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Abstract- Detecting the locations of the optic disc and fovea is a 

crucial task towards developing automatic diagnosis and screening 

tools for retinal disease. We propose to address this challenging 

problem by investigating the potential of applying deep learning 

techniques to this field. In the proposed method, simultaneous 

detection of the centers of the fovea and the optic disc (OD) from 

color fundus images is considered as a regression problem. A deep 

multiscale sequential convolutional neural network (CNN) is 

designed and trained. The publically available MESSIDOR and 

Kaggle datasets are used to train the network and evaluate its 

performance. The centers of the fovea and the OD in each image 

were marked by expert graders as the ground truth. The proposed 

method achieves an accuracy of 97%, 96.7% for the detection of 

the OD center and 96.6%, 95.6% for the detection of the foveal 

center of the MESSIDOR and Kaggle test sets respectively. Our 

promising results demonstrate the excellent performance of the 

proposed CNNs in simultaneously detecting the centers of both the 

fovea and OD without human intervention or handcrafted 

features. Moreover, we can localize the landmarks of an image in 

0.007 seconds. This approach could be used as a crucial part of 

automated diagnosis systems for better management of eye 

disease. 

    Keywords— Diabetes; Fovea Detection; Optic Disc Detection;    

Convlutional Neural Networks. 

1. INTRODUCTION  

The knowledge of the optic disc (OD) and fovea (macula 

center) locations in the retina is considered essential for the 

diagnosis and screening of many retinal diseases, such as 

glaucoma, diabetic maculopathy (DM) and age-related macular 

degeneration (AMD). The significance of detecting the fovea is 

that the closer a lesion is to it, the more likely the lesion is to 

cause visual impairment or blindness. On the other hand, the 

OD center is often regarded as a reference point for locating 

other retinal structures. For example, it can be used as the 

starting point for tracking retinal vessels in blood vessel 

tracking algorithms [1]. In addition, the OD diameter (𝜌) is 

usually used as the reference to measure the size and location 

of other anatomical and pathological structures in the retina. On 

average the vertical OD diameter is about 1800µm. 

The OD appears as a bright yellowish oval region within 

color fundus images through which the blood vessels enter the 

eye. The macula is the center of the retina which is responsible 

for our central vision. The fovea is a small depression in the 

center of the macula. It has a darker appearance compared to 

the surrounding retinal tissue due to the high concentration of 

macular pigment. Fig. 1 shows a color retinal fundus image 

with the key anatomical structures denoted. The location of the 

fovea center is about 2.5 𝜌 from the optic disc center. The foveal 

radius is between 1/3 and 1/4 of the macula radius which is 

roughly equal to one optic disc diameter (𝜌) [2] [3].  

Recently, the automatic localization and detection of retinal 

anatomical structures from digital fundus images has received 

increasing attention in the medical image processing 

community [19]- [22]. This may support the development of 

computer aided diagnosis (CAD) tools for the better 

management of eye disease. Despite considerable effort in this 

field, the problem of localizing the centers of the OD and the 

fovea remains unsolved in retinal fundus image analysis. 
 

 
 

Fig. 1 An example fundus image illustrating the key retinal 

anatomical structures. Note the darker appearance at the fovea and 
blood vessels originating at the optic disc. 

 

 

In this paper, a multiscale sequential deep learning technique 

is proposed which is aimed at detecting the centers of the OD 

and the fovea. The main contributions and advantages of this 

work are summarized as follows: 

In this paper, a deep learning technique is proposed which is 

aimed at detecting the centers of the OD and the fovea. The 

main contributions and advantages of this work are summarized 

as follows: 

1. The application of deep convolutional neural networks to 

the detection of retinal landmarks is novel and promising. 

We develop a suitable convolutional neural network to 

detect specifically the optic disc and fovea centres. 

a. Speed and autonomation: This results in a fast 

method requiring no user input. 

b. Independence: The method is not dependent on other 

techniques succeeding such as segmentation or 

detecting other landmarks. 

c. No handcrafted features: Since features do not need 

to be manually defined, we avoid the difficulty 
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encountered by conventional machine learning 

algorithms in identifying the best feature set that 

represents the data. This also removes the requirement 

of a skilled technician to identify such features 

manually which takes a considerable amount of time 

and can produce subjective results, particularly with a 

large dataset. 

d. Accurate simultaneous detection: We detect more 

than one position simultaneously, retaining high 

accuracy for each. 

e. Robustness: The method is robust in the sense that it 

continues to work well even on poor quality images. 

2. We develop a multiscale approach to convolutional neural 

networks to focus on the region of interest. 

a. Improved Accuracy: This approach allows the 

method to focus on the region of interest, removing 

redundant background data from consideration and 

facilitating refinement of the localisation. This results 

in significantly increased accuracy in the cases of the 

fovea and the optic disc. 

3. Inter-dataset training and evaluation using multiple datasets. 

a. Generalisation: This demonstrates generalisation of 

the method to new data, from separate datasets and 

graders, and captured from different devices. 

4.  We incorporate variable optic disc radius (R) into 

evaluation criteria. 

a. Evaluation accuracy: Incorporating this variable 

measure into our testing allows more accurate 

evaluation while others’ use fixed R value for 

evaluation. 

The remainder of this paper is organized as follows. Section 

2 provides a brief review of the previous work related to the 

detection of the OD and the fovea. Section 3 describes the 

proposed methodology for detecting the OD and fovea 

locations. The experiments and results are described in Section 

4. This work is discussed in Section 5 and the paper is 

concluded in Section 6.  

2. RELATED WORK 

In the literature, there has been a number of studies conducted 

to determine the locations of the fovea and OD. Many of these 

studies only locate either the OD or fovea and not both.  Below 

is a brief review of the major algorithms published in the 

literature for detecting the OD, followed by fovea detection 

methods.  

Many of the reported methods use geometric information of 

the vascular tree to detect the OD [4]-[8]. Hoover and 

Goldbaum [4] exploited the spatial relationship between the OD 

and retinal blood vessels and proposed a fuzzy convergence 

algorithm to locate the origination point of the blood vessel 

network. This origination point was considered as the OD 

center in the retinal fundus image. Foracchia et al. [5] proposed 

a geometrical model to calculate the general direction of retinal 

blood vessels at any given location in an image using the 

coordinates of the OD center as the two model parameters. The 

simulated annealing optimization technique was used to 

identify these two parameters. Furthermore, Fleming et al. [6] 

presented a method based on the elliptical form of retinal blood 

vessels to obtain the approximate locations of the OD and 

fovea. The circular edge of the OD and the darker appearance 

of the fovea were exploited to refine these approximated 

locations. In addition, Tobin et al. [7] used accurate vasculature 

segmentation results for optic disc detection by determining 

density, average thickness, and average orientation of the blood 

vessels in relation to the position of the OD. Youssif et al. [8] 

described a method that can detect the optimal OD center point 

by measuring the difference between the matched filter output 

and the vessels’ directions. 

Niemeijer et al. [9] formulated the problem of detecting the 

OD and foveal centers as a regression problem. They utilized a 

kNN regressor to measure the distance in an image to the object 

of interest at any given location using a set of features extracted 

at that location. Furthermore, a method based on Sobel 

operators and the Hough transform for the detection of the OD 

in retinal fundus images was formulated by Zhu et al. [10]. 

They determined the center and radius of the OD by 

approximating the margin of the optic nerve head into a circle 

using the Hough transform. Moreover, Lu et al [11] designed a 

technique based on the circular transformation to locate the 

circular shape of the optic disc and color variation across the 

OD boundary. The center and the boundary of the optic disc 

were located by exploiting the pixels with the maximum 

variation along radial line segments. 

Yu et al. [12] presented a method for detecting the optic disc 

location using template matching techniques. The OD location 

was determined using the characteristics of the vessels on the 

OD. In [13], Dehghani et al. proposed a histogram based 

method which uses four images from the DRIVE dataset as a 

template to locate the center of the OD where each histogram 

represents one color from the RGB color image components 

(red, blue, and green). The template was constructed by 

calculating the average of these histograms. Harangi et al. [14] 

adapted the most recent OD detectors and organized them into 

an ensemble and complex framework in order to merge their 

strengths and maximize the accuracy of OD detection. To 

determine the final OD position, a maximum-weighted clique 

was founded. Recently, Calimeri et al. [15] have presented a 

method based on fine-tuned convolutional neural network to 

localize the OD location.  

Many of the fovea localization approaches presented in the 

literature have exploited the vasculature and other contextual 

information. Li and Chutatape [16] presented a model-based 

approach by combining the information provided by the main 

vessel arcades and the low intensity pixels in the fovea region. 

A parabola fitting method was used to detect the fovea and the 

fovea center was identified using a thresholding scheme in the 

region of interest.  

Niemeijer et al. [17] formulated a method based on a cost 

function that is based on both global and local cues to find the 

fovea. In addition, mathematical morphology and anatomical 

knowledge based methods were used to estimate the location of 

the fovea by Welfer et al. [18]. In their proposed system, 

extracting the region of interest containing the fovea was 



achieved initially by calculating the center and diameter of the 

OD. After that, a set of fovea candidates was obtained using a 

morphological operation. To detect the center of the fovea, it 

was selected as the centroid of the darkest candidate. 

Qureshi et al. [19] proposed a method based on a combination 

of several algorithms for detecting the fovea and OD. They 

proved that ensemble algorithms can achieve better 

performance than a single algorithm for detecting these centers. 

Moreover, a fast radial symmetry transform was used by 

Giachetti et al. [20] for the detection of the fovea and OD 

centers. The centers of symmetry of dark and bright regions 

were detected by applying the transform on coarsened and 

vessel-inpainted images and the results were combined with a 

vascular density estimator. 

Gegundez-Arias et al. [21] detected the location of the fovea 

center by means of prior known anatomical features. These 

features were used to localize a ROI fovea-containing sub-

image. A multi-thresholding scheme using gray-level value 

criteria was applied and a contour map was created to calculate 

the fovea center. In [22], Aquino et al. formulated a method 

based on combining the visual and anatomical features of the 

macula and the OD for detecting the fovea center. 

From the above review, it can be noticed that most of the 

previous studies have exploited the visual appearance or 

anatomical features for the detection of the OD and fovea in 

order to identify their positions [4], [6], [11], [7], [18], and [20-

22]. These methods will suffer when these features are very 

weak or invisible due to pathologies. Some other methods rely 

on machine learning algorithms and feature extraction to 

localize and detect anatomical structures [9], [14], and [19], but 

the accuracy of these methods largely depends on the type and 

quality of the feature sets which are hand-crafted. Inspired by 

our observations, we propose to introduce new deep learning 

techniques to address this.  

The main aim of the proposed method is to develop a deep 

learning based approach to simultaneously detect both the OD 

and the fovea locations. Based on deep convolutional neural 

networks (CNNs), our new approach is expected to be 

independent of the manual detection of anatomical features of 

retinal landmarks. Moreover, in contrast to more traditional 

machine learning and feature extraction algorithms, the 

hierarchically extracted features are automatically learned from 

data and not designed manually. In addition, the proposed 

approach has yielded promising results and outperforms 

conventional neural networks, which demonstrates that deep 

learning techniques will be able to support robust and accurate 

detection of the OD and foveal centers. 

3. MATERIALS AND METHODS 

A. Materials  

The MESSIDOR [23] and Kaggle [24] datasets have been 

used in this work. The MESSIDOR database comprises 1200 

images captured using a color 3CCD camera on a Topcon TRC 

NW6 with 45 degree field of view. The MESSIDOR images 

were captured using 8 bits per color plane at a size of 1440×960, 

2240×1488 or 2304×1536 pixels. Moreover, 10,000 images of 

the Kaggle dataset provided by Kaggle in their diabetic 

retinopathy detection competition are used for training and 

testing. The optic disc and foveal center point coordinates were 

not provided in the original dataset for both datasets, for this 

work they were obtained from annotations from a combination 

of two expert graders from the Liverpool Reading Centre. An 

in-house program developed in Matlab (version 2016a, 

Mathworks Inc, Natick, MA) was used by the grader. This 

software program was developed to support annotations of 

anatomical or pathological features required by clnical trials, 

and allows the grader to visualize the image, selecting the 

location by mouse click and make correction on the selection. 

These annotated locations together with the images were used 

to train and evaluate the performance of the implemented 

networks.  

B. Pre-Processing 

It is worth noting that detecting the centers of the fovea and 

OD is a regression task. It seems unnecessary to use color 

information because the colors may just add extra complexity. 

For this reason, all of the images were converted to grey scale 

for use. For the purpose of this study, the images were resized 

to 256×256 pixels and the annotated center point coordinates of 

both the OD and fovea were scaled accordingly. The contrast of 

the resized images was enhanced by applying the contrast-

limited adaptive histogram equalization technique [25] so as to 

reduce uneven illumination in the images as shown in Fig. 2. 

The pixel values of the enhanced images were scaled between 

[0, 1] and the coordinates of the center points were scaled 

between [-1, 1].   

                       

         
           Original image                Grayscale                     Enhanced 

                          Fig. 2 Image Pre-Processing stages. 

C. Deep Convolutional Neural Network Architecture  

In contrast to conventional shallow classifiers, such as neural 

networks and support vector machines, for which a feature 

extraction step is essential, hierarchies of significant features 

are learnt by deep learning algorithms directly from the raw 

input data. Recently, deep convolutional neural nets (convnets) 

have succeed in improving many computer vision applications 

such as image classification [26], object recognition [27], and 

keypoint localization [28]. In addition, some interesting results 

have been seen in biomedical applications such as neuronal 

membrane segmentation [29], [30] and other applications [31], 

[32]. 

A typical CNN comprises one or more convolutional layers 

alternated with pooling layers (subsampling layers) and then 

followed by fully connected layers (FC) and finally a 

classification/regression layer. CNNs can be considered as a 

special form of feedforward multilayer perceptron neural 

networks (MLPs). However, the number of parameters that 

need to be tuned is reduced to a level that becomes tractable for 



the current computing power. For example, in convolution 

layers, a limited number of convolutional kernels is needed.  

1. Convolutional Layer: The convolutional layer [33] 

represents the core building block of a deep CNN. The neurons 

in the convolutional layer connect to local regions of the input 

and compute their outputs based only on these local regions. 

This layer is parameterized by a set of learnable filters (kernels) 

convolved over the width and height of the input image and the 

result of each filter is called a feature map. Given an input 

volume size 𝑁𝑖×𝑁𝑖×𝐷𝑖, the filter or receptive field size 𝐹, the 

depth of the convolutional layer 𝐾 , the stride parameter 𝑆, and 

the amount of zero padding 𝑃𝑖, the number of neurons in the 

output volumes 𝑁𝑜×𝑁𝑜×𝐷𝑜 can be calculated by the formula 

                       𝑁𝑜 =
𝑁𝑖−𝐹+2𝑃

𝑆
+ 1;    𝐷𝑜 = 𝐾,                       (1) 

where the value of the stride parameter 𝑆 should be chosen such 

that 𝑁𝑜 is an integer. 

2. Max-pooling Layer: The feature map resulting from a 

convolution layer is usually subsampled with 𝑅×𝑅 non-

overlapped regions (windows), where 𝑅 is a hyper-parameter 

that can be empirically defined by the user. This window is 

shifted over the feature map: each time the value within this 

window which is most responsive (highest activation value) is 

selected while other values are neglected. The purpose of this 

layer is to speed up convergence by reducing the number of 

parameters and amount of computation in the deep neural 

network, and to provide translation invariance [34].  

Given an input volume of size 𝑁𝑖×𝑁𝑖×𝐷𝑖 , max-pooling 

window size 𝑅×𝑅, and the stride parameter 𝑆, the number of 

neurons in the output volumes 𝑁𝑜×𝑁𝑜×𝐷𝑜 is calculated by the 

formula 

                               𝑁𝑜 =
𝑁𝑖−𝑅

𝑆
+ 1; 𝐷𝑜 = 𝐷𝑖                          (2) 

3. Dropout Layer: A dropout layer [35] is an effective 

regularization strategy that stochastically adds noise to the 

hidden layers of deep neural networks. More specifically, the 

overfitting problem can be alleviated by randomly dropping out 

the output of each hidden unit with a certain probability at each 

training step (i.e. multiplying hidden activations by Bernoulli 

distributed random variables that take the value 1
𝑝⁄  with 

probability 𝑝 and 0 otherwise; 𝑝 = 1 means no drop out and 

low values of 𝑝 imply more dropout). A deactivated unit will 

not take part in forward propagation or backpropagation in the 

training stage that is achieved using the stochastic gradient 

descent (SGD) algorithm. At the testing stage, all of the units 

are re-enabled by multiplying them with one minus the 

probability 𝑝 of masking.  

4. Fully Connected Layer: This usually represents the final 

layers of a deep neural network architecture. Each node in the 

fully connected layer is completely connected to all of the nodes 

in the previous layer and the weights of these links are specific 

to each node. The number of neurons in the fully connected 

layers is considered as a hyper-parameter to be empirically 

chosen. 

5. Activation Functions: a rectified function is used as an 

activation function for all of the layers (except for the final 

layer) in our implemented network. A unit employing the 

rectifier is called a Rectified Linear Unit (RELU). This is the 

most common activation function used in deep neural networks 

because it is less susceptible to vanishing gradient problems 

[36]. The rectified function is defined by the formula: 

                                 𝜑: 𝑥 ↦ max (0, 𝑥).                              (3) 

Since in this work a regression problem is being dealt with, a 

linear function as a linear combination of the activations in the 

fully connected layer is used in the top layer (output layer) of 

our network architecture. 

The block diagram of the proposed deep multiscale sequential 

convolutional neural network is presented in Fig. 3.  

 
Fig. 3 Block diagram of the proposed system. 

 

The proposed system consists of two stages, in the first stage 

the whole resized images along with the scaled centers are fed 

to the implemented CNN. The output of the first stage is the 

centers of both the OD and F. In the second stage, the detected 

centers from the first CNN are used to obtain the refined regions 

of interest of both OD and F by cropping the region around 

these centers by 2R radius value (R represents OD radius). 

These resized ROI for both the F and OD along with the scaled 

ground truth centers are used to train the CNNs in the second 

stage. Therefore, the first stage is used to obtain the ROIs for 

both F and OD while the second stage is aimed to detect the 

centers by classifying the features extracted automatically by 

the convolutional filters.  As we go deeper through the 

convolutional neural network, the convolutional layers are able 

to describe more and more complex features.    

D. Performance Evaluation  

In the literature, the 1R criterion (where R refers to the OD 

radius) is the most common criterion used to evaluate the 

performance of retinal landmark detection methodologies. The 

distance between the ground truth and the obtained location of 

the structure of interest (i.e. the OD or foveal center for this 

application) is compared with the R value in each image to 

determine the validity of the location determined by the 

automated detection methods.    

In this work, both the optic disc and foveal center positions 

were known from expert annotations. Moreover, the location of 

the fovea center is about 2.5 𝜌 from the OD center. The optic 

disc diameter (𝜌) and consequently the OD radius (R) can be 

calculated for each image i using Equation (4). 

 

         𝜌𝑖 =
√(𝑋𝑂𝐷𝑟(𝑖)−𝑋𝐹𝑟(𝑖))2+(𝑌𝑂𝐷𝑟(𝑖)−𝑌𝐹𝑟(𝑖))2

2.5
                          (4) 

 

 Then, 𝑅𝑖  = 0.5 𝜌𝑖  where  𝑋𝑂𝐷𝑟 , 𝑌𝑂𝐷𝑟  and 𝑋𝐹𝑟 , 𝑌𝐹𝑟  are the 

horizontal and vertical coordinates of the OD and fovea centers 



respectively marked by expert graders. 

4. EXPERIMENTS AND RESULTS 

In this work, different network architectures and data 

augmentation strategies were evaluated in comparison to 

conventional neural networks. All of the experiments were 

conducted on an HP Z440 running Linux Mint with 16GB 

RAM, an Intel Xeon E5 3.50GHz processor and NVIDIA GTX 

TITAN X 12GB GPU card with 3072 CUDA parallel-

processing cores. The Lasagne [37] Python deep learning is 

used to implement and train our convolution neural networks. 

Built on the top of Theano [38], Lasagne has efficient 

implementations of each of the CNN layers, a diversity of 

activation functions, many optimization methods, and 

transparently supports training networks on GPUs.  

To train the networks by updating the weights, SGD with a 

momentum optimization algorithm having an adaptive learning 

rate (start=0.03, stop=0.0001) and adaptive momentum 

parameter (start=0.9, stop=0.999) is used. The weights of the 

kernels for the implemented convolutional layers are initialized 

from a uniform distribution within chosen intervals. These 

intervals are configured by Lasagne depending on the weight 

initialization technique proposed in [39]. Furthermore, the 

objective function to be minimized is mean squared error 

(MSE) since we are dealing with a regression problem:  

                    𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2.𝑛
𝑖=1                               (5)   

In order to reduce the overfitting effect, the size of the 

training data is increased artificially by applying data 

augmentation. More specifically, the training data is augmented 

by flipping images left to right while the annotated OD and 

foveal centers were flipped accordingly. As a result of this, the 

size of the training data has been doubled.  

The deep network was trained with 1000 epochs. An early 

stop strategy is used so the training will stop when there is no 

improvement in learning or performance on the validation set 

starts to worsen. The early stop value was set to 100 epochs 

where the learning stops after 100 epochs and the best 

weighting values are retained if the validation error stops 

improving early. The architecture of CNN with the best 

performance is described and shown in Table 1 and Fig. 4.  

In Table 1 the last column shows the size of the filters, the 

window size used for max-pooling, and the probability of 

dropping a node (Bernoulli (p)) in each layer. No zero padding 

and a stride of 1 pixel were used for each convolutional layer 

while non-overlapped pooling (stride= pool size) was used in 

each max-pooling layer. 

 
Table. 1 Architecture of deep neural network with the best detection 

performance. 

Name Size No. of 

outputs 

No. of 

filters 

Size of filter, 

max pooling, 

probability 

input 1×256×256 65536 - - 

conv1 8×254×254 516128 8 filter size=(3,3) 

conv2 8×252×252 508032 8 filter size=(3,3) 

conv3 8×250×250 500000 8 filter size=(3,3) 

conv4 8×248×248 492032 8 filter size=(3,3) 

dropout1 - - - dropout1_p=0.1 

conv5 16×246×246 968256 16 filter size=(3,3) 

conv6 16×244×244 952576 16 filter size=(3,3) 

conv7 16×242×242 937024 16 filter size=(3,3) 

pool1 16×121×121 234256 - maxpool size=(2,2) 

dropout2 - - - dropout2_p=0.3 

conv8 32×120×120 460800 32 filter size=(2,2) 

conv9 32×119×119 453152 32 filter size=(2,2) 

conv10 32×118×118 445568 32 filter size=(2,2) 

pool2 32×59×59 111392 - maxpool size=(2,2) 

FC 350 350 - - 

dropout3 - - - dropout3_p=0.5 

FC 350 350 - - 

output 4 4 - - 

 

For the sake of comparison, a conventional neural network 

with three layers (input, hidden, output) is implemented to 

evaluate the effect of adding more layers in deep learning. This 

network is trained with 250 epochs and 200 neurons are used in 

the hidden layer. The size of the input layer is equal to the size   

of the input image and the size of the output layer is four 

neurons (x and y coordinates of the OD and fovea centers 

respectively).  

Learning performance of the implemented networks is 

monitored during the training stage by plotting the learning 

curves for both training and validation sets by determining the 

root mean squared error (RMSE). Fig. 5 and Fig. 6 show the 

difference in terms of performance between the conventional 

neural network (NN) model and the deep model during the 

training stage. Clearly, it can be observed that the deep neural 

network has improved performance with much lower error than 

the conventional neural network model.  

 

  
Fig. 5 Performance of the conventional neural network during training. It shows 

that simple model suffers from an underfitting problem where the complexity 
of the network isn’t sufficient to capture the import features of the landmarks. 



  

Fig. 4 Block diagram of convolutional neural network.

 
 

   
Fig. 6 Performance of the deep neural network during training. It shows that 

the RMSE for both training and validation data is lower than the conventional 

neural network with slightly overfitting and thus better landmark detection 

performance. 

 

For the purpose of performance analysis of the proposed 

system for detecting the OD and fovea, the detection accuracy 

was computed as the ratio between the number of testing 

images with detected centers satisfying the 1R, 0.5R and 0.25R 

conditions (Fig. 7 explains these criteria) and the total number 

of testing images. In additional to the accuracy measure, the 

mean error (also called normalized localization error) and 

standard deviation are also calculated. The normalized 

localization error is calculated by dividing the Euclidean 

distance between the actual and computed OD (or foveal) 

centers with the 𝜌 in each testing image. The detection 

performance of the neural network and deep neural network is 

shown in Table 2. The effect of image enhancement is also 

reported in Table 2 for information. In this table, the 

MESSIDOR dataset has been randomly divided into 70% for 

training and validation and the remaining 30% for testing. 

 
Table. 2 Performance of different networks (STD: standard deviation): The 

networks are trained and tested on Messidor dataset (1R criterion). 

Model Name 
         Optic Disc            Fovea 

Acc. Mean  STD Acc. Mean STD 

Simple Model 

(NN) 

59.5 0.5683 0.5681 86.2 0.2757 0.2176 

Deep model 

without 

enhancement 

96.0 0.1692 0.2533 96.0 0.1320 0.1330 

Deep Model 96.89 0.1596 0.2374 97.78 0.1325 0.1265 

 
 

 
 

   Fig. 7 Example shows 1R, 0.5R, and 0.25R of OD. 

 

In Table 3 and Table 4, the proposed system was evaluated 

using the MESSIDOR and Kaggle datasets, where 7000 Kaggle 

images were used for training and validation (20% of training 

data is used as validation data) and the remaining 3000 Kaggle 

images and 1200 MESSIDOR images are used for testing in the 

first stage of the proposed system. In the second stage, the test 

Kaggle images from the first stage are used to train and test the 

second CNN where these images are divided randomly again 

into 80% for training and validation and 20% testing before 

feeding them into second stage. Table 3 shows the performance 

of the MESSIDOR dataset in terms of the 1R, 0.5R and 0.25R 

criteria for the two stages of the proposed system where on row 

one, we present the results of CCN1 for the test set of 1200 

images (TS1M). Row two shows the results of CCN1 restricted 

to the images that are correctly detected within the 1R criterion 

(TS2M). Row three shows the TS2M set which is tested with 

CNN2 for comparison with row two. We can see that the results 

for these images are considerably improved by CNN2. Finally, 

on row four, we expand this test set to include incorrectly 

detected images (TS3M) from CCN1 demonstrating that, 

including these, the results remain strong and improved over the 

original idea of using CNN1 alone. Moreover, Table 4 presents 

the accuracy of the Kaggle dataset using the same criteria where 

on row one, we present the results of CCN1 for the test set of 

3000 images (TS1M). Row two shows the results of CCN1 

restricted to the images that are correctly detected within the 1R 



criterion (TS2M). Row three shows the TS2M set tested on 

CNN2 for comparison with row two. We can see that the results 

for these images are considerably improved by CNN2. Finally, 

on row four, we expand this test set to include incorrectly 

detected images (TS3M) from CCN1. 
 

Table. 3 Performance (in terms of accuracy) of the network trained on Kaggle 

and tested on Messidor.  

Model Name 
                Optic Disc             Fovea 

1R 0.5R 0.25R 1R 0.5R 0.25R 

CNN1+TS1M 97 86.3 47.5 96.6 76 35.3 

CNN1+TS2M 100 88.9 49 100 78.8 36.5 

CNN2+TS2M 100 97.9 86.2 100 94.6 69.2 

CNN2+TS3M 97 95 83.6 96.6 91.4 66.8 

 
Table. 4 Performance (in terms of accuracy) of the network trained and tested 
on kaggle.  

Model Name 
                Optic Disc             Fovea 

1R 0.5R 0.25R 1R 0.5R 0.25R 

CNN1+TS1K 96.7 87.4 51.9 95.6 83.4 51 

CNN1+TS2K 100 90.1 55.6 100 87.9 54.3 

CNN2+TS2K 100 99.1 93.4 100 94.9 73.3 

CNN2+TS3K 96.7 95.8 90.3 95.6 90.7 70.1 

 

The experimental results in Table 3 and Table 4 demonstrate 

that the proposed method can achieve accuracies in terms of the 

1R criterion of 97% and 96.6% for detection of the OD and 

foveal centers respectively in MESSIDOR and 96.7% and 

95.6% for the detection of the OD and foveal centers 

respectively in the Kaggle test set. On average, it only takes 

approximately 0.007 seconds to process a test image in both 

stages which is the fastest among all of the methods. 

Furthermore, the results show good performance when 

considering the 0.5R and 0.25R criteria. On the Kaggle test set, 

the obtained accuracies were 95.8% and 90.3% for OD 

detection for 0.5R and 0.25R respectively, while 90.7% and 

70.1% were achieved for fovea detection in terms of these two 

criteria. On MESSIDOR, the detection accuracies were 95% 

and 83.6% for 0.5R and 0.25R for localizing the OD while the 

obtained accuracy results for the foveal center detection were 

91.4% and 66.8% for the 0.5R and 0.25R criteria. 

Table 5 presents the results of our method and other methods 

reported in the literature. Detection accuracy, computational 

time, evaluation criterion and the dataset used are presented in 

this table for previous work where they are available in the 

original paper. Fig. 8 and Fig. 9 show some example detection 

results on the testing dataset. In Fig. 8, examples with accurate 

detections of the OD and fovea centers are presented while Fig. 

9 shows images with incorrect detections. Fig.10 shows how 

the second stage CNN improves the detection performance over 

the first stage CNN.  

5. DISCUSSION 

A novel approach based on a multiscale sequential deep 

learning technique has been proposed for the simultaneous 

detection of the centers of the OD and fovea in color fundus 

images. The designed CNNs achieve the detection by extracting 

complex data representations from retinal images without the 

need of human supervision. It has been demonstrated that the 

performance of our proposed system can outperform competing 

approaches. 

It is worth mentioning that many different criteria were used 

by others in the literature to evaluate performance in detecting 

the OD and foveal centers when compared with the ground 

truth.  

The Euclidean distance between the obtained OD and fovea 

center locations and their actual locations were often used as the 

evaluation measure. For example, many studies [12], [20]- [22] 

have established that the obtained detection of the OD (or 

foveal) center is correct if their Euclidean distances to the actual 

centers is within half the OD diameter (or one OD radius). This 

is the widely accepted 1R rule.  

There is a problem in using the 1R rule for evaluation when 

the OD radius is not available. In order to alleviate this problem, 

Yu et al. [12] estimated the OD radius based on the field of view 

(FOV) of the retina and the image size. Three radii of 70, 100 

and 110 pixels were used in correspondence to the three 

different sizes of the MESSIDOR images. Using this criterion, 

the authors detected the location of the OD correctly in 1189 

out of the 1200 images in the MESSIDOR dataset. Following 

Yu’s approach to estimate the OD radius, Giachetti et al. [20] 

reported an accuracy of 99.66% for OD detection and 99.1% 

for fovea detection and used the fast radial symmetry transform 

to achieve that. However, for the same MESSIDOR dataset 

Gegundez-Arias et al. [21] and Aquino et al. [22] used different 

OD radii in their study where the OD radii were fixed to 68, 103 

and 109 pixels.  Aquino et al. [22] reported an accuracy of 

98.24% for the detection of the fovea. For this study, the 1R 

rule has been followed but the OD radius was defined by 

annotation results from experienced graders. As such, our rule 

should be more accurate. This has highlighted the issue that it 

is difficult to accurately compare detection performance 

between different methods as the criterion may be different. 

The other issue for comparing results from different studies 

is that the number of images used were different. Even when 

studies used the same dataset, the way in which they used the 

dataset was not entirely clear. For instance, although Yu et al. 

[12] reported results on 1200 MESSIDOR images, they may 

have used the whole dataset in tailoring their detection method. 

This implies they have used the data to train their method and 

tested on the same dataset, which means their method may have 

overfit the data. Our study has split the Kaggle dataset into 

training and testing portions. Testing images of Kaggle have not 

been used until the network was trained using the separate 

training set. This suggests that our method should have better 

generalization ability. Furthermore, we use a completely unseen 

test set (MESSIDOR) to prove this generalization ability.  



Table. 5 Results of the proposed methodology for optic disc (OD) and fovea (F) detection compared with the existing methods in the literature 
 

Authors Approach Detected 

landmarks 

1R criterion (pixels) Success rate Running   

time 

Dataset (Name, size, 

[images size]) 

Hoover [4] Relationship between OD and blood 

vessels, fuzzy convergence 

algorithm 

OD 60 Acc.: 89% 4 min. (STARE [40], 81, 

[605×700]) 

Foracchia [5] Geometrical model, blood vessels 

direction 

OD 60 Acc.: 97.53% 2 min. (STARE, 81, [605×700]) 

Li [15] Parabola fitting F NA Sensitivity: 100% NA (Local , 35, [512×512]) 

Fleming [6] Visual characteristics of blood 

vessels, fovea, and OD 

OD, F 119 Acc.: 98.4% , 96.5%  2 min. (Local, 1056, 

[2160×1440]) 

Tobin [7] Characteristics of blood vessels in 

relation to OD position 

OD, F 65 Acc. : 90.4%, 92.5% NA (Local, 345, 

[1024×1152]) 

Niemeijer [17] Cost function and a point 

distribution model 

OD,F 50 

50 

Acc. : 98.4%, 94.4%, 

Acc.: 94% , 92% 

10 min. (Local, 500), 

(Local, 100), 

[768×576 - 2048×1536] 

Aliaa Youssif [8] 2D Gaussian matched filter OD 60 

NA 

Acc.: 98.77% 

Acc.: 100% 

3.5 min. (STARE, 81, 

[605×700]), 

(DRIVE [41], 

40, [ 565 × 584]) 

Niemeijer [9] k-NN regressor OD, F 50 

50 

Acc.: 99.4%, 96.8% 

Acc.: 93%, 89% 

7.6 sec. (Local, 500), 

(Local, 100), 

[768×576 - 2048×1536] 

Zhu [10] Sobel operator, Hough transform OD 40 Acc.: 90% NA (DRIVE, 

40, [565×584]) 

Lu [11] Circular transformation OD 60 

60 

NA 

Acc.: 99.75% 

Acc.: 97.5% 

Acc.: 98.77% 

5 sec. (STARE, 81, 

[605×700]), 

(ARIA [42], 120, 

[576×768]) 

(MESSIDOR, 1200, 

[1440×960, 2240×1488, 

2304×1536]) 

Welfer [18] Selection of ROI and morphology F 34 

34 

Acc.: 100%,  

Acc.: 92.13% 

NA (DRIVE, 40, 

, [565×584]), 

     (DIARETDB1[43], 

89, [640×480]) 
Yu [12] Template matching technique OD 70, 100 ,110 Acc.: 99% 4.7 sec. (MESSIDOR, 1200, 

[1440×960, 2240×1488, 

2304×1536]) 

Qureshi [19] Combining the prediction of 

multiple algorithms 

OD, F NA Acc.: 97.64% 96.79% 

Acc.: 97.79%,98.74 

Acc.: 100%, 91.73% 

NA (DIARETDB0 [44], 130, 

[1500 ×1152]), 

(DIARETDB1, 89, 

[1500 ×1152]), 

(DRIVE, 40, [565 ×584]) 

Dehghani [13] Template implemented from three 

histograms 

OD NA Acc.: 100%, 

Acc.: 91.36% 

Acc.: 98.9% 

27.6 sec. (DRIVE, 

40, [565×584]), 

(STARE, 81, 

[605×700]), (Local, 273, 

[720 ×576]) 

Giachetti [20] Fast radial symmetry transform OD, F 70, 100 ,110 Acc.: 99.66%, 99.1% 5 sec. (MESSIDOR, 1200, 

[1440×960, 2240×1488, 

2304×1536]) 

Gegundez-Arias [21] Priori known anatomical features 

and thresholding 

F 68, 103,109 

 

Acc.: 96.92% 

 

0.94 sec. (MESSIDOR, 1200, 

[1440×960, 2240×1488, 

2304×1536]) 

Aquino [22] Visual and anatomical macula and 

OD feature-based method 

F 68, 103,109 

82 

Acc.: 98.24% 

Acc.: 94.38% 

10.88 sec. (MESSIDOR, 1136,  

[1440×960, 2240×1488, 

2304×1536]), 

(DIARETDB1, 89,  

[1500 ×1152]), 

Harangi [14] Ensemble-based framework 

(combining probability models) 

OD NA Precision: 98.46% 

Precision: 98.88% 

Precision: 100% 

Precision: 98.33% 

0.25 

sec. 

(DIARETDB0, 

130, 1500×1152), 

(DIARETDB1, 

130, 1500×1152), 

 (DRIVE, 

40, [565×584]), 

(MESSIDOR, 1200, 

[1440×960, 2240×1488, 

2304×1536]) 

Proposed method Deep neural network OD, F Variable Acc.:97%, 96.6% 

Acc.:96.7%, 95.6% 

0.007 sec. MESSIDOR (1200) 

            Kaggle 

 

 

 

 



 

 

 

 
Fig. 8 Examples of correct joint OD-Fovea detection results. First row examples from MESSIDOR and second row from Kaggle. The green plus signs refer to the 

locations annotated by ophthalmologists while the blue ones indicate the results of our proposed method. 

 

 
                                                                                               (1)                                                       (2) 

Fig. 9 Examples of incorrect OD and fovea detection results. (1) Incorrect detection from MESSIDOR; (2) Incorrect detection from Kaggle.  

 

 

 
Fig. 10 Examples of fundus images show the original centers (green plus), centers obtained from CNN1 (white plus), and centers from CNN2 (blue plus). It is 

clear that CNN2 improves the location accuracy.

 



Moreover, unlike most of the previous methods in the 

literature where only the 1R value has been reported, we report 

the accuracy based on the 0.5R and 0.25R criteria in addition to 

the 1R criterion. From the 0.5R and 0.25R reported accuracies, 

we notice that the performance has significantly improved by 

exploiting and analyzing the ROI for both OD and F in the 

second stage of the proposed system.  

Although our network has provided competitive results, the 

network architecture may not be the optimal one as training the 

CNNs involve many hyperparameter settings such as 

regularization strength, the initial learning rate, and schedule of 

learning rate decay. Performing hyperparameter searches is 

considered a tricky and critical task [45]. Also, the number of 

convolution and pooling layers and the number and size of 

filters in each layer in CNNs are usually chosen empirically. As 

a result, the optimal network architecture and proper settings of 

these hyperparameters in the training stage are decided from 

experience and they are hard to find by non-expert humans [46]. 

In spite of these hyperparameter setting challenges in the 

training stage, once the network is trained, no expert is required 

to detect the landmarks in the test stage. Although data 

augmentation is considered to be useful in improving the 

performance of the CNNs, it is not clear what the best strategy 

is to achieve the best results. From our work, it is noted flipping 

horizontally is beneficial. However, rotation of images did not 

seem to improve the performance (results not shown).  

6. CONCLUSION 

We have demonstrated that our proposed method is capable 

of achieving excellent results in the detection of the optic disc 

and fovea in fundus images. One of the most important 

advantages of the proposed method is that it is less sensitive to 

preprocessing. It can be noticed that applying contrast 

enhancement as a preprocessing step improves the performance 

of the network, but not by very much. The current results were 

achieved without optimizing the parameters of the contrast 

enhancement method. Another advantage of our approach is 

that it does not necessitate the need of vessel segmentation or 

border localization in order to detect the OD and foveal centers. 

This will be useful when processing images of poor quality. 

It has been proved that the ability to learn hierarchies of 

concepts, implementing multiple layers of abstraction in deep 

learning can be used for the detection landmarks in challenging 

medical applications. Likewise, the results of the proposed 

method suggest that deep learning can be used to address 

similar problems in other clinical applications such as screening 

and the diagnosis of diabetic retinopathy, age related macular 

degeneration and glaucoma. Moreover, as a result of the 

effectiveness of the deep neural network performance, this 

strategy will be investigated in our future work to grade the 

severity of retinal diseases such as diabetic retinopathy.     

In conclusion, a new deep neural network approach has been 

proposed for the detection of the OD and foveal centers in color 

fundus images. Our proposed approach has produced promising 

results. This approach could be further developed and used as a 

crucial part of future automated diagnosis and grading software 

for the better management of eye disease. 
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