FIAT LUX

UNIVERSITY OF LIVERPOOL

1 - Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK

Overview

- Long-acting (LA) sustained release ARVs in Physiologically-based pharmacokinetic (PBPK) children and adolescents could represent a valuable pharmacological option, to simplify regimens, reduce drug costs and improve adherence for treatment and PrEP [1].
- Dose optimisation in paediatric patients is The aim of this study was to simulate the complicated due to the differences in pharmacokinetics (PK) of LA intramuscular (IM) anatomical and physiological process compared ARVs in children and adolescents and to to adults [2].

Methods

- In vitro PK data for rilpivirine (RPV) and cabotegravir (CBV) was integrated into PBPK models using MATLAB, R2013b.
- The models were validated against available clinical data (800 mg CBV and 900 mg RPV) for the LA formulations in adults. Drug release rate from the site of injection for RPV and CBV was derived from the clinical data in adults during the validation process.
- The anatomy and physiology of children aged between 3-18 years was also validated against data available in literature [2-4].
- The weight band categories were selected according to the World Health Organisation recommendations [5].

CBV and RPV.

Table 1. Physicochemical and metabolic characteristics of simulated drugs

	Cabotegravir	Rilpivirine	
logP	2.2	4.32	
рКа	4.14	3.26	
Fu	0.007	0.003	
B/P	0.441	0.67	
Vss (L)	-	-	
Clint CYP3A4 (µL/min/pmol)	-	2.04	
Clint UGT1A1 (µL/min/pmol)	4.5	-	
Clint UGT1A9 (µL/min/pmol)	2.2	-	
IM Release rate (h ⁻¹)	0.000454	0.009	

Predicting Utility of Long-Acting Injectables in Paediatric Patients With PBPK Models

Rajith KR Rajoli¹, David Back¹, Steve Rannard², Andrew Owen¹, Marco Siccardi¹.

modelling represents a mathematical approach to predict pharmacokinetics, through the description of molecular and physiological processes defining drug distribution.

identify optimal doses using PBPK modelling.

• ARV PK was simulated for 200 paediatric patients for each weight band following IM administration of LA

Results

- data [3].
- intramuscular administration (Figure 2b) [5,6].

Figure 2. Validation of PBPK model again against available clinical data a) 800 m 900 mg RPV for the LA formulations in

Conclusion

- adolescents.
- This data could assist in the dose optimisation of LA IM ARVs for paediatric patients.
- Modelling approach could be an innovative way to optimise dose requirements in special population, broadening usage in ARV therapy.

2- Department of Chemistry, University of Liverpool, UK

• Weights and blood flow rates of children/adolescents at different ages were validated against available anthropometric and anatomical data. [2]. Parameters of existing available adult IM formulations of cabotegravir and rilpivirine were validated against available clinical

• The mean values of AUC were 4467 vs. 5257 μ g.h/ml, C_{max} 3.3 vs. 3.54 μ g/ml and C_{trough} 1.1 vs. 1.2 μ g/ml for 800 mg CBV quarterly

- 79.1 vs. 78.3 ng/ml (Figure 2a) [3].
- administration of CBV or RPV were predicted.

••••	Age (years)	Weight (kg)	Rilpivirine		Cabotegravir		
	Duration		1 month		3 months		
	Cut-off limi	t (ng/ml)	20.3 (PAIC ₉₅)	80 (MEC)	166 (PAIC ₉₅)	664 (MEC)	
• • • • • • • • • • • • • • • • • • • •	3 - 5.75	14 - 19.9	180	720	30	110	
52 56	5.75 - 7.75	20 - 24.9	190	720	30	130	
	7.75 - 9.4	25 - 29.9	190	730	35	150	
	9.4 - 10.75	30 - 34.9	200	735	35	160	
	10.75 - 11.9	35 - 39.9	200	770	45	170	
•••••	11.9 - 12.8	40 - 44.9	210	790	45	180	
	12.8 - 13.7	45 - 49.9	220	810	50	190	
	13.7 - 14.75	50 - 54.9	225	825	50	200	
48 164	14.75 - 15.75	55 - 59.9	230	840	55	210	
cal	15.75 - 17.25	60 - 64.9	230	860	55	220	
nst g CBV and	17.25 - 19.5	65 - 69.9	240	880	60	240	
adults [3]							

Table 2. Optimised doses of Rilpivirine and Cabotegravir long-acting formulations for various weights categories of children and adolescents

• The validated PBPK models predicted the *in vivo* • Role of transporters, immune system, drug pharmacokinetics of CBV and RPV in children and diffusion through the lymphatic system during long term represent potential therapy limitations which have not been considered in these PBPK models.

> •PBPK model represents a predictive tool to improve dosing strategies thus potentially simplifying antiretroviral therapy.

Rajith Kumar Reddy Rajoli rrajoli@liverpool.ac.uk +44 151 794 5565 F +44 151 794 5656

442

• The mean values of AUC for 900 mg IM RPV monthly administration were 74,420 vs. 91,087 ng.h/ml, C_{max} 168 vs. 168.7 ng/ml and C_{trough}

• The summary of the predicted doses for CBV and RPV for all weight categories (according to WHO guidelines) are shown in Table 2.

• Optimal ARV doses resulting in at least 95 % of the patients achieving C_{trough} over the cut-off values for quarterly or monthly

References

- 1. Baert, L., et al., Eur J Pharm
- Biopharm. 2009. **72**(3): p. 502-508. 2. Bjorkman, S., Br J Clin Pharmacol,
- 2005. 59(6): p. 691-704.
- 3. Spreen, W., et al., Jaids, 2014. **67**(5): p. 487-492.
- 4. Valentin J., Annals of the ICRP: 2003. 5. WHO.
- http://www.who.int/hiv/pub/paediatr ic/paediatric_arv_dosing.pdf
- 6. Trezza, C., et al., Current Opinion in hiv and Aids, 2015. **10**(4): p. 239-245.