail units located in

shopping centers, retail and leisure parks the respective name of the shopping center or

retail park was also provided.

Conceptually, utilizing vacant units in the identification of local retail agglomerations may

be problematic given that these voids may often occur as a result of failure of a particular

retail  setting (Benjamin et al.  2000),  and as such, an indication of potential  change in

extent  morphology.  For  this  reason,  all  vacant  units  were  removed  from the  dataset.

Additional processing also removed units that were classified as auto services that are not

typically considered part of retail agglomerations. Furthermore, miscellaneous (not related

to retail or unclassified units) were also excluded. The final cleaning operation identified

and removed duplicate locations (i.e. points with identical coordinates or within very close

proximity),  which can unduly influence clustering results as well  as the identification of

outliers.  These  duplicate  locations  were  typically  the  result  of  the  two-dimensional

representation of retail units within multi-storey buildings. Thus, the removal of duplicates

(any points within a 2 meter radius from another point) was carried out.

Estimating retail center location and extent; methods and calibration

Cluster analysis is a collection of unsupervised learning methods that address the issue of

grouping a set of objects based on similarity. Many commonly used clustering algorithms

make group allocations with  the  objective  of  increasing  similarity  within  a  cluster  and

increasing  dissimilarity  between  clusters.  Other  commonly  used  clustering  techniques

such as density-based algorithms seek dense regions separated by low density regions,



while  model-based methods assume that  the  data come from a mixture  of  probability

distributions,  each  of  which  represents  a  different  cluster  (Gan  et  al.  2007).  Cluster

analysis  is  a  multivariate  technique  (multiple  attributes  of  the  phenomenon  under

investigation can be used), but in this study it is strictly spatial; utilizing only the locations

of  the  retail  units.  This  is  an  appropriate  approach  for  the  identification  of  retail

agglomerations where the extent of the clusters are determined by spatial discontinuity in

unit distribution (Dearden and Wilson 2011).

An  important  consideration  when  clustering  spatial  data  is  to  select  a  method  that  is

sensitive to the distinction between clusters that are either compact or chained (Gan et al.,

2007)  and,  additionally,  can  identify  outliers  outside  of  primary  observed  geographic

distributions. Within a retail  context,  examples of compact clusters could include those

retail  units  residing  within  a  city  or  major  town center  such as  Wolverhampton (West

Midlands) (Figure 1A), often with connecting voids that are pedestrianized. Chained retail

clusters on the other hand often can be observed along the road network (these are often

known as “high streets” in Great Britain), such as Clapham Junction (London) (Figure 1B). 

[Figure 1A and Figure 1B here]

In order to estimate the definition of retail centres, the following clustering methods were

evaluated:  DBSCAN (Ester  et  al.  1996),  Quality  Threshold  (Scharl  and  Leisch  2006),

Kernel Density Estimation (Azzalini and Torelli 2007), Random Walk (Csardi and Nepusz

2006)  and K-means (Lloyd 1982).  As  will  be  described,  all  of  the  clustering  methods

evaluated require the calibration of tuning parameters that we selected to optimize using

the S_Dbw internal evaluation indicator (Halkidi and Varzigiannis 2002), which  has been

found by  Liu  et  al.  (2010)  to  provide  better  results  compared to  seven other  internal

validation indexes. It is defined as the sum of the mean dispersion (S) in the clusters and

of the between-cluster density (G) (Desgraupes 2013):

S_Dbw = S + G                                                                                                                   (1)



As  such,  the  process  of  calibrating  each  clustering  method  was  carried  out  prior  to

implementation in the evaluation by identifying suitable starting values (for those tuning

parameters that a single value could not  be determined),  then producing a number of

different models within a range of values and finally selecting the optimal model based on

the  S_Dbw index  (i.e.  selecting  the  parameter  values  of  the  model  with  the  smallest

S_Dbw value).

DBSCAN (Density Based Spatial Clustering of Applications with Noise) (Ester et al. 1996)

was selected as it is one of the most prevalently implemented spatial clustering algorithms

that is able to find arbitrarily shaped clusters and to handle outliers (Gan et al. 2007). In

addition,  with  the use of  kd-tree indexing this  was the computationally  fastest  method

tested. The greatest drawback of DBSCAN is limited sensitivity for datasets with varying

densities (Everitt et al. 2011). Our optimization for the epsilon (radius) parameter started

by calculating the distance to the 4 nearest neighbors for each point (Ester et al. 1996).

The distances were then sorted in  ascending order  and the 95th percentile  value was

selected as starting epsilon. Even though this is a simple technique, k-NN distance has

been found to be a reliable proxy of local density and outlier detection, outperforming even

newer  and  more  complicated  methods  (Campos  et  al.  2016).  The  minimum  points

parameter was set equal to 10, which is the minimum number of retail units required for an

area  to  be  classified  as  local  center  (Wrigley  and  Lambiri  2015).  Following  this,  the

DBSCAN method was calibrated by allowing the epsilon value to vary within the range of

+- 20 meters from the starting epsilon value. Using 5 meter intervals, the best clustering

solution from 9 DBSCAN models for every study area was selected with the S_Dbw index.

Within the study sites, the 20 meters range was used as it was found to be large enough to

test as many models as possible without being an extremely demanding task, while the 5

meters interval was small  enough that any difference between models using a smaller

interval was negligible.



Non-parametric density estimation (Azzalini and Torelli 2007; Azzalini and Menardi 2014)

combines both kernel density estimation (KDE) and a graph model that connects retailers

into a network by proximity. In this process, KDE is used to identify a number of core

clusters with density above a certain threshold from within the spatial distribution. These

are then used to create connected regions of points (subgraphs) by means of Delaunay

triangulation. The technique requires definition of a parameter value that is multiplied by

the smoothing vector of the kernel estimator. This was determined through comparison of

retail  boundaries delineated by respective local  authorities to  outputs created with  the

clustering method. Suitable values for the smoothing parameter varied between 0.4 and

1.1. Lower values resulted in too fragmented clusters, while higher values over-smoothed,

creating  large  and  also  unrealistic  clusters.  Multiple  models  were  tested,  varying  the

smoothing parameter value using 0.05 intervals, and again selecting the optimal clustering

with the S_Dbw index. A key advantage of this method is that it is non-parametric (it does

not  make  any  assumptions  concerning  the  probability  distribution),  and  thus  is  more

suitable  to  identify  clusters  of  varying  shapes  and  densities.  However,  it  is  also  a

stochastic method, and as such it requires optimization, which has the disadvantage of

increasing computation times. 

 The Quality Threshold (QT) (Scharl and Leisch 2006) identifies clusters after specification

of two parameters: the maximum diameter of the clusters and the minimum number of

neighbors within a cluster.  The minimum number of neighbors was set equal to 10 which

aligns to a formal definition of a retail center within the UK (Wrigley and Lambiri, 2015).

Through testing within different contexts, the optimal radius value was highly sensitive to

retail unit density variation. After consideration of the S_Dbw index, the radius parameter

was allowed to vary between 100 and 400 meters with 50-meter intervals for smaller urban

areas (e.g.  Abertillery)  and between 300 and 1000 meters with 100-meter intervals for

larger urban areas (e.g. Bristol). The algorithm initializes by randomly selecting a point as



a center of a cluster and then, for as long as the diameter is smaller than a user specified

value, it iteratively adds a point to the cluster so as to minimize the increase in the cluster

diameter.  This process is  repeated for a  random number of  sample center  points that

satisfy  the  condition  of  having  at  least  one  neighbor  within  the  specified  diameter

threshold. After the largest candidate cluster is identified and removed from the dataset the

process is repeated for as long as there are no remaining clusters with size greater than

the  neighbor  threshold.  The  method  is  also  computationally  intensive  due  to  being

stochastic. 

Random Walk was tested which is a graph-based method that is based on the Walktrap

algorithm (Pons  and  Latapy 2005).  The  algorithm finds  densely  connected  subgraphs

based on the assumption that random short walks tend to stay within the same densely

connected  subgraph.  Initially,  the  algorithm  partitions  the  graph  into  a  number  of

subgraphs and then computes the distances to all  adjacent vertices. Subsequently,  for

each iteration it chooses two subgraphs to merge if they are adjacent and if they minimize

the squared distances between the vertices. The output is a dendrogram where the leaves

are the vertices and each edge is a connection between subgraphs. The best partition of

the graph is the one that maximizes a modularity criterion (Newman 2004). Optimization

found that the method required a maximum number of 50 steps in order to find the best

model using the S_Dbw index.

The final algorithm tested was  K-means, with the only parameter requiring specification

being the number of K clusters. Initially, the algorithm allocates objects randomly to each

cluster and, subsequently, iteratively assigns the objects to the nearest cluster according

to a distance measure until either the distance measure or the membership of the clusters

do  not  change  significantly.  This  method  has  low  computational  complexity,  however,

produces clusters with convex hull shapes and it does not always identify outliers, that is,

all  objects  are  clustered  although  may  return  outlier  clusters  with  very  small  case



frequency. In addition, the method is also stochastic, and therefore requires optimization

through multiple  runs which  occurs  at  the  expense of  computational  time.  Information

obtained from the application of the other clustering methods was used to calculate the

starting value of the number of clusters as the mean number of the clusters identified by

DBSCAN,  KDE,  QT and  Random Walk.  Subsequently,  the  method  was  calibrated  by

producing 11 models with the number of clusters varying within the range of +- 5 clusters

from the starting value and the optimal model was selected based on the S_Dbw index.

In additional to the aforementioned methods, the Chameleon (Karypis et al 1999), Fast

Greedy (Clauset et al. 2004) and Ensemble (Hornik, 2007) methods were also tested but

are not used for the evaluation. Chameleon was not included given difficulty in automating

the process of identifying optimal values for its six tuning parameters, Fast Greedy is a

graph-based method that did not provide better results than the Random Walk and finally

the Ensemble method was particularly demanding in terms of computer resources for a

nationally extensive application. Obviously, there are a plethora of other methods that have

been shown to be useful for clustering spatial data such as the DBCLASD method (Xu et

al.  1999).  However,  an  important  factor  for  inclusion  in  the  evaluation  was  that  the

methods were accompanied by useful documentation that facilitated their implementation.

In  addition,  that  there was indication  they were are under  active development  or  well

established, and were available within most programming languages. 

Center definition and evaluation

The  five  candidate  methods  were  evaluated  over  eight  case  study  areas  that  are

representative in terms of G.B. retail location density and size. These included: Abertillery

and  Cardiff  in  Wales,  Bristol,  Clapham  Junction,  Winchester  and  Wolverhampton  in

England, Glasgow and Inverurie in Scotland (Figure 2 and Figure 3).

[Figure 2 and Figure 3 here]



Although there is a larger pool of other representative areas, within these specific locations

additional supplementary data were also available for cross validation and included two

sources. Firstly,  local authorities within the U.K. are required to perform a town center

“health  check”  (NPPF 2012),  which typically  requires them to delineate boundaries for

retail  centers.  Even  though  the  reports  produced  by  the  local  authorities  contain  rich

information, the publicly available boundaries can typically only be accessed in rendered

pdf format. Given that a small number of (qualitative) comparisons can be made against

these sources without extensive re-digitizing, the reports were used to assist with input

parameter  specification  and  testing  during  the  calibration  process  described  in  the

previous section. Secondly, boundaries for the 339 largest “retail places” in the U.K. were

acquired from the company Geolytix, and although they represent only a subset of total

retail boundaries, they nevertheless provide an additional and relatively large sample of

independent retail areas suitable for comparison.

Finally, within evaluation that follows, all  clusters (identified by each clustering method)

that had less than 10 retail units were removed, which as noted earlier, is the minimum

threshold considered to be as part of a center. Additionally, for those clustering solutions

that additionally identified outliers from the main distributions, these locations were also

removed. 

The remainder of this section presents the outputs of the clustering methods for two of the

larger  more  complex  study  areas:  Bristol  and  Glasgow,  alongside  an  overall  set  of

evaluation results for all case study locations.

Bristol has a greater than average number of retail units (2456), high variability of retail

density and potential occurrence of different cluster shapes. The location of the retail units

(blue dots) are shown in Figure 4 alongside labels colloquially used for the various retail

centers and their boundaries as defined by the respective local authorities.

[Figure 4 here]



In the past, Broadmead was recognized as the principal shopping center of Bristol, but

recent studies (Bristol  City Council  2008 [unpublished])  suggest that the boundaries of

Bristol should be expanded to include the high streets of Stokes Croft south of Ashley

Road (depicted as sparse dots in Figure 4), Christmas Steps and Old Market. The most

recent Local Plan from 2015 (BCAP, 2015), which is required by law, defines precisely the

boundary of a wider Bristol  city center, however the spatial extent of the individual so-

called shopping, services and the evening economy areas is less specific as these areas

often have overlapping functions. The Local Plan defines the primary shopping area as

Broadmead and Queen’s  Road;  in  addition,  it  defines  the  primary  shopping frontages

(Broadmead and  part  of  Queen’s  Road  and  Old  City),  secondary  shopping  frontages

Stokes Croft,  Old Market,  Victoria Road and parts of  Queen’s Road and Old City and

leisure use frontages (part of Old City and Broadmead).

The first clustering algorithm to be evaluated was DBSCAN, which identified 26 clusters in

the study area as can be seen in Figure 5 (outliers are denoted by 0). Stokes Croft is part

of the city of Bristol (with the cluster boundary extending north of Ashley road), however,

Old Market is not. There is a good separation from the Gloucester Road cluster that has

been identified correctly as a single cluster.  Clifton,  Whiteladies and most of  the town

center have also been identified as separate clusters. Within Bedminster, the western part

of the area was however identified as a separate cluster, most likely due to higher local

density. The KDE method  identified 11 clusters with a cluster for the city center being fairly

accurate, matching the local authority defined boundary. However, it is obvious that the

method  identified  fewer  clusters  than  might  be  expected  given  the  overall  retailer

distribution. The clustering solutions generated by QT, K-means and Random Walk were

somewhat  similar  in  that  they  identified  separate  clusters  in  areas  that  are  strongly

connected (e.g. Bristol city center, Gloucester road) while they clustered together points

that are weakly connected (e.g. Totterdown and Well road for QT and K-means, Queen’s



road  and  Clifton  for  Random Walk).  A further  problem with  the  methods  is  that  they

identified few outliers, which results in the identification of very sparse clusters.

[Figure 5 here]

With 2347 retail units, Glasgow it is the second largest study area in the analysis (Figure

6). There is one metropolitan retail center (Glasgow city), one regional center (Partick –

Byres road) and 5 town centers (Calton, Crastonhill – Yorkhill, Kelvinbridge, St. George's

Cross – Great Western road and Woodlands) (Figure 6). The boundary of Glasgow city is

well defined by the M8 motorway (north and west), the river Clyde (south) and the High

street (west).

[Figure 6 here]

DBSCAN (Figure 7) identified accurately the cluster of Glasgow city center, with only a few

retail units crossing the M8 on the west of the city and south of Woodlands. The QT and

KDE methods clustered the city center together with the town center of Calton. K-means

and QT also merged the western part of Glasgow city with Woodlands and St. George’s

Cross. The output from the Random Walk had additional issues, splitting up the larger

retail areas as in the case of Partick-Byres road. For that retail area, DBSCAN provided

the  most  accurate  result,  however,  the  boundary  of  the  cluster  extended  to  include

Kelvinbridge.  Concerning St.  George's  Cross,  the cluster  obtained from DBSCAN is  a

close match to the boundary defined by the Glasgow city council and the same could be

said for Woodlands.

[Figure 7 here]

Table 1 presents the overall evaluation results from the qualitative comparison for all of the

eight study areas. In most cases, the DBSCAN method provided results that were more

consistent  with  those  formal  definitions  created  from  the  respective  local  authorities.

Importantly, DBSCAN was the most efficient method in terms of computing resources and

this is particularly significant for a national extent study. In addition, it was easier to identify



starting values for the parameters of the method, while one of the strongest advantages of

DBSCAN was the identification of outliers.

[Table 1 here]

It  is  clear  from the results  that  DBSCAN performed well  for  the case study selection,

however, this method is known to underperform in areas where the density is not uniform

(Everitt et al. 2011). Such an issue also becomes apparent when looking at the range of

the optimal  epsilon values that were used for the selected areas (Table 2).  If  a single

global  epsilon  value  had  been  used  for  all  case  studies,  it  would  have  resulted  in

suboptimal local results. As such, we developed a refinement to the method which involves

splitting of the national-scale data into more homogeneous areas for separate treatment;

with the challenge being that unlike the case study evaluations, this required automation

given that coverage was for the national extent.

[Table 2 here]

Development and application of a modified DBSCAN method

In order to address the issue of heterogeneous density, a modified approach to DBSCAN

was developed by introducing three important concepts:

(1) the combination of DBSCAN with graph data structures and algorithms that are used to

iteratively  partition  the  national  study  area  into  subgraphs  of  successively  more

homogeneous point density;

(2) the iterative application of DBSCAN using a local epsilon value for each subgraph,

followed by the selection of one cluster per iteration based on the condition that the epsilon

value is representative of the cluster’s density;

(3) the use of a third parameter termed maximum distance to constrain the points that can

be members of a cluster to have at least one neighbor within a radius that is less than or

equal to the maximum distance. The rationale behind this decision is that distance is an

important  parameter  of  retail  spatial  agglomerations,  which  is  sensitive  to  gaps  and



discontinuities. Given that both spatial density and spatial discontinuity determine whether

a point is part of a spatial cluster, the combination of k-nearest neighbors (a proxy of point

density)  with  the  radius-based  constraint  (a  proxy  of  spatial  discontinuity)  facilitates

neighboring locations within close proximity and similar point density to be members of the

same cluster.  Compared  to  a  post-processing  removal  of  points  based on a  distance

threshold, using a distance threshold within the modeling process has the advantage of

avoiding  the  inclusion  of  outliers  in  the  calculation  of  the  epsilon  value  but,  more

importantly,  facilitates the decomposition of a graph into subgraphs of more homogeneous

density.

In the first step of the proposed methodology, a sparse graph representation of the spatial

dataset  is  created  based  on  a  k-nearest  neighbor  matrix  and  the  maximum distance

constraint.  The vertices of the graph are the locations that have at least one neighbor

within  the  specified  maximum  distance.  Next,  a  Depth  First  Search  algorithm  is

implemented to decompose the sparse graph to create more homogeneous (in terms of

point density and distance between the retail units) subgraphs, under the condition that

each subgraph has at least 10 vertices and that each location has at least one neighbor

within the maximum distance. The vertices that are not part of any subgraph are removed

as outliers. The maximum distance value in this study represents the maximum distance

that a location can still be considered well connected to a shopping area on foot. Different

distance values have been suggested as indicators of walking distance, ranging between

300 to 500 meters (NPPF 2012; Rogstad and Dysterud 1996). Based upon the definition of

edge of center for retail purposes in the UK (DCLG, 2009), the maximum distance value

was set  equal  to  300 meters.  Three k values were tested to  split  the study area into

subgraphs, and included 4, 10 and 15 (Figure 8). The first value was tested as it is already

used as a proxy of local density and the second value was considered as it is used by the

minimum points parameter of DBSCAN. As it would be expected, the lower the k value the



greater the number and the more homogeneous the density of the subgraphs that were

produced.  On the other  hand,  using lower k values (between 4 and 10) can result  in

splitting  areas  with  low  point  density  (mostly  chained  clusters,  i.e.  High  Streets)  into

different subgraphs. For this reason the k value was set equal to 15. 

[Figure 8 here]

Given that the spatial extent of each subgraph depends on the connectivity and number of

points within an area, each subgraph can represent a town center, a city center or even a

metropolitan  region.  DBSCAN,  however,  assumes  that  the  epsilon  value  is  a

representative indicator of the local density. To fulfill that assumption, in the third step of

the  methodology,  DBSCAN  is  first  applied  (within  each  subgraph)  in  an  exploratory

approach to identify  and select the cluster that  has density (as estimated by the local

epsilon, i.e. the 95th percentile of the 4-nearest neighbors’ distances) closer to the overall

density.

Following the selection of a single cluster, all the neighboring clusters (i.e. the clusters that

share a common edge in the graph) with similar density are selected along with those

neighboring points that were identified by the exploratory DBSCAN as outliers. Following

this, a new study area of homogeneous point density is created from the selected points

and DBSCAN is  applied  again  to  identify  the  clusters.  The selected clusters are then

removed from the graph representation of the point data, and the process of using an

exploratory DBSCAN model to identify a cluster and select those neighboring clusters with

similar point density is iteratively carried out until no cluster can be formed. This process is

summarized in Figure 9. It should be noted that one of the advantages of the methodology

is that it is no longer required to optimize the clustering solution using the S_Dbw index,

which results in a faster algorithm.

[Figure 9 here]



To evaluate the point density similarity among clusters,  the standard deviation of point

density in a subgraph was used. More specifically, those neighboring clusters with point

density within 1 standard deviation from the point density of the initially selected cluster

were also selected, with the assumption being that they define an area of homogeneous

point density. To test the sensitivity of the method to the standard deviation threshold, five

different values were considered, 0.6, 0.8, 1.0, 1.2 and 1.4. As can be seen in Table 3, the

clustering  solutions  are  practically  identical  when  looking  at  the  number  of  clusters

produced and the distribution of the local epsilon value. 

[Table 3 here]

For  the  parameter  values  required  by  DBSCAN,  as  detailed  earlier,  the  value  of  the

minimum points parameter was set equal to 10 and the epsilon value was calculated as

the 95th percentile of the 4-nearest neighbor distance. However, the epsilon value was only

allowed to vary within the range between maximum 170 meters, which was found to be

useful  to  exclude  outliers  from being  identified  as  members  of  clusters,  and  a  lower

bounds of 80 meters which was used to avoid identifying certain large shopping malls as

clusters. This necessity is a consequence of the hierarchical nature of retail centers within

G.B. given that the objective of the analysis was to create clusters that were inclusive of

the  different  functional  retail  forms. Following  the  application  of  DBSCAN  to  each

subgraph and the extraction of 2920 clusters, the final retail agglomerations were compiled

and each retail location was assigned an identifying number denoting cluster membership.

The clusters obtained from the modified DBSCAN methodology for the selected study

areas are shown in Figure 10 and can be compared against those created by applying the

traditional DBSCAN to each subgraph (Figure 11). For the traditional DBSCAN model a

global epsilon equal to 107 meters was applied, which was calculated as the 95% of the 4-

nearest neighbors distance.

[Figure 10 and Figure 11 here]



When comparing the two graphs, it can be seen that in certain areas such as Bristol and

Cardiff  the  clustering  solutions  are  quite  similar,  however,  in  areas  such  as  Clapham

Junction and Wolverhampton the modified DBSCAN model appears to be more sensitive

to gaps and discontinuities, thus identifying a greater number of clusters. Particularly for

Glasgow,  the  modified  DBSCAN  method  provided  the  only  clustering  solution  that

identified Kelvinbridge as a separate cluster in an area of high point density that does not

provide major discontinuities between clusters. At the same time, it was the only method

that identified a sparse cluster south of the river Clyde and west of the M8 motorway (the

epsilon value was 80 meters for  Kelvinbridge and 170 meters for the cluster south of

Glasgow). Similarly, for Inverurie, the modified DBSCAN method used an epsilon value of

170 meters to correctly identify a single cluster in the study area, compared to the two

clusters identified by the traditional DBSCAN method when the global epsilon value of 107

meters was used.

The results derived with this new method were compared to data supplied by the company

Geolytix;  which  represent  the  only  freely  available  and independently  created national

sample of contemporary retail center extents. They provide frequent updates of a dataset

of retail places across the U.K., part of which (339 places) were licensed as open data in

2012.  The  Geolytix  boundaries  are  produced  using  multiple  variables  (including  the

locations of retail units) (OpenData 2015) with information that was collected at least three

years prior to the data that were used in our analysis.  Additional  causes of difference

between the two datasets might also include the different objectives and notion of what

constitutes a retail center (Geolytix did not use a threshold of minimum 10 retail units), and

only the boundary polygons from the clustered locations of the retail units were available.

Given that the creation of similar polygon boundaries for our new results may result in an

additional source of error, it was decided to compare the Geolytix boundaries against the

retail unit locations and associated clusters. The comparison was based on two metrics,



the n-ary relation between the two datasets and the proportion of points within the Geolytix

polygons. The n-ary relation returns a score where the higher the number of clusters that

had one-to-one relation with the clusters identified by Geolytix the better the relation.

Data pre-processing removed the major out of town retail parks from the Geolytix dataset,

which was followed by a spatial  join of  the Geolytix dataset  with the clustered retailer

locations. There were 294 spatial intersections between the two datasets, out of which 244

were one-to-one.  Summary values of  the spatial  distribution of  the clustered locations

within the Geolytix boundaries are shown in Table 3. On average (based on the median

value) almost 90% of the clustered points were within the Geolytix boundaries.

Glasgow (Figure 12) serves as an example where the two datasets mostly overlap, but

also shows that the spatial extent of the clusters produced in this analysis was on average

larger, which to some extent is related to Geolytix post-processing of boundaries to be

constrained  by  the  road  network.  Examples  where  the  two  datasets  have  significant

differences include Bristol (Figure 13) and London (Figure 14).

[Figure 12 and Figure 13 here]

Concerning Bristol, it can be seen that Geolytix split the city center into smaller clusters, of

which only Broadmead was available as open data. However, the clustering solution for

Bristol that was produced in this analysis was very similar to the one produced by the

Bristol local authority and, thus, arguably more appropriate based on this local knowledge.

Geolytix also split London into smaller clusters, 7 of which were available for the area that

was identified by the modified DBSCAN method as a single cluster. A possible reason for

this difference could be that Geolytix used additional variables in their clustering method,

which, particularly for London, would result in identifying clusters based on different retail

activities rather than just retail density. Despite these mismatches that to some extent are

related to different objectives and notions of what constitutes a retail center, it could be

argued that the two clustering solutions largely overlap in the areas that were available by



the open source Geolytix retail places, which provides evidence for the validity of the retail

clusters that were produced in this work vis-à-vis competing methods.

[Table 4 here]

Conclusion

The objective of this analysis was to develop a clustering method that would facilitate the

identification of retail agglomerations across a national extent and that could be updated

over time.  For this purpose, five of the most frequently used clustering methods were

compared within 8 representative locations across Great Britain. The DBSCAN method

was selected on the basis that it provided the most accurate representation of those retail

areas relative to formal definitions; it was faster to produce a clustering solution and also

easier to calibrate optimized input parameter values.

However,  in order to address a well-known issue that DBSCAN does not cope well  in

areas of varying densities, the DBSCAN method was adapted so that it could be iteratively

applied within smaller more homogeneous sites that were created using a k-NN sparse

graph representation of the retail locations. Each selected retail cluster was created by the

DBSCAN algorithm with an epsilon value that was representative of the local point density.

The clusters produced were  comparable to  those retail  areas designated by the  local

authorities for the sample areas of study, and in some cases, were more accurate when

compared to the traditional DBSCAN method. In addition, the identified clusters were in

most areas similar in terms of spatial extent to those produced by the Geolytix company

using  alternative  dataset  and  methodology.  It  should  be  noted  that  even  though  the

suggested method is more demanding in terms of computer resources compared to the

traditional DBSCAN, it scales better as it could be applied in parallel for each subgraph. 

Furthermore, the output of this analysis provides a better spatial coverage and option for

automated update in comparison to the existing DCLG town center boundaries. Given that

the  DCLG  boundaries  were  widely  used  by  academics,  local  authorities  and  private



organizations across the country it can be anticipated that these results will prove to be

valuable for research and analysis.

With the developed methodology being open source (github / data links will be added post

review), it will also be straightforward to update the retail boundaries on a regular basis,

and potentially apply the suggested method within a context of historic data. Finally, given

the variety in point density, size and shape of the retail clusters in the dataset it would be

reasonable to assume that the methodology could be applicable with different datasets

and for different international locations.
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Table 1. Results from the qualitative comparison of the clustering methods in eight 

locations across Great Britain

Case study area Retail center type Preferred method

Abertillery, Wales Small town center KDE, Random Walk

Bristol, England Large urban area DBSCAN

Cardiff, Wales City center DBSCAN

Clapham Street, England Large high street DBSCAN

Glasgow, Scotland Large city center DBSCAN

Inverurie, Scotland Small high street DBSCAN

Winchester, England Historic town center DBSCAN

Wolverhampton, England Regional town center DBSCAN, Random Walk



Table 2. Optimal epsilon values used by DBSCAN in the selected study areas.

Study Area DBSCAN epsilon (meters)

Abertillery 84

Bristol 119

Cardiff 120

Clapham Junction 70

Glasgow 70

Inverurie 120

Winchester 80

Wolverhampton 91



Table  3.  Summary  values  of  five  clustering  models  with  different  standard  deviation

thresholds.

Models
Number of

Clusters
Distribution of epsilon values (meters)

Standard
Deviation
Threshold

Count Minimum 25% 50% Mean 75% Maximum

0.6 2928 80 80 80 100.3 113.0 170.0

0.8 2922 80 80 80 100.3 113.0 170.0

1.0 2920 80 80 80 100.3 113.0 170.0

1.2 2923 80 80 80 100.1 113.0 170.0

1.4 2921 80 80 80 100.1 113.0 170.0



Table  4. Summary  values  describing  the  spatial  distribution  of  the  clustered locations

within the Geolytix boundaries.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

0.68     63.97 89.81 73.99 95.99 100.00


