
A General Architecture for Flexible Autonomous Systems

Louise Dennis, Elisa Cucco, Michael Fisher
Department of Computer Science, University of Liverpool, UK

Abstract
We describe an architectural approach to au-
tonomous systems that not only provides gener-
ality and verifiability, but also flexibility through
self-awareness and self-reconfiguration. This is
an agent-based approach where the core rational
agent oversees a range of feedback control systems
(within a modular architecture) handling adaptive
interaction with the system’s environment. The ra-
tional agent makes all high-level decisions and, cru-
cially, is able to provide reasons for its choices. In
addition, the agent is self-aware being able to as-
sess activity within the system’s modular architec-
ture, and is able to reconfigure this architecture to
cope with changes, either in its hardware or in the
environment.
This architectural approach has been instantiated
in a number of application areas, including au-
tonomous satellites, convoys of driver-less cars, un-
manned air vehicles, and autonomous nuclear de-
commissioning. In several of these, notably the first
and last, the flexibility and resilience provided by
self-reconfigurability is crucial.

1 Introduction
There are a number of different implementation routes for
autonomous systems, and components within these are often
categorised as symbolic or sub-symbolic. Symbolic systems
have clear descriptions and semantics, typically involving
logic-based or declarative approaches. Sub-symbolic systems
are more complex with behaviour being dependent on feed-
back loops involving environmental interaction. Coarsely, the
latter tend to be efficient but opaque while the former tend to
be less efficient but more transparent. Typical examples of the
latter are adaptive control systems, neural networks, genetic
algorithms, reinforcement learning, etc.

Although, in academic circles, attempts have been made
to produce purely symbolic or purely sub-symbolic architec-
tures for autonomous systems, neither extreme is particularly
satisfactory. In practice, autonomous systems architectures
involve a combination of symbolic and sub-symbolic com-
ponents. The closest to one of these extremes are hierarchi-
cal feedback control systems, such as Brooks’ subsumption

architecture. However, with the increasing requirements of
verifiability, transparency, and flexibility, such architectures
appear rare.

Autonomous systems are increasingly popular, being de-
veloped for, and deployed in, a wide range of scenarios. Here,
we are particularly concerned with applications that essen-
tially require autonomy such as working environments that
are dangerous and hazardous for humans. In such cases, any
human involvement must at least be remote and often very
limited. A second class of applications is not so extreme but
typically involves an industrial environment where a human
operator, monitoring the activity, might need to be: physi-
cally remote from the working area; control a large number
of robots; or perform very repetitive tasks. In this case, the
mundane and repetitive nature of the work can lead to the
operator becoming distracted, disinterested, and even taking
undue risks [Dennis et al., 2014]. In both these scenarios,
we would clearly benefit from the autonomous (robotic) sys-
tem having greater autonomy and being able to deal with key
decisions and problems on its own.

The basic tasks, within typical mission goals, include de-
ciding what is the appropriate action, what is the appropriate
object to be acted on, what is the appropriate order of action
executions, and what is the appropriate way of performing
every action, without the human intervention. Increasingly
important for truly autonomous systems is the need to be re-
flexive, to have a clear idea of the system components and
their efficacy, and self-reconfigurable, to be able to dynami-
cally modify its own software1 organisation.

To deal with all these issues, autonomous robotic systems
can represent and reason about aspects including the robot’s
capabilities, their environments, the objects they are to act on,
their actions and the effects they cause, and other agent in the
environment. Thus, a typical system should be capable of

Envisioning: inferring all possible events and effects that
will happen if a plan is executed in a hypothetical sit-
uation.

Query answering: given some knowledge preconditions for
plan execution inferring pieces of knowledge that satisfy
these knowledge preconditions.

1Note that we are not concerned with hardware reconfiguration
here, only the ability of the system to re-route data and control via
different software organisation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/131168721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Diagnosis: inferring what caused a particular event or effect
during execution.

Reconfiguring: re-organising the software architecture
within the system, and amending the corresponding
expectations and capabilities.

While sub-symbolic components, such as feedback control
systems, are vital for coping with varying and dynamic envi-
ronments, handling all the above within purely sub-symbolic
architectures is difficult. For example, in some situations a
particular control system (say for a ‘gripper’) may need to be
swapped for another. This behavioural change is very difficult
to handle within purely sub-symbolic architectures especially
as we wish to retain the scrutability of the architecture. Con-
sequently, many practical autonomous systems have a hybrid
architecture, where continuous control sub-systems are over-
seen by an agent, that is an high-level decision maker, able to
make choices and to provide reasons for them.

The agent makes decisions about actions and plans to un-
dertake, about adaptive controllers and hardware configura-
tions, and about how it can effectively achieve its key goals.
This is facilitated by modules that manage the key inter-
actions between the continuous (sub-symbolic) and discrete
(symbolic) parts of the system.

This paper provides an overview of a hybrid agent archi-
tecture for autonomous systems, where the agent is both self-
aware and self-modifying. It also reports on practical au-
tonomous robotic systems based on this architecture.

2 Architecture
Our approach is based on the underlying modularity of the
system’s components.

2.1 Modularity
An autonomous system is made up of a wide range of com-
ponents, some hardware, some software. These include: sen-
sors, providing information about the environment; actuators,
acting upon the environment; control systems, software in-
terfacing with hardware; learning systems; planning systems;
etc. In such a system modularity is becoming increasingly
important, particularly for maintenance and reconfigurability.

The most common framework for practical autonomous
systems is the Robotics Operating System (ROS) [Quigley et
al., 2009]). This provides a framework in which a wide range
of software components can be linked together. Importantly,
ROS modules link together in the same executable in order
to pass data between them. The distinct modules are called
nodes, which communicate through messages. A module that
wants to receive particular information must subscribe to that
specific topic. The communication might also happen by in-
dividual request, with responses established through services.

A key benefit of the modularity provided by a ROS sys-
tem is that it minimizes the many difficulties in debugging.
It also aids incremental development; while implementing a
robotics system, we need multiple software components to
coexist (i.e., different sensors, different control systems, ..).
With a ROS architecture it is possible to run nodes under-
going development alongside pre-existing or well-debugged
nodes, and only the node that has been modified needs to be

restarted, while ROS itself handles the modifications concern-
ing the whole system infrastructure.

This modularity will also increase the number of possible
configurations of the system architecture, greatly improving
the flexibility of the system.

2.2 Hybrid Agent Architecture
Based on the inherent modularity provided by middleware
such as ROS, we organise the system’s architecture so that
there are a range continuous control systems over-seen by a
single agent (see Figure 1). The agent makes high-level, and
essentially discrete, decisions based on the information pro-
vided by the feedback control systems (engaged in continu-
ous feedback with the environment). These feedback control
systems cover a wide range, from object recognition, sensor
fusion and learning through to navigation, manipulation and
planning.

Note that the agent makes high-level decisions, such as (for
example) where to go to, whether to stop and re-charge, what
to do in an emergency, and so on. Crucially, vast amounts
of data is not passed on the agent. The agent makes its deci-
sions and then invokes further control systems to carry these
out. Such hybrid architectures are increasingly popular in the
implementation of an autonomous system. Not only is mod-
ularity important, but the separation of key decision-making
into a distinct (and often verifiable) entity gives clarity over
where responsibility lies and what decisions will be made.

An ‘agent’ is an autonomous computational entity
making its own decisions about what action to under-
take [Wooldridge, 2002]. Often this means having goals and
involving other agents in order to accomplish these goals.
However, in many occasions, something more is needed:
rather than having a system that just makes its own decisions,
a rational agent must have explicit reasons (that could also
explain, if requested) for choosing one option over another.
Since agent are autonomous, understanding why an agent
chooses an action is very important especially if we want to
carry out detailed analysis, even formal verification [Fisher et
al., 2013].

Such agents make decisions about what action to perform,
given their beliefs, desires and intentions. Desires will be de-
rived from the long-term goals, beliefs will depend upon in-
formation provided from sensors/control, a world model will
represent the agent’s information about itself, other agents
and its environment, while intentions represent the goals that
the agent is actively pursuing. This approach has been encap-
sulated within the BDI model [Rao and Georgeff, 1995; 1991;
1992], where BDI stands for beliefs, desires and intentions.
The declarative nature of the BDI approach provides clarity
in terms of motivation (“why a certain choice is made”) and
belief (“what information the agent has”).

There are several agent programming languages and
agent platforms based on the BDI approach; we use the
Gwendolen language [Dennis, 2017]. This is essentially a
plan selection language where a plan is selected for execution
in order to reach a goal (specifically, an ‘intention’). After ex-
ecuting a plan, the beliefs and intentions might change, as the
agent performs some action in its environment. However, the
rational agent, does not, itself, generate plans, but it can in-



Feedback control 
systems including

 
 Neural networks

Genetic algorithms
etc

Reasoning
Plan selection

Prediction 
etc

Actuators

Delivery
Systems

Sensors

Propulsion
Systems

Control AgentHardware

Figure 1: Schematic Overview of Hybrid Agent Architecture.

voke a range of different planning and advisory sub-systems
and then makes decisions about which plan is to be executed
and when. Therefore, a drawback of this form of approach
is that it is essentially a plan management and plan selection
framework with no in-built mechanisms for learning. This
means that a BDI agent does not automatically learn from
past behaviour and adapt its plans accordingly.

2.3 Reconfiguration
The rational agent is also self-aware. It has a world model
that includes a description of the autonomous systems’ archi-
tecture. Once it has invoked particular control systems it typ-
ically just monitors activity within the sub-systems. It will be
only if something crucial changes, or fails, that the agent will
need to perform additional reasoning, for example deciding
to replace a plan (or part of it). In the case of significant fail-
ure/change, more drastic modification may be required, such
as changing the ROS streams and nodes. Before changing
such a component, the agent needs to be aware of what the
current component offers, what the new component offers in-
stead, what the new component requires, and how it interacts
with other components.

Thus, the rational agent has to be able to:
• reason about beliefs;
• select plans based on beliefs;
• react to change in the world model (i.e. loss or addition

of capabilities);
• monitor the system’s performance; and
• configure the system in order to be able to achieve mis-

sion goals and overcome deficiencies.
The reconfiguration is crucial — such autonomous systems
have to be self-aware, but also able to modify the hardware
or the software configuration, especially if the system will
be used in hazardous or distant environments, where the hu-
man intervention is not possible. The reconfiguration process
is required when the system needs to cope with changes, in
the hardware or in the environment, or to adapt to failures
or damages of some of the sub-systems, potentially allowing
the agent to still achieve its goal. The modular nature of the
agent-based architecture makes the reconfiguration process
more feasible. Considering the architecture of the system we

have identified different reconfiguration possibilities [Dennis
et al., 2014]:
• Reconfiguration due to the hardware: if some hardware

fails, or is possibly even added, the agent needs to mod-
ify the control systems or its high-level decisions, in or-
der to take in account respectively the restricted or in-
creased possibilities.

• Reconfiguration due to the control: this kind of recon-
figuration may occur if the agent detects errors in soft-
ware controllers while the system is running, or finds
new controllers with better performance. In this case,
the agent can again reconfigure its high-level goals/plans
upon the new control systems. ROS provides a per-
fect framework for reconfiguration, by using a modular
structure where nodes can be incorporated or removed
easily.

• Reconfiguration due to the agent: in this case the hard-
ware and control systems remain the same, but the agent
might reconfigure its high-level elements, such as its
goals, plans, word model (knowledge base), or changing
some module such as its preferred planner or the learn-
ing module to be used.

3 Implementation
This hybrid agent architecture has been instantiated in a num-
ber of application areas, and for a number of different pur-
poses.
Space. In [Lincoln et al., 2013] we described how au-

tonomous satellites might be implemented including this
approach. This was particularly useful in supporting for-
mal verification [Dennis et al., 2016] and in showing that
this approach aids readability and conciseness [Dennis
et al., 2010a]. The architecture was used in both simula-
tions and real hardware.

Automotive. In [Kamali et al., 2017] we showed how this ar-
chitecture could also be used for autonomous road vehi-
cles, particularly convoys of driver-less vehicles. Again,
verifiability was a key target and, again, the architecture
was used in both simulations and real hardware.

Aerospace. While the focus of our development of un-
manned air vehicles was again formal verification, this



Figure 2: Test Rig at National Nuclear Laboratories, UK.

was with a specific purpose. We used the verifiability of
the architecture to provide evidence for the certification
of unmanned air vehicles [Webster et al., 2014]. In this
case, only software simulations were developed.

Nuclear. In [Aitken et al., 2017] we instantiated the archi-
tecture for use in autonomous nuclear decommission-
ing. This time we were not concerned with verification
but particularly targeted reconfigurability [Dennis et al.,
2014] since being able to continue working without hu-
man intervention is crucial if deployed in a nuclear envi-
ronment. This was implemented both in simulation and
in hardware, and is currently being deployed in a nuclear
test environment in the UK — see Figure 2.

It is this last application, where the flexibility and resilience
provided by self-reconfigurability is crucial, that we will con-
centrate on as an exemplar.

3.1 Agent with abstract engine
A key problem when connecting continuous control systems,
such as our range of sub-symbolic modules, to a discrete en-
tity, such as our agent, is that a continuous stream of data (for
example, coming from sensors) must be handled and con-
verted into discrete values that the agent can reason about.
This has led to a practical modification of the basic hybrid
agent architecture [Dennis et al., 2010b], as outlined in Fig-
ure 3.

The key addition is an abstraction engine, sitting between
the reasoning engine (aka the agent) and the rest of the
system. This abstraction engine provides the continuous to
discrete translation, taking streams of data from the sub-
symbolic subsystems and passing on discrete abstractions of
this to the agent itself. Specifically, it aims to identify data of
interest to the agent and package this together into a concise
form.

As the agent deals only with discrete information, the ab-
straction engine has to abstract the data from the control
subsystems (quantitative values such as distances, or coor-
dinates) into predicates (i.e., toofar, tooclose, etc). The ab-
straction engine is also responsible of translating all the de-
cisions and action invocations coming from the agent into
proper commands for the control subsystems.

In several applications, both the abstraction engine and
the agent are implemented in a variant of the Java-based
Gwendolen agent programming language [Dennis, 2017],
that support BDI-based programming. The communication
between the Java process and the control subsystems is
via ROS messages, and exists within a Java “environment”
layer [Dennis, 2014].

3.2 Knowledge base
The autonomous system contains not only an agent, but also
a knowledge base (or world model), which stores all the in-
formation that need to be shared by the various high-level
systems and control sub-systems to allow their collabora-
tion. The knowledge base is modular with several different
sections. These include a section for perception, consisting
of ground literals describing information about the external
world, and coming from sensors and diagnostics. In addition,
the knowledge base also stores a description of the existing
components in the system and their capabilities (i.e. a config-
uration). Lastly, a module, described as program data, stores
all the models, route plans, maps, metrics, and other miscel-
laneous data that must be shared by the components within
the autonomous system.

Essentially, the agent receives data from the knowledge
base and, based on its internal decisions, sends commands
through the abstraction engine which interfaces the robot’s
control systems. The connection between the rational agent
and the knowledge base is managed via two mechanisms.



Abstraction 
Engine

Agent
“Rational 
Engine”

discrete
sensing

discrete
actions

Control 
Systems

continuous
sensing

control
commands

Figure 3: Architecture of an hybrid agent system.

Pilot

Agent Knowledge
Base

World 
Description
Percepts
(Literals)

SLAM etc.

Planner Configuration

Capability Modifier Program Data

Reactive Plans

Anomaly Detector
etc.

Goal Handling
Plans

Configuration 
Plans

Goal
Events

(Acquistion,
Success,
Failure)

Plan
Events

(Selection,
Success,
Failure)

External 
Events

Sensors Actuators Control Software n Stuff

Figure 4: A layered view of the system.

The agent can register an interest in particular ground facts
and will be notified on a “push” basis whenever those facts
change. Furthermore, it can query the knowledge base for ad-
ditional information. In this way the agent is not over-loaded
with information about every change that occurs in the knowl-
edge base, but it can still access any information it needs and
learn every information of critical importance as soon as pos-
sible.

The description of the whole autonomous system, as cap-
tured in the knowledge base, is hierarchical. This descrip-
tion can be viewed as a sequence of layers (as the traditional
three-layer architecture common in robotics), as it is shown in
Figure 4. The ‘lowest’ layer sits on top of the control systems
and consists of reactive plans, which monitor external events
(based on changes in the perception module of the knowledge
base) and send commands to components which control actu-

ators. The ‘middle’ layer consists of planners and simulators.
These components use information about the configuration
(which are not used by the reactive plans) of the system and
the output from these components become new reactive plans.
Plans in this layer are activated by monitoring and analysing
the agents’ goal.

Finally, at the ‘top’ layer, we have tools that react to prob-
lems with the configuration. This layer monitors the success
or failure of specific plans in the layers below and, if nec-
essary, can reconfigure the underlying system. In the particu-
lar case of capability modification, the reconfiguration simply
changes the description that is stored in the knowledge base,
but in order to obtain this modified description it may need to
acquire new information about the performance of the system
using the anomaly detector.



3.3 Reconfigurability example
Consider the following example. The agent believes it recog-
nises a certain object that it wishes to pick up and place in a
container. This recognition is provided by sensor and object
recognition sub-systems. The agent makes the decision to in-
voke a robot arm to grasp the object and move it to a specified
container. So, it sends the appropriate command, via the ab-
straction engine, to the arm control sub-system. However the
grasping and movement operation fails.

Now the agent must assess, as best it can, why this failed.
Was it

• because of a problem with the robot arm (e.g. it did not
move to the correct position)?

• because of a problem with the gripper (e.g. it failed to
grasp the object even when at the correct position)?

• because of a problem with the object recognition soft-
ware (e.g. it mis-categorised the object)?

• because of a problem with the cameras (e.g. they mis-
recorded the position of the object)?

• etc.

This is, of course, quite difficult but, let us assume that after
a series of failures the agent reasons that the most likely cul-
prit is the vision system (for instance, after checking proper
values the agent becomes aware that the camera has noise).
And, let us assume that the system has two other cameras
available. These are not as precise as the one in use, but when
used together can give reasonably accurate (though not as pre-
cise) visual information. Thus, the agent can

1. reconfigure the software architecture, so that the two
alternative cameras are switched on and visual data is
taken from those two rather than the original one,

2. change the description of the visual component not only
to reflect the new cameras but also to reflect the reduced
accuracy/capability, and

3. revisit the plans and goals it has to ensure that this re-
duced capability is sufficient to achieve what is required.

If there are problems with this last item, then the agent
might invoke one or more planning sub-systems to re-plan the
achievement of goals with the new reduced capability. And
so on.

Typically, once the agent has carried out some reconfigu-
ration of this form it will monitor decisions, information and
outcomes to see if this change has, indeed, improved system
accuracy. If it turns out that it has actually reduced accuracy
then the agent may choose to change the architecture back
again.

3.4 Autonomous industrial robotic arm
We used the architecture described to implement an agent-
based system able to assist an autonomous nuclear waste
management process [Aitken et al., 2017]. This applica-
tion scenario is, in particular, dangerous for direct human in-
tervention, and is also a very mundane and repetitive task.
Therefore, an autonomous robot, able to carry out the pro-
cess, will be very important. This system is developed in

order to perform a “sort and disrupt” task and integrates a
vision system, a robot arm and a rational agent, all connected
using the ROS framework. The system should sort through
nuclear waste items, placing them in containers as appropri-
ate. In some cases the system may need to disrupt an item,
e.g. break open a large metal container to find what is inside.

The overall architecture, is as we have described al-
ready. The abstraction engine receives information from vi-
sion/recognition system (through ROS topics) and then the
reasoning engine (aka agent) takes decisions about what ac-
tion has to be done. These decisions are then published to a
different topic by the abstraction engine, in order to be avail-
able as a command understandable to the robot control sub-
systems. The abstraction engine also receives information
about the performance of the robot. Therefore, knowledge-
based decisions need to be made using available data, such as
physical attributes of the waste items or vision data collected.

As well as handling the main task, the agent can also reason
about faulty equipment or better control systems (that might
be available after the deployment of the system over long pe-
riods of time). The reasoning engine can then use a recon-
figuration strategy to instruct the arm to switch to a different
equipment (if the action has been evaluated not successful) or
a more updated control system.

This system has been developed in university labs and is
now being transferred to the National Nuclear Laboratories
site in Workington, UK, for further testing and development;
see Figure 5.

3.5 Responsibility and Verifiability
Though not yet used in the nuclear application, a key bene-
fit of the hybrid agent architecture is that there is an identi-
fiable entity which can provide explicit reasons for making
decisions (i.e. the agent). This means that the decisions that
agent might make, such as which containers to put certain
items in, can be analysed in detail to see if it matches ex-
pected behaviour. In this sense the ‘responsibility’ for deci-
sions is clear.

Similarly, as most industrial robotic systems must go
through complex regulatory and certification processes, then
the regulators will be happy to see that not only is there
an identified decision-maker but that the reasons for mak-
ing those decisions are explicitly and open. This will likely
significantly aid certification and the need for complex au-
tonomous systems to be scrutable in this way [Caminada et
al., 2014] will surely be essential in the future.

In general, this approach, with an identified rational agent,
provides a much clearer route to verification. Indeed, we
have developed and carried out formal verification for a
range of architectures of this form [Fisher et al., 2013;
Dennis et al., 2016; Kamali et al., 2017]. This is important
not only for certification issues, as above, but for general re-
liability, safety, etc.

4 Conclusions
In this paper we described an hybrid architecture for au-
tonomous systems in which control systems are over-seen by
an high-level decision maker, a rational agent. This modular



Robot picks selected canister Robot places the canister on 
the V-Block for shearing

Robot picks up shearing tool 
(emulated via a laser pointer)

Robot performs cutting along 
the body of canister

Tool breaks during operation, 
Agent triggers reconfiguration: 

“replace cutting tool”

Robot moves canister to export 
container once Agent confirms 

shearing is complete

Figure 5: Video Capture of Demonstrator Process.

architecture not only ensures that key decision-making (and
so, responsibility) is isolated in a single entity, but also allows
the reconfiguration of mission goals, capabilities, and control
sub-systems at run-time. The ability of an autonomous sys-
tem to reconfigure its own architecture is crucial if the system
is to be deployed in areas where the direct human intervention
and repair is not feasible.

As well as providing an overview of our developments in
this area, we also explored how the different parts of the sys-
tem communicate between themselves. This architecture has
been used in several systems and we specifically highlight the
implementation of an autonomous robotic arm used for com-
plex tasks in extreme or hazardous environments. The na-
ture of the activity demands that an autonomous system, able
to make decisions and to self-reconfigure, is deployed, as it
must operate for long period of time, performing operations
that are both repetitive and dangerous for human operators.

References
[Aitken et al., 2017] Jonathan M. Aitken, Affan Shaukat,

Elisa Cucco, Louise A. Dennis, Sandor M. Veres, Yang
Gao, Michael Fisher, Jeffrey A. Kuo, Thomas Robinson,
and Paul E. Mort. Autonomous Nuclear Waste Manage-
ment. (Under review), 2017.

[Caminada et al., 2014] Martin W. A. Caminada, Roman
Kutlák, Nir Oren, and Wamberto Weber Vasconcelos.
Scrutable Plan Enactment via Argumentation and Nat-
ural Language Generation. In Int. Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 1625–
1626. IFAAMAS/ACM, 2014.

[Dennis et al., 2010a] L. A. Dennis, M. Fisher, N. Lincoln,
A. Lisitsa, and S. M. Veres. Reducing Code Complexity in
Hybrid Control Systems. In Proc. 10th International Sym-

posium on Artificial Intelligence, Robotics and Automation
in Space (i-Sairas), 2010.

[Dennis et al., 2010b] Louise A. Dennis, Michael Fisher,
Nicholas Lincoln, Alexei Lisitsa, and Sandor M. Veres.
Declarative Abstractions for Agent Based Hybrid Control
Systems. In Proc. 8th International Workshop on Declar-
ative Agent Languages and Technologies (DALT), pages
96–111, 2010.

[Dennis et al., 2014] Louise A. Dennis, Michael Fisher,
Jonathan M. Aitken, Sandor M. Veres, Yang Gao, Affan
Shaukat, and Guy Burroughes. Reconfigurable Autonomy.
KI — Künstliche Intelligenz, 28(3):199–207, 2014.

[Dennis et al., 2016] Louise A. Dennis, Michael Fisher,
Nicholas K. Lincoln, Alexei Lisitsa, and Sandor M. Veres.
Practical Verification of Decision-Making in Agent-Based
Autonomous Systems. Automated Software Engineering,
23(3):305–359, 2016.

[Dennis, 2014] Louise A. Dennis. ROS-AIL Integration.
Technical Report ULCS-14-004, University of Liverpool,
Department of Computer Science, 2014.

[Dennis, 2017] Louise A. Dennis. Gwendolen Semantics:
2017. Technical Report ULCS-17-001, University of Liv-
erpool, Department of Computer Science, 2017.

[Fisher et al., 2013] Michael Fisher, Louise A. Dennis, and
Matthew Webster. Verifying Autonomous Systems. ACM
Communications, 56(9):84–93, 2013.

[Kamali et al., 2017] Maryam Kamali, Louise A. Dennis,
Owen McAree, Michael Fisher, and Sandor M. Veres. For-
mal verification of autonomous vehicle platooning. Sci-
ence of Computer Programming, 2017.

[Lincoln et al., 2013] N. Lincoln, S. Veres, L. Dennis,
M. Fisher, and A. Lisitsa. Autonomous Asteroid Explo-



ration by Rational Agents. IEEE Computational Intelli-
gence Magazine, 8(4):25–38, 2013.

[Quigley et al., 2009] Morgan Quigley, Ken Conley, Brian P.
Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. ROS: an Open-source Robot
Operating System. In Proc. ICRA Workshop on Open
Source Software, 2009.

[Rao and Georgeff, 1991] A. S. Rao and M. P. Georgeff.
Modeling Agents within a BDI-Architecture. In Proc.
2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 473–484. Mor-
gan Kaufmann, 1991.

[Rao and Georgeff, 1992] Anand S. Rao and Michael P.
Georgeff. An Abstract Architecture for Rational Agents.
In Proc. 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages
439–449, Cambridge, MA, USA, 1992. Morgan Kauf-
mann.

[Rao and Georgeff, 1995] Anand S. Rao and Michael P.
Georgeff. BDI Agents: from Theory to Practice. In Proc.
1st International Conference on Multi-Agent Systems (IC-
MAS), pages 312–319, San Francisco, USA, 1995.

[Webster et al., 2014] M. Webster, N. Cameron, M. Fisher,
and M. Jump. Generating Certification Evidence for Au-
tonomous Unmanned Aircraft Using Model Checking and
Simulation. Journal of Aerospace Information Systems,
11(5):258–279, May 2014.

[Wooldridge, 2002] M. Wooldridge. An Introduction to Mul-
tiagent Systems. John Wiley & Sons, 2002.


