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Abstract 

Influenza causes substantial morbidity and mortality in some influenza sea- 

sons, especially among the elderly. Influenza seasons dominated by circula- 
tion of influenza A/H3N2 virus tend to result in more morbidity and mor- 
tality than seasons dominated by influenza A/H1N1 or influenza B viruses. 
Influenza viruses undergo constant mutation, called antigenic drift, which 
is largely driven by host immunity. It has been shown that antigenic drift 

in influenza A/H3N2 virus proceeds in a punctuated, as opposed to contin- 
uous, fashion. A cluster of antigenically similar influenza A/H3N2 viruses 
appears to remain dominant for between 1 and 8 influenza seasons before 

being supplanted by a new cluster. Influenza seasons when a new cluster 
becomes dominant may result in higher morbidity and mortality than other 
seasons. Influenza vaccine effectiveness varies between influenza seasons be- 

cause of the different subtypes in circulation and the degree of antigenic 

match between vaccine and circulating variants. In each influenza season in 

recent years, over 70% of the population of England & Wales aged > 65 has 
been vaccinated, though the impact of this high coverage on population level 

morbidity and mortality is unknown. Multivariate time series models were 
fitted to reports of laboratory confirmed influenza, sentinel general practi- 
tioner (GP) consultations for influenza-like-illness, and all deaths registered 
to underlying pneumonia or influenza in England & Wales from 1975/76 to 
2004/05. The models successfully distinguish influenza - attributable GP 

consultations and deaths from GP consultations and deaths that would be 

expected in the absence of influenza. This distinction is made jointly by 
the laboratory reports and the non-laboratory confirmed surveillance data. 
It is not possible to use the multivariate time series models to quantify 
the average effect of the appearance of a new cluster of influenza A/H3N2 

virus variants, or vaccine impact, on influenza - attributable morbidity or 
mortality in the data analyzed. Reasons for this are discussed. 
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1. Introduction 

Influenza causes substantial morbidity and mortality in some influenza sea- 

sons, especially among the elderly. [1] Influenza-related morbidity or mor- 
tality is rarely laboratory confirmed. [4,5] As such, indirect methods are 

employed in order to determine the relative impact of influenza seasons in 

terms of the morbidity and mortality caused by influenza. A limitation 

of the regression models most frequently used to estimate influenza - at- 
tributable morbidity and mortality is that they require the epidemiologist 
to delete some of the observed data and fit a model to the remaining data. 

This is to allow estimation of the expected morbidity or mortality that 

would have occurred had influenza not be circulating (e. g. [6,7]). The ob- 

served morbidity or mortality that exceeds the model-predicted expected 

morbidity and mortality is deemed attributable to influenza. The various 

methods of deciding what data should be deleted from model fitting are 

more or less arbitrary, leaving the possibility of counting unrelated deaths 

or consultations as influenza - attributable (lowering the specificity of in- 
fluenza - attributable mortality for influenza) or of missing truly influenza 

- attributable deaths or consultations (potentially biasing downwards es- 
timates of the effect of determinants of influenza - attributable morbidity 
or mortality by obscuring the full extent of the variability in influenza - 
attributable morbidity and mortality between influenza seasons). An alter- 
native method of estimating influenza - attributable morbidity or mortality 
is by regressing deaths or consultations on indicators of influenza virus cir- 
culation (e. g. [8,91). Regression on laboratory data may produce biased es- 
timates because of long-term changes to the number of tests performed. [10] 

Objective 1 of the work undertaken for the thesis was to develop a model 
in which the distinction of influenza - attributable from expected morbidity 

and mortality would be made by the model (not the epidemiologist). The 

specificity of non-laboratory morbidity and mortality data for influenza is 
increased by using both types of data (non-laboratory confirmed data and 
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laboratory data) to inform the distinction of influenza - attributable from 

expected rates of morbidity and mortality. 

Objective 1: to estimate the relative impact of influenza seasons in 

England FS Wales between 1975/76 and 2004/05 in terms of GP consulta- 
tions for influenza-like-illness (ILI) and deaths from pneumonia or influenza 
(Pf. 4I) by jointly modeling ILI, P&I and laboratory reports for influenza A 

virus using multivariate latent variable time series models. 

The latent variable models described in the thesis captured the relative 
impact of influenza seasons using a simple random effect mean shift (the 

ratio of average influenza - attributable to expected morbidity or mortality 

rates, by influenza season). The distinction of influenza - attributable from 

expected ILI or P&1 was made by the model, informed by laboratory reports 
for influenza A. The laboratory data informed the timing, not the relative 
impact, of influenza seasons. 

Influenza seasons dominated by circulation of influenza A/H3N2 virus 
tend to result in more morbidity and mortality than seasons dominated by 

influenza A/H1N1 or influenza B virus. [1] Influenza viruses undergo con- 

stant mutation, called antigenic drift, which is thought to be driven largely 
by host immunity. [11,12] It has been shown that antigenic drift in in- 
fluenza A/H3N2 virus occurs in a punctuated, as opposed to continuous, 
fashion. [13] A cluster of antigenically similar influenza A/H3N2 viruses 
appears to remain dominant for between 1 and 8 influenza seasons before 
being supplanted by a new cluster. Work by others suggests that influenza 

seasons when a new cluster becomes dominant may result in higher mor- 
bidity and mortality than other seasons. [14] The average effect of cluster 
transition seasons on influenza - attributable morbidity and mortality in 
England & Wales (or, indeed, globally) has not been quantified. The effect 

of cluster transition seasons can be estimated by expressing the chosen met- 
ric for relative impact of influenza seasons (the random effect mean shift) as 
dependent on a binary variable for cluster transition seasons. Objective 2 

of the work undertaken for the thesis was to use the models developed for 

objective 1 to estimate the average effect of a cluster transition on the mean 
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shift in P&I and ILI in each influenza season between 1975/76 and 2004/05 

during which time there were 9 cluster transitions (in 1975/76,1977/78, 

1979/80,1987/88,1989/90,1992/93,1995/96,1997/98 and 2002/03). 

Objective 2: to use the multivariate models developed for objective 1 to 

estimate the mean effect of cluster transitions in influenza A/H3N2 virus 

evolution on the mean shift in P&I and ILI by age group. 

The variability in the size of cluster transitions in terms of the degree 

of antigenic drift was allowed for in a supplementary analysis where the 

random effect mean shift was expressed as dependent on a quantitative 

variable for the size of cluster transitions. 
Influenza vaccine efficacy against laboratory-confirmed influenza-like-illness 

in the elderly has been demonstrated. [151 Vaccine effectiveness varies be- 

cause of influenza season-specific factors such as the relative impact of the 

season in terms of morbidity and mortality and the degree of antigenic 

match between vaccine and circulating variants. [16,171 Between 1989/90 

and 2004/05, yearly vaccine coverage of the > 65 age group in England & 

Wales has increased from 24 to 71%. The impact of this change in coverage 
on population level morbidity and mortality is unknown. Objective 3 of 
the work undertaken for the thesis was to estimate the impact of each unit 
increase in vaccine coverage of the elderly on morbidity and mortality by 

expressing the random effect mean shift as dependent on vaccine coverage. 

Objective 3: to estimate the impact on the mean shift in ILI and P&I 

for the > 65 age group, and for the other age groups, per unit increase in 

yearly vaccine coverage of the > 65 age group. 

The thesis has the following structure. Chapter 2 is a survey of the lit- 

erature on methods to estimate the relative impact of influenza seasons in 

terms of morbidity and mortality. Evidence for an average inflating effect 
of cluster transitions on influenza - attributable morbidity and mortality is 
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reviewed, as is evidence for a population impact of vaccination of the elderly. 
In chapter 3, P&I and ILI data for England & Wales are described. Models 

used in the thesis - the frequentist generalised linear models used initially 

to estimate the shape of long-term trend in P&I and ILI and the Bayesian 

Markov chain Monte Carlo methods used to fit two-state latent variable time 

series models to P&I, ILI and laboratory reports for influenza A- are intro- 

duced. In chapter 4, the shape of the long-term trend in P&I and ILI by age 

group from 1970 to 2005 is presented. Crude associations between peak P&I 

and ILI in each influenza season, by age group, and the exposures of interest 
(cluster transitions and vaccine coverage of those > 65) are explored. Chap- 

ters 5 and 6 describe development of univariate and multivariate two-state 

hidden Markov models (latent variable time series models) used to estimate 
the relative impact of the influenza seasons between 1975/76 and 2004/05 
in terms of P&I and ILI. In chapter 7, crude associations between the mean 

shift in P&I and ILI, by age group, and exposures of interest are examined. 
Results from models including a dependency between the mean shift and 

cluster transitions or vaccine coverage of the > 65 age group are presented. 
Also in this chapter, the relative impact of influenza seasons in England & 

Wales estimated using other methods are compared to estimates using the 

multivariate latent variable time series models fitted in the thesis. Findings 

related to the average effect of cluster transitions and vaccine impact are 

also placed in context of what is already known. Chapter 8 summarises the 

main findings and suggests directions to take for the future. 
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2. Literature Review 

2.1. Introduction 

This chapter is structured as follows. Background on influenza virus and 
disease is provided in section 2.2. The variability in estimates of influenza 

- attributable morbidity and mortality between influenza seasons and be- 

tween studies is introduced in section 2.3. In section 2.4 the methods that 
have been used by others to estimate influenza - attributable morbidity and 
mortality are critically reviewed. Section 2.5 introduces key potential deter- 

minants of the variability in influenza - attributable morbidity and mortality 
between influenza seasons, including the exposures of interest in the work 
described in the thesis: large antigenic drift events in influenza A/H3N2 

virus evolution and vaccination. Sections 2.6 and 2.7 review the plausi- 
bility of and evidence for an effect of large antigenic drift events, defined 

as antigenic cluster transitions by Smith et at. [13], on mean influenza - 
attributable morbidity and mortality in influenza seasons. The plausibility 
of and evidence for an impact of increasing yearly vaccine coverage of the 
> 65 age group on mean influenza - attributable morbidity and mortality 
across age groups are reviewed in sections 2.8 and 2.9. Finally, the rationale 
for the work described in the thesis is given in section 2.10. 

2.2. Background 

Influenza virus is a member of the Orthomyxoviridae family. There are 
three types of influenza viruses - A, B, and C- though only A and B cause 
widespread outbreaks in humans. [18] Influenza virus is transmitted via large 
droplets (expelled during coughing and sneezing), aerosols (tiny droplets) 

and fomites. [18,19] 

Influenza virus has a segmented ribonucleic acid (RNA) negative sense 
single-stranded genome. The 8 genome segments encode 10 gene prod- 
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ucts: PB1, PB2, and PA polymerases, haemagglutinin (HA), neuraminidase 
(NA), NP, M1, and M2 proteins, non-structural protein 1 and non-structural 
protein 2. [20] HA has two subunits, HAl and HA2, and is critical for patho- 
genesis. [21] The HA is one of 2 major antigenic determinants recognised 
by host neutralising antibodies (the other is NA). The HA is involved in 

attachment to the host cell, via sialic acid on the host cell surface, and cell 
entry. [21] The NA is essential to the release of new virus particles from 
infected host cells via cleavage of glycosidic linkages to sialic acid residues 
binding new virus particles to the host cell surface. [21] The NA prevents vi- 
ral aggregation and facilitates viral dispersion in mucus. It is an important 
target for antivirals like oseltamivir and other neuraminidase inhibitors. [18] 
The M2 protein forms an ion channel (that is blocked by the antiviral aman- 
tadine) which regulates the pH of the virus and enables early viral replica- 
tion. [18] Random assembly of the 8 different RNAs into new virions leads 
to progeny viruses with new combinations of genes (reassortment) when a 
host cell is infected by two different virus variants. [20] The NA, HA and M2 

proteins are embedded in the envelope on the surface of the virus. Subtypes 

of influenza A virus are defined by their HA and NA (e. g. H3N2, H1N1); 
different subtypes of influenza B virus have not been identified. 

Within subtypes of influenza A virus there are variants which differ from 

one another genetically and antigenically, that is in the degree to which they 
elicit an antibody response in the host. Antigenic variants arise due to a 
process of mutation called antigenic drift. [18] Antigenic drift is the stepwise 
accumulation of mutations in the HA and NA which means that antibodies 
raised against a previous variant (in the evolutionary line) will be progres- 
sively less able to recognise, and neutralise, newer variants. Antigenic drift 
results in hosts becoming susceptible to influenza virus infection anew. Anti- 
genically drifted variants also arise through reassortment. The high rate of 
mutation in influenza virus even compared to other single stranded RNA 
viruses is due to relatively low fidelity of the RNA polymerase and no error- 
checking capability. [21] Antigenic drift has been shown to happen more in 
influenza A than B viruses. [22] 

In contrast to antigenic drift, antigenic shift is the emergence or reemer- 
gence of influenza A viruses against which the population has virtually no 
immunity; antigenic shift may lead to influenza pandemics if other condi- 
tions, such as good human to human transmission of the pandemic virus, 
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are met. Pandemics are sometimes characterised by high mortality because 

of the lack of immunity in the population. A shift in the age distribution 

of mortality from older people, who die from seasonal influenza, to younger 

people can occur during pandemics because of antigen recycling whereby 

similar HA or NA circulated long ago and only the oldest people have any 

immunity. [23-25] Influenza B virus has no animal reservoir so does not 

experience antigenic shift. [21] 

Historically antigenic shift has happened when a virus with a new HA 

(with or without other new gene segments like a new NA) has infected hu- 

mans. The new HA may have arisen directly from an avian reservoir [26] or 

via reassortment between human and avian viruses, sometimes via the mix- 
ing vessel of pigs. [27] The current pandemic H1N1 2009 virus is sufficiently 
diverged evolutionarily from seasonal influenza H1N1 viruses to mean most 

age groups are essentially fully susceptible. [28] The nomenclature used to 

define antigenic shift viruses therefore needs to be revised to reflect that 

antigenic shift can occur without a new NA or HA. [29] In the 20th Century 

there were 3 formally recognised pandemics - 1918 (H1N1), 1957 (H2N2) 

and 1968 (H3N2) - and 1 pandemic-like episode in 1977 when an H1N1 virus 
identical to viruses circulating in 1950 reemerged, [30] possibly as an acci- 
dental release from a laboratory. [31] Seasonal or inter-pandemic influenza 

viruses in circulation since the last pandemic are influenza A/H3N2 virus, 
influenza B virus and, since 1977, influenza A/H1NI virus; a reassorted 
influenza A/H1N2 virus circulated for a short time starting in 2001. [32] 

2.2.1. Key definitions 

The period during which influenza virus is circulating in the community, 
the `influenza season', is informed by routine [10] and sentinel laboratory 

surveillance. [33,341 In the temperate Northern hemisphere influenza inci- 
dence displays pronounced seasonality; influenza virus typically circulates 
in the community between November and June with little recognised circu- 
lation in the summer months. [35] Morbidity and mortality from influenza 

related causes is also highly seasonal (e. g. figure 2.1). It should be noted 
that little laboratory testing for influenza virus is done in summer leading 

to potential underestimation of summer circulation of influenza virus. In- 
fluenza years will be defined as the first week of July to the last week of June. 
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Henceforth, the term `normal' incidence will refer to the roughly sinusoidal 

seasonal pattern of respiratory morbidity and mortality and `aberrant' to 

incidence in excess of `normal' incidence. `Aberrant' incidence is observed 
during most influenza seasons, but is of variable intensity. Epidemics are 

periods when `aberrant' incidence is unusually high. 

2.3. Relative impact of influenza seasons 

In this section, the variability in estimates of influenza - attributable mor- 
bidity and mortality between influenza seasons and between studies is in- 
troduced. Around 5% of adults and 20% of children, globally, have symp- 
tomatic influenza A or B each year. [37] Influenza virus infection in humans 

causes both upper and lower respiratory symptoms. [18] Although infec- 
tion is most common in the young, [38-40] morbidity and mortality occurs 
largely in the elderly [8,41-431 and in people with underlying cardiorespira- 
tory disease or diabetes. [44] Deaths in the elderly are thought to be caused 
by secondary bacterial pneumonia. [45] Those who die as a result of in- 
fluenza are often elderly people with comorbid respiratory or cardiovascular 
disease who are admitted to hospital from the community. [46] 

Most diagnoses of influenza are not laboratory-confirmed. [4,5] Most 
deaths associated with influenza do not have influenza mentioned on death 

certificates. [47] Morbidity and mortality attributable to influenza is typ- 
ically ascertained through calculating numbers or rates of general practi- 
tioner (GP) consultations, for diagnoses such as influenza-like-illness (ILI), 
otitis media, acute bronchitis and asthma, [1-3] hospitalisations for respi- 
ratory disease, [1,9,48-50) and deaths from all-causes, [1,8,41,51,52] res- 
piratory (pneumonia + influenza + bronchitis) and circulatory diseases, [8, 
9,51-53] or pneumonia and influenza [7,541 in excess of the number or rate 
expected in the absence of influenza virus. Between 25 and 50% of people 
who consult a GP for ILI do so during outbreaks of influenza. (36,55] Ex- 

cess mortality [1,56] and hospitalisations [1,481 during epidemics suggests 
at least a portion of these are caused by the influenza virus. 
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2.3.1. In England & Wales 

The burden of morbidity and mortality attributable to influenza is highly 

variable influenza season to influenza season (figures 2.2 to 2.5). Estimates 

of excess all-age ILI consultations range from 200 to 1600 consultations per 
100,000 registered population per influenza season. Excess respiratory hos- 

pitalisations in England each season range from none to 70/10,000. There 

are between 0 and more than 2,500 per 1,000,000 excess respiratory deaths 
in the elderly over 75 years old each influenza season. Refer to table 2.1 
for methods of defining baseline morbidity and mortality for estimates of 
excess morbidity and mortality shown in figures 2.2 to 2.5. 

Several reports in figures 2.2 to 2.5 use the method of Fleming et al. to de- 
fine `influenza active weeks'. [1,2,6,49,50,53,57] `Influenza active weeks' are 
weeks when influenza is estimated to have been circulating. The designation 

of influenza active weeks is based on rates of ILI in sentinel general practices 
participating in the Royal College of General Practitioners (RCGP) Weekly 
Returns Service (WRS) and laboratory reports of influenza infection re- 
ported through routine [10] and sentinel virological surveillance. [33,34] The 

method of defining `influenza active weeks' is complicated so, for reference, 
it is reproduced in full below: 

1. From weekly all-age rates of ILI for each of the study years, ILI rates 
are deleted for weeks when there is >1 influenza laboratory report. 

2. In the remaining all-age ILI data, an average expected rate of ILI for 
each winter week is estimated (e. g. the average expected ILI rate for 
the 3rd week of January is the average ILI rate observed in the 3rd 
week of January of 1989,1990,1991 and so on, excluding any January 
3rd weeks when there was one or more flu lab report(s)). This gives 
a time series of average expected all-age rates of ILI for each winter 
week. 

3. A 95% confidence interval (CI) is calculated around the time series of 
average expected all-age rates of ILI for each winter week. The upper 
95% confidence limit on the time series of average expected rates of 
ILI is defined as the `epidemic threshold'. 

4. Observed all-age ILI rates for every week of the study years are com- 
pared with the epidemic threshold for that week. When the observed 
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ILI rate exceeds the epidemic threshold. the week is defined as an 

-influenza active week. 
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Table 2.1.: Key to methods used to estimate baseline morbidity and 
mortality in figures 2.2 to 2.5 

Definition of baseline Table refer- refs 
ence 

Mean rate by age group in winter weeks out- circles fig 2.2; [1,49, 

side of `influenza active weeks' all fig 2.3; `+' 50,53] 
fig 2.4; black 
circles fig 2.5 

Mean rate by age group in winter weeks out- `+' in fig 2.2; [2,571 
side of `influenza active weeks' and `respira- circles fig 2.4 
tory syncytial virus (RSV) active weeks'; ex- 
cess apportioned between influenza, RSV if 
overlapped 
Average morbidity in winter weeks excluding diamonds [3] 

weeks encompassing > 70% of laboratory re- fig 2.2 

ports that season (influenza or RSV; excess 
apportioned between them if overlapped) 
Seasons without `very high peaks' or `sizeable `+' fig 2.5 [58] 

outbreaks' 
Months with 0 influenza laboratory reports or coloured cir- [51] 
lowest RCGP ILI rate cles fig 2.5 
Lowest RCGP upper respiratory tract infec- `x' fig 2.5 [59] 
tion rate 
Intercept from regressing total excess winter diamonds [47] 
deaths (deaths Dec-Mar divided by average fig 2.5 

of Aug-Nov and Apr-July) on influenza regis- 
tered deaths 

Variability in excess ILI between influenza seasons is similar across age 
groups (figure 2.2). Estimates of excess ILI for later influenza seasons [3] 

were lower in general than for earlier years. [1]. This may be related to the 
different ways baseline ILI was defined in the later vs. earlier reports (see 

table 2.1). 
Excess respiratory hospitalisations are variable between influenza seasons 

and are higher for older age groups (figure 2.3). Estimates of excess pneu- 
monia and influenza hospitalisations [49] (`+' in figure 2.3) are higher than 

estimates of excess respiratory hospitalisations [1,50] (all other symbols in 
figure 2.3) because pneumonia and influenza hospitalisations are more spe- 
"RSV active weeks' were defined as weeks with at least 200 laboratory reports for RSV 

in children <1 and then following the same procedure as for `influenza active weeks' 
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cific to influenza. Pneumonia and influenza hospitalisations would therefore 

be expected to occur at lower rates outside of the influenza season. For a 

given influenza season, estimates from [53] (purple `x') are lower than esti- 

mates from [50] (purple diamonds) because averaging rates around Christ- 

mas holiday weeks done in [53] lowered the estimated excess respiratory 
hospitalisation rate. There is no long-term trend in excess hospitalisations. 

Excess respiratory mortality is variable season to season and is much 
higher in the older than younger age groups (figure 2.4). A similar pattern 
is seen in rates of excess all-cause mortality (figure 2.5). There is no clear 
long-term trend in excess mortality except in the youngest age groups. Esti- 

mates of excess all-age, all-cause mortality that rely on relative numbers of 
laboratory reports for influenza A and B in different influenza seasons [59] 

(black diamonds in figure 2.5) produce lower estimates, and less variability 
in excess mortality between influenza seasons, than other methods. This 

suggests that the relative number of laboratory reports between influenza 

seasons may not be a good proxy for the relative impact of influenza seasons. 
A substantial and variable burden of influenza morbidity and mortality 

has been documented in many other settings. [60-67] Comparison of esti- 

mates between countries is difficult because of different diagnostic coding 

practices and because of different methods used to estimate morbidity and 

mortality in the absence of influenza virus. 

2.4. Critique of methods to estimate influenza - 
attributable morbidity and mortality 

In this section, six general methods to estimate influenza - attributable 
morbidity and mortality are critically reviewed. These general methods are 
Serfling-like least squares, ARIMA time series, linear or Poisson regression, 
rate difference, transmission dynamic and latent variable time series meth- 
ods. 

The cumulative influenza - attributable morbidity and mortality in in- 
fluenza seasons has been estimated in many ways. Farr introduced the 

concept of `excess mortality', attributable to influenza, over an expected 

mortality in the absence of influenza virus circulation. Farr subtracted the 

number of deaths that occurred during an influenza epidemic in 1847 from 
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the average monthly mortality rate to estimate mortality attributable to 

the epidemic. [68] Collins defined expected mortality as the median weekly 

number of deaths during non-epidemic years and excess as observed minus 

expected deaths. [69] 

2.4.1. Serfling-like least squares 

Serfling introduced the concept of fitting a sinusoidal curve by least squares 

to mortality data with epidemic weeks deleted. [70] This idea is based on the 

assumption that the winter increase in mortality is only partly attributable 

to influenza. Serfling expressed 4-weekly P&I, with `aberrant' or `epidemic' 

weeks deleted, as dependent on an intercept, linear trend and one Fourier 

term (one sine plus one cosine term) to model seasonality with a period of 

one year according to the formula 

2irt 21rt 
Yt=a+ßt+ßi sin 12 +ß2cos 12 

where Yt is the monthly mortality rate, a is the intercept, ß is a linear 

term for long-term trend. ßl and 02 are coefficients for seasonality. Five 

influenza seasons worth of non-epidemic P&I data were used to predict 
the expected P&I for the sixth influenza season. Coefficients were esti- 

mated by least squares. Serfling then defined the `epidemic threshold' for 

the sixth influenza season as 1.65 standard deviations (SD) above the pre- 
dicted mortality for that season (figure 2.6). Excess P&I for the whole 

of the sixth influenza season was the sum of observed mortality that was 
greater than the epidemic threshold. This method has been widely used 
(e. g. [56,58]). The Health Protection Agency Centre for Infections (HPA 

CfI) uses a Serfling-type approach to monitor excess mortality in England 
& Wales each winter. [71] The Centers for Disease Control and Prevention 
has used a Serfling-type model, modified by Lui and Kendal, fitted to past 
P&I incidence from 122 US cities to predict expected P&I for the following 

influenza season for many years. [72,731 

The approach described above to estimating mortality attributable to 
influenza in a particular influenza season is limited in two ways. First, 

the epidemiologist must decide what observations in the previous five years 
of P&I data are to be deleted before model fitting. The uncertainty in 
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Fiouea 1. Observed number or weekly deaths attributed to pneumonia and influenza, compared with number forecast by Berfling regression 
model (l). 121 U. B. eitiae, 1976-1979. 

Figure 2.6.: The 'epidemic threshold' in P&I data from 121 US 

cities between 1976/77 and 1978/79 calculated using 
Serfling's least squares method (figure 1 from [74]). 

the designation of observed mortality or morbidity as `epidemic' or `non- 

epidemic' (i. e. `aberrant' or `normal') is not taken into account. Second, 

the roughly sinusoidal baseline with a linear (or sometimes quadratic) long- 

term trend lacks flexibility in fitting `normal' seasonal incidence when the 

timing of influenza seasons varies between influenza seasons. 
As an example of a recent adaptation of Serfling's original method, Si- 

monsen et at. used a Serfling-type regression model to estimate excess P&I 

and all-cause (AC) mortality in the elderly in the US for influenza seasons 
between 1968 and 2001. [7] First, rates of P&I and AC were adjusted for 

the change from ICD 9 to ICD 10 using a comparability ratio. Any long- 

term trend in the mortality rates was removed by dividing each month's 
rate by the average summer (June - August) mortality rate using a smooth- 
ing spline. Mortality rates for December to April where discarded to iso- 
late `normal' mortality. A Serfling-type regression model was fitted to de- 

trended monthly rates of influenza-registered mortality, excluding December 

to April, according to the formula 

Dt = a+/31sin 
girt 
12 +ß2cos 2i12rt 

+¬t 

where Dt is the de-trended monthly mortality rate, a is the intercept, ß, 

and ß2 are coefficients for seasonality and Et is the error term. Months when 
the observed rates of influenza-registered death exceeded the upper 95% CI 

on the model-predicted rates of influenza-registered death were defined as 
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`epidemic months'. The identical Serfling-type regression model was then 
fitted to de-trended P&I and AC in 5-year age groups (65-94). Excess P&I 

or AC was the difference between observed and model-predicted P&I or AC 

for all `epidemic months' with trend added back in. This model improves 

upon Serfling's original least squares approach by more flexibly accounting 
for long-term trend in `normal' mortality data using a smoothing spline. 
The models described in the thesis fitted seasonality using a Fourier term 
(one sine plus one cosine term) and fitted long-term trend with cubic splines. 
This is analogous to the method of Simonsen et al. where seasonality was 

modeled using a Fourier term and where long-term trend was removed using 
a smoothing spline. The models described in the thesis thus have increased 
flexibility for fitting seasonality and trend in the data relative to Serfling-like 
least squares. 

The adaptation by Simonsen et at. of the Serfling method is still limited 
by the need to delete observations for December to April before model fit- 
ting. Accordingly, the models described in chapters 5 to 7 of the thesis have 
differentiated `aberrant' from `normal' morbidity and mortality as part of 
model fitting, while incorporating uncertainty into this differentiation. 

2.4.2. ARIMA time series 

Choi and Thacker proposed a method to increase the accuracy of forecasts, 

and estimates of excess mortality, compared to those from the Serfling-like 
least squares method. [74] They adapted a seasonal autoregressive integrated 

moving average (ARIMA) time series model for this purpose. [74,75] Like 
Serfling's method, the seasonal ARIMA model was fitted to past P&I data 

with `aberrant' (or `epidemic') weeks deleted. Unlike Serfling's method, 
in the ARIMA model non-independence in the P&I data is not assumed 
to necessarily follow a roughly sinusoidal pattern plus linear trend. The 
ARIMA model predicts expected numbers of deaths for future time periods 
based on the temporal sequence of counts of deaths in past time periods. 
Baseline counts for deleted epidemic weeks are also predicted as part of 
model fitting. Comparing figure 2.7 to figure 2.6, the increased flexibility of 
the seasonal ARIMA model compared with Serfling least squares model for 
fitting `normal' incidence is evident. Excess mortality was defined as the 

sum of positive residuals exceeding 1.65 SD above mortality predicted by 
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the ARIMA model. 
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Flouu 2. Observed number or waekly death attributed to pneumunia and in0uanu, tompand with number forauat by ARIMA modal (2), 121 
U. S. cittr, 1979-1979. 

Figure 2.7.: The `epidemic threshold' in P&I data from 121 US 
cities between 1976/77 and 1978/79 calculated using 
the ARIMA time series method (figure 2 from [741). 

The seasonal ARIMA time series model for P&I developed by Choi and 
Thacker produced more accurate estimates of excess P&I than Serfling-like 

least squares [74] because previous `aberrant' observations were replaced 
by model-predicted counts instead of simply being deleted. The models 
described in chapters 5 to 7 of the thesis did not require deletion of data 

prior to model fitting. The ARIMA method is limited in a similar way to the 
Serfling method in requiring the deletion of `aberrant' observations before 

model fitting. Both the ARIMA and Serfling-like least squares methods 

assume that excess mortality is entirely attributable to influenza. 

2.4.3. Rate difference 

Another general approach to differentiating `normal' from `aberrant' inci- 
dence is to calculate rates of morbidity and mortality during the `aberrant' 

period (defined based on the presence of an influenza virus indicator) and 
compare these to rates during a 'peri-seasonal period' (winter weeks outside 
of those defined as `aberrant') or during the summer. [761 As an example of 
this `rate difference' method, Jansen et al. recently compared average rates 
of excess all-cause mortality in elderly people in the Netherlands in peri- 
ods of high and low vaccine coverage in order to investigate vaccine impact 

on mortality. [641 Excess all-cause mortality was estimated using the rate 
difference method. First `influenza active periods' and `RSV active peri- 
ods' in each influenza season under study were identified. `Influenza active 
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weeks' were defined as >2 consecutive weeks accounting for at least 5% of 
the winter's total influenza laboratory reports. `RSV active weeks' were > 

2 consecutive weeks accounting for at least 5% of the winter's total RSV 

laboratory reports. Weeks of influenza predominance were `influenza active 

weeks' which were not `RSV active weeks'. Winter was considered to last 

from week 40 of one calendar year to week 20 of the following year. The 

`peri-seasonal baseline' mortality was AC mortality in winter weeks which 

were neither `influenza active weeks' nor `RSV active weeks'; the `summer 

baseline' mortality was AC mortality in weeks 21 to 39. Excess AC mor- 
tality rates for each season were calculated by subtracting rates during the 

peri-seasonal baseline from rates during periods of influenza predominance, 
multiplied by the number of `influenza active weeks' in that season. Excess 

was similarly calculated using the summer instead of peri-seasonal baseline. 

Estimates of excess mortality using this method may be biased downwards if 

influenza - attributable deaths lag laboratory reports by a number of weeks 
(thus falling outside of the virus active periods). 

Many of the estimates of excess morbidity and mortality in England & 

Wales summarised in section 2.3.1 were calculated using a similar method 
to that of Jansen et al.. [1,2,6,49,50,53,571 In these studies, an `epidemic 

threshold' was defined using average all-age ILI data for winter weeks when 
there were no laboratory reports for influenza (routine or sentinel). Winter 

weeks when observed ILI was above the `epidemic threshold' were defined 

as `influenza active weeks'. Average observed morbidity or mortality in 
`influenza active weeks' was divided by average morbidity or mortality for 

the winter weeks of that season which were not `influenza active weeks', 
multiplied by the number of `influenza active weeks', to give total excess 
morbidity or mortality in that season. The logic behind multiplying a ratio 
of average rates by the length of the influenza active period is unclear. The 
`influenza active weeks' (defined using all-age ILI data and all-age influenza 
A and B laboratory reports) were assumed to be the same for all age groups 
and for all outcome variables (e. g. ILI, respiratory hospitalisations and 
mortality). This assumption would not hold if influenza activity increased 
in some age groups before others, or if deaths lagged ILI (see section 3.2.6). 
Also, for analysis of a number of influenza seasons at once, estimating the 
`epidemic threshold' by averaging ILI rates across weeks for several seasons 
would mean the `epidemic threshold' was too high or too low at the ends of 
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the time series if there were a long-term increase or decrease in ILI incidence 
(see section 4.6). 

2.4.4. Regression on an indicator of influenza virus 
circulation 

Another approach to estimating mortality (or morbidity) attributable to 
influenza is to regress non-laboratory confirmed outcome incidence on indi- 

cators of influenza virus circulation (like laboratory reports for influenza A 

and B, GP consultations for ILI or deaths registered to influenza). By do- 
ing this, incidence attributable to influenza is distinguished from incidence 

attributable to other factors, like seasonality, fluctuating ambient winter 
temperatures or epidemics of RSV. Clifford et al. introduced this approach 
by fitting multiple linear regression models to 4-weekly deaths (all-cause or 
respiratory in separate model fits) according to the formula 

Yt = a+ßlXl +ß2X2 +... +ßpXp+Et 

where Yt is the 4-weekly number of deaths, a is the intercept and ßs are 
coefficients for dummy variables for season, trend, ambient temperature, 

years since an antigenic drift event, RSV and various indicators of influenza 

virus circulation that included influenza A and B routine laboratory reports 
and GP consultation rates for influenza from the RCGP. [52] Coefficients 

were estimated using least squares. Clifford et at. estimated the number of 
deaths in the absence of influenza by setting the influenza indicator to zero 
(or the lowest observed level in the case of the RCGP consultation rate for 
influenza, which is rarely zero). The portion of excess mortality attributable 
to influenza was then the observed mortality minus that predicted when the 
influenza indicator was set to the appropriate baseline level. 

This general approach has been widely used. Poisson models with a log- 
link [8,771 or an identity-link [78] have also been fitted. These regression 
models can also incorporate terms for observed morbidity or mortality in 

previous weeks or months to account for dependence between death counts 
not accounted for by variability in the indicator of influenza virus circu- 
lation, seasonality, trend and other confounders. [42] Carrat and Valleron 

merged the regression and ARIMA approaches when they regressed respi- 
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ratory, cardiovascular and other mortality rates on rates of mortality regis- 

tered to influenza and an error term that had an ARIMA structure. [791 In 

this way only the variability in respiratory, circulatory or other mortality 

rates that could be explained by variability in rates of mortality registered to 

influenza was attributed to influenza. All of the remaining variability in the 

dependent variable was accounted for in the ARIMA process. In the general 

class of models described in this section, influenza - attributable mortality or 

morbidity is estimated either as observed mortality minus mortality when 
the influenza indicator is set to its baseline value [52] or multiplying the 

regression coefficient for the influenza virus indicator by the magnitude of 

the influenza virus indicator in each week of each influenza season. [9] There 

is a conceptual issue and an analytical limitation of regressing surveillance 
data on each other. 

The conceptual issue with regressing different influenza surveillance data 

on each other is that true influenza burden is partially observed in each 
of the surveillance data sets (e. g. mortality, GP consultations, laboratory 

reports for influenza) (figure 2.8). When surveillance data are regressed 
on one another, this implies that the association between the data sets 
is as in figure 2.9. That is, the implication is that laboratory-confirmed 

cases (e. g. ascertained through laboratory reports for influenza) cause non- 
laboratory confirmed cases (e. g. deaths coded to underlying pneumonia or 
influenza). As mentioned above, in reality, influenza disease is partially 
observed in each data set. This suggests multivariate models, where both 

non-laboratory-confirmed and laboratory-confirmed data are outcome vari- 
ables, as an alternative to regression models. 

The analytical limitation of regressing different streams of influenza surveil- 
lance data on each other is that convenient aspects of models with a log-link 
(e. g. allowing control for the changing size of the population at risk with a 
population offset, see chapter 3) are problematic. Poisson models with a log- 
link and a population offset imply a multiplicative association between the 
influenza virus indicator (e. g. laboratory reports for influenza) and the de- 

pendent variable (e. g. deaths coded to underlying pneumonia or influenza). 
This may not be realistic. [80] Other scales of analysis (for example, model- 
ing the association between the laboratory reports for influenza and deaths 

coded to underlying pneumonia or influenza using a Poisson model with an 
identity-link or using a Gaussian model) make adjustment for the changing 
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GP consultations for ICI, etc 

Influenza disease(; Laboratory reports for influenza A and B 

Mortality (respiratory, circulatory, etc) 

Figure 2.8.: A schematic illustrating the implied relationship be- 
tween true influenza incidence and influenza morbidity 
and mortality as captured by surveillance data. 

GP consultations for ILI, etc 

Influenza disease ' Lab reports for influenza A änd B 

Mortality (respiratory, circulatory, etc) 

Figure 2.9.: A schematic illustrating the implied relationship be- 
tween true influenza incidence and influenza morbidity 
and mortality as captured by surveillance data when 
GP or mortality data are regressed on laboratory re- 
port data. 
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size of the population at risk more difficult because a population offset can- 

not be used. In Gaussian models, counterintuitive negative model-predicted 

numbers of cases are possible (see chapter 3). 
Thompson et al. recently estimated excess respiratory and circulatory 

morbidity in the US between 1977/78 and 2002/03 using four methods de- 

scribed above: Serfling-like least squares, ARIMA time series, rate differ- 

ence and Poisson regression with a log-link (where seasonality was modeled 
using a sine and cosine term). [60] The highest estimates of influenza - at- 
tributable mortality were derived from the rate difference method using a 

summer baseline and the next highest from the rate difference method us- 
ing a peri-seasonal baseline; Serfling least squares, Poisson regression with a 
log-link and ARIMA time series models gave similar estimates to each other 
and lower estimates than the rate difference method. 

2.4.5. Latent variable time series models 

An alternative way to distinguish influenza - attributable from non-influenza 

attributable morbidity and mortality is to use latent variable time series 

models (details in section 3.5.2). In latent variable time series models, the 

distinction of influenza - attributable ('aberrant') from non-influenza - at- 

tributable ('normal') morbidity and mortality is automated. The model 
is able to distinguish `aberrant' from `normal' morbidity and mortality by 

considering the morbidity or mortality time series as having arisen through 

a latent (unobserved) process (e. g. [811). The differentiation of `aberrant' 

from `normal' incidence is governed by latent `states' where each state has a 

probability distribution associated with it. The model learns from the data 

about the probability that any given week is drawn from the `normal' or 
`aberrant' distribution. The contribution of the work described in the thesis 
is in developing age group-specific multivariate latent variable time series 

models for influenza morbidity and mortality. In the models described in 

chapter 6, the distinction of `aberrant' from `normal' P&I and ILI is in- 

formed by laboratory reports for influenza A. Age group specific laboratory 

reports, P&I and ILI data are simultaneously modeled as outcome vari- 

ables. The distinction of `aberrant' from `normal' incidence in P&I and ILI 

is informed by both laboratory reports for influenza A and the P&I and 
ILI data themselves. In this way the specificity of influenza - attributable 
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morbidity and mortality for influenza is increased relative to models fitted 

to P&I or ILI only (see chapter 5). Because models are age group-specific, 

different timing of influenza seasons in different age groups is allowed for. 

Also, because in bivariate models the distinction of `aberrant' from `normal' 

incidence is informed by P&I, or ILI, and laboratory reports, shifted timing 

of `aberrant' incidence in ILI compared to P&I data is accommodated. 

In the latent variable framework, the observation model for the `normal' 

incidence probability distribution has often been modeled as Serfling-like 

with Poisson or Gaussian errors. [81-83] Using a Gaussian model is limited 

because of the possibility of predicting negative counts. As mentioned previ- 

ously, throughout the thesis `normal' incidence was fitted with a Serfling-like 

Poisson model. 
In previous latent variable time series models, the distinction between 

`normal' and `aberrant' incidence has been captured in an autoregressive 
term [83-85] or as an additive mean shift. [82] Rath et at. chose an ex- 

ponential distribution for the `normal' incidence observation model and a 
Gaussian distribution for the `aberrant' incidence observation model. [86] 

An advantage of this approach was that seasonality and trend did not need 
to be explicitly modeled. There is not an obvious choice as to how to model 
the difference between `normal' and `aberrant' incidence. The models de- 

scribed in chapters 5 to 7 modeled this using a random effect mean shift 
for each influenza season (see section 3.5.2). The random effect allows vari- 

ability in the intensity of influenza seasons. The random effect mean shift 
is a simple first step for modeling the relative impact of influenza seasons 
in terms of morbidity and mortality. 

2.4.6. Transmission dynamic models 

An alternative to the statistical models described above for making infer- 

ence about a time series of counts of an infectious disease are transmission 
dynamic models. An example of this approach is the model introduced 
by Finkenstadt et at.: a susceptible-infected-recovered-susceptible (SIRS) 

model where an observed time series of counts of the disease in question 
populates the `infected' class. [87] This framework was recently applied to 
French ILI data. [88] The weekly ILI count was assumed to arise from a 
Gamma distribution whose mean (0t) was expressed in terms of the contact 
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rate (j) and the number susceptible (C) and infected (/6) in week t-1. [88] 

Ot = r1tSc iKt-i 

x is a mixing parameter for the contact process between infected and sus- 

ceptible people. X takes the value 1 if the population mixes homogeneously. 

Seasonality was parameterised by allowing r) to vary seasonally (with a pe- 

riod of I year). The number susceptible (() and recovered (w) in week t+1 

was then 

Ct+1= Ct - r-t+1 +'YtWt 

Wt+1 = (1 -'Yt)Wt + Kt-1 

The parameter yt captured the return of immune individuals to suscep- 
tibility because of waning immunity or due to antigenic drift. In the full 

version of this model, y was constant throughout an influenza season except 
for at most 1 week when it could take any value up to 1. The 1 week during 

which a proportion of the population essentially instantaneously reverted 
from immune to susceptible represented the introduction of an antigeni- 

cally drifted variant. Inference about unknown quantities (e. g. x, 71, y) was 

made using Markov chain Monte Carlo (see section 3.5.3). 
Latent-variable models can be extended to include a transmission dy- 

namic component [89] (where the Markov chain, of which the observed data 

are a realisation, is generated by a transmission model). In the work de- 

scribed in the thesis, a strictly statistical, and not a transmission dynamical, 
framework has been used. 

2.5. Determinants of variable impact of influenza 

seasons 

In this section, key potential determinants of the variability in influenza - 
attributable morbidity and mortality between influenza seasons are intro- 
duced. These potential determinants include the exposures of interest in 

the work described in the thesis: large antigenic drift events in influenza 
A/H3N2 virus evolution and vaccination. 

There are a number of factors that help to explain the variability in in- 
fluenza - attributable morbidity and mortality between influenza seasons. 
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One is the dominant circulating variant or variants in each season. Influenza 
A/H3N2 virus infection generally causes more serious illness than infection 

with influenza A/H1N1 or B virus. [40,90,911 Influenza seasons dominated 

by influenza A/H3N2 virus result in higher mortality [1,92], hospitalisa- 

tions [1,48] and GP consultations for influenza-like-illness [1] than seasons 
dominated by influenza A/H1N1 or B viruses. There is evidence that the H3 

haemagglutinin is under positive selection, [11,12] that there is a higher mu- 
tation rate of influenza A/H3N2 virus vs. H1N1 or B viruses [12] and some 
evidence of more efficient transmission of influenza A/H3N2 than H1N1 

viruses. [19] Large antigenic drift events in influenza A/H3N2 virus evolu- 
tion often coincide with epidemics (see section 2.6). [93,941 

Increasing vaccine coverage of certain age groups may lead to less in- 
fluenza - attributable morbidity and mortality through direct and indirect 

vaccine effects (see section 2.8). [95] The mismatch between vaccine and 
dominant viruses sometimes results in lower VE and should be taken into 

account in studies of the association between antigenic drift, vaccine cover- 
age and excess morbidity and mortality. [16,17] 

Factors not related to influenza directly, like ambient temperature and 
RSV epidemics, [42] a decline, and then leveling off, of levels of smoking 
in the population [96] and declines in healthcare-seeking behaviour in the 

population [97] may explain some of the variability in influenza - attributable 
morbidity and mortality influenza season to influenza season. Factors such 
as these may obscure the relationship between influenza-related factors (e. g. 
antigenic drift or vaccine coverage) and excess morbidity and mortality. 

2.6. Plausibility of an effect of antigenic drift on 
excess morbidity and mortality 

In this section, the plausibility of an average inflating effect of large antigenic 
drift events on mean influenza - attributable morbidity and mortality is 
discussed. 

2.6.1. Evolution of influenza A/H3N2 virus 

Laboratory studies have provided evidence for changes in influenza A/H3N2 

virus that may be indications of adaptation of influenza A/H3N2 virus to 
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transmission within the human population. That is, these changes may be 

due to selective pressures on influenza A/H3N2 virus exerted during the 

long-term circulation of influenza A/H3N2 virus in the human population 
(41 years). For example influenza A/H3N2 viruses have, over time, become 

better able to bind sialic acid receptors in human epithelial cells. [98] They 

also appear to have developed a lower affinity for natural killer cells. [99) 

Because this evidence is not coupled to information about viral fitness, how- 

ever, it is difficult to interpret it in terms of resulting changes to virulence 
(the severity of the illness caused by infection with a pathogen). For ex- 

ample, mutations that increase sialic acid affinity, and enhance host cell 
binding, might also increase antibody recognition and result in an overall 
decrease in fitness. [98] 

Antigenic evolution 

Study of the antigenic evolution of influenza A/H3N2 virus gives an in- 

dication of evolution in response to selective pressures by human immune 

systems which does not result in loss of fitness. Less fit viruses do not per- 

sist in order to be isolated from large numbers of patients and thus are not 

well represented in databases of antigenicity data on influenza viruses. 
As part of the influenza vaccine strain selection process, the World Health 

Organization (WHO) assesses antigenicity using the haemagglutination in- 
hibition (HI) assay. The HI assay is based on the ability of influenza viruses 
to agglutinate red blood cells and the ability of specific antibodies to inhibit 

this agglutination. The antibodies used in the HI assay are raised by infect- 
ing ferrets with the relevant influenza virus variants. The HI value, or titre, 

ascribed to each antiserum is the highest dilution of the antiserum that can 
block the agglutination of the red blood cells. The higher the HI value, 
the more similar the variant of interest is to the reference variant against 
which the antiserum was raised. The HI test is used for surveillance because 

the antibody produced is durable and directed towards the haemagglutinin 

which is the most relevant for assessing susceptibility and immunity. (100) 

These data have historically been used in a qualitative way by the WHO 

to estimate how well a vaccine that included one variant should protect 

vaccinees from infection with another variant. 
Recently, Smith et at. used HI assay data on 79 antisera and 273 viral 
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isolates from the WHO vaccine strain selection data set to identify clusters 
of antigenically similar variants. [13] An antigenic map was constructed by 

placing virus isolates and antisera from influenza seasons between 1968 and 
2003 on an x-y plane. The distance between virus-antiserum pairs was 
determined by their HI titre. The relative position of each pair on the plane 
was determined by minimising the sum of squared differences between the 
loge of the HI value and the physical distance between the antigens and 
antisera on the map (figure 2.10). The accuracy of the map was determined 
by selecting antigen-antiserum pairs whose HI values were not included in 
the creation of the map, predicting the HI value of those pairs from distances 
in the map, and then testing the HI value for this pair in the laboratory. 
The correlation between HI distance inferred from the map and laboratory- 
tested distance was 0.81. 

The HAl subunit of the HA of each of the influenza A/H3N2 virus vari- 
ants included in the map was sequenced to allow comparison of the rates 
of genetic and antigenic change. Smith et at. provided evidence that viral 
genetic evolution happens in a relatively continuous (linear) fashion while 
antigenic change is punctuated. [13] This was done by plotting both genetic 
distance (in amino acid substitutions) and the antigenic distance between 
the dominant variants each season against the season (figure 2.11). A clus- 
ter of variants in the antigenic map was dominant for a mean of 3.3 years 
(range 1 to 8 years) before a large antigenic drift event, or cluster transition 
(CT), occurred. There was some overlap in circulation of adjacent clusters. 

More recently, Russell et at. showed that antigenic change in influenza 
A/H3N2 virus between 2002 and 2007 was more linear [101] than the histori- 

cal average indicated by Smith et at.. [13] The analysis of antigenic evolution 
between 2002 and 2007 was based on a larger data set that was more geo- 
graphically representative of global isolates; the earlier analysis of antigenic 
evolution between 1968 and 2003 was based on a data set where 94 of 273 
isolates used to generate the antigenic map were from the Netherlands. An 

alternative hypothesis to the rate of antigenic change having been more lin- 

ear between 2002 and 2007 than previously is that global antigenic change 
is gradual compared with local antigenic evolution. Local evolution may 
appear punctuated because influenza virus does not persist locally between 
influenza seasons. [101] 
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2. I I1.: Antigenic map showing clustering of antigenic variants 

of influenza A/113N2 virus between 1968 and 2003/04. 
Reproduced from figure 1 of Smith et al. [13]. One 

wilt of antigeuic" distance on the snap is ecluivalerrt to a 2-fold 
dilnt ion in the antiserum iii the HI assay. Coloured symbols 
are viral isolates and open svrrrbols are antiscra. The size and 
shape of cache point oil the snap reflects a confidence area in 

its placement oil the map. Antigenic clusters are distinguished 
by colour. Note that, clusters of antigenically similar- viruses 

arrange chronologically froth the 11K68 cluster, that includes 

the variant that caused the pandemic of 1968-1970 (top). to 

the FU02 cluster. 
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Figure 2.11.: Antigenic distance (left) and number of amino acids 
(right) between circulating influenza A/113N2 virus 
variants each season against the season (reproduced 
from figure 4 in [13]). ('lusters are colour-coded as in the 
previous figure. The area of each point represents the pro- 
portion of isolates per seasoii wiiicli were from each antigenic 
cluster. Sampling is biased towards outliers so the area of each 
point does not, reflect this variant's epidemic impact. Antigenic 

change appears to proceed in a more punctuated manner than 

genetic change. 
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2.6.2. Relationship of antigenic drift to host immunity 

There is evidence that the HAI subunit of influenza A/H3N2 virus is under 
positive selection and it is likely that a major driver of this is host population 
immunity. [11,12] Using a transmission dynamic model, Gog et al. showed 
that strain-specific immunity can lead to CT seasons. [102] Models that 

also allow a non-specific strain-transcending immunity reproduce antigenic 
evolution that proceeds gradually but also clustered antigenic evolution like 

that observed by Smith et al.. [12,13] 
Antigenic drift plausibly increases the size of the susceptible population to 

circulating variants of influenza virus. This is because antibodies generated 
by natural infection or vaccination against previously circulating variants 
become less able to neutralise variants which are antigenically drifted. As a 

result, people revert from being immune to being susceptible to circulating 

variants of influenza virus. A cohort study where individuals were grouped 

according to previous exposure to influenza A/H3N2 viruses suggests that 

there is almost complete immunity to variants within an antigenic clus- 
ter. [103] This same study, and a natural experiment in military personnel 

where vaccinated people were housed with newly arrived unvaccinated indi- 

viduals, suggested there is approximately 60 to 80% cross immunity between 

clusters adjacent in time. [103,104] Nakajima et al. found no cross-immunity 
between viruses from the HK68 cluster and serum from human subjects that 
included antibodies to viruses circulating between 1991 and 1993. [105] This 

suggests there probably is little or no cross-immunity between non-adjacent 
clusters. 

The make-up of the trivalent influenza vaccine used in most countries is 
updated regularly to track the antigenic evolution of (specifically) influenza 
A viruses. [106] The influenza A/H3N2 virus vaccine variant is updated 
when there is an antigenic distance of at least 2 units (a fourfold dilution 

of antiserum in the HI assay) between the vaccine variant and the variant 
expected to circulate in the next influenza season. The mean degree of 
antigenic change with each cluster transition is 4.5 antigenic units. [13] 
There is at least 1 vaccine variant in each influenza A/H3N2 virus antigenic 
cluster (see section 2.6.1). 
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2.7. Evidence for effect of antigenic drift 

In this section, the evidence for an average inflating effect of large antigenic 
drift events on influenza - attributable morbidity and mortality is reviewed. 

The appearance of antigenically distinct variants of influenza A/H3N2 

virus in 1972 and 1975 were accompanied by large increases in deaths from 

influenza and pneumonia in the United Kingdom (UK) and worldwide. [93] 

Greene et al. plotted the monthly percentage AC that was due to P&I from 

1968 to 1998 for US residents aged 65 and over, an indicator of the relative 
impact of influenza seasons in terms of mortality, indicating CT seasons on 

the graph (figure 2.12). [94] I added the red horizontal line to their plot to 

indicate approximately the average epidemic in terms of percentage P&I. 

All CT seasons coincided with an average or above average P&I percentage 
though not all of the highest peaks in the graph occurred during CT years. 
The percentage of all-cause deaths coded to pneumonia or influenza is sen- 

sitive to changes in the relative percentages of other causes of death. As 

such, it has not been used in work described in the thesis as an indicator of 
the relative impact of influenza seasons. 

Most reports in the literature which make mention of the impact of large 

antigenic drift events in influenza A/H3N2 virus evolution refer to individ- 

ual drift events [63,107,1081 or to a number of antigenic drift events that 

coincided with massive epidemics. [58,93,109,110] The average effect of clus- 
ter transitions on morbidity or mortality has not, to my knowledge, been 

quantified. There may therefore be a bias in the published literature to- 

wards large antigenic drift events in influenza A/H3N2 virus which resulted 
in large excess mortality and/or morbidity. 

The best estimate of the average effect of a number of CT seasons comes 
from a model of the antigenic evolution of influenza A/H3N2 virus coupled 
with a transmission dynamic model. [14] Here antigenically similar variants 
were modeled as belonging to neutral ensembles and the individuals as being 

susceptible to, infected by or recovered from infection from a neutral ensem- 
ble instead of a particular variant. This model reproduced the pronounced 

seasonality in incidence and duration of cluster dominance observed in re- 

ality. Reading peak attack rates for each season from a figure of predicted 
incidence, colour-coded for the dominant influenza A/H3N2 virus cluster 
(figure 2.13), model-predicted influenza incidence during the first season 
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Figurc 2.12.: The percentage of AC in those 65 and over in the US 

coded to underlying P&I, influenza seasons 1968/69 to 
1997/98. Stars indicate seasons which were the first 
influenza A/113N2 virus-dominated season after a CT. 
Adapted from '911. 'Ihc brick horizontal hers ire seasons dom- 
inated by influenza Atli 1N1 ml/or influenza 13 viruses. The 

red horizontal line indicates the approximate mean peak height 
in terms of I'kl percentage (not, in the original paper). All CT 

seasons had au average or above average Pk1 percentage. 
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after a new cluster emerged was approxiiuately 1.6 times higher than the 

average incidence in other seasons. 

§ 
1500 

AI 

1000 
ý 

II 

500 l 

Al A 
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Figurc 2.13 Model predicted rates of `cases' of influenza from a 

paper by Koelle et al. [14], colour-coded by influenza 

A/113N2 virus cluster. The v--axis is case Hate and x-axis is 

dear. uunibered from 19G8 to 2003. Model-predicted antigenic 

clusters of infiuenza A/H3N2 virus are (loniinant for 1 to 6 iaa- 
fiuetiza seasons (vs. 1-8 iufiueiiza seasons for clusters observed 
in reality). 

Except in the descriptive anxl theoretical ways described ahove. the ef- 
fect of CT scwsons on population inorhi(lity and mortality lia.,; not been 

c1uautificd. 

2.8. Plausibility of impact of vaccination of the 

elderly 

In this scct ion, the plausibility of an impact of increasing yearl}' vaccine 

coverage of the > 65 age group on inean influenza - attributable inorhidit. ", 

and uiort a]itv is <liscusse(l. 

2.3.1. Vaccine efficacy in the elderly 

Trivalcut inactivated influenza vaccine has been shown to prevent tip to 

58% (95(/c Cl 26-77`A) of laboratory confirmed clinically diagnosed ILI in 

hcalthv people aged > 60. ]15] Vaccine efficacy of trivalent inactivated vac- 

cine against confirmed influenza in healthy younger adults is approximately 
77% (95% 67-85`X ). ]111] A recent review suggested similar post-vaccination 

antibody levels in the elderly as in younger adults. ]112] This is in contrast 
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to the general thinking that antibody response to vaccination declines with 
age. 

2.8.2. Vaccine effectiveness in the elderly 

Estimates of VE in the elderly are complicated because few studies used 
laboratory-confirmed outcomes. There is the potential for both positive and 
negative confounding in observational studies that have not used laboratory- 

confirmed outcomes. Positive confounding occurs when vaccinees are health- 

ier than the unvaccinated and leads to inflated estimates of VE. Negative 

confounding occurs when vaccinees are frailer than the unvaccinated, lead- 
ing to artificially low estimates of VE. 

Best estimates of VE in the elderly come from studies that verified the 

absence of positive and negative confounding by health status. For exam- 
ple, the presence of positive confounding by the healthy vaccinee effect can 
be revealed by looking for VE in the pre- or post-influenza season (either 
before influenza vaccine has been administered or after the end of influenza 

virus circulation, when VE would be expected to be zero). From studies 
not affected by positive or negative confounding, VE against acute respira- 
tory hospitalisations is approximately 20-30% [113,114] and against respi- 
ratory mortality is between 12% (95% CI 8-16%) [113] and 79% (95% CI 
0-100%). [77] 

2.8.3. Indirect effect of vaccination 

Several studies have shown that influenza vaccination of school children 
(e. g. [1151), health care workers (e. g. [116]), or whole towns (e. g. [117]) can 
provide indirect protection against ILI and mortality in the unvaccinated. 

In England & Wales, influenza vaccination is recommended for people 
over 65 years. of age and for people <65 with risk factors for complications 
of influenza (e. g. respiratory, circulatory diseases and diabetes) [118]; the 
majority of people receiving the vaccine are over the age of 50. [119] If vac- 
cine efficacy against laboratory-confirmed clinically diagnosed influenza is 

approximately 58%, vaccine effectiveness against non-laboratory confirmed 
ILI should be lower. This is because ILI caused by pathogens other than in- 
fluenza would be expected to be equally distributed between the vaccinated 
and unvaccinated elderly, biasing estimated VE downwards. (See work de- 
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scribed in chapters 5 and 6 to increase the specificity of non-laboratory 

confirmed P&I and ILI for influenza by jointly modeling P&I and ILI with 

laboratory reports for influenza A). Yearly vaccine coverage of the > 65 in 

England & Wales increased from 24% in 1989/90 to 71% in 2004/05 (and 

from 11% to 40% in people <65 in defined risk groups). [119,120 Unless cov- 

erage is high enough to elicit substantial herd immunity, it will be difficult 

to demonstrate an impact of the vaccine on levels of non-specific population 

markers of influenza disease (see chapter 7). In addition, drivers of trans- 

mission in households and the community are thought to be children. [38] 

Observing a herd effect of vaccinating the elderly on transmission in other 

age groups is unlikely because of the probably low transmission from elderly 

to other age groups. 

2.9. Evidence for the impact of vaccination of 

elderly 

In this section, the evidence for an impact of increasing yearly vaccine cov- 

erage of the > 65 age group on mean influenza - attributable morbidity and 

mortality is reviewed. 

2.9.1. Descriptive studies 

In several settings there has been a crude decline in rates of respiratory 

mortality, GP consultations or emergency department visits in the elderly 
in the community, concurrent with an increase in vaccine coverage of the 

elderly (detail in table 2.2). There may be an impact of increasing vacci- 

nation of the elderly on rates of respiratory mortality, GP consultations or 

emergency department visits but these reports do not provide strong ev- 
idence to support this. This is because estimates of trends in total (not 

excess or influenza - attributable) morbidity or mortality are sensitive to 

changes in baseline rates of morbidity and mortality. For example, Dijkstra 

et at. regressed total ILI rates from influenza seasons on vaccine coverage 

of the > 65 in those influenza seasons and provided some evidence of neg- 

ative correlation between the two. [121] A decline in use of GP services, 
like that observed in recent years in England & Wales [122], would give the 
impression of a causal relationship between increasing vaccine coverage and 
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declining rates of ILI when part or all of the decline in ILI rates may be due 

simply to declining use of GP services. Because of the potential confounding 
by changes to baseline morbidity or mortality incidence, as well as possible 

confounding by antigenic drift, the dominant circulating variant, or effect 

modification by the dominant variant or vaccine mismatch, these descriptive 

studies cannot be interpreted as showing strong evidence of vaccine impact. 
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2.9.2. Regression of excess mortality on vaccine coverage 

Seven studies were identified which assessed the association between excess 
or influenza - attributable respiratory hospitalisations or mortality in the 

elderly on vaccine coverage in the elderly (detail in table 2.3). Excess in- 
fluenza - attributable morbidity or mortality is less sensitive to changes in 
baseline morbidity or mortality than total morbidity or mortality rates. As 

such, these studies provide stronger evidence for or against an impact of 

vaccination of the elderly than the descriptive studies in table 2.2. 
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Simonsen et at. estimated the magnitude of the linear trend in loglo 

excess P&I and AC in the US from influenza A/H3N2-dominated seasons 
between 1980/81 and 2000/01, during which yearly vaccine coverage of the 

elderly increased from approximately 20% to 65%. [7] Excess mortality was 

calculated using a Serfling-type regression method described in section 2.4. 

After adjusting for ageing, the point estimate for the linear trend in excess 
P&I was -12% overall (-0.6% per year) with a lower bound of the 95% CI 

of -35%. The upper bound of the CI was not reported so it is not possible 

to say whether they had sufficient power to exclude the possibility of no 

change, or an increasing trend. A possible confounding effect of changes to 

ambient winter temperature between 1980 and 2001 was not assessed. 
Rizzo et at. used the same method as Simonsen et at. to estimate the mag- 

nitude of the linear trend in log10 excess P&I and AC in H3N2-dominated 

seasons for two periods: the first when vaccine coverage was low (approx. 

0 before 1980 to 8% in 1986) and the second when it was rising (10% in 

1987 to 61% in 2001). [67] After adjusting for ageing, point estimates for 

linear trend in excess P&I were -146% overall (-9% per year) between 1970 

and 1986 and +30% (+2% per year) between 1987 and 2001. No CIs were 

reported for these trends; the authors stated there was no evidence of a 

non-zero trend during the period of rising coverage which probably means 
the CI around the estimate of 30% increased excess P&I between 1987 and 
2001 was wide and included the null. This would mean the analysis had 

little power to estimate the slope of the trend in this period. 
Antunes et at. compared excess P&I in Sao Paulo, Brazil in two peri- 

ods: before and after the introduction of free yearly influenza vaccination 
for the elderly. [131] In the period before free vaccination was introduced 
(in 1998), coverage was approximately 0; between 1998 and 2003 cover- 
age ranged between 57% and 68%. Using Serfling-type least squares and 
ARIMA time series methods of calculating excess P&I, they estimated be- 

tween 194 (47.4%) and 583 (88%) fewer excess P&I deaths in the period 

with vaccination compared to the period before vaccination. These esti- 

mates seem improbably high. Excess mortality for each season estimated 

using the two different methods (Serfling-type least squares and ARIMA 

time series modeling) produced very different estimates and different rank- 
ings of highest to lowest impact study seasons. This suggests there may 
have been problems in the analysis. It is possible that there is some con- 

63 



founding by antigenic drift in influenza A/H3N2 virus of the estimates of the 

decline of excess P&I with vaccination: there were 2 or 3 cluster transitions 

(depending on whether they were first isolated in the same influenza season 

as in the Northern hemisphere, or in the following influenza season) in the 

period of low vaccine coverage and only 1 during the period of high vaccine 

coverage. This might give the impression of an impact of vaccination on ex- 

cess P&I which is in fact due to fewer antigenically drifted influenza A/H3N2 

virus variants circulating in the vaccination period compared to the period 

before vaccination. The dominant circulating influenza type/subtype each 

influenza season was not stated. The report did not include CIs around 

estimated numbers of excess deaths prevented. 

A study of two influenza seasons in Finland compared excess hospitalisa- 

tion for pneumonia, influenza or circulatory disease in an area where people 

aged > 65 yrs were only offered free vaccination if they were part of a risk 

group for complications of influenza with an area where all people aged > 

65 were offered free vaccination. [132] Taking excess pneumonia, influenza 

and circulatory hospitalisations together, the area that offered vaccination 
to all elderly, and that consequently achieved twice the vaccine coverage of 
the other area, had fewer excess hospitalisations in one of the two study 

seasons. The study season for which there was a clear difference in the 

excess hospitalisations between the two areas was dominated by influenza 

A/H3N2 virus; the season for which there was little difference in excess hos- 

pitalisations between the two areas was dominated by influenza B virus. For 

pneumonia or influenza hospitalisations alone, CIs for excess hospitalisations 
in the two study seasons and in the two localities overlapped considerably. 
The association between vaccination and excess hospitalisations was con- 
fined to circulatory hospitalisations in the higher impact influenza season. 
This study does not provide strong evidence for vaccine impact against cir- 
culatory hospitalisations because of its short duration (2 influenza seasons). 

Jansen et at. calculated RRs comparing average excess AC mortality in 

the elderly in the Netherlands in the period of high vaccine use (coverage 

up to 80%, 1996/97 to 2002/03) to the period of low vaccine use (coverage 

<50%, 1992/93 to 1995/96). [64] Excess mortality was calculated using the 

rate difference method with either a 'peri-seasonal' or `summer' baseline 
(described in section 2.4) and Serfling-type regression (similar to [7]). RRs 
for excess AC mortality attributable to RSV in high vs low coverage periods 
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were also calculated as a control. Influenza vaccine would not be expected 

to provide protection against RSV mortality. In a sensitivity analysis, the 

RRs were calculated based only on high impact influenza seasons (mostly 

H3N2-dominated seasons). This study provided robust evidence for vaccine 
impact against AC mortality: all RRs for excess mortality attributable to 

influenza excluded the null, associations were stronger when the analysis 

was restricted to high impact influenza seasons and, when the peri-seasonal 
baseline was used, vaccine impact against RSV-attributable excess mortal- 
ity was not observed. The estimated impact of the increase in coverage of 

the elderly on mortality was 35-65%. There is less likely to be confounding 
by antigenic drift in this study than in the study by Antunes et at. since 
there were two cluster transitions in each of the low and high vaccine use 

periods. A possible confounding effect of different ambient winter temper- 

atures in the two vaccine periods was not assessed. There could also be 

confounding by changing health status of the elderly over the study period, 
for example if levels of smoking had declined. This could have resulted in 

positive confounding of vaccine impact. 

Using a similar design to Jansen et at., Kwong et at. estimated RRs 

comparing excess AC and excess pneumonia or influenza hospitalisations, 
A&E visits and GP consultations for two periods: 1997-1999 (before the 
introduction of a universal influenza immunisation program (UIIP) in On- 

tario, Canada) and 2000-2003. UIIP offered free vaccination to all residents 
of Ontario regardless of age or risk group membership. Kwong et at. es- 
timated influenza - attributable outcomes by regressing them on influenza 
indicators (see section 2.4.4). The purpose of the report was to demon- 

strate whether UIIP had led to greater impact in Ontario compared with 
impact of elderly/risk groups-only vaccination provided in the other Cana- 
dian provinces. The other provinces acted as a control for what the impact 
would have been in Ontario had UIIP not been in place. By looking only 
at the RRs for the other provinces (not Ontario), an estimate of the impact 
of the change in vaccine coverage of elderly > 65 yrs of age from 1997-1999 
(around 50%) to 2000-2003 (around 70%) can be gleaned. Controlled for 

age, sex, H3N2-dominance, RSV circulation and vaccine mismatch, all RRs 

exclude the null. The estimated impact of the increase in coverage of the 
elderly on mortality, hospitalisations and A&E visits is 50-70%, higher for 
GP consultations. These findings may be confounded by different ambient 
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winter temperatures or different health status of elderly in the two periods. 
A different approach to estimating vaccine impact was that taken by Car- 

rat and Valleron. [79] They calculated estimates of influenza - attributable 
mortality (from respiratory or cardiovascular causes, diabetes mellitus, chronic 
renal failure, cancer and other death rates) in the > 75 age group prevented 
through vaccination of those > 75. The number of deaths prevented through 

vaccination (do, ) was estimated for a range of plausible estimates of vaccine 
effectiveness (VE) from the literature, given the estimates of influenza - at- 
tributable mortality (do) and observed vaccine coverage in each influenza 

season (p). Influenza - attributable mortality was estimated by regressing 
the mortality rate registered to, for example, cardiovascular causes on the 

registered influenza mortality rate, with ARIMA errors (see section 2.4). 
Their formula for mortality prevented through vaccination was: 

_ 
doVEp 

da 
1- VEp 

The formula was derived as follows (adapted from the appendix of [791): 

If 
AR1,, is the attack rate in the unvaccinated elderly 
AR� is the attack rate in the vaccinated elderly 
nu, is the number of unvaccinated elderly 
n� is the number of vaccinated elderly 

given 

VE=1-Äý 

then 

(ARu. nu + ARnv) 
_ 

ARu(nu + (1 - VE)nv) 
(nu + nv) (nu + nv) 

Replacing n�/nu = p/1 -p and simplifying gives 
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do = ARu(1 - VEp) 

Assuming that AR, does not depend on vaccine coverage, AR" is the es- 

timate of the death rate in the absence of vaccination. (Note that AR,, is 

unobserved. ) 

Vaccine impact (da) is then 

da=AR., i-do= 
d° 

-do= 
d°VEp 

(1 - VEp) (1 - VEp) 

The difference between the (unobserved) AR,, and the observed influenza- 

attributable mortality do is attributed to vaccination. Assuming that the 

attack rate in the unvaccinated does not depend on vaccine coverage means 
that this formula is estimating vaccine impact due to direct effects of vac- 

cination only. The authors did not report mortality prevented in each sea- 

son. They estimated that between approximately 7 and 700 influenza - 
attributable deaths may have been prevented in the influenza seasons stud- 
ied, depending on the true VE and coverage achieved in that season. This 

method could be refined in future by using influenza season-specific esti- 

mates of VE against mortality, if available. This would produce estimates 

of mortality prevented in each of a number of influenza seasons controlled 
for variability in VE due to vaccine mismatch or lower impact influenza 

seasons. Carrat and Valleron's application of the method did not allow for 

confounding by other factors, such as ambient temperature or RSV epi- 
demics, which, if they overlapped with the period of influenza circulation, 
might result in higher estimates of influenza - attributable mortality and 

consequently estimates of impact that are lower than in reality. 
Estimated vaccine impact against similar outcomes may vary between 

settings because of setting-specific factors affecting estimates of the relative 
impact of influenza seasons (e. g. diagnostic practices, access to care, ambi- 

ent winter temperatures). On balance, the studies reviewed in this section 

suggest that there may be an impact of increasing vaccination of the elderly 
on morbidity and mortality in the elderly. The reports by Simonsen et at. 
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and Rizzo et at. suggest vaccine impact may be difficult to detect using 
linear regression because of low power. [7,67] Results presented by Jansen 

et at. and Kwong et at. would suggest that for an increase in coverage of 
the elderly of approximately 20-30%, a decline in influenza - attributable 
mortality of 35-70% could be expected. [64,95] Despite careful control for 

confounding, it is unlikely that these estimated declines in mortality are 
entirely attributable to vaccination. Viboud and Miller showed similar de- 

clines in mortality in the Northern US despite stagnant vaccine coverage in 

the US over this period. [133] Carrat and Valleron's model could provide a 
method of estimating vaccine impact each season based on season-specific 
estimates of vaccine effectiveness, excess mortality (or morbidity) and vac- 
cine distribution, assuming only direct effects of vaccinating the elderly. [79] 

2.10. Rationale for overall aims and objectives 
In this final section, the rationale for the work described in the thesis is 

given. As outlined in the preceding literature review, the average effect of 
CT seasons on influenza - attributable morbidity and mortality in England 
& Wales (or, indeed, globally) has not been quantified. The impact of the 
increase in yearly vaccine coverage of the > 65 age group in England & 
Wales from 24% in 1989/90 to 71% in 2004/05 on morbidity or mortality 
in the elderly is also unknown. 

The effect of CT seasons and the impact of vaccination can both be es- 
timated by expressing influenza - attributable mortality as dependent on 
CT seasons or vaccine coverage in a regression model. A limitation of the 
regression models most frequently used to model influenza - attributable 
morbidity and mortality, and determinants of these, is the need to exter- 
nally designate expected morbidity or mortality if influenza virus had not 
been circulating (where morbidity or mortality in excess of this expected 
morbidity or mortality is attributable to influenza). The various ways that 
this is routinely done leave the possibility of counting unrelated deaths or 
consultations as influenza - attributable (lowering the specificity of influenza 

- attributable mortality for influenza) or of designating truly influenza - at- 
tributable deaths or consultations as baseline and thus unrelated to influenza 
(potentially biasing downwards estimates of the effect of determinants of in- 
fluenza - attributable morbidity or mortality by obscuring the full extent of 
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the variability in influenza - attributable morbidity and mortality between 

influenza seasons). Apportioning deaths or consultations to influenza and 

to other aetiologies using multiple linear regression relies heavily on labo- 

ratory data that are of limited value for informing the relative impact of 
influenza seasons over long time periods because of increased amounts of 

testing over time. In the work described in the thesis, latent variable time 

series models were fitted in which the designation of baseline from influenza 

- attributable morbidity and mortality was made by the model. Laboratory 

data for influenza A were used to inform the timing of influenza seasons 
by fitting latent variable time series models jointly to morbidity/mortality 

and laboratory data (morbidity/mortality and laboratory data were simul- 
taneously modeled as outcome variables and were regressed on indicators 

for seasonality, trend and data artifacts - see chapter 3). Laboratory data 

did not inform the relative impact of influenza seasons, only their timing. 

The latent variable models described in the thesis defined influenza - at- 
tributable morbidity or mortality using a simple random effect mean shift 
(the difference between baseline and influenza - attributable morbidity or 
mortality in models with an identity link or the rate ratio comparing base- 
line to influenza - attributable morbidity or mortality rates in models with a 
log-link (see section 3.5.2)). Attempts were then made to estimate the aver- 
age effect of CT seasons on influenza - attributable morbidity and mortality 
by expressing the influenza season-specific random effect mean shift as de- 

pendent on a binary variable designating seasons as being CT or intracluster 
(non-CT) seasons. The variability in the size of cluster transitions was al- 
lowed for in a supplementary analysis where the random effect mean shift 
was expressed as dependent on a quantitative variable for the size of cluster 
transitions (0 for intracluster seasons). In separate analyses, attempts were 
made to estimate the impact of each unit increase in the vaccine coverage of 
the > 65 age group by expressing the random effect mean shift as dependent 

on a quantitative variable for vaccine coverage each season. 
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3. Methods 

3.1. Aim of this chapter 

In this chapter, general methods used in the thesis are introduced. Detail 

of specific models is provided in results chapters. 

3.1.1. Objectives of this chapter 

1. To describe data sets analyzed, data management undertaken and 

relevant epidemiology of influenza 

2. To describe frequentist generalised linear models used to estimate the 

shape of long-term trend in P&I and ILI 

3. To describe Bayesian Markov chain Monte Carlo methods to fit two- 

state hidden Markov models to P&I, ILI and laboratory reports for 

influenza A 

3.2. Data sets 

Influenza incidence must be estimated indirectly because laboratory con- 
firmation is seldom done. In the next five subsections the data analyzed 
in the thesis are discussed. These data are Royal College of General Prac- 

titioner sentinel general practitioner consultations for influenza-like-illness 
(section 3.2.1), all registered deaths coded to underlying pneumonia or in- 

fluenza from the Office for National Statistics (section 3.2.2), laboratory 

reports for influenza A and B from the Health Protection Agency Centre 

for Infections (section 3.2.3), vaccine coverage of the 65+ age group in each 
influenza season from 1989/90 to 2004/05 from the literature (3.2.4) and 

cluster transitions in the evolution of influenza A/H3N2 virus from the lit- 

erature (3.2.5). Finally, lags between timing of `aberrant' periods in P&I, 

ILI and laboratory data for a given age group are discussed in section 3.2.6. 
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3.2.1. Royal College of General Practitioners 
influenza-like-illness consultations 

The RCGP has collected the weekly number of GP consultations for new 

episodes of ILI by age group (0-4,5-14,15-44,45-64,65+) and by sex 
through their WRS since 1967. The WRS represented morbidity statistics 
for a registered population of 200,000 people in England & Wales in 1967 

and over 600,000 people in 2005. [122,134] Reports of ILI are not based 

on a case definition but rather on a GP diagnosis made using suggested 
diagnostic guidelines provided by the RCGP. New episodes are defined as 
those occurring 21 days after a previous episode, but not all GPs adhere 
to this rule. 1135] Reporting physicians are encouraged to use diagnostic 
Read codes (as opposed to symptom codes which are what patients present 
with or what they say they feel/have); this is thought to encourage the 

reporting GP to make a diagnosis. The RCGP provided weekly counts of 
ILI consultations by age group from 1967-2005, and the weekly registered 
population, for use in the work described in the thesis. 

Validation 

ILI data have been validated for influenzal illness incidence in several ways. 16, 

136,137] Comparing ILI data with virological data shows that increased clin- 
ical incidence does not occur in the absence of increased laboratory reports 
for influenza. (6) Patterns in ILI incidence have been shown to agree with 
patterns in respiratory hospitalisation and all-cause and respiratory mortal- 
ity. [136,137) 

Representativeness 

The population registered with sentinel physicians is representative of the 

population of England & Wales in terms of age, sex and social depriva- 
tion. [138-141] RCGP state the practices were representative of the National 

population by age and sex from 1966 to 1983. [138] The report Morbidity 
Statistics from General Practice: fourth national study 1991-92 (MSGP4), 

where most participating practices were also contributing to the WRS, sug- 
gested MSGP4 participating practices, and hence most WRS practices, were 
representative of population of England & Wales in terms of age, sex, mari- 
tal status, housing tenure and the proportion who smoked. [142,143] In the 
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MSGP4 report, the General Household Survey was used to indicate the de- 

mographic profile for England & Wales. Particular ethnic groups, the lowest 

socioeconomic status (SES) band, the South of England and metropolitan 

areas were under represented in MSGP4 participating practices. Recent ex- 

pansion of the WRS improved in particular representation of the lower SES 

band and the South of England in the WRS. [141] 

Limitations 

There is no case definition for ILI in the WRS and diagnostic guidelines 
have only been given to the GPs since 1991. [144] Specificity of the diagno- 

sis of ILI varies during the year because laboratory surveillance suggesting 
influenza virus is circulating in the community is publicised to participat- 
ing GPs. This leads to a particular clinical presentation being more likely 

to be diagnosed as ILI when influenza virus is known to be circulating in 

the community than during other times of the year. Recall that laboratory 

surveillance underestimates summer circulation of influenza virus. There 

are no firm rules on the length of an episode. Reporting delays are common 
around holiday periods. [53] 

ILI consultation data have low sensitivity for influenza. A full picture 

of the impact of influenza on primary care includes consultations for acute 
bronchitis, otitis media and asthma. [3] ILI have been modeled for the thesis 
because of their relative specificity for influenza. 

Data management 

Between 1994 and 1998, the RCGP received both electronic and paper-based 
weekly returns from participating practices. From 1999, all weekly returns 
were electronic (see section 3.2.1). Discussions with RCGP staff confirmed 
that all data (reported electronically or on paper) had been provided for 
this analysis. 

Artifacts 

Several changes in the way the WRS operated over the study period were 
noted and controlled for in the analysis using dummy variables (table 3.1). 
In the period 1988-90, several practices changed from paper to computer- 
based recording and there was subsequent evidence of consistently higher 
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level of ILI reported from computerised practices. [145] From the 1993-94 
influenza season, ̀ epidemic influenza' (a more severe illness) and `influenza- 
like illness' (a less severe illness) were amalgamated for presentation of rates 

of ILI. [146] Though the data analyzed here are `epidemic influenza' plus 
`influenza-like-illness' combined for the whole time series, a dummy vari- 
able for this change was included in case the change affected the data. In 
the 1999-2000 influenza season, reporting by practices to the RCGP be- 

came fully-automated with a consequent decline in the number of reporting 
practices that has since rebounded. [144] 

Dataset 
Table 3.1.: Known artifacts in P&I and ILI. 

Year Change 
ILI 

P&I 

1988 

1993 

1999 
1979 
1984 

1993 
2001 

transition from paper-based to electronic reporting be- 

gan 

`epidemic influenza' and `influenza-like-illness' now 
combined 
full automation of reporting from practices to RCGP 

change of ICD version (8 to 9) 

change of how rule 3 for underlying cause of death ap- 
plied 
change of software for coding underlying cause of death 

change of ICD (9 to 10) and new interpretation of rule 
3 

3.2.2. Office for National Statistics mortality data 

The Office for National Statistics (ONS) has electronically archived under- 
lying and contributing causes of death abstracted from death certificates 
since 1970. [147] ONS provided daily numbers of deaths registered to P&I 
from 1970 to 2004 by age group (<1,1-4,5-84 in 5-year age groups, 85+). 
P&I was defined using the following International Classification of Disease 
(ICD) codes: ICD8: 470-474,480-483,485-486, ICD9: 480-487 and ICD10: 
J10-J18. Influenza is rarely mentioned on death certificates as an underlying 
or contributing cause of death. [471 An average of 0.3% of deaths were regis- 
tered to underlying influenza between 1993-2003 (0.6% in 1999/00 influenza 
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season). [148] For 80% of death certificates where influenza is mentioned, 
it is chosen as underlying cause but it is very rarely diagnosed. It is likely 

that many of those who die as a result of influenza infection die from pneu- 

monia. [45] P&I was analyzed as a proxy for deaths from influenza because 

P&I has greater specificity than all-cause or respiratory deaths. 

Validation 

P&I is a valid proxy for deaths from influenza. P&I is positively associated 

with circulation of influenza viruses. [41,1491 P&I has been shown to reliably 

and specifically indicate timing and relative size of influenza seasons in the 

US. [149-1511 

Representativeness 

The data provided by ONS are all deaths registered to underlying P&I in 

England & Wales. 

Limitations 

Death registrations, not occurrences, have been analyzed; there are rarely 

more than 2-3 days between death and registration except around public 
holidays. [471 In the thesis, splines used to model long-term trend smooth 

out blips from public holidays. As for ILI, P&I has variable specificity for 

influenza since physicians are more likely to diagnose influenza if laboratory 

reports for influenza suggest that influenza virus is circulating in the com- 
munity at the time of the death. P&I has low sensitivity for influenza and 
the full picture of deaths from influenza includes deaths from other respira- 
tory causes (e. g. bronchitis) as well as cardiovascular diseases. [69,152] P&I 

was modeled because it has higher specificity for influenza than all-cause, 
respiratory or respiratory plus circulatory deaths and therefore is best suited 
to estimating the relative impact of influenza seasons. 

Data management 

Daily counts of P&I were collapsed into age groups to match RCGP data 
(0-4,5-14,15-44,45-64, > 65). Daily age group-specific counts of P&I were 
collapsed into weekly age group-specific counts in Stata version 9. [153] 
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Dates contributing to each week were reconciled with the ILI time series: 

weeks ran Thursday to Wednesday from January 1967 to August 1969, 

Wednesday to Tuesday from August 1969 to August 1991 and Monday to 

Sunday from then on. August 13th 1969 was counted twice and there was 

one 5-day week (August 28 - September 1 1991). 

Artifacts 

Several changes to the coding of underlying cause of death were adjusted for 

using dummy variables (table 3.1). In 1984, ONS introduced broader inter- 

pretation of rule 3 for coding underlying cause of death (where a condition 
in part I or II of the death certificate could take precedence over the cause 

of death selected using other rules if the cause was a direct consequence 
of the condition in part I or II). [147) This led to an abrupt fall in deaths 

registered to underlying pneumonia. In 1993, ONS adopted an automated 
system for coding cause of death which narrowed the interpretation of rule 
3 and approximately reversed the change adopted in 1984. [1541 With the 

change from ICD 9 to 10 in 2000, respiratory deaths fell by approximately 
22% while deaths coded to pneumonia fell by 38%. 11481 

3.2.3. Laboratory surveillance 

The HPA CfI provided individual records from LabBase2 of all laboratory- 

confirmed influenza A infections, based on virus isolation and PCR, reported 
voluntarily by National Health Service (NHS) and HPA laboratories in Eng- 
land & Wales between 1975 to 2005. [10] Records included individuals' age, 
sex, the site of influenza virus isolation and the earliest specimen date. 

Representativeness 

Laboratory reporting is voluntary so it is difficult to assess the consistency of 
geographic representativeness of laboratory reports. Until 1993 the majority 
of influenza laboratory tests were for hospitalised patients. In 1993 two 
sentinel swabbing studies were introduced in general practice, [33,34] one 
of which deposits positive results in LabBase2. [33] 
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Limitations 

Diagnostic techniques are not standardised so sensitivity and specificity may 
vary between laboratories reporting positive influenza specimens to HPA 

CfI. [155] The earliest specimen date is the date of report to the HPA CfI 
from 1975-1988, when testing was done in batches approximately weekly, 
and the date of specimen collection after 1988. The date of infection is rarely 
known. [156] The date of specimen collection was missing in approximately 
3% of reports in 1992; [10] for these reports the earliest specimen date is 
the date of report. Approximately 10% of laboratory reports have missing 
age or sex. Before the introduction of the LabBase2 electronic database (in 
1989) approximately 20% of reports had missing specimen type. 

Data management 

From individual laboratory reports, age group-specific (0-4,5-14,15-44,45- 
64, > 65 years) weekly counts were created. Weeks were reconciled to match 
dates in the ILI time series. Approximately 10% of laboratory reports were 
excluded from the analysis because of missing age or sex or because site of 
isolation was gastrointestinal, cerebrospinal or genitourinary. Weekly time 

series were plotted overall and by age group to check for unknown artifacts. 

Artifacts 

HPA CfI adopted the electronic database LabBase2 in 1989 for storage 
of laboratory reports of influenza. [10] In the 1993/94 season two sen- 
tinel GP swabbing studies began where GPs were asked to swab a num- 
ber of ILI patients each week during winter. [33,34] The Virus Refer- 

ence Unit(VRU)/RCGP collaborative study data are not included in Lab- 
Base2 [34] but HPA sentinel surveillance data typically are included. [33] 
These artifacts were controlled for in all analyses by using dummy variables. 

3.2.4. Vaccine coverage in the over 65s 

Vaccine coverage of those > 65 years of age in England & Wales dur- 
ing the influenza seasons 1989/90 to 2004/05 was derived from published 
sources. [119,120] Coverage between 1989/90 and 2003/04 was estimated 
using the General Practice Research Database (GPRD). [120] The GPRD 
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holds patient electronic records for 350 practices in the UK and links pre- 

scribing information to outcome and exposure events (e. g. vaccination). 
Joseph et at. estimated vaccine coverage, by age group, sex and risk status 

categories, for each influenza year (1 July to 30 June). [118,120 Risk sta- 

tus was defined using clinical codes - Oxford Medical Information Systems 

(OXMIS) and Read codes - for Department of Health defined risk groups 
for influenza complications. Patients with no recorded risk were defined 

as low risk. All people > 75 were defined as high risk from 1998/99 on- 

wards and all people > 65 were defined as high risk from 2000/01 onwards 

to reflect government vaccination policy. Coverage from 2004/05 was as- 

certained from Department of Health surveillance of vaccine provision in 

general practice. [119 

Validation 

GPRD has good validity for prescriptions which approximates validity for 

exposure events like vaccination. [157] The estimate of coverage for 2004/05 

from Department of Health surveillance of vaccine uptake in general prac- 

tices has not been validated. 

Representativeness 

GPRD is representative of the UK population in terms of age and sex. [1131 

Representativeness of Department of Health surveillance of vaccine uptake 
in general practices is unknown; the aim of the scheme is to ascertain all 
influenza vaccinations administered in general practice. 

Limitations 

Both sources of vaccine coverage information are likely to underestimate 
coverage because of vaccines administered outside of general practice. 

Data management 

Estimates of coverage of those > 65 pre-2000/01 (when policy changed to 
include all people aged 65-69 years in the risk group recommended vacci- 
nation) were calculated by summing numbers vaccinated in 65-74 and > 75 

age groups and dividing by the number of people aged 65-74 and > 75. [1201 
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3.2.5. Influenza A/H3N2 virus cluster transitions 

Seasons with CTs, and the antigenic distance (AgD) between clusters, were 
taken from Smith et al. and are shown in table 3.2. [13] 
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Table 3.2.: Influenza seasons In England & Wales, 1968/99-2004/051 dominant variant, H3N2 
CTz, size of CTa in terms of antigenic units, and vaccine mismatch. Bolding manna 
H3N2 dominant and vaccine variants are from different clusters. 

Season Dominant variant[ref] CT [131 CT size (AS units) [19] HZIN2 vaccine cluster(ref) 

1968/69 

1969/70 

1970/71 

1971/72 

1972/73 

1973/74 

1974/75 

1975/76 

1976/77 

1977/78 

1978/79 

1979/80 

1980/81 

1981/82 

1982/83 

1983/84 

1984/85 

1985/86 

1986/87 

1987/88 

1988/89 

1989/90 

1990/91 

1991/92 

1992/93 

1993/94 

1994/95 

1995/96 

1996/97 

1997/98 

1998/99 

1999/00 

2000/01 

2001/02 

2002/03 

2003/04 

2004/05 

H3N2 [158] 

H3N2 [158] 

B [1581 

H3N2 [158] 

H3N2 [158] 

B/H3N2 [1581 

H3N2 [158] 

H3N2/B [1581 

H3N2 [159] 

H3N2/HINI [158] 

B [158] 

H3N2 [1581 

H1N1/H3N2 [158] 

B/H3N2 [160] 

H3N2 1160) 

H1N1/B [160) 

H3N2/B [1601 

B [16111 

H1N1 j16111 

H3N2/H1N1 [61 

H1N1/H3N2 [6] 

H3N2 (6] 

B [61 

H3N2 [6] 

B/H1N1 [6) 

H3N2 (61 

B [6) 

H3N2 [6) 

H3N2 [6) 

H3N2/H1N1 [1701 

H3N2/B [171) 

H3N2 [172) 

B/H1N1 [173) 

H3N2/HIN2 (1741 

B/H3N2 [1751 

H3N2 [1761 

H3N2 [177] 

'based on Netherlands 

HK68-EN72 

EN72-V75 

V175-TX77 

TX77-BA79 

BA79-SI87 

S187-BE89 

BE89-BE92 

B E92- W U95 

WU95-SY9T 

SY97_FU02 

3.4 

4.4 

3.4 

3.3 

4.9 

4.6 

7.8 

4.6 

4.7 

3.5 

6187 (162) 

BE89 [163) 

BE89 [1641 

BE89 1165) 

BE92 [1661 

BE92 1167] 

BE92 [1681 

WU95 [1691 

WU95 [170] 

SY97 (171] 

SY97 [172] 

SY97 (173) 

SY97 [174] 

SY97 1175) 

SYOT 11761 

FU02 1177) 
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Validation 

The accuracy of the antigenic map was determined by selecting antigen- 
antiserum pairs whose HI values were not included in the creation of the 

map, predicting the HI value of those strains from distances in the map, and 
then testing the HI value for this pair in the laboratory. The correlation 
between HI distance inferred from the map and laboratory-tested distance 

was 0.81. [13] 

Representativeness 

Ninety-four of 273 isolates used to create the antigenic map were from the 
Netherlands; the remainder from elsewhere. The same type/subtype was 
dominant in both the Netherlands and in England & Wales in each season 
between 1987/88 and 1996/97. [6} Also, molecular epidemiology studies of 
the global spread of influenza A/H3N2 virus suggest that global antigenic 
drift patterns may dwarf local patterns, providing some reassurance that 
the seasons in which CTs were first isolated in the data with a Dutch bias 

reflect the seasons the CTs were first isolated in England & Wales. [101,1781 

Limitations 

The lack of global representativeness of the HI data. 

Data management 

CTs were coded as being dominant from the season of first isolation, or from 
the first influenza A/H3N2 virus - dominated season after first isolation if 
the CT was first isolated in a season dominated by influenza A/H1N1 or B 

viruses. This was done to allow that a CT first isolated during a season not 
dominated by influenza A/H3N2 would be unlikely to affect incidence until 
it was the dominant variant in circulation. The dominant variant from each 
season was taken from the literature (table 3.2). Influenza A/H3N2 virus 
was considered dominant if it alone dominated, or if it was co-dominant 
alongside influenza A/H1N1 or B virus. 
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3.2.6. Lags between timing of `aberrant' periods in P&I, ILI 

and laboratory reports 

If an individual were captured by all three outcome data sets (P&I, ILI 

and laboratory data), they would be expected to be ascertained first in ILI, 

concurrently or secondly by laboratory reports (historically most laboratory 

testing for influenza occurred in hospitals while after 1993 the laboratory 

data are a mixture of hospital and GP results) and thirdly upon death 

registration which occurs typically within 2-3 days of death. [47] There is, 

however, incomplete overlap between people in the 3 data sets analyzed be- 

cause of different severities of illness (a mild illness that necessitated seeking 

care might only be ascertained by ILI) and different underlying conditions 
(an asthmatic might bypass the GP surgery and be ascertained first when 

admitted to hospital with exacerbation of their asthma and subsequently 
tested for influenza while in hospital). Typically, those who die from in- 

fluenza are elderly. There are also lags inherent in the data themselves: 

the lag between death and death registration and between date of infec- 

tion, date of specimen collection and date of report in laboratory data are 

examples. Changes to policy (e. g. the Path of Least Resistance report in 

1998 released to help curb antibiotic prescribing for respiratory illness in 

GP surgeries [179]) and to surveillance systems (e. g. introduction in 1993 

of two sentinel swabbing schemes in GP practices to test a proportion of 

people with ILI for influenza [33,34]) means that the mixture of people, in 

terms of severity of disease and underlying illness, captured by the three 
data sets has changed over time. This issue is explored in more detail in 

chapter 6. 

3.3. Epidemiology of influenza 

The epidemiology of influenza dictates methods of analyzing influenza in- 

cidence data. First, influenza virus is infectious and cases infect others in 

a chain of transmission. This leads to non-independence of counts from 

one week to the next (called autocorrelation); space-time clustering of cases 
leads to overdispersion of incidence data relative to the Poisson distribu- 

tion. Overdispersion means that the variance of the data is greater than 
their mean. The Poisson distribution is defined by a single parameter which 
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is both mean and variance. Second, recall from section 2.2 that influenza in- 

cidence in temperate climates is strongly seasonal. The consequent correla- 
tion between observations approximately one year apart must be taken into 

account in an analysis. Finally, recall also from section 2.2 that `normal' 

seasonal influenza morbidity and mortality is punctuated with `aberrant' 

morbidity and mortality most years, and infrequently by epidemics. This 

pattern of incidence contributes to influenza morbidity and mortality data 
being overdispersed relative to the Poisson distribution. Influenza can be 

modeled using transmission dynamic or statistical models. There is a long 
history of statistical modeling of influenza (summarised in section 2.4). Def- 
inition of morbidity and mortality that would have occurred had influenza 

virus not been circulating is a key feature of the most commonly used mod- 
els. [60) The latent variable time series models accounting for seasonality 
that have been fitted for the thesis address each of these aspects of the 

epidemiology of influenza. 

3.4. Generalised linear modeling of baseline trend 
in P&I and ILI 

In order to calibrate fitting of long-term trend in the latent variable time 

series models (section 3.5.2), generalised linear models (GLM) with a log- 
link were fitted to P&I and ILI by age group, accounting for seasonality, 
long-term trend and artifacts. The log-link allowed inclusion of a popula- 
tion offset in the linear predictor to account for the changing size of the 
population at risk over time. [1801 Different long term trends by age group 
were tested for. Various methods of fitting long-term trend were evaluated. 

3.4.1. Generalised linear models 

Counts of disease are often modeled using the Poisson distribution. 11801 
The Poisson mean equals its variance. Because influenza incidence data 
are overdispersed relative to the Poisson distribution (section 3.3), negative 
binomial instead of Poisson GLMs were fitted. Negative binomial GLMs 

allow that the variance of a data set exceeds its mean. [1811 The negative 
binomial model with a log-link has the following form 
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Yt - Poisson(µt9) 

1og(µ. t) =a+ , 0t 

0 ti Gamma(a, b) 

Yt is the observed count in week t, which is a Poisson random variable with 

mean j O; B is a Gamma-distributed dispersion parameter. The parameters 
of the Gamma distribution that 0 follows (a and b) control overdispersion 
relative to the Poisson distribution. Values of 0 greater than I indicate the 
data are overdispersed relative to the Poisson model. The log(At) is modeled 

as dependent on a, the intercept, and ß the linear trend. 

3.4.2. Excluding epidemic weeks 

Between I and 25% of the highest counts, in each age group of each data set, 
were excluded from the fitting of the negative binomial models in an attempt 
to isolate `normal', or baseline, from `aberrant', or influenza-attributable, 
incidence. [61] 

3.4.3. Changing population size 

To be able to assess trends in morbidity or mortality over time, the chang- 
ing size of the population at risk should be adjusted for. Crude trends in 

age-specific rates are meaningful for assessing age-specific trends. Rates 

over time for all ages combined should be adjusted for the changing age- 
distribution of the population over time before presence of a trend is tested. 
Direct age-standardisation assumes that trends are similar in each age group, 
an assumption that should be checked (chapter 4). [182] If the rate of anti- 
genic drift in influenza A/H3N2 virus is slowing, for example, incidence of in- 
fection over time in the younger ages would remain approximately constant 
(since people are born susceptible, ignoring maternal antibodies), while rates 
of infection in middle aged people would decline (because of cross immunity 
and declining mutability). 

The changing size of the population at risk was modeled as a population 
offset, log(Nt), as below: 

109(µt) = log(Nt) +a +)3t 

For ILI data, the population offset was the number of registered patients 
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on the middle day of each week (i. e. Thursday for a Monday-Sunday week) 
and for P&I data it was the relevant census population of England & Wales 

or an inter census estimate. [183] Rearranging the formula gives 

1og(µt/Nt) =a+ , ßt 

showing the log-link model including a population offset is equivalent to 

modeling the log rate. 

3.4.4. Seasonality 

Seasonality in the influenza incidence data was captured with one Fourier 

term (i. e. one sine and one cosine term) as below 

log(pt) = log(Nt) +c+ ßt + 01 sin 
52+ 

02 cos 
b2 

The period is 52.2 weeks, not 52 weeks, to account for not every year having 

exactly 52 weeks. This method of capturing yearly seasonality in influenza 

morbidity and mortality data was introduced by Serfling [70] and has been 

used by many authors (e. g. [60]). This method of modeling yearly season- 
ality in data is more parsimonious than, for example, including a term for 

month (2 parameters vs 12 parameters) [52,184] or modeling trend and sea- 
sonality simultaneously with a spline with several degrees of freedom (df) 
for each year. [49,185] 

3.4.5. Long-term trend 

Long-term trend was modeled using linear (ßt) or quadratic (ßt2) terms or 
cubic splines with up to 20 df. The model capturing long-term trend with 
cubic splines is shown below: 

log(tit) = log(Nt) +a+ C(t, ýp) +, 31 sin 
27rt 

+ 02 cos 
27rt 

52.2 52.2 
The number of df is gyp. Cubic splines flexibly model trend with a number 
of cubic curves smoothly connected at knot points. [186] Splines captured 
variability in the baseline in addition to that explained by seasonality and 
by artifacts (see next section). Best-fitting models were chosen by com- 
paring Akaike's Information Criteria (AIC) to balance goodness of fit and 
parsimony (section 3.4.8). 
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3.4.6. Artifacts 

Step changes in the long-term trend due to known artifacts (table 3.1) were 

fitted via categorical dummy variables (`artifacts') as below: 

log(pt) = log(Nt) +a+ C(t, (p) + 01 sin 
252irt 

2+ 
/32 cos 

252irt 
22 + 03artifacts 

3.4.7. Inference 

The likelihood function is the probability of the data conditional on the 

parameters (which are fixed). 11801 For the negative binomial model, the 

log likelihood (LL) is 

LL =E (Yt1og(it) - log(Y! ) - log(1 + µt9) + log 

Yt t-1 ( r(1/B)(Ytl/B1+B 

where Yt is the observed count, µt is the predicted count and 0 is the 

dispersion parameter. 
GLMs were fitted by maximum likelihood, which means that the value of 

each parameter was estimated such that the value of the likelihood function 

was maximised. The data are analyzed in isolation of prior knowledge (from 

the literature, for example) as to the value of model parameters. Estimates 

of the uncertainty about values of parameters of interest - confidence in- 

tervals (CI) - are expressed as the interval that includes the true value in 

e. g. 95 or 99% of (hypothetical) repeated samples, if the experiment were 

repeated many times with all parameters constant. 

3.4.8. Model selection 

Candidate models with linear or quadratic terms to model trend or with 
cubic splines with different df to model trend, with and without age group - 
trend interaction terms, were compared using AIC. [187] AIC are goodness 
of fit statistics calculated as 

AIC = -2LL + 2npar 

where npar is the number of parameters in the model. Lower AIC indicate 
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better model fit. AIC balance precision, i. e. the highest log likelihood value, 

with complexity of the model in terms of the number of parameters. AIC 

allow comparison of non-nested models as long as the models are fitted to 

the same data. 

3.4.9. Rationale for hidden Markov models 

GLM modeling of influenza-related morbidity and mortality is hindered by 

problems of autocorrelated residuals and overdispersion not adequately ad- 
dressed with the negative binomial model (see section 4.6). These issues 

indicate that a type of latent variable model called a hidden Markov model 
(HMM) may be useful. It can be shown that HMMs are autocorrelated and 

overdispersed. [188] Serial correlation arises from the underlying Markov 

chain and overdispersion arises because observations are modeled as arising 
from one of several marginal distributions, each associated with a different 
hidden state. [188,189] In the context of influenza, it is natural to think of 

non-laboratory confirmed time series related to influenza as having arisen 
from two marginal distributions: one `normal' and one `aberrant'. The re- 

mainder of this chapter describes methods for fitting two-state HMMs using 
Markov chain Monte Carlo (MCMC) in OpenBUGS. 

3.5. Bayesian Markov chain Monte Carlo fitting 

of hidden Markov models 

HMMs were fitted in order to allow modeling of `normal' and `aberrant' 
incidence simultaneously where the differentiation between `normal' and 
`aberrant' incidence is automated. Univariate two-state HMMs were fitted 
to weekly P&I counts by age group and weekly ILI counts by age group 
(chapter 5). Bivariate (P&I + laboratory reports for influenza A in one 
set and ILI + laboratory reports for influenza A in another) and trivariate 
(P&I, ILI and laboratory reports in the same model) models were fitted in 

chapter 6. 
Figure 3.1 shows a schematic of a HMM. t denotes a time interval (in 

this case one week) and arrows denote conditional dependencies. The ob- 
served counts are independent conditional on the unobserved states (details 
in section 3.5.2). 
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Figure 3.1.: Schematic of a HMM. 

3.5.1. Bayesian Inference 

In chapters 5 to 7, Bayesian inference is used in order to incorporate uncer- 

tainty in the differentiation of `aberrant' from `normal' incidence in HMM 

model fits and to allow prior information as to the effect of cluster tran- 

sitions and the impact of vaccination on mean shifts to be incorporated 

(chapter 7). 
Bayesian inference is based on the posterior distribution. Let Y denote 

the observed data and 3 denote model parameters. Bayes theorem states 

that 

P(ßN) = 
P(ß)P(YI, ß) 

f P(ß)P(YIQ)dßß 

i. e. that the probability of the parameters, given the data (P(ßIY)) is 

equal to the product of the likelihood P(YIß) and the probability of the 

parameters P(ß), divided by a normalisation constant (f P(ß)P(YIß)dß). 

The probability of a parameter is also called the prior for that parameter. 
Priors are the value of key parameters, with uncertainty, before looking at 
the observed data that are being analyzed. Full Bayesian analyses thus put 
the data being analyzed in the context of what is already known. In making 
inference using the posterior distribution, estimates of uncertainty around 

parameters of interest - credible intervals (CrI) - are 95 or 99% cut-points 

of the posterior distribution that contain 95 or 99% of the sampled values 
for that parameter. 

3.5.2. Hidden Markov models 

In HMMs, observations are independent conditional on an unobserved state 

variable. HMMs have been applied to modeling ILI data from France, [81] 

P&I data from the US, [82] hospital infection data in England & Wales, [89] 
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and have been used extensively in other disciplines (e. g. [1891). Below is a 

univariate two-state Poisson HMM with a log-link. The difference between 

the `normal' and `aberrant' incidence is modeled as random effect mean shift 

for each influenza season (a, [flu season]). 

Yt ý Poisson(µt) 

log(µt)I St =1= log(Nt) + ao + ßt 

log(pt) I St =2= log(Nt) + ao + al [flu seasonJ + ßt 

Stl St_i ý Bernoulli(ö) 

Yt is the observed number of deaths in week t, 

µt is the mean of the Poisson distribution from which Yt is 

drawn, 

Nt is the population offset, 

ao is the intercept, 

al (flu season is the mean shift estimated when the model is 

in state 2, 

ßt is the linear trend, 
and St is the state variable sampled from a Bernoulli distribu- 

tion with probability Ö, a two-by-two matrix of probabilities 

of moving between states at time t given the state of the 

model at time t-1. 

Each week, Y ILI or P&I are observed. Y is assumed to be a realisation 

of a random process, Y= (Yt; t=1, n), where each Yt is associated with 

an unobserved random variable St. St determines the conditional distribu- 

tion of Yt. If St = j, then the conditional distribution of Yt has density 

f (j) = (Yt; m(j)) where f (j) belongs to a given parameterised family and 

m(j) are parameters to be estimated. In this case St follows a two-state 
homogeneous Markov chain of order 1, meaning the probability of moving 
between states does not change with time (is homogeneous) and the process 

recalls only the state at time t-1 (is a Markov chain of order 1, also called 

a random walk). The probability of moving from state i to state j at time 
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t is expressed as 6(ij) = P(St = jISt_1 = i), i, j=1,2. Each state has a 

Poisson observation model associated with it. Covariates are incorporated 

by expressing parameters (e. g. ß) as dependent on the covariates. 

As introduced in section 3.4.9, serial correlation is generated in the HMM 

from the underlying Markov chain. [1881 Overdispersion of the Poisson 

HMM relative to the Poisson GLM comes about because observations are 

modeled as arising from one of several marginal distributions, each associ- 

ated with a different hidden state. [18811891 Counts predicted if the 'aber- 

rant' state is drawn are higher than if the `normal' state is drawn by a ran- 
dom effect mean shift estimated for each influenza season (al[flu season]): 
the mean shift is multiplicative, on the original scale, in the Poisson HMM 

with a log-link and additive in the Poisson HMM with an identity-link. 

3.5.3. Markov chain Monte Carlo 

In a HMM, inference about values of parameters of interest cannot readily be 

made by directly maximising the likelihood of the data and the parameters 
for every possible sequence of states because of computational intractabil- 

ity. [81,891 Algorithms like the Expectation - Maximisation (EM) algorithm, 

or similar recursive methods, can be used. These algorithms work by first es- 
timating the conditional expectation of indicator variables for the two states 
(the expectation step) and applying the values of the 2 indicator variables to 

the complete data LL to estimate the vector of transition probabilities and 

all parameter values (the maximisation step). [81,891 In order to addition- 
ally incorporate prior information as to the value of different parameters of 
interest, HMMs were instead fitted in a Bayesian framework where sampling 
from the joint posterior distribution of the likelihood and priors was done 

using MCMC. 
MCMC is a way of fitting models via stochastic simulation, usually in the 

Bayesian framework. It is an alternative to the EM algorithm for repeated 
sampling from a complex surface like a HMM. A simple example of stochas- 
tic simulation would be to sample many times from a complex space with 
many local maxima in order to find the global maximum. The estimate of 
the global maximum is then the maximum value of the sample generated by 

a long stochastic simulation. Samples from the complex space in question 
need not be independent as long as they visit the space proportional to its 
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support. Markov chains are one way of generating this long stochastic sim- 

ulation. A sequence of random variables is called a Markov chain if, given 

the current state of the chain, the next state does not depend further on the 

history of the chain. Under certain conditions, as the number of samples in- 

creases, the chain will eventually converge to a stationary distribution from 

any initial value. [190] For a parameter, then, the mean of the stationary 
distribution is the expectation of the mean value of the parameter. 

There are different sampling algorithms under the umbrella of MCMC, all 

designed to provide a chain that converges to a desired target distribution 

which is typically the posterior distribution of the parameters of interest. 

The Metropolis-Hastings algorithm works as follows. If the current position 

of the sampler is X, and the conditional density around this point 7r(X), 

we sample a proposal Y from a distribution q(YjX) which is symmetrical 

around X. We accept the proposal Y with probability 

a(X, Y) = min 
(1, 'r(Y)q(XIY)1 

ir(X)q(YJX) JJ 

See [1911. If Y is rejected, the chain does not move. Gibbs sampling is 

a special case of Metropolis-Hastings sampling that takes as the proposal 
distribution the full conditional of a parameter or set of parameters. [192) 

Gibbs sampling therefore always accepts the proposal. 

3.6. Informative priors 

In a Bayesian analysis, all parameters have priors. Non-informative priors 
(e. g. a Gaussian distribution with a very large variance) are used in an 

attempt to approximate no prior information as to the value of the param- 
eter. In simple situations the use of non-informative priors approximates a 
frequentist analysis. Non-informative priors can be problematic since they 

assign approximately equal prior probability both to realistic values of the 

parameter and to unrealistic values; if there is little information in the data 

the sampler may have difficulty visiting the resulting diffuse posterior dis- 

tribution. Prior information independent of the data being analyzed can 
be used to restrict values of particular parameters to a plausible range (so 

called weakly informative priors) or to place higher prior probability on 

some values and very low prior probability on others (strongly informative 
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priors). Informative priors can help two chains for a parameter mix better 

if they were having difficulty mixing under the diffuse reference prior. Lit- 

tle information in the data will mean posteriors are dominated by priors; 

sensitivity of posteriors to choice of prior should be checked. 

3.6.1. Prior setting 

There is a vast literature on the topic of eliciting expert opinion for setting 

priors in a Bayesian analysis (e. g. [193-1961). Focus group discussions may 
be held and individuals asked to define median and 95% cut-points on the 

value of a parameter of interest. This process requires participants to be 

trained in how to express their beliefs in the form of a probability distribu- 

tion. Alternative methods, where participants are asked to indicate points 

within a range where they are ambivalent as to whether their belief lies 

to the left or right of the line can be useful for establishing a distribution 

around a person's belief. These processes are labour-intensive and must be 

budgeted for at the planning stages of a study. 
As an alternative to eliciting expert opinion, priors can be set based on 

a literature search. In the thesis, weakly informative priors for the effect 

of cluster transitions/ antigenic distance between clusters, and for vaccine 
impact, on mean shifts were set using estimates of the variability in excess 
mortality and morbidity across influenza seasons. [7,8,54,56,58,61,65,73, 

92,107,197-199] A strongly informative prior on the effect of cluster tran- 

sitions/antigenic distance on the mean shift was informed by a modeling 
study. [14] In all cases, data used to set priors were independent of data 

analyzed in the thesis. 

3.7. Diagnosing convergence of Markov chain 
Monte Carlo 

When the generated samples come from (approximately) the stationary 
distribution, the simulation is said to have converged. There are diag- 

nostic plots that provide evidence against non-convergence to the target 
distribution (but they do not provide conclusive evidence for convergence). 
Henceforth evidence against non-convergence will be labeled apparent con- 
vergence. To show evidence of apparent convergence, two or more Markov 
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chains for a parameter can be run from different initial values and diagnos- 

tics used to determine if chains share a stationary distribution. Convergence 

of two chains of the LL can be monitored as a global indicator of conver- 
gence because the LL is contributed to by the parameters, the data and the 

priors. The LL of the Poisson HMM is 

n 

LL =E (-jut + Yt1og(µt) - log(Yt! )) 
t=i 

where At is the predicted count, which is conditional on the state variable 
for that week, and Yt is the observed count. One diagnostic plot for conver- 
gence is the Brooks-Gelman-Rubin (BGR) plot. [200] BGR plots monitor 
convergence of the ratio of variability of pooled chains to that within chains 
to 1. If chains have converged to the same stationary distribution, ap- 
proximately all variability will be encompassed within the chains, with no 
additional variability between chains. BGR plots also show the width of the 
central 80% interval of the pooled runs and the average width of the 80% 
intervals within the individual runs, both of which should stabilise. For 

plotting purposes the pooled and within interval widths were normalised 
to have an overall maximum of 1 and statistics were calculated in bins of 
length 50. Figure 3.2 shows example BGR plots of apparent convergence 
and lack thereof. The ratio of pooled to within chains variability (top (red) 
line) is expected to be greater than 1 for early iterations of the sampler if 
the initial values for the two chains are suitably different from one another 
(i. e. the pooled variability far exceeds within chain variability). 

For HMMs, key parameters are transition probabilities (6) for the prob- 
ability of moving between states ('aberrant' and `normal') given the state 
of the previous week. Apparent convergence of transition probabilities typ- 
ically predicts apparent convergence of the simulation more generally (e. g. 
figures 3.3 and 3.4). 

3.8. Model adequacy 

In this section several ways to demonstrate HMM model adequacy or su- 
periority of one HMM over another are described. These are: posterior 
predictive density plots (section 3.8.1), the estimated time series of states 
('normal' and `aberrant') that gave rise to the observed data (section 3.8.2) 
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Figure 3.2.: Examples of BGRs showing apparent convergence (left 

plot) and lack of convergence (right plot). '1'hc re(l litre 
is the ratio of pooled to within chains variability. If this line 

collies to 1, this is evidence for apparent convergence of t lie 

two chains to the target distribution. The two hues along the 
bottom of the plots are the width of the central 8O]1 interval 

of the. pooled runs (green) and the average width of the 80 
intervals within individual runs (blue). 
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Fignn' 3.3.: An example of a history plot of transition probability 
parameters showing apparent convergence to the same 
area of parameter space. 
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Figure 3.1.: An example of a history plot of transition probability 
parameters showing lack of convergence. 

an<l a titocorrelat. ion plots of resi(luals (section 3.8.3). 

3.8.1. Posterior predictive density plots 

Posterior predictive density (PPD) plots were created by drawing it pre- 
dicted count for each week from the sampling distribution for the observed 
data (whose niean is the linear predictor) and plotting these predicted 

counts. with their Cris, on the same graph as the observed data. [201,202" 

The CrI around predicted counts can be thought of as showing the range 

of observed data that would be consistent with the fitted model. [203] Ade- 

quate model fit (most observed data falling within predicted Crls) is c asily 

visualised (e. g. figure 3.5). Overdispersion, greater variability in observed 
data than predicted by the model, and underdispersion. less variability in 

observed data than predicted by the model. are also obvious from looking 

at PI'D plots (figure 3.5). A limitation of this method of assessing model 
fit is that using the same data for fitting and validation leads to bias in 

favour of thinking the model fits well. An alternative method for model 

checking is to fit, the model to a, portion of the time series and predict the 

part not used in model fitting. [204] A limitation of this alternative ap- 

proach for model checking is that it generally penalises complex models and 

models that make predictions too close to the sample data but unstable 

out-of-sample predictions. [205,206] 
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Figure 3.5.: Posterior predictive density plots for (a) an adequate 
model fit and model fits showing (b) overdispersion 
(many observed data falling outside posterior predic- 
tive CrIs) and (c) underdispersion (no observed data 

outside the posterior predicted CrIs). Circles: ol)servCd 
data. solid lines: iuediali posterior predicted count for each week 
with 95`l Crl. 
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3.8.2. State sequences 

Models were compared with respect to their state sequences: the estimated 

time series of states ('noriual' and 'aberrant') that gave rise to the observed 
PkI or 11.1 data (figures 3.6 to 3.8). State sequences were assessed in terms 

of apparent convergence (each week being assigned to the 'aberrant' state 

with probability approximately U or 1) and volatility (the degree to which 

the state sequence flips back and forth between states during a season de- 

spite observed data suggesting one 'aberrant' period during the season). 
Adequate state sequences clearly distinguish between the `normal' and the 

`aberrant' states and have low volatility (figure 3.6). 

jlmlý 
Resid-Is 

oate 

Figure 3.6.: An example of a state sequence that appears to con- 
verge and is clearly estimated. Top parcel: observed and 
fitted data: middle panel: state sequence (1.0: 'normal' üici- 
dence, 2.0: 'aberrant' inci(lence); bottom panel: residuals (ob- 

served minus fitted count for each week). 

3.8.3. Residual autocorrelation 

An adequate model fit captures most of the variability in the observed data 

and leaves little serial correlation in residuals. Autocorrelation plots of 
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Figure 3.7.: An example of a state sequence that does not converge. 
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Figure 3.8.: An example of a state sequence that appears to con- 
verge but is volatile. 
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residuals separated by between 0 and 120 weeks showed the degree of posi- 
tive correlation between residuals at short lags, which when present suggests 

underfitting of large peaks in the data, and at seasonal lags (approximately 

52 and 104 weeks), which when present suggests inadequate fitting of sea- 
sonality (e. g. figure 3.9). Substantial correlation at other lags suggests poor 
model fit generally. Correlation between residuals is 1 at lag 0 because this 

correlation is between the residual and itself. Horizontal dotted lines in- 
dicate the threshold below which autocorrelation is `ignorable' ( f2/ f, 

where n is the sample size: 1566 weeks). [204] 
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- ... ........................... - ----- -- ------- --------- -------------ý-----... , 'ý. --ý-^*mmmýmý 

oma eo eo ýao im om ýo eo eo iao im 
W vo 

(a) (b) 

Figure 3.9.: Example plots of the autocorrelation function of resid- 
uals. (a) An adequate model fit with some positive 
correlation at a lag of 1 week and at seasonal lags (ap- 
proximately 52 and 104 weeks), but otherwise minimal 
correlation. (b) Poor model fit. Y-axes: correlation be- 
tween residuals at different lags, x-axes: lag between residuals, 
in weeks. Horizontal dotted lines are set at `ignorable' residual 
autocorrelation (±2/ 1566). 

3.9. OpenBUGS 

MCMC was run in OpenBUGS (Version 3.0.2, September 2007), a package 
for Bayesian inference using Gibbs sampling. [207] 
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3.10. R 

Data were first read into R (R version 2.6.2 (2008-02-08)) and OpenBUGS 

was called from within R to do the MCMC sampling using the BRugs pack- 
age. Diagnostics and plots were produced in R. 
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4. Descriptive Results 

4.1. Aims of this chapter 

The aims of the work described in this chapter were, first, to determine the 
best way to model long-term trend in P&I and ILI incidence between 1970 

and 2005 in England & Wales and, second, to explore crude associations 
between the peak incidence each influenza season and the exposures of in- 

terest: CT seasons, the antigenic distance between clusters and the vaccine 
coverage of those > 65 each influenza season. 

4.1.1. Objectives of this chapter 

1. To fit negative binomial GLMs to P&I and ILI from 1970 to 2005 to 
determine whether long-term trend is adequately modeled by a linear 

term or if a quadratic term or cubic splines are needed 

2. To determine if there is an interaction between age group and long- 
term trend in P&I or ILI 

3. To explore crude associations between peak incidence each season and 
CT seasons, the antigenic distance between clusters and the vaccine 
coverage of those > 65 each influenza season 

4.1.2. Main findings 

The long-term trends in rates of ILI and P&I over the past 36 years are not 
linear. Of the models tested, trend is best modeled by cubic splines with 5 
df for P&I and 14 df for ILI. This is thus how long-term trend was fitted in 
HMMs in chapters 5 to 7. Long-term trends differ between P&I and ILI and 
across age groups for each outcome, necessitating age group-specific models 
in subsequent chapters. Up to 25% of the highest counts were excluded 
to. isolate the long-term trend in `normal' incidence from the influence of 
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`aberrant' observations. The shape of the long-term trend in both data 

sets is relatively insensitive to the exclusion of data. Overdispersion and 

autocorrelation are evident in residuals from models excluding even 25% of 
the highest counts. 

In general, the distribution of peak rates for CT seasons appears greater 
than for intracluster seasons. Ranking influenza seasons in terms of the 

peak P&I or ILI rate, by age, shows that fewer than half of the top ten 

seasons are CT seasons. T-test results suggest weak evidence for, crudely, 
peak incidence observed in CT seasons being greater than that observed 
in the average season by approximately 6 deaths per 1,000,000 population 
(p > 0.1) and 95 consultations per 100,000 population (p > 0.1). These 

differences are not of public health relevance. There is no clear association 
between peak rates of P&I and ILI each influenza season and the antigenic 
distance between clusters. There is a weak negative association between 

peak P&I and ILI during an influenza season and vaccine coverage of the 
> 65 age group in that season. 

4.2. Introduction 

In section 2.3.1 it was shown that influenza - attributable morbidity and 

mortality is variable season to season and that no consistent (increasing 

or decreasing) trend has been observed. [1,53] In section 2.7, coincidence 
between large antigenic drift events and epidemic morbidity and mortality 
was noted. (58,63,93,94,107-110] A model of the genetic and antigenic 
evolution of influenza A/H3N2 coupled with a transmission dynamic model 
suggests that CT seasons may result in an average of 1.6 times higher peak 
influenza incidence than intracluster seasons. [14] The lack of an estimate 
of the average effect of CT seasons (as identified by Smith et al. [131) was 
highlighted. 

In section 2.8.3 it was noted that vaccine coverage of those > 65 in Eng- 
land & Wales each influenza season increased from 24% in 1989/90 to 71% 
in 2004/05. [119,120] The population level impact of this high coverage has 

not been assessed in either the > 65 age group or across age groups. In 

section 2.9, studies of the impact of rising vaccine coverage of the elderly 
on morbidity and mortality in the elderly were reviewed. After adjusting 
for confounding, population impact of high vaccine coverage in the elderly 
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is hard to detect by linear regression of excess mortality estimates. 17,67] 

Results presented by Jansen et at. and Kwong et at. would suggest that for 

an increase in coverage of the elderly of approximately 20-30%, a decline 

in influenza - attributable mortality of 35-70% could be expected. 164,951 

Despite careful control for confounding, it is unlikely that these estimated 
declines in mortality are entirely attributable to vaccination. [133] 

4.3. Data sets 

An overview of the data analyzed is shown in figure 4.1. Figures 4.2 and 4.3 

show weekly rates of ILI per 100,000 and P&I per 1,000,000 by age group 
(0-4,5-14,15-44,45-64 and > 65) from 1970 to 2005. Vaccine coverage in 

those > 65 from 1989/90 to 2004/05 was derived from published sources 
(see section 3.2.4 in chapter 3). [119,120] Information on whether influenza 

seasons were dominated by influenza A/H3N2 virus was taken from the 
literature (table 3.2). Information on which seasons were CT seasons was 
taken from Smith et at. (table 3.2). [13] From these two pieces of information 

a list of the first H3N2-dominated seasons after a CT was derived . The 

antigenic distance between clusters was also taken from the Smith paper. [13] 

4.4. GLM methods 
Negative binomial models with a log-link were fitted separately to weekly 
counts of P&I and ILI by age group from 1970 to 2005. [1811 

Yt 
log(pt) 

0 

ti 

ti 

Poisson(µt8) 

a+ßt 
Gamma(a, b) 

Yt is the observed P&I or ILI count in week t, which is a Poisson random 
variable with mean µt0. The parameters of the Gamma distribution that 0 
follows control overdispersion; values of 0 greater than 1 indicate the data 

are overdispersed relative to the Poisson model. The log(pt) was modeled as 
dependent on Nt, the population at risk in week t, [180] al, the intercept, 
C(t, cp), a cubic spline with cp df to model trend, , Ql sins 22 + , 32 cos 52 Z, 

representing seasonality, [70) 33artifacts, the effects of known artifacts and 
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Figure 1.1.: All-age weekly rates of ILI (top), P&I (middle) and 
laboratory reports for influenza A (bottom, blue) and 
B (bottom, red) in England & Wales from 1970 to 2005. 
Stars indicate CT seasons. Triangles are vaccine coverage in the 
> 65 (right -axis). Arrows indicate artifacts. 
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Figure 4.2.: Weekly rates of GP consultation for ILI per 100,000 
from the RCGP WRS, by age group: 1970-2005. 
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interaction terms between age group and artifacts (age group* artifacts) and 
between age group and trend (age group * C(t, cp)). The population at risk 

each week was the registered population of the sentinel general practices for 
ILI and the census population of England & Wales for P&I. 

To fit the long-term trend in the data, extreme counts were removed. This 

is because different biological, environmental and behavioral factors drive 
large epidemics than drive long-term changes in incidence. Robustness of 
the fitted long-term trend to removal of 1,2.5,5,10,15,20 and 25% of the 
highest counts in the two data sets was assessed. 

Once high rates were excluded, long-term trend was modeled as linear or 
quadratic or flexibly with cubic splines with 4 to 20 df; more df were not 
tested to avoid overfitting the data. Interaction terms between age group 
and trend terms were included to test for a different long-term trend across 
age groups (0-4,5-14,15-44,45-64, > 65 years). Age group-specific models 
were also fitted to plot age group-specific trend lines. 

AIC were plotted against the model to show thresholds at which addi- 
tional model complexity did not lead to improved goodness of fit. AIC were 
also compared to test improvement of model fit with age-trend interaction 
included. 

4.5. Descriptive methods 
The peak weekly rate of P&I and ILI for each age group in each influenza 
season was plotted against vaccination coverage of the > 65, the first H3N2- 
dominated season after a CT and the antigenic distance between CT seasons 
to visualise crude associations. One and two-sample t-tests and a permuta- 
tion test (assuming each season is independent i. e. no secular trend in peak 
seasonal incidence) were performed to determine whether crude associa- 
tions between CT seasons and peak incidence might be due to chance. [208} 
One-sample t-tests addressed whether the difference between mean peak 
incidence observed in CT seasons and mean peak incidence observed in all 
seasons combined is greater than 0. Two-sample t-tests were used to de- 
termine whether the difference between mean peak incidence in CT seasons 
and the mean peak incidence in non-CT seasons was different from 0. The 

permutation test was done to determine how many times the same differ- 
ence between mean peak incidence in CT seasons and mean peak incidence 
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in all seasons, or greater, was observed if CTs were randomly allocated to 
10 of the 36 seasons in the data set. One million replicate samples of 10 sea- 
sons were drawn and p-values calculated summarising the number of times 
the mean peak incidence in the sampled seasons was greater than the mean 
peak incidence across all seasons. 

4.6. Long-term trend in P&I and ILI 

The long-term trend in P&I and ILI refers to the secular trend in P&I and 
ILI not attributable to influenza. Recall that the trend in these data that is 

not attributable to influenza was isolated by excluding high counts, which 
were assumed to be influenza-attributable, from model fits. Model fit to 
the long-term trend in P&I and ILI improved with each additional df for 
the cubic splines up to 14 df for the ILI data and 5 df for the P&I data 
(figures 4.4 and 4.5). Allowing an interaction between the long-term trend 

and age group improved model fit for both ILI and P&I data. 
Long-term trend in weekly ILI rates declined between the mid 1980s and 

mid 1990s, leveled off and declined again from approximately 2000 in all 
age groups (figure 4.6). In a supplementary analysis, similar declines since 
2000 were observed for other upper and lower respiratory tract infections, 

as well as non-respiratory consultation categories (figures A. 1 to A. 8). 
Dramatic declines in the long-term trend in weekly P&I rates in children 

were observed (figure 4.7). For the 15-44,45-64 and >_ 65 age groups, the 
95% CIs around the fitted long-term trend curves are consistent with some 
decline in the long-term trend in P&I since approximately 1998 for those in 
the 15-44 and > 65 age groups, and after 2000 for the 45-64 age group. Near 
the end of the time series, CIs for the 15-44 and 45-64 year age groups are 
wide and encompass the possibility of a rise or a fall in the long-term trend. 
The CI around the long-term trend for the oldest age group is consistent 
only with a decline in the long-term trend in P&I between 1998 and 2005. 
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Residuals from the models fitted to both data sets with 25% of the high- 

est counts excluded are approximately Normally distributed around zero 
with some autocorrelation (figure 4.8); large residuals are evident from the 
fit to P&I data. Overdispersion was reduced with the exclusion of high 

counts, but large residuals, and values of 0 greater than 0 for most models 
(table 4.1), 'with the exclusion of up to 25% of counts suggest it was not 
eliminated. 
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Table 4.1.: Values of dispersion parameter, 0, from final GLM mod- 
els. Blanks in the table mean that 0 was not estimable from this 
model. 

Outcome spline df age group 6 se(O) 
P&I 5 0-4 
P&I 5 5-14 
P&I 5 15-44 
P&I 5 45-64 80.500 12.100 
P&I 5 > 65 83.070 3.560 
ILI 14 0-4 11.056 0.788 
ILI 14 5-14 8.618 0.559 
ILI 14 15-44 15.265 0.772 
ILI 14 45-64 16.270 1.250 
ILI 14 > 65 18.360 2.780 

The shape of the long-term trend in P&I and ILI rates is relatively insen- 

sitive to the percentage of high rates excluded (figures B. 1 and B. 2). 
Effects of artifacts differ across age groups (figure 4.9). There is little in- 

formation in the data as to the impact of most of the artifacts (as evidenced 
by the overlapping CIs for most of them) except for P&I in the age groups 
15-44,45-64 and > 65; the impact of these changes has been discussed by 
ONS. [1541 
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4.6.1. Effect of CT seasons on epidemics 

In general, the distribution of peak rates for CT seasons appears greater 
than for intracluster seasons (figure 4.10). This is consistent across age 

groups for ILI but is only seen for P&I from the 15-44 and 45-64 age groups. 
Ranking influenza seasons from largest to smallest in terms of the peak 

P&I rate, by age, showed that CT seasons do not feature prominently in 

the top ten seasons (table 4.2). Five of the top ten seasons in terms of P&I 

rate for the > 65 age group were CT seasons. Fewer than half of the top 

ten influenza seasons in terms of peak ILI rate, by age, were CT seasons 
(table 4.3). 
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Crudely, peak incidence observed in CT seasons is greater than that ob- 

served in the average season by approximately 6 deaths per 1,000,000 pop- 

ulation and 95 consultations per 100,000 population; t-tests suggest there 

is weak evidence that these are true differences (table 4.4). Peak incidence 

observed in CT seasons is greater than that observed in intracluster (non- 

CT) seasons by approximately 8 deaths per 1,000,000 population and 133 

consultations per 100,000 population; these observations are less likely to be 

due to chance (table 4.4). In approximately 6% of permutations for the com- 
parison of P&I peak incidence in CT seasons to the average season, at least 

as great a difference between CT seasons and the average season is observed 
as for the real CT seasons (P = 0.062). The peak weekly P&I rate in the 
data analyzed in the thesis, excluding the 1969/70 pandemic season, is 80.4 

per 1,000,000 (week 52,1999) and the peak weekly rate of ILI consultations 
is around 2,322 per 100,000 (week 49,1989). Differences in the weekly peak 
of on average 8 P&I deaths per 1,000,000 population and 133 ILI consulta- 
tions per 100,000 population between CT seasons and intracluster seasons 
are therefore not differences of public health importance. 

Table 4.4.: T-test and permutation test results. 
Test t df P 
One-sample t-tests _ 
P&I 
CT-seasons mean peak rate minus over- 0.27 9 >0.168 
all mean peak rate >0 
ILI 
CT-seasons mean peak rate minus over- 0.35 9 >0.168 
all mean peak rate >0 
Two-sample t-tests 
P&I 
CT-seasons mean peak rate minus non- 1.65 33 0.12 
CT season mean peak rate 
ILI 
CT-seasons mean peak rate minus non- 2.20 33 0.04 
CT season mean peak rate 
Permutation tests 
P&I 
CT-season mean peak rate vs. overall 0.062 
mean peak rate 

ontinued on Next Page.. . 
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Table 4.4 - Continued 
Test t df P 
ILI 
CT-season mean peak rate vs. overall 0.024 
mean peak rate 

There is no clear association between peak rates of P&I and ILI each 
influenza season and the antigenic distance between clusters (figure 4.11). 
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4.6.2. Impact of vaccination on epidemics 

There is a weak negative association between peak P&I and ILI during an 
influenza season and vaccine coverage of the > 65 age group in that season 
(figure 4.12). The association is found across all age groups and appears 
stronger for ILI than for P&I. 
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4.7. Summary of results 

Long-term trend in rates of ILI and P&I between 1970 and 2005 are not 
linear. Of the models tested, trend is best modeled by cubic splines with 
5 df for P&I and 14 df for ILI. Long-term trends differ between P&I and 
ILI. There is evidence for age group-trend interaction for both P&I and 
ILI. The data are consistent with a decline in weekly P&I rates in those > 

65 years old from approximately 1998 coincident with markedly increased 

yearly vaccination coverage in this age group. ILI consultation rates declined 

in all age groups between the mid 1980s and mid 1990s, were stagnant to 

2000, and declined thereafter. The shape of the long-term trend in both 

data sets is relatively insensitive to the exclusion of data. 

Crudely, the distribution of peak rates for CT seasons appears greater 

than for intracluster seasons. When peak P&I and ILI rates per season 

are ranked, only for P&I in the > 65 age group do CT seasons occur in at 
least five of the top ten seasons. T-tests and permutation tests suggest that 

the small increases in peak P&I and ILI in CT seasons compared with the 

average season or intracluster seasons are supported by weak evidence and 

are of little public health importance. There is no clear association between 

peak rates of P&I and ILI each influenza season and the antigenic distance 

between clusters. There is a weak negative association between vaccine 

coverage of the > 65 age group and peak seasonal P&I and ILI rates across 

age groups. 
Peak rates of morbidity and mortality are sensitive to the baseline rate 

of morbidity and mortality (i. e. the rate of morbidity and mortality that 

would be expected in the absence of influenza). All things being equal 
(e. g. virulence of circulating influenza viruses, degree of vaccine match to 

circulating viruses, vaccine coverage, winter temperatures), if the baseline 

mortality rate declined, so would the peak mortality rate. Estimates of 
influenza - attributable morbidity or mortality, excess mortality for example, 
are less sensitive to baseline morbidity and mortality rates. In chapter 7, 

estimated mean shifts for P&I and ILI by age group for each season (the 

estimated influenza - attributable rate ratio of the `aberrant' to `normal' 

morbidity and mortality rates) from the HMMs are plotted against the 

same three metrics - CT vs. intracluster seasons, the antigenic distance 
between clusters and vaccine coverage in the > 65. This gives a more 
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accurate estimate of crude association between the exposures of interest 

and influenza - attributable morbidity and mortality. Also in chapter 7, 

confounding of these associations of interest by other time-varying factors 

is discussed. 

4.8. Strengths of the GLM methods used 

Many factors may lead to an apparent change in the long-term trend in 

ILI or P&I. An example of such a factor is a secular change in use of GP 

services. Different factors than those explaining secular trends are respon- 

sible for variability of peak P&I or ILI incidence across influenza seasons. 
Examples of factors that may explain variability of peak P&I or ILI across 
influenza seasons are increased or decreased influenza vaccination and CTs. 

High rates at the start of the time series, for example in the years shortly 
following the first wave of the Hong Kong pandemic of 1968 when the mod- 
ern influenza A/H3N2 viruses began to circulate in the human population, 
influence the slope of the estimated long-term trend (especially when fitting 

a linear trend). By excluding these high rates from model fitting and fitting 

a flexible curve to the remaining data using cubic splines a close approxi- 
mation to the true shape of the long-term trend in P&I and ILI in England 
& Wales between 1970 and 2005 has been estimated. 

4.9. Limitations of the GLM methods used 

Excluding 25% of counts is insufficient to eliminate overdispersion and iso- 
late the long-term trend in `normal' incidence from `aberrant' counts in the 
death data especially. Hidden Markov models may alleviate these problems 
by drawing `normal' rates, that contribute to the long-term trend, from one 
distribution and `aberrant' rates from a second distribution. (188] 

4.10. Long-term trend 

The decline in ILI since around 2000 in all age groups, a decline in other res- 
piratory and non-respiratory consultation rates since 2000 and the absence 
of a similar decline in P&I rates across age groups indicate a behavioural 

125 



change has resulted in a fall in the use of GP services. Different factors prob- 

ably contributed to the decline in use of GP services in different age groups. 
The reduction in provision of out-of-hours care by GPs in favour of deputies 

(whose notes are not incorporated into patient GP files), the introduction 

of the 'NHS Direct' telephone health line [210] and the Path of least resis- 
tance Department of Health report in September 1998 which discouraged 

antimicrobial prescribing in general practice [179] may have contributed to 

a decline in consulting by the young and working aged adults. [122] Policy 

in the early 1990s to redirect funding from residential care homes to sup- 

porting older people in their own homes probably resulted in elderly people 

also being less likely to consult their GP and more likely to be admitted 

to hospital if they developed a respiratory infection. [122,211] Progressively 

lower odds of death within 30 days of being admitted to hospital for pneu- 

monia from 2000/01 to 2004/05 compared with 1997/98 reported by Trotter 

et at. supports this hypothesis of a lower threshold for admission of elderly 

people. [212] Trends in other respiratory disease consultations were simi- 
lar which reinforces the suggestion that an environmental or a behavioural 

change may explain declines in ILI. 

Reasons for the decline in mortality in the youngest age groups have been 

described elsewhere. [213] If all influenza-attributable P&I and ILI was not 

removed by deletion of 25% of the highest counts before model fitting, it is 

possible that the hint of a decline in P&I in the > 65 age group after 1998 

may be due to the increase in vaccine coverage in this age group. [120] 
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5. Univariate HMM results 

5.1. Aims of this chapter 

The aim of the work described in this chapter was to determine the appro- 

priate scale of analysis and distributional assumptions for HMMs fitted to 
P&I and ILI and to evaluate what HMMs fitted to either P&I or ILI alone 
tell us about influenza. 

5.1.1. Objectives of this chapter 

1. To determine appropriate scale of analysis (log-link or identity link) 

and distributional assumptions (Poisson or negative binomial) for HMMs 
by first fitting each model to P&I for > 65 age group and ILI for 15-44 

age group and exploring convergence and model fit 

2. To explore convergence and fit of good models from objective 1 to P&I 
for each age group and to ILI for each age group 

3. Based on model fit and convergence from objective 2, to evaluate what 
these univariate models tell us about influenza 

5.1.2. Main findings 

Of the models fitted, Poisson log-link and identity link models were de- 

veloped and other models discarded due to problems of convergence and 
model fit. Of the Poisson log-link and identity link models fitted to P&I 

and ILI for different age groups, state sequences (the model-estimated state 
assignment of each week in the time series) appeared to converge for Pois- 

son identity link models fitted to P&I but not ILI. Poisson log-link model 
state sequences appeared to converge for fits to ILI but not P&I. P&I for 

all age groups apart from the > 65 age group were underdispersed relative 
to both log-link and identity link models. ILI data were not underdispersed 
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or overdispersed relative to either log-link or identity link models. Evidence 

of apparent convergence of state sequences predicted apparent convergence 

of the model more generally (as captured by the LL). Both log-link and 

identity link models were taken forward for joint modeling with laboratory 

data (chapter 6). 

At the end of the chapter, the concept of lack of convergence reflect- 
ing a lack of information in the data about state transitions is introduced. 
This idea is revisited in chapter 6 where multivariate models are built in 

an attempt to share information about state sequences, and therefore mean 
shifts, across outcome variables. It is revisited in chapter 7 when priors for 

the impact of CT seasons and vaccination of varying degrees of `informa- 

tiveness' are set. The amount of information in the data about the effects 
of interest determines the ease with which the sampler visits the different 

posteriors. Values of coefficients (e. g. for the magnitude of mean shifts) are 
not be interpreted in this chapter. 

5.2. Introduction 

In chapter 4, evidence for a nonlinear long-term trend in incidence of P&I 

and ILI was presented. Since the long-term trends in rates of ILI and P&I 

over the past 36 years are not linear, cubic splines were used to fit long-term 
trend in HMM model fits. Long-term trends differ between the two outcome 
variables, and across age groups for each outcome, necessitating age group- 
specific HMMs. Overdispersion and autocorrelation are not accounted for 
by fitting negative binomial GLMs to P&I and ILI excluding even 25% of 
the highest counts. 

Peak ILI and P&I incidence is variable whether or not the season is dom- 
inated by a new cluster. Ranking influenza seasons in terms of the peak 
P&I or ILI rate, by age, showed that fewer than half of the top ten seasons 
were CT seasons. T-tests suggest weak evidence that peak incidence ob- 
served in CT seasons is greater than peak incidence observed in the average 
season by approximately 6 deaths per 1,000,000 population and 95 con- 
sultations per 100,000 population; a permutation test suggested that the 
observed difference between peak P&I incidence in CT seasons compared 
to the average season may be due to chance. There is no clear association 
between peak rates of P&I and ILI each influenza season and the antigenic 
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distance between clusters. There is a crude negative association between 

increasing vaccination coverage and seasonal peak ILI and P&I incidence 

observed across all age groups. 
In chapter 3 the history of regression modeling of influenza was reviewed 

and the need to distinguish `aberrant' from `normal' incidence in time se- 

ries' of non-laboratory confirmed morbidity and mortality was highlighted. 

This is usually done by excluding some portion of the data (sometimes in- 
formed by incidence of laboratory-confirmed influenza or by using cut-offs 
whereby a certain percentage of the highest counts, or incidence in partic- 
ular weeks or months, is attributed to influenza). In chapter 4 excluding 
even 25% of the highest P&I and ILI counts and fitting negative binomial 
log-link models to the remaining incidence was insufficient to account for 

autocorrelation and overdispersion. In this chapter, fits of 2-state Poisson 
HMMs to ILI and P&I incidence are described, where distinction between 

two states ('normal' and `aberrant') is integrated within the modeling pro- 
cess. A Bayesian approach allows uncertainty about state assignments to be 
incorporated naturally. HMMs attribute variability in the data to more than 

one probability distribution and thus account for extra-Poisson variability 
in the data. 

5.3. Data sets 

Influenza years are defined as week 26 of one calendar year (the week of 
July 1st) to week 25 of the following calendar year. Models were fitted to 
P&I and ILI data by age group from the 1975/76 season to the 2004/05 

season. Though ILI data are available since the 1967/68 season and P&I 
data since 1970/71 season, models were fitted only to data from 1975/76 

since laboratory data (incorporated into multivariate models in chapter 6) 

are only available since 1975/76. 

5.4. Description of the models 
Counts are usually modeled as Poisson distributed, so Poisson log-link and 
identity-link HMMs were fitted (table 5.1). Log-link models allow baseline 

parameters - long-term trend, seasonality and artifacts - to combine multi- 
plicatively while identity-link models allow baseline parameters to combine 
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additively (table 5.1). There is no a priori reason to exclude multiplicative 

or additive models since baseline parameters (long-term trend, seasonality 

and artifacts) may plausibly combine additively or multiplicatively. There 

are examples of both in the published literature (e. g. [43,62]). Negative 

Binomial HMMs were also fitted where variability in the observed data in 

excess of that predicted by the Poisson distribution was allowed for with a 

separate dispersion parameter estimated from the data. As an alternative 

method for modeling variability in the data beyond what the Poisson HMM 

captures, counts were transformed using two variance-stabilising transfor- 

mations - the square-root and the log - and Gaussian HMMs were then 
fitted to the transformed counts where overdispersion is allowed for with 
the separate variance parameters. Unlike the Poisson, Gaussian variance is 

not determined by the mean. 

Table 5.1.: B asic univariate HMMs. 
Model Model Error struc- Handling addi- Key 

structure ture on orig- tional overdisper- 
on original inal scale sion 
scale 

Poisson log-link multiplicative additive nil LOGR 
Negative Bino- multiplicative additive Dispersion parame- 
mial log-link ter 0 NBLOGR 
Poisson additive additive nil IDR 
identity-link 
Negative Bino- additive additive Dispersion parame- NBIDR 
mial identity- ter 0 
link 
Gaussian fitted additive (on additive (on separate variance SQR 
to square root- square-root square-root parameter 
transformed scale) scale) 
counts 
Gaussian multiplicative multiplicative separate variance LNR 
fitted to log- parameter 
transformed 
counts 

The interpretation of the mean shift, the feature of the model that distin- 

guishes the two states, depends on the scale of analysis. In models with a 
log-link, the mean shift is the average ratio of a count drawn from the `aber- 
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rant' state to a count drawn from the `normal' state for a given influenza 

season; in models with an identity-link, the mean shift is the average differ- 

ence between the count predicted from the `aberrant' and `normal' states 

for a given influenza season. 

The different model structures - Poisson and Negative Binomial log-link 

and identity-link HMMs as well as Gaussian HMMs fitted to square-root- 

or log-transformed counts (table 5.1) - were fitted initially to weekly P&I 

counts in those aged > 65 and ILI in those aged 15-44 to coarsely differ- 

entiate between models with different scale and distributional assumptions. 
These age groups were used because they contain the majority of the data in 

the respective data sets. Models chosen at this coarse stage were then fitted 

to P&I and ILI and each age group and convergence and fit were assessed 
in more detail. The two-state Poisson HMM with log-link had the following 
form: 

Yt N Poisson(pt) 

log(Nt) I St =1= log(Nt) + ao + C(t, cp) + 01 sin 2 22 + 32 cos 522 
+ 03artifacts 

1og(µt) I St =2= log(Nt) + co + al [flu season] + C(t, cp) +, 31 sin" 22 + , 02 cos 2 22 

+ 03artifacts 

St( St_i - Bernoulli(ö) 
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Where Yt is the observed P&I or ILI count in week t, 

, at is the mean of the Poisson distribution from which Yt is 
drawn, 

Nt is the population offset, 
ao is the intercept, 

al [flu season is the random effect yearly mean shift, 
C(t, cp) is the cubic spline with cp df, 

ßl sin 2+ 
, 32 cos 222 represents seasonality, where 52.2 is 

the average number of weeks in a year, 
/33artifacts represents the instantaneous change in the base- 
line because of artifacts in the data, 

and St is the state variable sampled from a Bernoulli distribu- 

tion with probability 5, a two-by-two matrix of probabilities 

of moving (or not) between states at time t given which state 
the model was it at time t-1. 

5.5. Priors 

Reference priors were assigned to all parameters (table 5.2). Prior distribu- 
tions are on the scale of analysis unless otherwise stated. 

Table 5.2.: Prior distributions. Normal priors are expressed in terms of 
mean and precision (recall precision is the inverse of the vari- 
ance). 

Parameter 

ao 
a1 [flu season) 
µrand 

Trand 

011 A2,03 
5St=21St-i=1 

öSt=2ISt_1=2 
Dispersion parameter, 81 
Precision of Normal distribution 

Prior distribution 
Normal(0,0.01) 
Normal(µrand, TTeS1d)I(0)) 
Normal(0,0.01) 
Gamma(0.001,0.001) 
Normal(0,0.01) 
Uniform(0,0.2) 
Uniform(O. 6,1) 
Gamma(0.01,0.01) 
Gamma(0.001,0.001) 

'NBLOGR, NBIDR models only 
'SQR, LNR models only 
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In table 5.2,5St=2ISt_1=1 is the probability of a transition into the 'aber- 

rant' state at time t given being in the `normal' state at time t-1, while 
6St=2ISt_1=2 is the probability of no transition at time t given being in 

the `aberrant' state at time t-1. Prior distributions are defined as Nor- 

mal(mean, precision), where the precision is the inverse of the variance, Uni- 

form(range) and Gamma(shape, scale). I(0) denotes restriction to positive 

values. 
Normal and uniform reference priors were used so as to be as `non in- 

formative' as possible, that is to approximate no prior knowledge as to the 

value of the parameter in question. A Bayesian analysis with reference pri- 
ors used on all parameters is, in many simple situations, analogous to a 
frequentist analysis. The analyses described in this and the following two 

chapters are complex. For example, all possible sequences of states are in- 
tegrated over. This means that using reference priors will not necessarily 
produce the same results as a frequentist analysis. Normal reference priors 
are equivalent to assigning approximately equal prior probability to all pos- 
sible values of the parameter in question, with a weak central tendency at 0. 
Uniform reference priors assign equal prior probability to all possible values 
of the parameter within a range. Priors for transition probabilities were 
constrained so that the prior probability of a transition into the `aberrant' 

state at time t, given being in the `normal' state at time t-1, was uniform 
between 0 and 0.20, because large epidemics of influenza last approximately 
8-10 weeks so a given week has an up to approximately 20% (10/52 = 0.19) 

chance of being the first week of a large epidemic, ignoring seasonality. The 

prior probability of no transition at time t, given being in the `aberrant' 

state at time t-1, was uniform between 0.6 and 1 so that the state variable 
would `stick' in the `aberrant' state for the duration of the period of high 
incidence. [214] These priors do not allow, for example, that the probability 
of a transition to the `aberrant' state at time t given having been in the 
`normal' state at time t-1 is 0.21. Model results may be sensitive to these 
choices for priors on transition probability parameters. Given the deriva- 
tion of the priors mentioned above, I think they are a reasonable place to 
start. Allowing for a higher than 0.2 probability of moving from the 'nor- 

mal' to the `aberrant' state in any given week and/or allowing for a lower 
than 0.6 probability of remaining in the `aberrant' state from one week to 
the next would, if anything, increase volatility of state sequences by allow- 
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ing the model more freedom to move between states (see section 3.8.2). If 

conclusions were to be drawn from the analysis of covariate effects using the 
HMMs, sensitivity of results to these priors would need to be checked. Pre- 

cisions and the dispersion parameter from negative binomial models were 
given reference Gamma distributions. [193] The prior on the mean shift was 
constrained to be positive to ensure that only an increase (not a decrease) 
in the predicted count would be labeled as arising from the `aberrant' state. 

5.6. Scale and distribution 

For each parameter, two chains were run from different initial values. Models 
from table 5.1 fitted to P&I data for the > 65 age group and ILI data for 

the 15-44 age group were run for 10,000 iterations on each of two chains (for 

a total of 20,000 iterations). 
NBLOGR, NBIDR, SQR and LNR models were discarded in favour of 

simpler Poisson (LOGR and IDR) models because of poor convergence, fit 

or both. P&I and ILI data are underdispersed relative to the NBIDR and 
NBLOGR models (e. g. figure C. 1). In addition, the transition probabil- 
ity parameters, which are key parameters for HMMs, do not converge for 
NBLOGR or NBIDR model fits (e. g. figure C. 2). 

SQR and LNR models predict P&I > 65 data poorly (figures C. 3 and C. 4). 

In addition, coefficients from SQR models are difficult to interpret because 

is it not trivial to back-transform coefficients from the square-root to the 

original scale. (2151 

LOGR and IDR models were fitted to P&I and ILI for each age group; 
fit and convergence of these models are summarised in the remainder of the 
chapter. 

5.7. Model convergence 

Fit and convergence of LOGR and IDR models are summarised in table 5.3. 
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For LOGR and IDR model fits to each age group, two chains were ini- 

tialised from different initial values for each parameter. Four sets of initial 

values were developed (one each for LOGR fits to P&I, LOGR fits to ILI, 

IDR fits to P&I and IDR fits to ILI). Two chains for each parameter were 

run for 100,000 iterations, saving 10% of sampled values for each parame- 

ter. Model fit was assessed based on plots of the final 5000 saved samples. 

Convergence of two chains to the same area of parameter space for key pa- 

rameters was assessed using BGR plots of the LL and history plots of two 

chains for the LL and for the transition probability parameters. BGR plots 

monitor convergence of the ratio of pooled to within chains variability in 

the LL to 1. BGR plots also show that initial values were suitably different 

if the ratio of pooled to within chains variability is greater than 1 at the 

start of the simulation. 

History plots show sampled values from every 10th iteration for two chains 

of the LL and the transition probabilities, starting after 20,000 iterations. 

Recall that apparent convergence of the two chains for the LL and transition 

probabilities to the same approximate value is evidence of apparent conver- 

gence of the models more generally. This is because the LL is contributed 
to by all parameters in the model and the transition probabilities are the 
defining feature of HMMs. 

In general, models where transition probability parameters appear to con- 

verge show apparent convergence of most other parameters. When tran- 

sition probabilities do not converge, many other parameters also do not 

converge (detail below). 

Transition probability parameters from IDR model fits to P&I appear to 

converge for all but the 45-64 age group (e. g. figures 5.1 and 5.2). For IDR 

model fits to ILI, transition probabilities only appear to converge for fits to 
the 15-44 age group (e. g. figures 5.3 and 5.4). For the IDR model fit to 
ILI for the > 65 age group, transition probabilities parameters appear to 

converge to a similar area of parameter space (figure D. 1). 
Transition probabilities from LOGR fits to ILI for all age groups appear 

to converge (e. g. figure 5.5). For LOGR fits to P&I, only the 15-44 fit shows 
apparent convergence (e. g. figures 5.6 and 5.7). For the LOGR model fit 

to P&I for the 5-14 age group, transition probability parameters appear 
to begin to mix in the same area of parameter space after approximately 
70,000 iterations on the two chains (figure 5.8). 

136 



Apparent convergence of the LL for models mirrors apparent convergence 

of the transition probability parameters (e. g. figures 5.2 and 5.9) with sev- 

eral exceptions: the LL does not converge for IDR model fits to Pk1 or IL1 

for the > 65 age group or for either LOGR or IDR fits to IL1 for the 15-11 

age groups. (e. g. figure D. 2) though transition probabilities appeared to 

converge for these models (e. g. figure 5.4). 

"p pI, n[11 

'p. epell-[21' 

l"igure "). 1 
.: 

History plots of two chains for transition probability 
parameters from IDR model fit to P&I from the > (iii 
age group. 'Ihe top phrt. `1. epsilon[11', is two (hams for 

the probability of it transition into the aberrant' 
state at time t given being in the `normal' state at time t-1. 
'I'lw bottom plot. `p. epsilon[2]', is two chains for 6sß 

=2 St 1 =2. Hie probability of no transition at time t given being in the 
'aberrant state at time t-1. Both transition probabilities ap- 
pear to converge. 

i«; H plots of the LL for the first 20,000 iterations on two chains show 
that, for almost all models, chains were started from suitably disparate 

initial values (figures D. 3 and D. 1). 
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e0edon[21' 

nx: 

Figure 5.2.: History plots of two chains for transition probability 
parameters from IDR model fit to P&I from the 45-64 

age group. Two chaiiiis for 'p. epsilon'L2; ' (hottoin plot) (liverge 
around the 3000th saved sample. This suggests the existence of 
it inimher of local maxima for 'p. epsiloii[2]'. 

"o opndou(11. 

"p epcýloýr2r 

Yntron 

FigurI 

flIXI: 

History plots of two chains for transition probability 
parameters from IDR model fit to ILI from the 5-14 age 
group. '1). el)silonJ2; ' (bottom plot) does not converge while 
'j). c1)silo11[1]' aj)p ars to. 
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Figure 5.1.: History plots showing apparent convergence of two 

chains for transition probability parameters from TOR 

model fit to ILI from the 15-44 age group. 

"i, pIo, F1F 

'p. ep. f On[i1' 

Amlgn ý 

Fi�urc' 5.5.: History plots showing apparent convergence of two 
chains for transition probability parameters from 
LOGR model fit to ILI from the 0-4 age group. 
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'p. spsilort[t]' 

hU 0 Ml% J 

. 5.0.: History plots showing apparent convergence of two 

chains for transition probability parameters from 
LOGR model fit to P&I from the 15-44 age group. 

'p. epsilonilj' 

'p.. pti1on[21' 

.., - 

Figun ',. i 
.: 

History plots showing lack of convergence of two chains 
for the probability of no transition at time t given be- 
ing in the `aberrant' state at time t-1 ('p. epsilon[2]', 
bottom plot) from LOGR model fit to P&I from the 
> (ii age group. 
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Figure 5.8.: History plots of two chains for transition probability 
parameters from LOGR model fit to P&I from the 5- 
14 age group. The tWo (haius for both transition probabilities 
hc gin to inhabit, the same region of the parameter space after 

approxiniatcly 70,000 iterations, but do not rnix tell. 

'LL' 

I' ignre 5.9.: History plot showing lack of convergence of two chains 
of the LL from IDR model fit to P&I from the 45-64 

age group. "I'wo chains for the LL diverged around the 3000th 

sm-cd sample. This is consistent with the divergence for two 

chains for the 21ld transition probability from this model (see 
figure 5.2. 
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5.8. Convergence of state sequences 

Relative goodness of fit of models was assessed by comparing state sequence 

plots in terms of the degree to which the two chains agreed on state assign- 

ment for each week across models, and in terms of the volatility of the state 
sequence. The latent, or hidden, state variables are the key parameter of 
HMMs and convergence of state sequences typically indicates convergence 

of models more generally. 
For fits to P&I, in general IDR state sequences appear to converge while 

LOGR state sequences do not (e. g. figures 5.10,5.11,5.12 and 5.13). For 
fits to ILI, state sequences are similar from both IDR and LOGR model fits 
(e. g. figures 5.14,5.15,5.16 and 5.17). 

State sequences for all LOGR fits to ILI data are volatile. Volatility of 
state sequences decreases with increasing age (e. g. figures 5.14 and 5.18). 
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Figure 5.10.: The state-sequence does not converge for the LOGR 

model fit to P&I from the 0-4 age group. Top pam'l: 
ubscrvcd ((bushed) and fitted P&1 data for the 0-1 age group 
(red): middle panel: state sequence (1.0 is the 'normal' state, 
2.0 the 'aberrant' state): bottom panel: residuals (observed 

minus fitted P&. I count for each week). The state sequence 
shown was plotted by averaging the state sequence estimated 
by each of the two chains. Lack of convergence is shown be- 

cause the pooled state sequence does not clearly designate 

weeks as either `normal' or 'aberrant. This means the two 

chains disagreed on the state assigmnent for most weeks. 
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Ni;, c1rc ßi. 11.: The IDR. iiiodel (shown) is better able than the LOGR 

model (previous plot) to distinguish `aberrant' from 
`normal' incidence in P&I from the 0-4 age group. Tic 

t«cý chains appear to agree oii the state assignment for most 
weeks. 
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Figure 5.12.: The state-sequence from the LOGR model fit to P&I 
in those > 65 does not converge. The two duns spec"if- 
ieally disagree oil suite assignment for many weeks l)etween 

1975/76 and 1983/81. 
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Vigurv 5.13.: The state-sequence from the IDR model fit to P&I in 

those > ti:, appears to converge for most weeks. Note 

the large residuals hecause of uii<lerfittiiig of e})i(leiiiics. 
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l igicre ",. I 1.: The state-sequence for the LOGR model fit to ILI 
from the 0-4 age group appears to converge for most 
weeks, but is volatile. Recall that volatility of the state 
sequence refers to it flipping between the `aberrant' and 'nnor- 
tnal' states several times during itiHnenza seasons despite the 

observed data indicating a single, continuous 'aberrant' period. 
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5.17).: The state-sequence for the IDR model fit to ILI in the 
0-4 age group does not converge. 
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Figure 5.16.: The state-sequence for the LOGR model fit to ILI in 

those 15-44 years of age appears to converge for most 
weeks. Then, is sonic volatility in the stýtitcsrclucncc. 
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Figure 5.18.: The state-sequence for the LOGR model fitted to ILI 
ill those ? 65 (shown) appears to converge and is less 

volatile than the state sequences for LOGR. model fits 

to ILI from younger age groups. Large resi(lnmls are (lue 
to Itulterfittitig of epitletnics. 
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5.9. Plots of observed and fitted counts and 

residuals 

Comparing plots, averaged over two chains, of observed and fitted weekly 

counts and residuals between models allowed visual comparison of models 

with regards to model fit: 

1. relative goodness of fit was evident by comparing fitted and observed 
counts across models to check for parts of the observed data that one 

or another model fits badly 

2. comparing time series' of residuals across models for evidence of resid- 
ual seasonality and an abundance of large residuals allowed differen- 

tiation of good models from poor ones 

Overall model fit is better for LOGR than for IDR models. Observed 

and fitted counts and residual time series plots show good fit of all models 
to the P&I data apart from underestimation of epidemics (e. g. figure 5.10 
in section 5.8). Residual plots show good fit of the LOGR models to ILI 

except for underfitting epidemics (e. g. figure 5.16). IDR models fit several 
periods of ILI poorly for the following age groups: the first season in the 
data set (1975/76 - all but the 15-44 age group); the period from 1986 to 
1988 (45-64 and > 65 age groups) (e. g. figure 5.19). 

5.10. Posterior predictive density plots 
Comparative model fit was also visualised using PPD plots. Recall that 
PPD plots show a predicted count and 95% CrI for each week drawn from 
the sampling distribution for the observed data. P&I data from the 0-4, 
5-14 and 15-44 age groups are underdispersed relative to both the LOGR 

and IDR models (data not shown). P&I from the 45-64 age group are 
underdispersed relative to the LOGR model but adequately modeled by the 
IDR model (figure D. 5). P&I for the > 65 are neither overdispersed nor 
underdispersed relative to LOGR and IDR models (figure 5.20). 

ILI for all age groups are neither overdispersed nor underdispersed relative 
to LOGR (e. g. figure D. 6). For IDR model fits to ILI for the 0-4,5-14,45-64 

and > 65 age group, posterior predictive CrIs are very large for the 1975/76 
and 2004/05 influenza seasons (also shown in figure D. 6). 

152 



oe.. rne- M1n. e 

1915 ,w 

w 

105 ,m I9SS 2 x005 

ill 

o- 

I ir, nrý5. I¶).: IDR. model-predicted ILI for the > 65 age group (top 

plot) are very different from observed ILI for the 
1975/76 influenza seasons and for the period between 
1986 and 1988. 
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T. 20.: Posterior predictive density plots of (a) LOGR. and (b) 
IDR, models fitted to P&I from the >6 age group. The 

(11(1 ((1 counts and a 9.5V ('rl for each predict cd coulit (Hues) 

nre plotted on the same graph as the observed data (circles). 
These data are neither overdisperscd nor undcrdispersed rela- 
tive to the LO(: R and II)R models and could he adequately 
uxuIekd by either. Recall that overdispersiou is present if 

inainv observed data fall outside the posterior predictive CrIs. 

t'nderdispersion is present if very few or no observed data fall 

outside predicted Cris. 
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5.11. Autocorrelation in residuals 

Observations in a time series of counts of a seasonal infectious disease are not 
independent; counts at short lags (e. g. 1-2 weeks) are correlated because of 

person-to-person transmission and counts from the similar weeks in different 

years are correlated because of seasonality (since the influenza season occurs 

around the same time each year). In the models described in this and the 
following two chapters, the Markov chain generates autocorrelation. Models 

described in each results chapter have used a Fourier term (one sine and 

one cosine term) and cubic splines to account for seasonality (and long- 

term trend) in the data. The degree to which different models account for 

the correlation between counts at lags of 1-2 weeks and at lags of around 
52 weeks was assessed by plotting correlation of residuals at lags up to 
120 weeks. Recall that horizontal dotted lines indicate the threshold below 

which autocorrelation is `ignorable' (±2/ 1566). 12041 

Autocorrelation plots from both LOGR and IDR model fits to P&I for 

the > 65 age group show underfitting of epidemics (evidenced by positive 

autocorrelation at short lags) (figure 5.21). They also show inadequate 

modeling of seasonality since there is positive autocorrelation at lags of 

approximately 52 and 104 weeks. 
The IDR model badly fits the P&I data for the 45-64 age group (fig- 

ure D. 7). These data are adequately modeled by the LOGR model. There 
is minimal autocorrelation in residuals from LOGR or IDR model fits to 
P&I data for the 0-4,5-14 and 15-44 age groups (e. g. figure 5.22). 

Residuals from IDR model fits to ILI are generally highly autocorrelated 
for many consecutive weeks, suggesting poor overall model fit (e. g. fig- 

ure 5.23b). Residuals from LOGR model fits to ILI are generally less highly 

correlated than IDR fits. For the LOGR model fit to ILI in the > 65 age 
group there is a large negative correlation at a lag of 2 weeks (figure 5.23a). 
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Figure 5.21.: Autocorrelation plots of residuals from (a) LOGR and 
(b) IDR model fits to P&I from the > 65 age group. 
The correlation between residuals against the lag between the 
residuals. Correlation between residuals is 1 at lag 0 because 
this correlation is between the residual and itself. Horizontal 
dotted lines are set at t2/ 1566. Both models underfit epi- 
demics (shown by positive autocorrelation at lag 1 week). Both 
models also inadequately model seasonality (note positive au- 
tocorrelation at lags of approximately 52 and 104 weeks). 
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Figure 5.22.: There is minimal autocorrelation in residuals from (a) 
LOGR and (b) IDR model fits to P&I from the 15-44 
age group. 
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Figure 5.23.: Autocorrelation plots of residuals from (a) LOGR and 
(b) IDR model fits to ILI from the > 65 age group. The 
LOGR model fit shows minimal autocorrelation apart from 

a large negative correlation at a lag of 2 weeks. The IDR 
model fit is highly autocorrelated for many consecutive weeks 
showing poor overall model fit. 
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5.12. Relationship between information and 
convergence 

Lack of convergence of transition probabilities (and thus state sequences) for 

some models may reflect a lack of information in P&I and ILI about state 

transitions and thus mean shifts. For example, two chains for transition 

probabilities from the LOGR fit to P&I for the 0-4 age group do not easily 

explore the parameter space. Instead, the two chains wander almost at 

random across the parameter space and the state sequence does not converge 
(figures 5.10 and D. 8). While in principle if there is little information in 

the data to inform the posterior for transition probabilities the posterior 

should look like the prior (i. e. diffuse), in practice exploring a complex 

parameter space is difficult when the data do not contain information to 

guide the sampler to the appropriate part of the parameter space. This issue 

is explored further in chapter 6 in the context of multivariate models and 
the sharing of information about influenza across P&I, ILI and laboratory 

data for influenza A. It is revisited in chapter 7 in the context of informative 

priors on the effect of CT seasons and impact of vaccination on the mean 

shift. 

5.13. Summary of results 

LOGR and IDR models are chosen and negative binomial and Gaussian 

models discarded, because of problems of convergence and model fit with 
negative binomial and Gaussian models. It may be that the negative bi- 

nomial and Gaussian HMMs fail to distinguish overdispersion relative to 
the Poisson distribution from variability generated by the hidden Markov 

process (see section 8.5.2). 
When modeling P&I, generally IDR models appear to converge and LOGR 

models do not. When modeling ILI, LOGR models are preferred. When 
the state sequence does not converge it is because the transition probability 
parameters for that model do not converge and vis versa. P&I for all age 
groups apart from the > 65 age group are underdispersed relative to both 
LOGR and IDR models. ILI are not underdispersed or overdispersed rela- 
tive to either LOGR or IDR models. Both LOGR and IDR models are taken 
forward for joint modeling (chapter 6). Values of particular coefficients (e. g. 
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for the mean shifts) are not interpreted until chapter 7. 

5.14. Strengths of univariate HMMs 

The Poisson HMMs presented adequately model variability in the P&I and 

ILI data; overdispersion is no longer an issue. By allowing the model to 

determine whether the data are consistent with there being two probability 

distributions underlying observed counts there is no need to designate 'aber- 

rant' from `normal' weeks externally to model fitting. Uncertainty in the 

distinction between `normal' and `aberrant' state is incorporated naturally. 

5.15. Limitations 

As discussed in chapter 3, there are several limitations to the data mod- 

eled which may explain some modeling problems and which motivate joint 

models in chapter 6. 
P&I and ILI have variable specificity for influenza. Estimation of the im- 

pact of vaccination and of CT seasons - where any impact is expected to be 

restricted to outcomes caused by or attributable to influenza - necessitates 
increasing specificity of the P&I and ILI data for influenza. Low specificity 

might explain difficulties in clearly estimating state sequences. This lim- 

itation is addressed in chapter 6 where multivariate models are fitted to 

P&I and laboratory reports for influenza A, to ILI and laboratory reports, 

or to all three. Since laboratory-confirmed incidence has high specificity 
for influenza, jointly estimating state sequences using P&I/ILI data and 
laboratory data increases specificity of state sequences for influenza. 

A limitation of univariate HMMs is that model fit to epidemics is poor for 

all models. Some of this underestimation is because key explanatory factors, 

influenza A/H3N2 dominance, vaccination and CT seasons as examples, 

are not included in these models. Also, recall that for LOGR models the 

mean shift for each influenza season is the average ratio of incidence during 

`aberrant' periods to `normal' periods for that season. The underfitting 

of epidemics might explain autocorrelation of residuals at short lags. In 

chapter 7, the value of these factors for explaining variability in mean shifts 
between seasons is explored. 

The approach. to modeling seasonality, with one sine and one cosine term, 
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as introduced by Serfling and adapted by many authors [70,81,92], is lim- 

ited by its rigidity. In the models fitted in the thesis, cubic splines with 
5-14 df used to capture long-term trend and dummy variables controlling 
for artifacts in `normal' incidence increase the flexibility of the HMM to cap- 
ture seasonality (and long-term trend) in the data relative to the sine and 
cosine term alone. However, autocorrelation plots of residuals show there 
is inadequate modeling of seasonality. Future work could include modeling 
seasonality more flexibly. Alternatives to a Fourier term which offer in- 

creased flexibility for modeling seasonality are using indicator variables for 

month (e. g. [52]) or splines with several df each year (e. g. [42]). 
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6. Joint HMM results 

6.1. Aims of this chapter 

The aim of the work described in this chapter was to increase specificity 
of P&I and ILI for influenza by fitting multivariate HMMs, where the 

state sequence is estimated jointly across age-specific counts of laboratory- 

confirmed influenza A cases along with ILI and/or P&I, to determine models 
to which CT seasons, the antigenic distance between clusters and vaccine 
coverage could be added in chapter 7. 

6.1.1. Objectives of this chapter 

1. To explore model fit and convergence of age group-specific bivariate 

models (fitted first to laboratory and ILI data together and then to 
laboratory and P&I data together) and trivariate models (modeling 
laboratory, P&I and ILI together in a single model) in both the Poisson 
log-link and Poisson identity-link framework 

2. To look for evidence for lagged state transitions between outcome 
variables within an age group by overlaying state sequences from uni- 
variate LOGR and IDR fits to P&I, ILI and laboratory reports for 
influenza A 

3. To explore fitting multivariate models that allow for a lag between 
the effect of the state sequence on P&I/ILI relative to its effect on 
laboratory reports for influenza A 

6.1.2. Main findings 

In general, multivariate LOGR models are preferred to multivariate IDR 
models because most of the multivariate LOGR models appear to converge 
and to fit the data better than multivariate IDR models. Modeling P&I 
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or ILI jointly with laboratory reports increases the precision of the random 

effect mean shift compared to univariate models in most cases. There is ev- 
idence of a lag between the timing of `aberrant' periods in different outcome 

variables for a given age group. The lag in the timing of `aberrant' periods 

varies across influenza seasons. Models allowing for a constant lag in the 

timing of `aberrant' periods across outcome variables are computationally 
difficult and are not developed beyond showing that OpenBUGS can fit 

these models in principle. Multivariate LOGR models were taken forward 
for estimating the effect of cluster transitions and the impact of vaccination 
on the mean shift in chapter 7. Multivariate IDR models were discarded 
because of lack of convergence and poor model fit. 

6.2. Introduction 

In chapter 5, LOGR models were shown to fit ILI but not P&I and IDR 

models were shown to fit P&I but to be worse at fitting ILI than LOGR 

models were. In this chapter, multivariate LOGR and IDR models were 
fitted and improvement in convergence and model fit compared to univariate 
models was explored. Multivariate models appropriate for estimating the 

effect of cluster transitions and the impact of vaccination were decided upon. 

6.3. Data sets 

In this chapter, P&I and ILI data were modeled jointly with laboratory re- 
ports for influenza A. Laboratory reports for influenza A were used instead 
of laboratory reports for influenza A and B, combined, because there is ev- 
idence that influenza years dominated by circulation of influenza A/H3N2 

virus experience higher peak incidence of lab/clinical incidence. [92] In- 
fluenza A therefore contributes more than influenza B to the variability in 
the impact of influenza seasons. Laboratory data provided by the HPA Cfl 
do not include subtype (A/H3N2, A/H1N1). 

6.4. Description of the model 

Age group-specific bivariate and trivariate LOGR and IDR models were 
fitted (table 6.1). Bivariate HMMs were fitted first to weekly counts of P&I 
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and laboratory reports for influenza A and second to ILI and laboratory 

reports. Trivariate models were fitted to P&I, ILI and laboratory reports, 

simultaneously. Figure 6.1 shows a schematic of the bivariate HMM where 
t denotes 1 week and arrows denote conditional dependencies. 

Model 
Table 6.1.: Joint HMMs. 

Key 
Bivariate Poisson log-link 
Trivariate Poisson log-link 
Bivariate Poisson identity-link 
Trivariate Poisson identity-link 

Yt-1 Zt-1 Yt zt 

VV -' St-1 --' St 

Yt+1 Zt+1 

St+1 ý 

Figure 6.1.: Schematic of a bivariate HMM. 

biLOGR 
triLOGR 
biIDR 
trilDR 

In multivariate HMMs, state sequences were jointly estimated by the two 

or three outcome variables in each model. An assumption inherent in these 

models is that state transitions occur in the same weeks across outcome 
variables. This assumption is explored in more detail in section 6.12. Below 
is the formula for the biLOGR HMM. 
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I'p&Ic '" Poisson(µp&Ic) 

Ytabc "' Poisson(µlab, ) 

log(pP&I, )l St =1= log(Nt) + a0,,,, + Cp&i(t, ýOr&I) 

+ Nlydct sin 52.2 + ß2r8c, COS 52.2 

+ 03r,,, artifacts 

1og(µp&I, )i St =2= log(Nt) + aoP&, + al [flu season} + Cp&I(t, cop&I) 

+ ßIP&I sin 
52 + ß2P&I COS 52.2 

+ ß3P&Iartifacts 

1og(µlabt) l St =1= log(Nt) + a0, ab 
+ Clab(t, W1ab) 

+ ß1, 
eb 

sin 52 22 + 021ab COS 52.2 

+ ß3, 
abartifacts 

1og(µlabt)l St =2= log(Nt) + aOlab + eel [flu season) + Ciab(t, cplab) 

+ )311&b sin 52 2+ 
021ab cos 52.2 

+ 03,. bartifacts 

Stj St-1 ~ Bernoulli(6) 
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Where Yt is the observed count of P&I or laboratory reports for 

influenza A in week t, 

At are the respective means of the Poisson distributions from 

which Yt are drawn, 
Nt is the population offset, 

ao are the intercepts, 

al [flu season] are the random effect yearly mean shifts, 
C(t, cp) are the cubic splines with cp df, 
/01 sin 2 22 +ß2 cos 22 represent seasonality, where 52.2 is the 

average number of weeks in a year, 

ß3artifacts represent the instantaneous change in the baseline 

because of artifacts in the data, 

and St is the state variable sampled from a Bernoulli distri- 

bution with probability 5, where 5 is a two-by-two matrix of 

probabilities of moving between states at time t given which 

state the model was it at time t-1, jointly estimated between 

the P&I and laboratory data in this case. 

Multivariate IDR models had the same form as the multivariate LOGR 

models except that in multivariate IDR models µ, not log(e), was dependent 

on the linear predictor and there was no population offset. 

6.5. Priors 

All parameters were given reference priors as in the previous chapter (ta- 

ble 5.2) 

6.6. Model convergence 

Fit and convergence of bivariate models are summarised in table 6.2 while 
fit and convergence of trivariate models are summarised in table 6.3. 
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Two chains for each parameter were started from different sets of initial 

values and were run for 100.000 iterations, saving 1%% of sampled values. 
Saving only 1`X of sampled values was done to ease storage and handling 

of the large files generated by the analyses. Despite this high degree of 

thinning. Monte Carlo error (MMC-error). an estimate of the difference be- 

tween the mean of the sampled values and the true posterior mean, is less 

than .5 of the standard deviation of posterior distributions for most pa- 

rameters from all models. This is an indication that posterior estimates are 

sufficiently accurate. Six sets of initial values were developed (on(, each for 

hiLOGR fits to PkI. biLOGR fits to ILI, biIDR fits to M-1. bilD11 fits to 

11.1. triLOGR and triIDR models). Model fit was assessed based on plots 

of the final 500 saved samples. History plots of the LL and transition prob- 

abilities were used to assess model convergence. BCR plots of the LL for 

the first 20.000 iterations were used to show initial values were disparate 

enough. 
For bivariate fits to Pkl aid laboratory reports, most model LLs appear 

to converge (e. g. figure 6.2). For bivariate fits to ILl and laboratory reports. 

only biLOGR LLs appear to converge (e. g. figure 6.3). 

From trivariate model fits, the LL from triLOGR models fitted to the 0-4. 

. 5-1 1,1.5-11 and 15-64 age groups appear to converge (e. g. figure 6.4): the 
1,1, from most trilDR models does not converge (also shown in figure (i. 4). 

(, i) hiLOGß (h) hIII)R 

1' i urt 6.2.: Example history plots showing apparent convergence of 
the LL from (a) biLOGR and (b) biIDR models fitted 
to P&I. This plot shows fits to P&I front the 1:, -61 age group. 

Apparent convergence of the transition probability parameters roughly 

par. cllels apparent, cotuvergence of the LL for most bivariate models. For the 
bil, O(: li fit to P&I for the 0-1 age group, transition probabilities appear 
to converge despite the 1. L not converging (figures 6.5 and E. 1). For the 
trill)li model fits to the 15-6,1 and > 65 age groups, two chains for the 
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LL 

(, i) biJ. OGR (b) bIII)R 

Figure 6.3.: Example history plots showing (a) apparent conver- 
gence of the LL from biLOGR fits to ILI and (b) lack 

of convergence of the LL from biIDR models fitted to 
ILI. T1iis plot shows fits to 1L1 frouii the > (iii iige group. 

=-=s-- 

ýý 

(a) triLOCft (h) trilT)Fi 

Figure 6. l.: Example history plots showing (a) apparent conver- 
gence of the LL from triLOGR models and (b) lack 

of convergence of the LL from triIDR models. This, plot 
shows tits to data for the 0- 1 age group. 
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transition probabilities appear to converge to similar areas of the parameter 

space (e. g. figure 6.6). 

1x ý 

"p.. p. 0on111 

'p. epsilon[2]' 

400 tw ,x 7M 

I' ir, urý (n.: History plot showing apparent convergence of transi- 

tion probability parameters from the biLOGR model fit 

to P&I and laboratory reports from the 0-4 age group. 
licc"a1l that `p. epsilonjý'. the top panel, refers to -j. 
the probability of a transition into the 'aberrant' state at time 

t given being in the 'normal' state at time t-1. The bottom 

panel, `p. epsilon[2]', refers to 6,, 4_. 2 s 1_2, the probability of no 
traiisition at tithe t given being iii the 'aberrant' state at time 
t. -1. 

1(; 1 blots of the LL for the first 20,000 iterations show that initial values 

are suitably disparate except for the l)iLOGR fit to Pk1 for the 15-44 age 

group (figures F. 2 to E. 5). 

6.7. Convergence of state sequences 

6.7.1. Models fitted to P&I and laboratory data 

For fits to 1k1, state secinences appear to converge for l)iLOGR model 
fits to the 11-1 and 5-11 age groups (e. g. figure 6.7). when they do not 

converge for (univariate) LOGR model fits (e. g. figure 5.10). This suggests 

one of two possible explanations. There may be sharing of information 

across outcomes in the h1LOGR. models to increase power to estimate the 

state sequence. Alternatively, laboratory data may dominate the estimation 

of the transition probabilities and state sequences in the b1LOGR model 
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'p. epsilon[1]' 

sý 

. >_ w aa 
hn'on 

'p. epsilon[2[' 

t. 
6ti 

Figure 6.6.: History plot of transition probability parameters from 

triIDR. model fit to the > 65 age group. Two chaiiis for 

epsilon 1, ' appear to converge to a similar area of parameter 
space though the two chains do not lie on top of one another. 

fits. Recall the relationship between lack of information and convergence 

introduced iii section 5.12. The state sequences for univariate LOGR and 

II)R model fits to laboratory reports for influenza A for the 0-4 and 5-11 

age groups appear to converge by 20,000 model iterations, meaning that 

the univariate models readily recognise the laboratory data to be consistent 

with two states (figures F. I. F. 2. F. 3 and F. 4). This means that there is 

ample information in the laboratory data to allow the model to differentiate 

two states (aberrant' and 'nornil') within them. 
State sequences from b11DR models fitted to I'S: I for the 0-4 and 5-14 

age groups appear to converge as in the a uvariate case (e. g. figures 6.8 

an(l 5.11 ). 

State sequences from bILOGR and biIDR fits to P&I from the 15-41 and 
15-64 age groups appear to converge, as they do in the univariate case (('. g. 
figures 6.9 and E. 7). 

Neither biLOGR nor l>i1DR. fits to P&I for the > 65 age group appear 

to converge (figures 6.10 and 6.11). The state sequence from the biLOGR 

fit to P&I for the > 65 age group is similar to that from the (univariate) 

LOGR fit to P. 1l for the > 65 age group (figure 5.12). The IAIDR state 

sequence fro>n the fit, to P&I for the > 65 age group is worse than the IDR 

lit to IkI fur the > 65 age group (figure 5.13). Worse convergence of the 
bill)I; cou>ps>recl to IDR model fits to P&I in the > 65 age group. and lack 
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of convergence of the biLOGR state sequence for Pkl in the > 65 age group. 

may reflect conflict between the PkI and laboratory data for the > 65 age 

group in estimating a joint state sequence. This pattern of results may also 

reflect the lack of convergence of the LOGR fit to laboratory reports for the 

> 65 age group (figure F. 5). 

ý 

oe..... a "rW IM"a 

DN. - 2O 2005 

1i nre 6.7.: The state-sequence for biLOGR model fit to P&I and 
laboratory reports in those 0-4 years of age. The state 
seetuence appcýuFS to converge for iiºost seasons and is clearly 
estiiiiatcel apart froth the 1978/79 and 1988/89 seasons where 
the two chains disagree on state assignment for some weeks. 
Recall that the state sequence shown is the average of the state 
sequences estimated by each of the two chains. Top panel: 
observed (dashed) and fitted P&I data (red): middle panel: 

state sequence jointly estimated between the P&1 amid labo- 

ratory data (1.0 is the `normal' state, 2.0 the 'aberraiit' state): 
bottom panel: residuals (observed minus fitted P&1 count, for 

each week). 
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1975 l9 , sss 

1-11.111-1-1 

logo , »s xaoo x005 

Figume fi. S.: The state-sequence for the hiIDR model fitted to P&I 

and laboratory reports in the 0-4 age group appears to 

converge and is clearly estimated. 

173 



o... »a - rm. a 

1975 
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,ý I9D5 

I a 
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u.. mýmiý 

, 895 xooo 70p5 
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L-IL 

Figure 6.9.: The state-sequence for the biIDR model fitted to P&I 

and laboratory reports in the 15-44 age group appears 
to converge and is clearly estimated. 
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1975 1- 1965 1 990 , s. 5 moo 2005 

AV" 
R-EWh 

Fight(' 6.1(1.: The state-sequence for the biLOGR model fit to P&I 

and laboratory reports from the = 65 age group does 

not converge for the period between 1978/79 and 
1982/83. 
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¶1 
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RssMwh 

III tm 3000 3005 

I 

Figure 6.1 1.: The state-sequence for the biIDR model fit to P&I and 
laboratory reports from the > 65 age group (shown) 
does not converge for the period between 1978/79 and 
1982/83, as for the BiLOGR fit. 
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6.7.2. Models fitted to ILI and laboratory data 

From fits to ILI data. state sequences from biLOGR fits appear to converge, 

as they do in the univariate case (e. g. figures E. 6 and 5.15). State sequences 

from bilDR model fits to 1L1 from the 0-4.5-14,45-64 and > 65 age groups 

do not converge (e. g. figure 6.12). The b1IDR, fit to ILI for the 15-44 age 

group is better than the univariate fit (figures 6.13 and 5.17). 

oes. n. a - nma 

ý 

ý9]5 row 

1-11 

,- 
D. M 

, ý. 

2J 

J 

Figure 6.12.: The state-sequence for biIDR model fit to ILI and lab- 

oratory reports in those 5-14 years of age does not 
converge for some weeks during several influenza sea- 
sons (1976,1979,1980,1983.1984,1985,1987,1988 

and 2004). 
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oe.. -a . na fm. a 

1915 1910 1.65 ,- 2005 

1J 

1-11 
ý.,. 

2.11 

Figiirv G. 1: 3.: The state-sequence for biIDR model fit to ILI and lab- 

oratory reports for the 15-44 age group appears to 

converge and is clearly estimated. 
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6.7.3. Models fitted to P&I, ILI and laboratory data 

All trilDR state sequences appear to converge (e. g. figure 6.14). TriLOGR 

state sequences appear to converge (e. g. figure 6.15) with the exception of 
the > 65 model which crashes after 30,000 iterations, having yet to converge 
(data not shown). 

The crashing of the triLOGR > 65 model may be related to the conflicts 
between P&I and laboratory data for the > 65 age group in estimating a 
joint state sequence and the lack of convergence of the LOGR fit to labora- 

tory reports for > 65 mentioned previously. This conflict might also explain 
the following pattern of results from multivariate IDR fits to > 65 data. 

1. The state sequence for the IDR fit to P&I > 65 appears to converge. 

2. The state sequence for the IDR fit to ILI > 65 does not converge. 

3. Neither biIDR model for the > 65 age group (P&I or ILI) converges. 

4. The trilDR > 65 model state sequence appears to converge. 

This patterns suggests that pooling of P&I, ILI and laboratory data for 

the > 65 age group in the trilDR model resolves the conflict between P&I 

and laboratory data for this age group in estimating a joint state sequence. 
(See overlayed state sequences for (univariate) IDR fits to P&I, ILI and 
laboratory reports for the > 65 age group (figures G. 1 and G. 2). In several 
influenza seasons (e. g. 1990/91,1996/97 and 1997/98), state sequences for 
P&I and ILI agree with each other as to the timing of the start and/or 
end of the `aberrant' period and disagree with the state sequence for the 
laboratory data. ) The lags between timing of `aberrant' periods across the 
three outcome variables is revisited in sections 6.12 and 6.13. 
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4H 
(a) PR"I 

A 

1JII1 
I 

(h) I1. I 

Figure 6.11.: The state-sequence from the trilDR model fit to data 
for the > 65 age group appears to converge apart from 

a few weeks between the 1985/86 and 1986/87 seasons 
and between the 1986/87 and 1987/88 seasons. The 
top plot shows trilDR nºodel-predicted PkI for the > 65 age 
group. The bottom plot shows trilDR, iiiodel-predictced ILl for 

the > 65 rage group. 

180 



Vý ýI 

ResiCUah 

D. t. 

m 

(a) P&-I 

i A 

on""... a "rM M1. a 

Ra, M,, h 

, ý, 
iW] 

o. ý. 

(b) 11. I 

pi 

M" 

oo3 : WS 

Figurc 6.1 Vii.: The state-sequence from the triLOGR model fit to 
data for the 15-44 age group appears to converge. The 

top plot shows triLOGR model-predicted Pb: 1 for the 15-14 

agc group. The bottoiii Mot shows triLOGR iiiodel-predicted 
ILI for the 15- 14 age group. 
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6.7.4. Volatility of state sequences 

I'nivariate and multivariate model state sequences vary in their volatility 

(e. g. of a less volatile state sequence - figure 6.16 - and a more volatile one 

- 
figure 5.14). 

State sequences from triLOGR model fits to data for the 0- 1,5-11.15-11 

and 45-64 age groups (e. g. figure 6.17) are as volatile as biLOGR model 

fits to ILI for these age groups (e. g. figure 6.16) and are more volatile than 

biLOGR, fits to P&I for these age groups (e. g. figure 6.7). In contrast to 

fits to the > 65 data, where it appears the conflict, lies between Pk'I and 

laboratory data. the above suggests conflict between ILI and laboratory 

data for the 0-4,5-11,15-44 and 45-64 age groups in estimating joint state 

sequences. The conflict is not resolved in the triLOGR models because the 

small numbers of deaths in the age groups under 65 contribute relatively 
little compared to the ILI and laboratory data. 

oUwrwa . ne Ml. e 

1275 1- i. 5 

,ý 

,ý 
D. I. 

,m 2000 2005 

,ýý ýý, 

Fignrc, (i. 1(i.: The state-sequence for biLOGR model fit to ILI and 
laboratory reports in those 0-4 years of age (shown) 
is more clearly estimated than LOGR fit (figure 5.14) 

and similar to the triLOGR model fit to data for the 
0-4 age group (next figure). 
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Figure 6.17.: The state-sequence for triLOGR model fit to P&I, 
ILI and laboratory reports in those 0-4 years of 
age (shown) is similar to the state sequence for the 
biLOGR fit to ILI and laboratory reports in the 0-4 

age group (figure 6.16). 
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6.8. Plots of observed and fitted counts and 

residuals 

Relative goodness of fit of models was determined by comparing plots of 

observed and fitted weekly counts and residuals. Plots were created by 

averaging results from the two chains. 
biLOGR and triLOGR models predict the observed time series' of P&I 

and ILI well. Time series plots of residuals suggest there is underestimation 

of epidemics but that, otherwise, fit of biLOGR and triLOGR models is 

good (e. g. figure 6.10). 

biIDR and triIDR models predict P&I from the 15-44 and > 65 age 

groups and ILI from the 15-44 and 45-64 age groups as well as biLOGR 

and triLOGR models (e. g. figure 6.14a). Other biIDR and triIDR models 

predict observed time series' poorly (e. g. figure 6.14b). In particular, biIDR 

and triIDR models of P&I for the 0-4,5-14 and 45-64 age groups and ILI 

for the 0-4,5-14 and > 65 age groups poorly fit the 1975/76,1985/86 and 
1987/88 seasons. 

6.9. Posterior predictive density plots 

Observed data for the 0-4,15-44,45-64 and > 65 age groups are neither over- 
nor underdispersed relative to any multivariate model (e. g. figure 6.18). 
Deaths for the 5-14 age group are very sparse and are underdispersed relative 
to all models (e. g. figure E. 8). 

biIDR and trilDR models fitted to ILI for the 0-4,5-14 and > 65 age 

groups produce very wide Cris for a small number of predicted counts during 

the 1975/76 and 2004/05 seasons (e. g. figure 6.18). This uncertainty in 

predicted counts is indicative of poor model fit of multivariate IDR models 
to ILI for these age groups noted in the previous section. 

6.10. Autocorrelation plots of residuals 

No model accounts for all autocorrelation in any of the modeled data sets. 
Multivariate LOGR model fits are generally adequate, leaving some posi- 
tive residual autocorrelation at lags of approximately 1-2 weeks, because of 
underfitting epidemics, and at 52 ±2 and 104 ±2 weeks because of failure 
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1975 1980 1905 19W 1895 
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(a) triLOGR (b) trilDR 

Figure 6.18.: Posterior predictive density plots of triLOGR and tri- 
IDR models fitted to ILI from the 0-4 age group. The 

observed data do not all fall within posterior predictive CrIs 
(meaning ILI data for the 0-4 age group are not underdispersed 
relative to the trivariate models). Neither do the majority 

of the data lie outside posterior predicted CrIs (meaning ILI 
data for the 0-4 age group are not overdispersed relative to the 

trivariate models). 
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to model seasonal variation sufficiently (e. g. figure 6.19). The triLOGR 

model fit to data for the > 65 age group is poor, with residual autocorrela- 

tion at most lags up to approximately 52 weeks and at 100-105 weeks (e. g. 

figure 6.20). 
Multivariate IDR model fits to P&I are similar to multivariate LOGR 

fits, in terms of residual autocorrelation (e. g. figure 6.19). The trilDR 

model better fits P&I data for the > 65 age group than the triLOGR model 
(figure 6.20). Multivariate IDR models fitted ILI for the 0-4,5-14 and > 65 

age groups poorly, leaving autocorrelation in residuals to lags of up to 45 

weeks (e. g. figure E. 9). This corroborates poor model fit to these data 

noted in the previous two sections. 

N 

2 
0 

ýýýýý-ýýý 
ýý 

L. 
I- --- : , dýhr -1 . -------------- ý, aldF-, r---ý 

0 40 so 
w 

(a) biLOGR 

20 so , 00 120 

IA 

-------------- ----------- Altaý - tI-. "'WITLIT"I'Mil ------------- .......... 

T-, -r- 20 40 so !0 100 120 

L" 
(b) biIDR 

Figure 6.19.: Autocorrelation plots of residuals from biLOGR and 
biIDR model fits to P&I and laboratory reports from 
the > 65 age group. Adequate model fit of the data is evi- 
dent apart from underestimation of large peaks (shown by the 
positive autocorrelation at lag 1 week) and insufficient mod- 
eling of seasonality (shown by positive autocorrelation at lags 
around 52 and 104 weeks). 

6.11. Precision of the mean shift random effect 
The means of the posterior distributions for the precisions of the mean 

shift random effects, Trra� d, for fits to P&I and ILI were compared between 

univariate, bivariate and trivariate models (tables 6.4 to 6.7). This was done 
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L-9 
(a) triLOGR 

0 20 40 80 80 100 120 
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(b) trilDR 

Figure 6.20.: Autocorrelation plots of residuals from triLOGR and 
triIDR model fits to P&I data for the > 65 age group. 
The trilDR fit (b) is adequate (with positive autocorrelation at 
lags around 1,52 and 104 weeks only). The triLOGR fit (a) 
is poor (with positive and negative autocorrelation at many 
lags). 

to determine whether modeling more than one outcome variable in a joint 

model resulted in increased power to estimate the mean shifts because of 
sharing of information across outcome variables about state transitions. 
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The mean posterior precision of the mean shift random effect generally 
increases from LOGR to biLOGR and from IDR to biIDR models. There is 

considerable uncertainty in estimates of posterior precision across models. 
There is no increase in mean shift random effect precision for biLOGR 

model fits to P&I and ILI data for the 5-14 age group and ILI data for the 

> 65 age group relative to LOGR fits. Deaths and laboratory reports from 

the 5-14 age group have many zeros making these data difficult to model. 
BiLOGR and triLOGR fits to the > 65 data are problematic as discussed 

in sections 6.7 and 6.10. 

TriLOGR fits to most age groups do not show an additional increase in 

posterior precision of the mean shift random effect over the biLOGR models, 

probably because triLOGR model fits are generally the same as, or poorer 
than, biLOGR fits (tables 6.4 and 6.5, section 6.7.4). For triIDR model fits 

to most age groups there is an additional increase in the posterior precision 

of the mean shift random effect, compared with biIDR model fits (tables 6.6 

and 6.7). 

6.12. Exploration of lagged state transitions 

between outcomes 

To determine whether there is evidence that, for a given influenza season 
in a given age group, state transitions for one outcome variable are lagged 

relative to state transitions for the other outcome variables, state sequences 
for univariate fits to each age group for P&I, ILI and laboratory reports 
were overlayed, separately for LOGR and IDR model fits. This was done to 

allow that any lag might vary between influenza seasons. 
State transitions in a given influenza season do not happen in the same 

week across outcome variables within an age group (e. g. figure 6.21). This is 
due, for example, to the lag between seeking care for an influenza illness and 
dying from one (section 3.2.6). The relative timing of transitions across age 

groups is not consistent across influenza seasons. Biological explanations 
for the inconsistent lag between outcome variables across influenza seasons 
may relate to the dominant circulating viruses in different influenza sea- 

sons and to the relative virulence of circulating viruses in different seasons. 
Artifactual explanations for the inconsistent lag between outcome variables 
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across influenza seasons may include changes to the proportion of labora- 

tory reports from GPs over time which resulted in a change to the profile of 

patients represented in laboratory data over time in terms of, for example, 

comorbidities. 
State sequences are more clearly estimated from bivariate model fits than 

from univariate model fits, so bivariate state sequences were also overlayed 
to check for evidence of lagged state transitions (separately for biIDR and 
biLOGR models). State transitions do not happen in the same week for 

P&I and ILI in a particular age group and different lags are observed each 
season (e. g. figure 6.22). 
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line) from the 15-44 age group: 1993/04-2004/05. The 
state sequences do not converge for all seasons. There is a lag 
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6.13. Models with a lag 

Given evidence for a lag between state transitions for different outcome 

variables, multivariate LOGR and IDR models allowing state transitions 

for different outcome variables to be lagged relative to one another by a 

constant ±1 or 2 weeks for the duration of the time series were explored 
(the model formula is shown in Appendix G). In bivariate models, the aver- 

age lag between state transitions in P&I or ILI relative to state transitions 

in laboratory reports was estimated from the data. In trivariate models, 
two lags - the average lag between state transitions in P&I relative to state 
transitions in laboratory reports and the average lag between state transi- 

tions in ILI and in laboratory reports - were estimated from the data. For 

every model, the 5 possible lags (± 2,1 or 0 weeks) were assigned equal 
prior probability (p = 0.20). Models allowing for a lag take 2 orders of 

magnitude longer to complete an iteration of the sampler compared with 

models without a lag. Models were run for 10,000 iterations on two chains, 

saving 10% of sampled values, to determine if such models would run in 
OpenBUGS given the added complexity. Models have yet to converge after 
10,000 iterations as expected since models without a lag take longer than 

10,000 iterations to converge (e. g. figure 6.23). Models including a lag 

were not taken forward for estimating the impact of covariates in the next 
chapter because evidence presented in section 6.12 suggests an inconsistent 
lag from season to season. An inconsistent lag from influenza season to 
influenza season is not straightforward to model in this framework; this was 
not attempted. 

6.14. Summary of results 

In general, multivariate LOGR models are better than multivariate IDR 

models; most of the biLOGR and triLOGR models appear to converge, 
as opposed to many of the multivariate IDR models. Multivariate LOGR 

models also fit the data better than multivariate IDR models. Modeling P&I 

or ILI jointly with laboratory reports increases the precision of the random 
effect mean shift for most model fits. In triIDR models there appears to 
be additional sharing of information across outcomes, relative to the biIDR 

models, for estimating state sequences and thus mean shifts. There is much 
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Figure 6.23.: BGR plot of the LL of triLOGR model with lag, fitted 

to the 0-4 age group, after 10,000 iterations. The ratio 

of pooled to within chains variability (the top (r(, d) line) has 

vet to converge, i. e. come to 1, after 10,000 iterations. The 

plot is based on a sample of every 10th iteration from the last 

5000 iterations of the run. 

uucert ainty in the posterior distribution for the mean shift random effect. 
Because of problems with convergence and fit, however, no multivariate IDR. 

models were taken forward for estimating covariate effects in chapter 7. In 

triLOGR models. precision of the mean shift declines relative to hiLOGR 

fits. There appears to be conflict between ILI and laboratory reports 
for age groups <65 and between Y&I and laboratory reports for the > 65 

age group in jointly estimat ing state sequences. This is most, likely because 

the t iming of `aberrant' periods differs across outcome variables for a given 

age group. Two observations support, this explanation. First, overlaying 

univariate state sequences shows state transitions occur during different 

weeks across the otttcouie variables and that the lag varies from one influenza 

season to the next. Second, biLOGR and triLOGR state sequences are 

generally more volatile than univariate state sequences. This is consistent 

with there being conflict between outcome variables in estimating the state 

sequence due to differences in the timing of `aberrant' periods in different 

outcome variables. OpenBUGS accommodates the increased complexity 

of fitting models allowing a constant lag between state transitions across 
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outcomes. A longer time series (i. e. more than the 30 influenza seasons 

analyzed) would probably be required to estimate a state sequence where 

a time-varying lag was allowed between state transitions across outcome 

variables, though proof of concept could be shown using simulated data. 
BiLOGR and triLOGR models were taken forward for estimating impact 

of CT seasons and vaccination on the mean shift in chapter 7. 

6.15. Strengths of multivariate HMMs 

Multivariate models allowed sharing of information across outcome variables 
for estimation of state sequences, as evidenced by apparent convergence of 
more multivariate than univariate state sequences. This is especially obvious 
comparing state sequences for biLOGR to LOGR fits for P&I from the 0- 
4 and 5-14 age groups. LOGR models are unable to distinguish `aberrant' 
from `normal' P&I incidence for the 0-4 or 5-14 age groups. BiLOGR models 
are clearly able to do so. Bivariate models increase precision of mean shifts 
relative to univariate models. Multivariate HMMs increase specificity of 
P&I and ILI for influenza. 

6.16. Limitations of multivariate HMMs 

There is a time-varying lag between state transitions for outcome variables 
within an age group and this is not allowed for in the models. As in the 
previous chapter, inadequate modeling of large peaks in incidence and of 
seasonality is obvious in autocorrelation plots of residuals. 

197 



7. Estimating the effect of cluster 
transitions and the impact of 
vaccination on P&I and ILI 

using joint HMMs 

7.1. Aims of this chapter 

The aim of the work described in this chapter was to use biLOGR and 
triLOGR HMMs developed in chapter 6 to quantify the effect of CT seasons 
in the antigenic evolution of influenza A/H3N2 virus, and the impact of 

rising vaccination coverage of the elderly in England & Wales, on the mean 

shift in P&I and ILI across age groups. 

7.1.1. Objectives of this chapter 

1. To fit biLOGR and triLOGR HMMs to each age group including de- 

pendency between the random effect mean shift and 

a) CT seasons as a binary variable, or 

b) antigenic distance between CT seasons as a quantitative variable, 
or 

c) vaccine coverage in the > 65 age group each influenza season as 
a quantitative variable 

2. To carry out sensitivity analysis on priors used for covariate effects in 

the models above 

3. To discuss confounding and effect modification of the effect of CT 

seasons on mean shifts and of the impact of vaccination on mean 

shifts 
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7.1.2. Main findings 

Scatter plots of crude mean shifts against exposures of interest - CT seasons, 
the antigenic distance between clusters and vaccine coverage of the elderly - 
suggest little evidence of association between exposures of interest and mean 

shifts in P&I or ILI. This agrees with the finding of little crude association 
between these exposures of interest and peak incidence in P&I or ILI noted 
in chapter 4. It was not possible to quantify the magnitude of exposure 

effects of interest using the biLOGR and triLOGR HMMs. There is limited 

information in the data about effects of interest. Posterior distributions 
for coefficients for vaccine impact and CT effect on mean shifts are little 

influenced by the data and more influenced by priors. 

7.2. Introduction 

Peak P&I and ILI incidence observed in a given influenza season is highly 

variable. Several factors may affect peak P&I and ILI incidence, including 
CT seasons [14,941 and increasing vaccination coverage of the elderly. [7] 

In chapter 4 it was noted that, crudely, the distribution of peak rates for 

the first H3N2-dominated season after a CT appears greater than for intra- 

cluster seasons. Ranking of peak P&I and ILI rates observed across seasons 

revealed that only for P&I in the > 65 age group do CT seasons occur 
in at least five of the top ten seasons. T-tests suggest weak evidence for 

small increases in peak P&I and ILI in the first H3N2-dominated season 
after a CT compared with the average season (6 more P&I per 1,000,000 

population and 95 more ILI per 100,000 population) and compared with in- 
tracluster seasons (8 more P&I per 1,000,000 and 133 more ILI per 100,000). 
These small differences are of little public health importance given that, in 
the data analyzed in the thesis (excluding the 1969/70 pandemic season), 
weekly rates of P&I of up to 80/1,000,000 and ILI of up to 2,322/100,000 

are observed. It was also noted in chapter 4 that there is no clear asso- 
ciation between peak rates of P&I and ILI each influenza season and the 

antigenic distance between clusters. There is a weak negative association 
between vaccine coverage of the > 65 age group and peak seasonal P&I and 
ILI rates across age groups. 
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7.3. Covariates 

Seasons when new antigenic clusters of influenza A/H3N2 viruses become 

dominant may plausibly experience larger average mean shifts than intra- 

cluster seasons because of the increase in the proportion of the population 

susceptible to H3N2. Each unit of antigenic distance within a CT may also 
have a detectable effect on the mean shift. Increasing vaccine coverage of 
the > 65 age group would be expected to lead to smaller mean shifts in the 
> 65 age group, and plausibly in the other age groups, though relatively low 

vaccine effectiveness [113] and the fact that it is likely to be children, not the 

elderly, who are drivers of transmission in the community [38] suggest any 
impact of vaccination on other age groups would be approximately nil. If all 
influenza - attributable incidence is not designated as being from the `aber- 

rant' state there may be residual influenza - attributable incidence within 
the `normal' state. If this is so, an effect of CT seasons/antigenic distance 

and an impact of vaccination might also be distinguishable in changes in 
`normal' incidence. Another consequence of misclassification of influenza - 
attributable incidence to the `normal' state, if present, would be lower power 
to detect exposure effects on the mean shift. As a first step in exploring 
whether CT seasons/antigenic distance or vaccine coverage of the elderly 
explains some of the variability in the impact of influenza seasons in terms 

of morbidity or mortality, the random effect mean shift was expressed as 
dependent on each of CT seasons, the antigenic distance between clusters 
and vaccine coverage of the > 65, in separate model runs. CT seasons were 
defined as the first H3N2-dominated season after a CT. The effect of anti- 
genic distance between clusters on the mean shift was explored to allow for 
the fact that CT seasons differ in size (range 3.3 to 7.8 antigenic units). [13] 

7.4. Description of the model 
BiLOGR and triLOGR models were fitted to P&I and ILI data using models 
identical to chapter 6 (in terms of structure and priors) apart from the 
dependency between the mean shift and exposures of interest. Exposure 

effects on the mean shift were modeled by expressing the mean of the random 
effect as dependent on the exposures like this 
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for(i in 1: 30){ 
al Normal(µrand[i], Trand)I(O, ) 

µrand[1] - Arando + Arandl * CT[i] 

} 
Ilrando 

%lrandl 

ti 
N 

Normal(0.0, lE - 2) 
Normal(0.0, lE - 3) 
Gamma(0.001,0.001) Trand IV 

where i denotes an influenza season and CT is a binary variable coding 
influenza seasons as 1 for the first H3N2-dominated season after a CT and 
0 for intracluster seasons. 

Coefficients for exposure effects are the average effect of, for example, a 
CT on the average mean shift. Exponentiated (exp) regression coefficients 
for covariates are ratios of the average mean shift with to without the covari- 

ate (or per unit change in the covariate). Estimating the effect of covariates 
on the mean shift using the multivariate LOGR model framework implies 

that the association between the exposure and the mean shift is additive on 
the logarithmic scale. 

7.5. Prior sensitivity analysis 

A prior sensitivity analysis was carried out to test whether the association 
between exposures of interest and mean shifts were robust to the choice 
of priors on coefficients for exposures. First, covariate effects were given 
reference Normal(0.0,1E-3) priors. Second, weakly informative priors were 
set using estimates of the variability in excess P&I and ILI from other 
settings (sections 7.5.1 and 7.5.2). Finally, strongly informative priors on 
the effect of CTs, and the antigenic distance between clusters, on the mean 
shift were set based on the results from a previous model fitted by Koelle 

et at. (section 7.5.3). [14] 

All weakly informative priors were uniform distributions. Uniform distri- 
butions assign approximately equal probability to all values within a range. 
CT seasons plausibly result in an instantaneous increase in the proportion 
of the population susceptible to circulating influenza A/H3N2 viruses and 
so would be expected to result in larger mean shift than seasons not experi- 
encing a CT. Descriptive studies of the impact of large antigenic drift events 
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suggest they at least sometimes coincide with epidemics (e. g. [93]). Each 

unit change in the antigenic distance between clusters could also result in 

a detectable increase in the size of the susceptible population and thus an 
inflated mean shift. Higher vaccine coverage should lead to dampening of 
the mean shift. 

The aim of the analysis in this chapter was to determine whether the 

exposures of interest explain some of the variability in the impact of in- 

fluenza seasons, as captured by the mean shift. The magnitude of exposure 

effects of interest should lie within the maximum rate ratio (MAXRR) of 

excess ILI or P&I observed between two influenza seasons in a single set- 

ting. Estimates of MAXRR (based on different data from those analyzed 
for the thesis) were used to set weakly informative priors. MAXRR was 

used to establish an upper bound for the possible effect of CT seasons (or a 

unit change in antigenic distance between clusters) on the mean shift. The 

reciprocal of MAXRR was used to establish a lower bound on vaccine im- 

pact. Using MAXRR to set extremes of possible covariate effects assumes 

no negative confounding of the covariate effect. 
A literature search was done to identify reports of excess inter-pandemic 

ILI or P&I from other temperate Northern hemisphere settings with which 
to estimate MAXRR. A search of Pubmed on June 9th 2009 using the terms 
"excess", "influenza - attributable", "influenza-associated", "influenza epi- 
demic" (and variations on these terms, separated by "OR") with "influenza" 
identified 13 papers based in a temperate Northern hemisphere setting, or 

settings, that provided estimates of excess P&I or ILI counts or rates in two 

or more influenza seasons after 1969/70 (the pandemic season). [7,8,54,56, 

58,61,65,73,92,107,197-199] All of these studies reported estimates of excess 
P&I counts or rates for at least two influenza seasons. One study reported 
estimates of excess ILI for at least two influenza seasons. [65] The inclusion 

criterion requiring that studies report on at least two influenza seasons was 
required so that study-specific MAXRR estimates could be derived. Pub- 

lished excess counts were translated into equivalent rates per 100,000 for 
ILI, and per 1,000,000 for P&I, for England & Wales using population es- 
timates from national statistics websites. Where studies reported an excess 
of zero, 1 excess death was added to these seasons in order to be able to 

calculate MAXRR (dividing by zero is undefined). 
MAXRR for P&I from studies reporting on all-ages or on the > 65 age 

202 



group was 24,800 (122/1,000,000 in 1972/73 divided by 0.004/1,000,000 in 

1970/71 and 1973/74). [198] MAXRR for ILI was 785,252 (1,387/100,000 

per week in 1989/90 divided by 0.002/100,000 per week in 1999/00). [65] 

7.5.1. Weakly informative priors on the effect of CTs on the 

mean shift 

As mentioned above, it is plausible that CTs result in an instantaneous 

rise in the proportion of the population susceptible to circulating influenza 

A/H3N2 viruses, thus inflating the mean shift. It is less plausible that CT 

seasons result in smaller mean shifts on average. 
The weakly informative prior for the coefficient of the effect of CT seasons, 

or a unit change in antigenic distance between clusters, on the mean shift 

was set as a uniform prior with the log(MAXRR) as the upper bound. The 

lower bound was arbitrarily set as the 10th root of the upper bound, in 

the opposite direction. This was done in order not to constrain the prior 

such that CTs could only cause an increase (or no change) in the average 

mean shift. In this way the prior was `weakly informative' of the effect of 
CTs on the mean shift and allowed a small probability that CTs cause a 

dampening of the mean shift. On the logarithmic scale, this translated to 

a weakly informative prior on the average effect of cluster transitions, or 

per unit change in antigenic distance between clusters, on the mean shift in 

P&I of ti Uniform(-1.01,10,12) and in ILI of , Uniform(-1.36,13.57). 

7.5.2. Weakly informative priors on vaccine impact 

The impact of increasing vaccine coverage of the elderly on the mean shift 
was first explored with vaccine coverage as a quantitative variable. As men- 
tioned in section 7.5, the dampening impact on the mean shift per unit in- 

crease in vaccine coverage should be no more extreme than log(1/MAXRR). 

Models with a weakly informative upper bound on the prior - for example, 

which restricted a unit increase in vaccine coverage to cause an inflation 

of the mean shift with only a small probability - were computationally 

problematic (see below). The upper bound of the weakly informative prior 

on the impact of each unit increase in vaccine coverage on the mean shift 

was therefore set at log(MAXRR). On the logarithmic scale, this trans- 
lated to a weakly informative prior on the average effect of a unit change 
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in vaccine coverage of the > 65 age group on the mean shift in P&I of 

ti Uniform(- 10.12,10.12) and in ILI of N Uniform(-13.57,13.57). 

The reason why it was not possible to set a weakly informative upper 
bound on the prior for the impact of vaccine coverage, as a quantitative 

variable, on the mean shift may be that the assumption of an additive (on 

the logarithmic scale) impact of each unit increase in vaccine coverage on the 

mean shift is invalid. Modeling vaccine coverage as an ordered categorical, 
instead of quantitative, variable eased computational difficulties. There are 

natural step changes in the vaccine coverage data that were used to define 

levels of the categorical variable. The first step change occurred in 1989/90: 

before 1989/90, vaccine coverage of the > 65 age group was assumed to be 

zero. Between 1989/90 and 1999/00, yearly vaccine coverage of the > 65 

age group ranged from 25% (in 1989/90) to 47% (in 1999/00). The second 

step change in coverage occurred in 2000/01. From 2000/01, yearly vaccine 
coverage of the > 65 age group ranged from 67% (in 2000/01) to 73% (in 

2003/04). By fitting models with a dependency between the mean shift and 
vaccine coverage of the elderly as a ordered categorical variable, the average 
mean shift in seasons between 1975/76 and 1988/89 (the reference period 
when coverage was assumed to be zero) was compared to the average mean 

shift in seasons with moderate vaccine coverage of the elderly (1989/90 to 
1999/00) as well as to the average mean shift in seasons with high vaccine 
coverage of the elderly (2000/01 to 2004/05). These models were fitted with 
both a reference prior and a weakly informative prior on the coefficients for 

each step change in vaccine coverage on the mean shift in separate model 
fits. The reference prior was the same prior used in the model with vaccine 
coverage as a quantitative variable (. Normal(0.0,1E - 3)). The weakly 
informative prior was N Uniform(-13.57,1.36). Note that in this case it 

was possible to constrain the upper bound of the weakly informative prior 
to allow little prior probability that increasing vaccine coverage leads to 
larger mean shifts. 

7.5.3. Strongly informative priors on the effect of CTs on 
the mean shift 

The strongly informative prior on CT seasons was the natural log of a prior 
which, on the original scale, has median 1.66 (the ratio of peak height in CT 
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vs. intracluster seasons from [14]) and 95% prior mass between 0.8 and 4. 

The range of this prior was set to encompass a plausible range of estimates 

of the effect of CT seasons without being too informative. On the original 

scale, this translated to a strong prior on the average effect of CTs on the 

mean shift in both P&I and ILI of - Normal(1.6625,0.7)1(0.7, ). 

The strongly informative prior on the antigenic distance between clusters 

was the log of a prior which, on the original scale, had median 1.11 (cal- 

culated as the median of the CT effect prior, 1.66, to the power of 1/4.5 

(1.661/4.5), where 4.5 is number of antigenic units in the average CT [13]) 

and 95% prior mass between 0.8 and 1.661/3.3 (where 3.3 is the smallest 
CT in [13)). On the original scale, this translated to a strong prior on the 

average effect per unit change in the antigenic distance between clusters on 
the mean shift in both P&I and ILI of ' Normal(1.119588,10)1(0.7,1.53). 

7.5.4. Strongly informative priors on vaccine impact 

Strongly informative priors on the impact of vaccination were not explored 

in models of the impact per unit increase in coverage because of the diffi- 

culties in setting weakly informative priors (section 7.5.2). Strongly infor- 

mative priors on the impact of moderate or high coverage as an ordered 

categorical variable were not explored because results from reference and 

weakly informative priors clearly indicate there is insufficient information 

in the analysis of mean shifts in ILI for the > 65 age group to be able to 

quantify vaccine impact. It was not possible to estimate covariate effects on 
P&I for the > 65 age group because multivariate LOGR models fitted to 

these data do not converge (tables 6.2 and 6.3). Any impact on other age 

groups of vaccination of the elderly would be expected to be much smaller 

than the impact in the elderly and therefore more difficult to detect. 

7.6. Model convergence 

Two chains for each parameter were started from different sets of initial val- 

ues and were run for 100,000 iterations, saving 1% of sampled values. Initial 

values were the same as those used to initialise models in chapter 6. Model 

fit was assessed based on plots of the final 500 saved samples. Coefficients for 

the three exposures of interest (CT seasons, the antigenic distance between 
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clusters and vaccine coverage of the those > 65) were only interpreted for 

models that appear to converge and to clearly estimate the state sequence 
(i. e. the state sequence is not volatile). Therefore, coefficients for exposures 

of interest were only interpreted for biLOGR models fitted to P&I for the 

0-4,5-14,15-44 and 45-64 age groups and to ILI for the 0-4,45-64 and > 

65 age groups. Volatile state sequences indicate conflict between outcome 

variables in estimating state sequences (section 6.7.4). The estimation of 

the state sequence is directly related to the estimation of the mean shift for 

each season (since the mean shift is the ratio of incidence in the `aberrant' 

state to that in the `normal' state). Exposures of interest act on the average 

mean shift (the mean of the random effect). Volatile state sequences mean 

unreliable estimates of the yearly mean shift, the average mean shift and 
therefore coefficients for exposure effects of interest. 

Most triLOGR models including exposures of interest produce volatile 

state sequences or do not converge. Because of this, neither the effect of 
CT seasons nor the impact of vaccination from triLOGR model fits were 
interpreted. 

Recall from chapter 6 that no model adequately fits P&I data for the > 

65 age group. Because of this, it was not possible to estimate effects of 

exposures of interest on P&I data for the > 65 age group. 

7.7. Crude results 

In section 7.7.1, time series of mean shifts from crude models (those not yet 
including exposures) were plotted to examine the variability in mean shifts 
between seasons, between age groups and between P&I and ILI. Recall that 

exponentiated mean shifts are rate ratios for the average rate in the 'aber- 

rant' state divided by the average rate in the `normal' state for each influenza 

season. In section 7.7.2, plots of the duration of the `aberrant' period during 

each influenza year across models were examined for consistency between 

models. To create these plots, the start of the period of `aberrant' incidence 

was defined as minimum two consecutive weeks designated as `aberrant' and 
the end as minimum two consecutive weeks designated as `normal'. [70] 
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7.7.1. Mean shifts 

Plots of crude exponentiated mean shifts from models without the exposures 

of interest are in broad agreement across outcomes and age groups as to 

highest and lowest impact influenza seasons (figure 7.1). Mean shifts are 

more variable for ILI than for P&I. 

For P&I, the distinction between high and low impact influenza seasons is 

clear in the 45-64 age group and less obvious in the younger age groups. This 

is because influenza related mortality is infrequent in younger people. 95% 

credible intervals (Crl) are widest for mean shifts for the 5-14 age group 
in which almost no deaths attributable to influenza are registered. The 

three highest impact (highest mean shift) seasons for the 45-64 age group 
are 1975/76,1989/90 and 1999/00.1975/76 and 1989/90 were CT seasons. 
Recall that the biLOGR model fitted to P&I for the > 65 age group does 

not converge and so results for this age group are not shown. 
For ILI, a clear distinction between high and low impact influenza seasons 

is visible for all age groups presented. Recall that biLOGR models fitted 

to ILI for the 5-14 and 15-44 age groups do not converge and so results 
for these age groups are not shown. 1989/90 was a high impact season in 

terms of ILI in all age groups presented. 1999/00 was also a high impact 

season for the 45-64 and > 65 age groups. The 1975/76 season was only 
obviously high impact, compared with other influenza seasons, for the 45-64 

age group. For the 0-4 age group, 1993/94 and 2003/04 were also notably 
high impact seasons. 
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7.7.2. Timing and duration of 'aberrant' periods 

There is broad agreement across models as to the timing of periods of 'aber- 

rant' incidence in a given season (figure 7.2). Looking across the study pe- 

riod, there is a suggestion in these plots that `aberrant' periods are starting 

progressively earlier (i. e. that `aberrant' periods tend to occur later in the 

year in the 1970s than they do in the 1990s). This may be an artifact of 

the laboratory data for two reasons. First, recall from chapter 3 that the 

earliest specimen date is the date of report to HPA CfI, from 1975-1988, and 

generally the date of sample from 1989 onwards. The date of report would 

either be the date of sample or a later date. From 1975-1989 laboratory test- 

ing was done in batches approximately weekly. Therefore laboratory data 

suggesting influenza is circulating earlier in the year in influenza seasons 

after 1988 may simply be an artifact of the end of batch testing. 

Second, up to 1993 most laboratory reports in LabBase2 were from hospi- 

talised patients. After 1993, laboratory reports from patients visiting their 
GP for ILI became more prevalent in LabBase2. [33] The laboratory data 

from sentinel GP practices may provide an earlier indication that influenza 

is circulating if ascertainment of patients with influenza occurs earlier by 

GPs than in hospitals. It is not obvious that this should necessarily be the 

case because people visiting their GP with ILI and those hospitalised with 
influenza are probably different in several ways including health status. 

Pooling results across models without exposures of interest shows that a 

median 9.5 weeks (interquartile range 6 to 14 weeks) per influenza season are 
designated by the model as `aberrant'. Figure 7.3 shows the high degree of 

variability in the duration of `aberrant' periods influenza season to influenza 

season. 
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7.8. Effect of cluster transition seasons 

7.8.1. Association between exponentiated mean shifts and 
CT seasons 

Mean shifts for each influenza season from models not yet including co- 

variates (i. e. from crude models) were exponentiated and plotted against 
exposures of interest. Mean shifts are highly variable whether or not a CT 

has occurred (figure 7.4). No strong association between CTs and mean 

shifts is evident. 
Mean shifts were ranked largest to smallest within age groups by outcome 

(P&I or ILI). The prominence of CT seasons in the top ten seasons was 
noted. Never more than 4 out of 10 of the top seasons are CT seasons 
(tables 7.1 and 7.2). This is consistent with findings reported in chapter 4. 

When peak ILI or P&I rates observed in a given season are ranked largest 

to smallest, CT seasons do not feature prominently in the top ten seasons. 
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Table 7.1.: Top ten influenza seasons in terms of mean shift in P&I. 1 is 

a CT season, 0 an intracluster season. 
0-4 yrs 5-14 15-44 45-64 

rank season CT? season CT? season CT? season CT? 

1 1975 1 1975 1 1975 1 1989 1 
2 1989 1 1977 1 1999 0 1999 0 

3 1988 0 1989 1 1989 1 1975 1 

4 1999 0 2003 0 1996 0 1996 0 

5 2003 0 1988 0 1988 0 1993 1 

6 1993 1 1979 1 2003 0 1998 0 
7 1984 0 1985 0 1998 0 2000 0 

8 1978 0 1987 0 1978 0 1984 0 

9 2004 0 1990 0 1985 0 2003 0 

10 1998 0 1978 0 1984 0 1990 0 

Table 7.2.: Top ten influenza seasons in terms of mean shift in ILI. 

rank 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0-4 yrs 
season 
1989 
2003 
1993 
1999 
1998 
1995 
2000 
1996 
2001 
1975 

CT? 
1 
0 
1 
0 
0 
1 
0 
0 
0 
1 

45-64 

season 
1999 
1989 
1975 
1993 
1998 
1996 
1984 
1995 
1983 
2003 

CT? 
0 
1 
1 
1 
0 
0 
0 
1 
0 

> 65 

season 
1989 
1999 
1993 
1998 
1996 
1984 
1976 
1975 
1983 
1995 

CT? 
1 
0 
1 
0 
0 
0 
0 
1 
0 
1 

7.8.2. Association between exponentiated mean shifts and 
antigenic distance between CT seasons 

It is possible that larger cluster transitions (in terms of the antigenic dis- 

tance between clusters) have a greater effect on morbidity and mortality 
than smaller cluster transitions. Crude exponentiated mean shifts for each 
influenza season were plotted against the antigenic distance between clus- 
ters to determine whether, crudely, there is evidence for this in the data 

analyzed (figure 7.5). There is not a consistent association between expo- 

nentiated mean shifts and the size of cluster transitions. 
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7.8.3. Estimates of the effect of CTs from model fits 

In this section, estimates of the effect of CT seasons on the mean shift for 

P&I and ILI from biLOGR model fits with dependency between the random 

effect mean shift and CT seasons are explored. 
Models with reference priors or weakly informative priors on the effect of 

CTs on the mean shift are computationally difficult. For example, the two 

chains for the effect of cluster transitions on the mean shift with a reference 

or weakly informative prior do not converge for any model. The two chains 
for the CT coefficient appear to have difficulty visiting the parameter space 
(e. g. figure 7.6). Recall that in section 5.12, the relationship between in- 

formation in the data and convergence of the model was introduced. The 

difficulty that the models have in sampling from the posterior for the effect 

of CTs may be related to lack of information in the data with which to 

estimate the average effect of CTs on the mean shift in these data. 
Attempts were also made to estimate the effect of CTs in the two seasons 

subsequent to the first H3N2 season in which they were dominant (given no 
further CT occurred during these two seasons) to determine whether the 

effect of a CT is lagged relative to its emergence. Models with anything but 

a reference prior on the effect of CTs lagged by one or two seasons do not 

run and were abandoned. 
As mentioned above, the difficulty that the models have in sampling from 

the posterior for the effect of CTs (illustrated in figure 7.6) indicates there 

may be too little information in P&I and ILI data with which to quantify 
the CT effect on the mean shift. Setting more informative priors on the co- 
efficient for the CT effect improves mixing to some extent, since the models 
have a less diffuse area to sample from when more informative priors are 
set. Because there appears to be little information in the data about the 
CT effect, the posterior for the CT effect is essentially dictated by the prior 
on the CT effect (e. g. figure 7.7). For the reference prior scenario (left-most 

plot in figure 7.7), the two chains for the posterior for the CT effect inhabit 

a similar area of parameter space but do not overlap completely. This is 
because of lack of convergence and poor mixing of the two chains for the 
CT effect (figure 7.6). The variance of the posterior for the CT effect is less 
than the variance of the prior but is still large (encompassing a magnitude 
of the effect of CTs on the mean shift, on the original scale, between approx- 
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intately 0 and : 37.000.000). The fact that the posterior is less variable (has 

lower variance) than the reference prior suggests there may be information 

in the data with which to estimate the effect of chtster transitions but that 

this information is limited. 

For the weakly informative prior scenario (middle plot in figure 7.7). the 

prior and posterior are similar. The two chains for the posterior CT effect 

do not agree on the median CT effect (35. on the original scale, for one 

chain and 5.17 for the other). again because of lack of convergence of the 

two chains for the CT effect (e. g. figure 7. S). When a strongly informative 

prior is used. the posterior and prior are almost identical (right-most plot in 

figure 7.7). Both the fact that the posterior from the reference prior scenario 

is very vague and the sensitivity of the posterior to the choice of prior suggest 

that there is little inforntatiott in the data which to estimate the effect of 
CTs on the mean shift. If there were information in the data with which 

to estimate the effect of ('Ts on the mean shift. then the variance of the 

posterior would he expected to be less than the variance of the reference and 

weakly informative priors. The variance of the posterior would be expected 

to encompass a plausible range of effect sizes. If there were information in 

the data about the effect of C'Ts. the estimated magnitude of this effect 

would be relatively robust to the choice of prior. 

R: 

0 250 300 

2 -ý 

01 

oý 

50 II 100 150 200 

Figure, 7. (i.: Fxanºple history plot showing lack of convergence and 
poor mixing of two chains for the effect of cluster tran- 

sitions on the mean shift, with a reference prior on the 
CT effect. flii, Idw is trenu the hiLO(; li fit to II. I for the > 

ni }; rollý>. ti5 

The estimate of the magnitude of the effect of each unit change in the 

antigenic distance hetween clusters on the mean shift in Pill or ILI is also 

si. nsitiye to t he choice of prior, though posteriors are less dominated by 

priors than for estimates of the effect of ("I's (c. g. figure 7.9 vs. 7.7). The 
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(a) Reference prim (h) Weakly' informative prior (c) Strongly informative prior 

Figure 7.7.: Sensitivity of the posterior for the average effect of CTs 

on the mean shift in ILI for the > 65 age group to the 

choice of prior on the CT effect. The v-axis is probability 
density- and the x-axis is the CT effect on the logarithmic scale. 
Priors and posteriors for the two chains are plotted separately. 
Dotted curves are priors. solid curves are posteriors. 

posterior distribution for the coe$icicnt of the effect of each unit change in 

antigenic distance with a reference prior suggests a ºnediaºº magnitude of 

effect of 1.4 on the log scale (left-most plot in figure 7.9). With a weakly 
informative prior (middle plot in figure 7.9) two chains for the coefficient for 

the effect of antigenic distance do not converge. but both suggest a ºuediatu 

effect size close to (l on t lue log scale (no effect). History plots of two chains 
for coefficients for the effect of each unit change in antigenic distance do not. 

ºnix well within the range of the posterior distribution for any prior (e. g. 
figure 7.10). Poor mixing of two chains for coefficients for antigenic distance 

reiterates that there is limited information in the Pß: 1 and ILI data with 

which to (luantifv the effect of a change in antigenic distance on mean shifts. 
These dat. º cannot provide strong evidence for or against an effect. Posterior 

ti ist ril ut inns for coefficients for antigenic distance are not identical to their 

reference or weakly informal ive prior dist, ribut. ions. meaning that the P& I 

and Il, l data do provide some information with which to quantify the effect 

of different sized cluster transitions. 
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Figure 7.8.: Example history plot showing lack of convergence and 
poor mixing of two chains for the effect of cluster tran- 

sitions on the mean shift with a weakly informative 

prior. This plot is from the 1)1LOGR fit to 11.1 for the > 65 age 
group. 

r 
m F, 

I., (-m 

ý 
ý ý ý 
ý ý 1 

1 
1 
1 

(; i) 1'f r(mncp prior (1, ) \V'eaklv informative prior (c) Strongly infornuatiV( prior 

Figiin 7.9.: Sensitivity of the posterior for the average effect of each 
ººnit of antigenic distance between clusters on the mean 
shift in ILI for the 65 age group to the choice of prior 
oil the effect of a unit change in antigenic distance. 

7. U. litipact, of vaccination of the elderly on the 

mean shift in P&I and ILI 

7.9. I. Association between exponecitiated mean shifts and 

vac'c'ine coverage of the > 65 age group 

Iucre; isiI Igv; u"ci11( coverage of the (11'11\ e, ºcl º infiueuzx seasoI1 ºniglºt he 

expec"tc(I to lead to a decrease in the nwaiº shift. Crude exponentiat"I uºean 

shifts were plotted against v; uriue coverage to assess whether, crudely, there 

is evidence for this in the P&A or 11.1 data. There is no clear wssociatiotº 
het wee I increwsiug vaccine coverage of t Iºe elderly and the size of nºean shifts 
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rteratron 

2000 2500 3000 

Figure T. 10.: Example history plot showing lack of convergence and 

poor mixing of two chains for the effect of a unit 
change in the antigenic distance between clusters on 
the mean shift. This plot is from the biLOGR fit to ILl for 

Hie -, (i. > age group with a weak prior on the effect of 'a unit 

chaiiov in the antigenic distance between clusters. 

for anv age group (figure 7.11). 

In section 2.5 it was noted that influenza seasons donninatcd by influenza 

A/113\2 virus tend to experience higher levels of morbidity and mortality 

than those dominated irv influenza A/111\1 or B viruses. There are two 

reasons why it is important to consider whether seasons were dominated 

by influenza A/H3N2 virus when estimating the impact of vaccination Oil 

trends in the relative inmpact. of influenza seasons (here. the mean shift). 
Influenza A/13\2 virus-dominance may act as, first, an effect nnodifier of 

vaccine impact and/or. second. a confounder of vaccine impact. 

First. influenza A/113\2 virus-doºniuancc nnay act as an effect modifier 

of vaccine impact. VF niav be less during lower impact influenza seasons. 

'hliis is because it is expected that morbidity or mortality occurring during 

lower impact seasons is less specific to influenza. Morbidity and mortality 

not mitt ribnt able, or secondary. to influenza would be expected to be dis- 

tributed evenly between vaccinated and unvaccinated people (assuming no 
difference ill the cuuferlving health status of vaccinated and unvaccinated 

people). bower VF during lower innpact influenza seasons would be expected 

to result ill a smaller vaccine impact in lower impact influenza seasons. In or- 

der to 0leternnine whether. enrdely. the association between beau shifts and 

vaccination coverage is different depending on whether influenza A/H3N2 

viruses were dominant. mean shifts were colour-coded as H3\2-dominated 

seasons (red/gold) or not (blue/green) on the scatter plot of nnean shifts 

gainst vaccine coverage (figure 7.12). There is not a consistent associa- 
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tion between vaccine coverage and mean shifts in H3N2-dominated seasons. 
For H3N2-dominated seasons mean shifts appear to be higher during in- 

fluenza seasons with moderate vaccine coverage than in seasons with either 

no vaccine coverage or high vaccine coverage. There is no association be- 

tween vaccine coverage and mean shifts in seasons dominated by influenza 

A/H1N1 or B virus. The difference in trends in mean shifts for seasons dom- 

inated by either influenza A/H3N2 virus or H1N1/B viruses for some age 

groups suggests H3N2-dominance is acting as an effect modifier of vaccine 
impact. 

Second, influenza A/H3N2 virus-dominance may act as a confounder of 
vaccine impact. If, for example, an increase in the frequency of influenza 
A/H3N2 virus-dominated seasons had occurred towards the end of the study 
period, when vaccine coverage was highest, this might have caused negative 
confounding of the impact of vaccine on the mean shift. Influenza A/H3N2 

virus-dominated seasons are not more or less frequent during the period 
when vaccine coverage was moderate or when coverage was high. It is 

unlikely that influenza A/H3N2 virus-dominance is acting as a confounder 
of vaccine impact. 
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7.9.2. Expected vaccine impact 

In this section, the expected impact of vaccination of the > 65 age group 

during moderate and high coverage periods on excess ILI and on excess P&I, 

both in the > 65 age group, is posited. The expected impact of vaccination 

on each outcome is based on estimates of average effectiveness of trivalent 

inactivated influenza vaccination of the elderly from the literature, vaccine 

coverage and presumed average cumulative excess ILI and P&I in influenza 

seasons before appreciable vaccine coverage was achieved. Presumed aver- 

age cumulative excess ILI/P&I before vaccination coverage was appreciable 

captures what excess would be, on average, if vaccine coverage were zero. 

Two levels of average vaccine coverage were used: 36% (the average coverage 

of the > 65 age group in England & Wales between 1989/90 and 1999/00) 

and 70% (average coverage of the > 65 age group between 2000/01 and 

2004/05) (see the following section for derivations of these cut-points in 

coverage). 
Recall from section 2.8.2 that best estimates of vaccine effectiveness against 

acute respiratory hospitalisations in the elderly are between 20 and 30%. [114, 

2161 Vaccine effectiveness against ILI would be expected to be lower than 

that against respiratory hospitalisations because ILI may be less specific to 

influenza and thus less likely to be prevented by influenza vaccination than 

acute respiratory hospitalisations. Presumed excess ILI rates in England & 

Wales in the absence of vaccination are hypothetical (since no paper was 
identified) but plausible given the range estimates of excess ILI rates dur- 

ing seasons with low vaccine coverage of the elderly. [1,651 Table 7.3 shows 
that if cumulative excess ILI incidence in the absence of vaccination were 
2000/100,000 per influenza season, during seasons when VE against ILI is 
20% and coverage (p) is 36%, at most 144 ILI consultations per 100,000 

people over 65 (7.2% of the pre-vaccination excess ILI rate) (da) could be 

prevented. This estimate was calculated as 

da = (2000/100,000) * VE *p 

When coverage averages 70%, at most 280/100,000 excess ILI consulta- 
tions (14% of the pre-vaccination excess ILI rate) would be prevented each 
season given a VE of 20%. Estimates of the predicted impact of vaccination 
on ILI are sensitive to the presumed average excess ILI rate before vacci- 
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nation. These estimates are the impact due to direct effects of vaccination 

only. Assumptions underlying these calculations are that vaccinated and 

unvaccinated elderly are similar in all ways related to risk of morbidity or 

mortality apart from vaccination status and that VE is constant influenza 

season to influenza season. The calculation is sensitive to the presumed 

excess morbidity and mortality in the absence of influenza. 

Even though it was not possible to fit HMMs to P&I for the > 65, it 

is worth noting the range of possible rates of excess P&I prevented given 

the vaccine coverage achieved and estimates of VE against P&I from the 

literature. In section 2.8.2 best estimates of VE against respiratory mor- 

tality in the elderly between 12% (95% CI 8-16%) and 79% (0-100%) were 

noted. [77,1131 These estimates were taken to be the best estimates of VE 

against P&I. The average excess P&I rates in influenza seasons before much 
influenza vaccine was distributed to the elderly are based on estimates from 

the US [7) and France [79). When vaccine coverage was 70%, assuming VE 

of 79% against P&I and average pre-vaccination incidence of excess P&I 

of 262/1,000,000 per influenza season, an average of up to 145 deaths per 
1,000,000 people aged > 65 each influenza season (55% of pre-vaccination 

excess P&I) might have been prevented (table 7.4). 

The estimates in tables 7.3 and 7.4 are of the impact in the elderly at- 
tributable only to the direct effect of some of them having been vaccinated. 
These estimates of vaccine impact do not include the possible indirect ef- 
fects afforded to unvaccinated elderly attributed to their mixing among vac- 

cinated elderly. It is unlikely that the elderly play a strong role in the com- 

munity transmission of influenza since transmission appears greatest from 

children and teenagers. [38,39) If there were an impact in other age groups 
due to the vaccination of the elderly - an indirect effect of vaccinating the 

elderly in dampening transmission of influenza in the community among 
other age groups - it would be expected to be much smaller than the (di- 

rect) impact in the elderly in tables 7.3 and 7.4. A small impact in other 
age groups would be difficult to detect and to quantify using modeling. As 

a first step, an attempt was made to estimate the magnitude of vaccine 
impact in the elderly. 
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Table 7.3.: Range of possible impact of vaccination of the elderly 
on excess ILI in the elderly. 

Presumed average cumulative 2000 1500 1000 500 
excess ILI per 100,000 in the > 
65 age group each season in the 

absence of vaccination 
Estimated excess ILI per 100,000 in 144 = 2000 x 108 72 36 
> 65 prevented each season assuming 0.2 x 0.36 
36% coverage and 20% protection 
(36% coverage and 30% protection) (216) (162) (108) (54) 
Estimated excess ILI per 100,000 in 280 210 140 70 

65 prevented each season assuming 
70% coverage and 20% protection 
(70% coverage and 30% protection) (420) (315) (210) (105) 

Table 7.4.: Range of possible impact of vaccination of the elderly 
on excess P&I in the elderly. 

Presumed average cumulative 
excess P&I per 1,000,000 in the 
> 65 each season in the absence 
of vaccination 
Estimated excess P&I per 1,000,000 
in > 65 age group prevented each sea- 
son assuming 36% coverage and 12% 

protection 
(36% coverage and 79% protection) 
Estimated excess P&I per 1,000,000 
in > 65 age group prevented each sea- 
son assuming 70% coverage and 12% 
protection 
(70% coverage and 79% protection) 

262 

11 

(75) 
22 

(145) 

148 

6 

7 

(42) 
12 

(82) 

eaverage excess P&I rate between 1969/70 and 1972/73 in the US, fig 3B from [7) 
raverage excess P&I between 1980/81 and 1984/85 in France, table 2 from [79] 
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7.9.3. Estimates of vaccine impact on mean shifts in ILI in 

the > 65 age group from model fits 

In this section. results of LiLOGR model fits to estimate the impact of vac- 

cination on the mean shift in ILI in the > 65 age group are suimnarised. 

Models of the impact of each unit increase in vaccine coverage (i. e. vaccine 

coverage as a quantitative variable) on the mean shift with either refer- 

ence or weakly iiiforinative priors on vaccine impact are computationally 

probleinatic. The two chains for the coefficient for vaccine impact with a 

reference or weakly informative prior do not converge for any model. The 

two chains for the coefficient for vaccine impact appear to have difficult- 

visiting the parameter space (e. g. figure 7.13). 

0 50 100 150 zoo 250 300 

Figunc 7.1 a.: Example history plot showing lack of convergence and 
poor mixing of two chains for the impact of vaccination 
on the tuean shift. This plot is fruiii the hiLOGR fit to 1L1 
fur t 1c > (; "5 age group With it reference prior oil the impact 

per 111111 increautie in vaccine coverage. 

BiLO(: li models were also fitted to ILI for the > 65 age group with a 
dependelncy between the mead shift and vaccine (-overage as a categorical 

variable. This uu>del compared the average incaii shift in seiisons between 

1975/76 and 1988/89 (the reference period when vaccine coverage of the > 

f; 5 age grump w; Ls to be O) to the average mean shift in seasons with 

moderate vaccine coverage of the elderly (average 362 coverage between 

1989/90 and 199900) and to the average mean shift in seasons with high 

vaccine coverage of the elderly (average 70`x, coverage between 2000/01 and 

2OO1/05). 

I'usterior (listribut, ions for the impact of vaccination in the > 65 age group 

are doininated by their respective priors ((,. g. figure 7.14). This suggests 

that there is little information in the ILI data for the > 65 age group with 

which to estimate the impact of moderate or high vaccine coverage on the 
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mean shift. 

7.10. Confounding and effect modification 

Since there appears to be little information in the data with which to esti- 
mate exposure effects of interest, there is no impetus to include confounders 
in these models or to stratify by possible effect modifiers (such as H3N2- 
dominance, in the case of estimating vaccine impact). For attempts to 

estimate the effect of CT seasons or vaccine impact, the variance of the 

posterior distributions is diffuse and encompasses a range of implausible 

estimates of the exposure effects of interest. For attempts to estimate the 

effect of a unit change in the antigenic distance between clusters on the mean 
shift, thereby allowing for the different size of CTs in terms of antigenic dis- 
tance, two chains for coefficients for the effect of antigenic distance do not 
mix well, indicating low power. Adjusting for confounding involves strat- 
ifying the analysis by the putative confounder and calculating a summary 
adjusted estimate of the exposure effect as a weighted average of confounder 

stratum-specific estimates. Adjusting for confounders does not increase the 

power of an analysis. Adjusting for confounding will not reveal effects which 
are undetectable due to lack of power. Testing for effect modification also 
requires that there be information in the data about effects of interest. 

7.11. Summary of results 

Scatter plots of crude mean shifts against covariates suggest little evidence 
of association between exposures of interest and mean shifts in P&I or ILI. 
There is limited information in the data about vaccine impact or an effect 
of CTs on mean shifts, so posteriors for vaccination and for CT seasons 
are little influenced by the data and more influenced by priors. Analysing 
the effect of each unit change in antigenic distance between clusters is more 
powerful than analysing CT seasons as a binary variable (the latter does not 
allow for some CTs being bigger than others in terms of antigenic units). 
Even allowing for the different size of CTs, there is limited information in 
the data about the effect of CTs on the size of epidemics. 
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7.12. Results in context 

In terms of ILI, the relative impact of influenza seasons in England & Wales 

using mean shifts estimated from biLOGR HMMs is comparable to esti- 

mates of the relative impact of influenza seasons using excess ILI rates 
(figures 7.15,7.16 and 7.17). [1-3] Recall from section 2.3.1 that early es- 
timates by Fleming et al. (black circles in figures 7.15,7.16 and 7.17) [1], 

the black and gray "+" in figure 7.15 [2]) were derived differently from later 

estimates (black diamonds in figures 7.15 and 7.17 (3]). Therefore compar- 
isons between the work undertaken for the thesis and estimates of excess 
ILI by Fleming et al. will be made separately for the two methods. 

The relative impact of influenza seasons was comparable for HMMs and 

early excess ILI estimates by Fleming and colleagues [1,2] despite a few key 
differences in the methods used: 

1. In HMMs, the models defined `aberrant' periods whereas in the method 
of Fleming et al. an `epidemic threshold' was calculated, and `in- 
fluenza active weeks' defined, externally to model fitting (this method 
was described in detail in section 2.3.1). 

2. In the HMM analysis, the estimate of the relative impact of influenza 

seasons was the mean shift: the ratio of the average rate in `aberrant' 

weeks for a particular season divided by the average rate in `normal' 

weeks for that influenza season. The method of Fleming et al. calcu- 
lated RRs similarly, but multiplied them by the number of `influenza 

active weeks' to give an estimate of the total excess ILI rate for a given 

season. 

3. Laboratory reports held in LabBase2 are mostly from hospitalised 

patients up to 1993 and a mixture of hospitalised patients and GP 

patients from 1993 onwards. The analyses performed for the thesis 
were done using only these laboratory data. The analyses by Fleming 

and colleagues were based on laboratory data which include the data 
in LabBase2 and additional laboratory data from joint HPA Cfi - 
RCGP sentinel GP surveillance [341, results of which are not stored in 
LabBase2. 

4. Fleming et al. used laboratory data aggregated by age and influenza 
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type/subtype. If there are different 'aberrant'/`influenza active peri- 

ods for different age groups. the method would not account for this. 

In the analysis described in the thesis. age group-specific influenza 

A laboratory reports were used, thus allowing for different timing of 

'aberrant' periods between age groups. 

5. Excess ILl from Fleming's 2005 paper (black and gray "+" in fig- 

ure 7.15) was attributed to either influenza or RSV (see detail in 

section 2.3.1). BiLOGR mean shifts estimated jointly from ILI/PkI 

and laboratory data were attributed solely to influenza. 
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For the l; cter Fleucilig paper. excess ILI was attributed to either influenza 

virus or RSV using a differclit ucet. hod of defining 'influenza (or RSV) ac- 

t ive periods' (figures 7.15 and 7 17). `31 The definition of `active periods for 

either virus was the averaýie ILl each winter in the weeks (surrounding the 
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peak week of age-aggregated routine laboratory reports) that encompassed 
70% of all laboratory reports for either influenza or RSV that influenza sea- 

son. The baseline for calculation of excess was the winter period encompass- 

ing fewer than 30% of the laboratory reports for either virus. For periods 

where influenza and RSV circulation overlapped, excess ILI during those 

weeks of that winter was apportioned to RSV and influenza proportional to 

the excess for that winter that was attributed to either virus alone. For three 

influenza seasons for which there are estimates from the HMMs and from 

Fleming and colleagues using this method, the two methods disagree on the 

relative impact of the 1994/95 and 1995/96 influenza seasons for children <5 
(figure 7.15). Fleming estimated that 1995/96 was a slightly lower impact 

season than 1994/95 whereas the HMM estimated that 1995/96 was clearly 
higher impact than 1994/95. There are two reasons for this discrepancy. 

First, the estimate of the excess ILI attributable to influenza in 1994/95 

from the HMM is lower than the estimate from Fleming et al. because 

1994/95 was dominated by influenza B virus circulation; in the HMM only 
laboratory reports for influenza A were modeled. This means that weeks in 

the 1994/95 season were less likely to be designated as `aberrant' since the 

laboratory data indicated little influenza (A) activity during the 1994/95 

season. Second, the estimate of the excess ILI attributable to influenza in 

1995/96 from Fleming et at. is lower than the estimate from the HMM be- 

cause in 1995/96 periods of RSV and influenza virus circulation overlapped 

considerably. Fleming et at. apportioned excess ILI incidence to the two 

viruses meaning less of the excess was attributed to influenza. This had a 

proportionately bigger effect on the estimate of excess ILI in children <5 

than on estimates for adults > 65 (figure 7.17). 

Estimates of relative impact of influenza seasons in England & Wales in 
terms of excess respiratory mortality rates from the literature are compa- 
rable to estimates of the relative impact of influenza seasons in terms of 
mean shifts in P&I from HMMs (figures 7.18). This is despite differences 
in the method of defining relative impact of influenza seasons in terms of 
mortality: in HMM fits, `aberrant' weeks were defined separately for ILI 

and for P&I; Fleming defined an epidemic threshold, and `influenza active 
weeks', using ILI and laboratory data and used the same `influenza active 
weeks' to define excess mortality. 

For children, variability influenza season to influenza season in excess 
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respiratory mortality in the age group 1-4 yrs is low and is similar to the 

variability influenza season to influenza season in mean shifts in PSI for 

children 0-4 (figures 7.18 to 7.20). i571 Fleming and colleagues found the 

variability in excess respiratory mortality influenza season to influenza sea- 

son is greater for the age group <1: [571j this age group was not modeled for 

the thesis. Weekly rates of laboratory reports for children <1 are extremely 

low. limiting the ability to use multivariate H\IMs to estimate mean shifts 

for this age group. 
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Figure TAX.: Comparison of estimates of excess respiratory mortal- 
ity rates in children <5 in England RL Wales (right 

axis) with exponentiated mean shifts estimated by 
IINIMs (left axis). Black circles are excess respiratory 
ii rt, dity (pueuniouia, influenza or b)ronchitis) in the 0-4 age 
group. mid gray circles are excess respiratory mortality in <1 

age group, both from [iii]. Red sylnl)ols are mean shifts for 
I'k l iii the 0-1 age group, with 95% Cris (gold). 

For leol)1( 15-61, the relative impact of iufiuciiza seasons in terms of 

I X((ss resllirat orv mortality in England & Wales from the literature and 

meal shifts in 1'kl are similar (figure 7.19). [53] The 1996/97 influenza 

season way higher impact than the 1997/98 season; this distinction was 

more pronounced for the method of Fleming ; end colleagues than for the 

liNl\1 method. In the 1996/97 season. influenza A circulated in the first 
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part of the season and influenza B circulated in the latter part. [6[ This 

kind of longer duration, mixed type, influenza season could give a higher 

estimate of excess mortality compared to the mean shift in P&I estimated 

using the HMM. There are two reasons for this. First, the mean shift 
does not take into account the duration of the influenza season: the mean 

shift is simply the ratio of the average rates in `aberrant' to `normal' weeks 
for a given influenza season. The estimate of excess rates of mortality by 

Fleming et at. were rate ratios (similar to mean shifts), multiplied by the 

number of `virus active weeks' in the season. A long influenza season can 

result in high estimates of excess mortality (because the excess is accrued 
in each week for many weeks) without affecting the mean shift. Second, in 

the HMM, the mean shift was only estimated using influenza A laboratory 

reports, so mortality occurring after the end of circulation of influenza A 

would is downweighted in estimating the state sequence and thus the mean 
shift. Both of these facts may explain the greater disparity between seasons 
1996/97 and 1997/98 found by Fleming than estimated using the HMM. 

For the deaths in the elderly, estimates by Fleming et at. of the relative 
impact of seasons in terms of excess respiratory mortality for the 65-74 age 
group are comparable to estimates of mean shift in P&I for the > 65 age 

group (figure 7.20). [531 For the > 75 age group (not modeled for the thesis), 
the impact of the 1996/97 influenza season relative to the 1997/98 season 
is pronounced. Risk of dying from influenza increases with advancing age, 
because of the prevalence of comorbid illnesses, so the relative impact of 
influenza seasons in the > 75 age group may be more specific to influenza 
than the relative impact in the > 65 or 65-74 age groups (whose deaths 

might be more evenly distributed throughout the year, though still higher 
in winter than summer). 

The timing of `influenza active periods' as defined by the two methods 
of Fleming and colleagues discussed above - based on an `epidemic thresh- 
old' defined using ILI in weeks when there were no laboratory reports for 
influenza 11,21 (figure 7.21) and using weeks surrounding the peak labora- 
tory report week that encompassed at least 70% of the laboratory reports 
for that season [3] (figure 7.22) - were similar to the timing of `aberrant' 

periods estimated using the HMM. 
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The median duration of the `aberrant' period each influenza season esti- 

mated using biLOGR HMMs (9.5 weeks, interquartile range 6-14 weeks) is 

comparable to the mean length of the influenza season, 10 weeks, estimated 
from French ILI data. [86] Rath et al. estimated the mean duration of the 
influenza season by fitting 2 state HMMs to weekly sentinel surveillance for 

influenza-like-illness data from France between the 1975/76 and 1996/97 

seasons. [86] The duration of the `aberrant' period each season estimated 
from the biLOGR HMM is typically shorter than the duration of `influenza 

active periods' as defined by Fleming [1-31 (figures 7.23 and 7.24). The 

biLOGR HMM sometimes estimates a season to have experienced no 'aber- 

rant' period at all, while the methods of Fleming et al. never does so. These 

differences are because: 

1. Only influenza A laboratory reports were used to fit biLOGR HMMs, 

whereas Fleming and colleagues used all laboratory reports for in- 
fluenza regardless of type. In seasons where influenza B circulated 
alone (e. g. 1994/95), or at a different time in the influenza season 
than influenza A (e. g. 1996/97), the method of Fleming et al. would 
tend to estimate a non-zero or longer duration `influenza active' period 
than the `aberrant' period estimated by the biLOGR HMM. 

2. In the biLOGR HMM, age group-specific influenza A laboratory re- 

ports were analyzed, whereas Fleming and colleagues used age-aggregated 
laboratory reports. If there are lags between the timing of `aberrant' 

periods across age groups, the methods of Fleming et at. would again 
tend to estimate non-zero or longer duration `influenza active' periods 
than biLOGR HMMs. This is because the HMM would define differ- 

ent `aberrant' periods for different age groups and allow, for example, 
`aberrant' periods to begin and end earlier for some age groups than 
for others. The methods of Fleming et at. define one (long) `influenza 

active period' from the age-aggregated laboratory (and ILI) data for 

each influenza season and apply it to each age group. 
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7.12.1. Plausibility of an effect of CTs 

Based on a number of pieces of evidence, an average inflating effect of CTs 

on the mean shift would be expected. First, this association is biologically 

plausible. CTs would be expected to result in an increase in the propor- 
tion of population susceptible to dominant circulating influenza A/H3N2 

virus variants since antibodies generated by natural infection or vaccina- 
tion against previously circulating variants become less able to neutralise 

variants which are antigenically drifted. Recall from section 2.6.2 that the 

make-up of the vaccine used in most countries is updated regularly to track 

the antigenic evolution of the influenza A/H3N2 virus (the vaccine is less 

regularly updated with a different variant of A/H1N1 virus or lineage of 
B virus). [106] The recommended influenza A/H3N2 virus variant for the 

vaccine is updated when there is an antigenic distance of at least 2 units (a 

fourfold dilution of antiserum in the HI assay) between the vaccine variant 

and the variant expected to circulate in the next influenza season. The av- 
erage antigenic distance between clusters of influenza A/H3N2 virus is 4.5 

units. There is evidence to suggest that immunity to one variant in a clus- 
ter confers protective immunity to challenge with other variants within the 

same cluster. [103] There appears to be between 60 and 80% cross immunity 
between clusters adjacent in time. [103,1041 There is probably little or no 
cross-immunity between non-adjacent clusters. [105] 

Second, the positive association between CTs and the mean shift is sup- 
ported by a modeling study. In section 2.7 it was noted that the best 

estimate of the average effect of a number of CT seasons on influenza mor- 
bidity or mortality is from a model of the antigenic evolution of influenza 
A/H3N2 virus coupled with a transmission dynamic model. Recall that 

model-predicted peak rates of `cases' of influenza during the first season 
after a new cluster emerged are approximately 1.6 times higher than the 

average peak rates in other seasons. [14] This value was used to set strongly 
informative priors on the effect of CTs (and the antigenic distance between 

clusters) on the mean shift in P&I and ILI in section 7.5. 
Third, a positive association between large antigenic drift events and epi- 

demics has often been noted (e. g. in 1972 and 1975 [93]). Most reports 
in the literature regarding the impact of large antigenic drift events in in- 
fluenza A/H3N2 virus evolution refer to individual drift events [63,107,108] 
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or to a number of antigenic drift events that coincided with massive epi- 
demics. [58,93,109,1101 This means that the average effect of CTs on the 

relative impact of influenza seasons may be lower than what can be gleaned 
from the literature. Greene et al. plotted the monthly percentage of AC 

due to P&I from 1968 to 1998 for US residents aged 65 and over; this plot 

suggested that all CT seasons resulted in an average or above average per- 

centage of deaths due to P&I but that not all of the highest peaks in the 

graph occurred during CT years. [94] 

From work described in chapter 4, crude associations between CTs and 

peak incidence of ILI or P&I observed in each influenza season appear to 

be, at most, weakly positive. When peak P&I and ILI rates per season 

are ranked, only for P&I in the > 65 age group do CT seasons occur in at 
least five of the top ten seasons. T-tests suggest weak evidence for small 
increases in peak P&I and ILI in the first H3N2-dominated season after a 
CT compared with the average season or compared with intracluster sea- 

sons. There is no clear association between peak rates of P&I and ILI each 
influenza season and the antigenic distance between clusters (figure 4.11). 

Taken together, these points suggest that any effect of CTs or the antigenic 
distance between clusters on ILI or P&I are small and would be difficult to 

detect using modeling. 

7.12.2. Explanation for what was observed 

The magnitude of the mean shift each influenza season is highly variable 
whether or not a CT has occurred. No strong association between CTs and 

mean shifts is evident. There is less of a positive association between mean 
shifts and CTs than between peak incidence each season and CTs. This 

may be because epidemics are poorly modeled by the HMMs. The inability 

to fit epidemics dampens variability in mean shifts, making it more difficult 

to detect the effect of CTs on the variability in mean shifts. 
When the mean shifts for each influenza season are ranked largest to 

smallest, never more than 4 out of 10 of the top seasons (in terms of the 

size of the mean shift) are CT seasons. This agrees with findings when peak 
incidence, instead of the mean shift, was ranked in chapter 4. There is no 

clear association between exponentiated mean shifts and the size of cluster 
transitions. 
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There is not sufficient information in the P&I and ILI data analyzed to 

quantify the magnitude of the effect of CTs, or the antigenic distance be- 

tween CTs, on the mean shift. This is consistent with the finding that terms 

for influenza A/H3N2 virus antigenic drift were not important determinants 

of excess mortality in multiple linear regression analyses. [51,521 Smaller 

degrees of antigenic drift were used in these other studies, however, which 

means these terms would have been less likely to be strong determinants of 

excess mortality than large antigenic drift events like CTs. 

7.12.3. Reasons for a lack of information on CTs effects 

There are at least six reasons why the analysis undertaken had limited power 
to detect an effect of CTs on mean shifts. First, between 1975 and 2004 there 

were only 9 CTs. This is perhaps too few cluster transitions to allow their 

average effect to be estimated. The effect of CTs might be heterogeneous. If 

factors such as vaccine mismatch, the dominant circulating variant(s) (e. g. 
influenza A/H3N2 virus alone vs. in concert with influenza B or A/H1N1 

virus) and ambient temperature modify the effect of cluster transitions, 

it would be difficult to detect an average effect of CTs on mean shifts, 

stratified by each of these potential effect modifiers, given only 9 or 10 cluster 
transitions have been observed. Another possible source of heterogeneity in 

any CT effect is the overlap in circulation of some clusters. [13] A small 

overlap in the circulation of two clusters of influenza A/H3N2 viruses may 
result in the population being sufficiently immunologically primed to blunt 

the effect of CTs. As a first step in investigating whether the effect of CTs is 
heterogeneous, the coefficient for the effect of CTs on the mean shift could 
be modeled as a random effect (see chapter 8). 

Second, the effect of a cluster transition may be felt in the first season 

after it is isolated or in some other season. It may depend on when during 

the season the transition occurs: a cluster transition occurring early in the 

season may have its effect felt in the season of isolation whereas a cluster 
transition occurring later in the season may not produce an effect until a 

subsequent season. The models fitted only allowed for an effect in the season 
the CT was first isolated, or in the first H3N2-dominated season after a CT 

if the season of first isolation was not dominated by influenza A/H3N2 virus. 
There were convergence problems when models allowing for an effect of CTs 
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in the season it was isolated as well as in the 1st or 2nd season after it was 
first isolated were tried. If the effect of CTs occurs sometimes in the season 
in which it is isolated and sometimes 1 or 2 seasons after it is first isolated, 

the power to detect the average effect of a CT on the mean shift will be 

very low given only 9 CTs in the study period. 
Third, the biLOGR mean shift may not be a good indicator of the rela- 

tive impact of influenza seasons. It may be necessary, for example, to take 

into account the duration of the `aberrant' period, as well as the mean shift 
(analogous to analyzing excess morbidity or mortality). In general, higher 

impact influenza seasons (such as those when influenza A/H3N2 virus is 

dominant) are also shorter. Taking into account the duration of the 'aber- 

rant' period as well as the mean shift would increase the estimated impact of 

slow burn and mixed-type influenza seasons (like 1996/97). This would be 

likely to reduce the variability in the estimated impact of influenza seasons, 

not increase it, and so would not make it easier to estimate determinants 

of the variable impact of influenza seasons. Other indicators of the rela- 
tive impact of influenza seasons have been used historically, for example 
the percentage of deaths from all-causes that were registered to underlying 
P&I. [94] This indicator is sensitive to the proportion of deaths due to other 

causes. It may be fruitful to develop an indicator of the relative impact of 
influenza seasons in terms of both morbidity and mortality. For example, 

seasons which result in a large mean shift in both ILI and P&I would be de- 
fined as higher impact than seasons resulting in a large mean shift in either 
ILI or P&I alone. This would downweight seasons with high excess P&I 

or ILI only, which might be caused by something other than influenza, and 
consequently increase the specificity of the indicator of the relative impact 

of influenza seasons for influenza. 
Fourth, epidemics are poorly modeled by the HMMs. Because of this, the 

variability in the impact of influenza seasons may be underestimated. This 

would make it more difficult to detect the effect of CTs on mean shifts. Fifth, 

the assumption that CTs affect mean shifts additively on the logarithmic 

scale may not hold. It was not possible to use multivariate IDR models to 

estimate covariate effects assuming an additive effect on the original scale. 
The sixth reason why the analysis was unable to estimate an effect of 

CTs is the general computational difficulties of the analysis. This reason is 

related to the others listed above. Model fit of IDR models was unsatisfac- 
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tory (recall chapter 6) and so exposure effects were not investigated using 
IDR models. In IDR models, exposures act additively on the original scale. 
No model adequately fitted P&I data for the > 65 age group. The effect 

of CTs on deaths could therefore not be estimated (the vast majority of 
deaths occur in the > 65 age group). It may be that the effect of CTs is 
detectable only in relative mortality between influenza seasons (or mortality 
+ morbidity) but not in morbidity alone. 

7.12.4. Plausibility of a vaccine impact 

In section 7.9.2, the plausible impact of vaccination on P&I and ILI in the > 
65 age group in England & Wales was proposed based on vaccine coverage 
and estimated VE from the literature. For upper estimates of coverage and 
VE against P&I in the > 65 age group, around 55% of excess P&I in this age 
group might have been prevented through vaccination. It therefore might 
have been possible to detect an impact of vaccination on the mean shift in 
P&I had it been possible to model P&I in the elderly (see chapter 6). For 

upper estimates of coverage and VE against ILI in the elderly, approximately 
14% of excess ILI in this age group might have been prevented through 

vaccination. This estimate is sensitive to the assumptions of constant VE 
influenza season to influenza season and that vaccinated and unvaccinated 
elderly are similar to each other in all ways apart from vaccination status as 
well as to the presumed excess ILI in the absence of vaccination. Since it is 
likely that children, and not elderly people, are the drivers of transmission 
of influenza in the community, [38,39J an impact on P&I or ILI in other 
age groups due to indirect effects (via herd immunity) of vaccination of the 
elderly was expected to be nil or too small to detect. 

Recall from chapter 4 that there is a weak negative association between 

vaccine coverage of the > 65 age group and peak seasonal P&I and ILI rates 
across age groups. Estimates of the peak incidence observed in influenza 

seasons are sensitive to long-term changes to baseline incidence (noted in 

chapter 4). For this reason the weak negative association between vaccine 
coverage and peak P&I and ILI is not interpreted as evidence of vaccine 
impact. 
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7.12.5. Explanation for what was observed 

There is no clear association between increasing vaccine coverage of the 

elderly and the size of mean shifts in P&I or ILI for any age group. 
The impact of vaccination on P&I in the elderly could not be assessed. 

For models of the impact of vaccine coverage as a quantitative variable, 
it was not possible to set sensible weakly informative priors (for example, 
that excluded the possibility that high vaccine coverage is associated with 
larger mean shifts). This may indicate the assumption of additive vaccine 
impact on the logarithmic scale is invalid. It was possible to set sensible 

weakly informative priors on the impact of vaccine coverage as an ordered 

categorical variable with three levels (no vaccination, moderate coverage 
and high coverage). There is not sufficient information in the ILI data for 

the > 65 age group to quantify the magnitude of vaccine impact on mean 

shifts in ILI. Posteriors for coefficients for the impact of moderate (36%) and 
high (70%) coverage on ILI in the elderly are dominated by the reference or 
weakly informative priors used. 

Two studies, one from the Netherlands and the other from Canada, pro- 
vide some evidence of vaccine impact of the elderly on influenza-related GP 

consultations in the elderly, but may overstate impact because of uncon- 
trolled confounding. Dijkstra et at. regressed the total ILI rate for the 
influenza season, not excess ILI rate, on vaccine coverage each influenza 

season. [121] A decline of 1.7 ILI consultations per 10,000 per % change in 

coverage was noted (95% CI -3.3 to 0.01). The 95% CI for this result just 
includes the null. Analyzing total ILI (baseline + excess) is sensitive to 
changes in the long-term trend in ILI. As such, it would be useful to know 

whether there have been declines in the use of GP services in the Nether- 
lands as there have been in England & Wales. If so, this decline coincident 
with increasing vaccination may simply reflect confounding by declines in 
use of GP services. 

Kwong et at. estimated RRs comparing excess GP consultations for 

pneumonia or influenza for two periods: 1997-1999 (before the introduction 

of a UIIP in Ontario, Canada) and 2000-2003. [95] The authors estimated 
influenza - attributable outcomes by regressing them on influenza indica- 
tors (see section 2.4.4). Looking only at the RRs for the other provinces 
(not Ontario), the estimated decline in GP consultations for pneumonia or 
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influenza coincident with the approximately 20% increase in vaccine cov- 

erage of the elderly > 65 yrs was 85% (95% CI 83 to 87%) in the 65-74 

age group, 85% (82 to 87%) in the 75-84 age group and 80% (77 to 83%) 

in the > 85 age group. These estimates of impact were controlled for sex 

and RSV circulation. Estimated impact was lower when the analysis was 

restricted to H3N2-dominated seasons. These findings may be confounded 
by different ambient winter temperatures or different health status of el- 
derly in the period before and after 2000. Viboud and Miller argued that 
because similar declines were observed in the US as in Ontario (and the 

other Canadian provinces) comparing the two time periods (2000-2003 to 
1997-1999), during which time vaccine coverage of the elderly in the US was 
relatively stable, an unmeasured factor probably explains a portion of the 

apparent vaccine impact estimated by Kwong et at.. [133] 

The impact of vaccination on P&I in the elderly in England & Wales 

might be large enough to detect. It was not possible to estimate the impact 

of vaccination on P&I in the elderly using the HMMs. Reports of the impact 

of vaccination on excess P&I in the elderly in the US and Italy [7,67] do not 
include upper bounds on CIs for trends so it is not clear whether there was 
sufficient information in these data to estimate vaccine impact. The authors 

of both papers report no evidence of a non-zero linear trend coincident with 
increased vaccine coverage, suggesting that the CIs on linear trend lines 

were wide and included the null. This suggests that vaccine impact on P&I 
in these settings may be modest and therefore difficult to detect using linear 

regression. 
Studies from the Netherlands and Canada comparing rates of influenza 

mortality before and after an increase in vaccine coverage of the elderly 
suggest that for an increase in coverage of approximately 30% a decline 
in influenza - attributable mortality of 35-70% could be expected. [64,95] 
Despite careful control for confounding by age and RSV circulation, and 
stratification by high impact/H3N2-dominant seasons, it is unlikely that the 
declines in mortality noted in the Netherlands and in Canada are entirely 
attributable to vaccination (see section 2.9.2). 

The suggestion of effect modification of vaccine impact in England & 
Wales by H3N2-dominance found in the analysis undertaken for the thesis 
is in agreement with evidence for effect modification in other settings. [7, 
64,67,951 
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7.12.6. Reasons for a lack of information on vaccine impact 

Some of the same reasons given for the lack of power to estimate CT effects 

may explain the inability to detect an impact of vaccination (section 7.12.4). 

The true vaccine impact on ILI may be too small to detect. The biLOGR 

mean shift may not be a good indicator of the relative impact of influenza 

seasons. Epidemics are poorly modeled by HMMs. This means that variabil- 
ity in the relative impact of influenza seasons was underestimated, blunting 

the ability to estimate determinants of that variability. As noted above, 
IDR models were abandoned because of poor model fit so the additive on 
the original scale impact of vaccination as a quantitative variable was not 

estimated. Modeling vaccine coverage as an ordered categorical variable 
is computationally easier, though an impact of moderate or high vaccine 
coverage on ILI in the elderly could not be quantified. Computational dif- 

ficulties, especially the fact that no model adequately fits P&I data for the 
> 65 age group, severely limited the ability of the analysis to detect an 
impact of vaccination. Since VE is higher for more severe outcomes, an 
impact of vaccination on mortality might exist in the absence of an impact 

on morbidity. It was not possible to assess this in using the HMMs. 

7.12.7. Suggested methods for estimating the effect of CTs 

and vaccine impact on morbidity and mortality 

It might be possible to demonstrate impact of yearly vaccination of the 

elderly by comparing different locations where yearly coverage of the elderly 
stepped up in different influenza seasons or increased at different rates. 
Excess morbidity or mortality, or mean shifts in morbidity or mortality, 
could be compared by influenza season (or number of influenza seasons) 
across settings where vaccine coverage was very different (e. g. [95]). This 

would minimise potential confounding by antigenic drift since antigenic drift 
tends to be geographically homogeneous. [101] Estimates of excess or mean 
shifts could be controlled for factors which might differ between settings 
and be associated with excess or mean shifts (like ambient temperature). 

Alternatively, a lower bound on the impact of vaccinating elderly people 
against influenza each season could be demonstrated using the method of 
Carrat and Valleron and season-specific estimates of VE, excess mortality 
(or morbidity) and vaccine distribution (see section 2.9.2). [79] For exam- 
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ple, VE against ILI each season could be estimated from the proportion 

of ILI patients captured by RCGP WRS who were vaccinated, using the 

screening method. [217,2181 This value could be substituted into the for- 

mula of Carrat and Valleron. Recall that Carrat and Valleron estimated 

excess mortality by regressing respiratory, cardiovascular and other mortal- 
ity rates on rates of mortality registered to influenza and an error term that 
had an ARIMA structure. They then used the estimated excess mortality 
for each season (do), actual vaccine coverage (p) and plausible values of 
VE to estimate the mortality rate prevented through vaccination (da) as 
da = (d0VEp)/(1 - VEp). This method assumes the attack rate in the un- 
vaccinated is unaffected by vaccination. Therefore using this method would 
give a lower bound estimate of vaccine impact (because it would encompass 

only direct effects of vaccinating a proportion of the elderly population). 
A method that could be employed to estimate the effect of cluster tran- 

sitions allowing for confounding by vaccination is a transmission dynamic 

model. Both large antigenic drift events and increasing vaccine coverage 
of the elderly is expected to modify the size of the susceptible population 
(increasing it in the case of antigenic drift, decreasing it with vaccination), 

specifically the proportion of the population susceptible to the dominant 

circulating influenza A/H3N2 virus variants. This is not explicitly modeled 
in the latent variable time series models fitted in the thesis. One way to 

use a transmission dynamic model to explore the effect of CTs, control- 
ling for vaccine impact, would be to modify the time series-SIRS model of 
Finkenstadt et al.. [881 Recall from section 2.4.6 that the number susceptible 
(() and recovered (W) in week t+1 was dependent on a parameter, -y that 
captured the return of immune individuals to the susceptible class due to 
waning immunity or antigenic drift 

(t+1 = (t - rt+i +'Ytwt 
wt+t = (1 -'Yt)wt + r-t-i 

where +c is incidence of ILI determined from a time series of weekly ILI 

counts and estimates of the proportion of ILI cases who have influenza and 
the proportion of influenza cases that consult a GP with ILI. To estimate 
the effect of CTs, ry could be constrained to be constant for the entirety 
of influenza seasons apart from 1 week during seasons when a CT was ob- 
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served; this would allow estimation of the effect of CT seasons on population 
immunity and on predicted ILI. To control for confounding by vaccination, 
the maximum value for ry, the maximum proportion of recovereds returning 
to the susceptible class, in a given influenza season could be constrained to 
be 1-VEp, where p is vaccine coverage. Preliminary work by Finkenstadt et 

al. suggested it would be difficult to apply this method to ILI in England 
& Wales because the proportion of those with ILI who consult a GP, by 

age, and the proportion of ILI patients who have influenza are not known 

for England & Wales. [88] It might be possible to elicit prior information on 
these factors from experts, like GPs. 
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8. Discussion and conclusions 

The objectives of the work described in the thesis were threefold: 

Objective 1: To estimate the relative impact of influenza seasons in Eng- 

land & Wales between 1975/76 and 2004/05 in terms of ILI and P&I by 

jointly modeling ILI, P&I and laboratory reports for influenza A virus us- 
ing multivariate latent variable time series models. 
Objective 2: To use multivariate latent variable time series models to es- 
timate the mean effect of large antigenic drift events, or cluster transitions, 
in influenza A/H3N2 virus evolution on the relative impact of influenza sea- 

sons in terms of P&I and ILI by age group. 
Objective 3: To use the same models to estimate the impact on influenza- 

attributable ILI and P&I in the > 65 age group, and in other age groups, 

per unit increase in yearly vaccine coverage of the > 65 age group. 

8.1. Key findings related to objective 1 

Excluding high counts to explore long-term trend in P&I and ILI in the ab- 
sence of influenza virus circulation, it was shown in chapter 4 that there are 
complex long-term trends in rates of ILI and P&I between 1970 and 2005 

which should be flexibly modeled, for example with cubic splines. Trends 
differ between P&I and ILI and across age groups. There is a decline in 
the long-term trend in P&I in the > 65 age group in England & Wales 
from approximately 1998 which is coincident with markedly increased vac- 
cine coverage in this age group. Long-term trends in ILI, in the absence 
of influenza virus circulation, declined in all age groups between the mid 
1980s and mid 1990s, were stagnant to 2000, and declined further there- 

after. The consistency of the trends in ILI across age groups, and in many 
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other diagnostic categories, suggests a social or environmental aetiology. 

Also in chapter 4, it was highlighted that negative binomial GLMs al- 

lowing for seasonality and flexibly modeling trend do not account fully for 

autocorrelation and overdispersion in ILI and P&I data. 

In chapter 5 it was shown that Poisson log-link and identity-link two- 

state HMMs are sufficient to model P&I and ILI data taking into account 

autocorrelation and overdispersion. Negative binomial or Gaussian models, 

which address overdispersion over that captured by the Poisson HMM, do 

not provide improved model fit or convergence over the Poisson models. The 

Poisson HMMs are able to distinguish two states ('aberrant' and `normal') 

in P&I and ILI data. The relative impact of influenza seasons is captured in 

a random effect mean shift for each influenza season. The lack of consistency 
in whether models with an identity link or a log-link are superior for a given 
data set is unsatisfactory. 

In chapter 6, modeling P&I or ILI jointly with laboratory reports for 

influenza A was shown to increase the precision of the mean shift for most 

model fits. This is what was expected since jointly modeling P&I or ILI 

with laboratory reports increases the specificity of the model for influenza. 

There appears to be a conflict between ILI and laboratory reports for age 

groups <65 and between P&I and laboratory reports for the > 65 age group 
in estimating the sequence of `aberrant' and `normal' periods in the data. 

This is because the timing of `aberrant' periods differs between P&I, ILI 

and laboratory data. It was shown that the lag that exists between the 
timing of the `aberrant' periods in P&I, ILI and laboratory data is not 
constant between influenza seasons. This is important since it suggests 
none of P&I, ILI or laboratory data alone would consistently provide the 

earliest indication that the influenza season had started, year on year. Also, 

averaging rates of morbidity or mortality in particular weeks across influenza 

seasons to explore, for example, the average lag between the increase in 

activity in ILI and the increase in activity in laboratory data would provide 
a biased estimate of the true lag since it would obscure this variability in 

the timing of `aberrant' periods between outcomes across influenza seasons. 
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8.2. Key findings related to objective 2 

In chapter 4 it was noted that, crudely, the distribution of peak rates for 

CT seasons appears greater than for intracluster seasons. Ranking of peak 
P&I and ILI rates observed across seasons revealed that only for P&I in the 

> 65 age group do CT seasons occur in at least five of the top ten seasons. 
T-tests suggest weak evidence for small increases in peak P&I and ILI (6 

P&I per 1,000,000 population, 95 ILI per 100,000 population) in CT seasons 

compared with the average season. There is weak evidence for 8/1,000,000 

high rates of P&I and 133/100,000 higher rates of ILI in CT compared 

with intracluster seasons. Such small differences are of little public health 

importance given that, in the data analyzed in the thesis, weekly rates of 
P&I of up to 80/1,000,000 and ILI of up to 2,322/100,000 are observed. 
It was also noted in chapter 4 that there is no clear association between 

peak rates of P&I and ILI each influenza season and the antigenic distance 

between clusters. 
In chapter 7, scatter plots of mean shifts against covariates show lit- 

tle evidence of association between CTs, or the antigenic distance between 

clusters, and mean shifts in P&I or ILI. biLOGR HMMs fitted with a depen- 

dency between the mean shift and CTs, or the antigenic distance between 

clusters, do not provide evidence of an average inflating effect of CTs on 
the relative impact of influenza seasons. The difficulty that the models had 
in sampling from reference prior models, and the dominance of informative 

priors on posterior distributions, suggests there is little information in the 
data with which to quantify the effect of CTs on the mean shift in P&I or 
ILI. 

8.3. Key findings related to objective 3 
In chapter 4 it was shown that there is a weak negative association between 

vaccine coverage of the > 65 age group and peak seasonal P&I and ILI rates 
across age groups. In chapter 7, scatter plots of mean shifts in P&I and ILI, 
by age group, against vaccine coverage of the > 65 age group suggested 
little evidence of an association. Stratifying mean shifts by the dominant 

variant in the influenza season (influenza A/H3N2 vs H1N1/B) showed that 
H3N2-dominance may act as an effect modifier of vaccine impact. This is 
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because VE would be higher in higher impact influenza seasons during which 
influenza A/H3N2 virus tends to be dominant. There is not a consistent 

association between vaccine coverage and mean shifts in H3N2-dominated 

seasons. There is no association between vaccine coverage and mean shifts 
in seasons dominated by influenza A/HINI or B virus. It is unlikely that 
influenza A/H3N2 virus-dominance is acting as a confounder of vaccine 
impact since influenza A/H3N2 virus-dominated seasons are not more or 
less frequent during the period when vaccine coverage was moderate or 
when coverage was high. 

From attempts to quantify vaccine impact from model fits, also in chap- 
ter 7, it was shown that there is limited information in the data about 
vaccine impact. Posteriors for the coefficient for vaccine impact are little 

influenced by the data and are dominated by priors. 

8.4. Strengths 

The work undertaken for the thesis has a number of strengths. First, the 

modeling of long-term trend in P&I and ILI, in the absence of influenza, 

with cubic splines has increased the flexibility of fitting seasonality with the 

sine and cosine term. Careful control for long-term changes in morbidity 
and mortality has been achieved. Second, the two-state Poisson HMMs 

have adequately modeled variability in the P&I and ILI data meaning that 

account has been taken for overdispersion of these data relative to the Pois- 

son distribution. Third, by fitting two-state HMMs, where the model itself 
determines whether the data are consistent with two states, there is no 
need to designate `aberrant' from `normal' incidence externally to model 
fitting. Fourth, fitting multivariate HMMs, where the designation of 'aber- 

rant' from `normal' incidence was made jointly by information in the P&I 

or ILI data as well as in laboratory reports, increases the specificity of the 
model-estimated `aberrant' periods in P&I and ILI for influenza. BiLOGR 

models fitted to either P&I or ILI allow for different `aberrant' periods in 
the two data sets, for example due to the deaths being lagged relative to 
consultations. 
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8.5. Limitations 

There are also limitations of the work described in the thesis, both related 

to the data and to the modeling. 

8.5.1. Limitations of the data 

When do CTs become dominant? 

The seasons when cluster transitions were first identified in the WHO vac- 

cine strain selection data set were taken from the paper by Smith et al.. [13] 

Recall that much of the information in the data set, on influenza variants 

and on what dates they were isolated from patients, was from the Nether- 

lands. It is not known when during the particular influenza season the 

cluster transition variant began to circulate in England & Wales. The sea- 

son of first isolation of the CT, or the first H3N2-dominated season after 

this, might not be a good proxy for when the new cluster became dominant 

in England & Wales. There is uncertainty as to whether the new cluster 

would have been dominant for the duration of the season of its emergence 

or for only, say, the final month of that first season (because it only became 

the dominant circulating H3N2 variant one month before the end of the 

season). There is also some overlap in the circulation of adjacent clusters, 

adding to the uncertainty in when a particular cluster was dominant. It is 

possible that variability in the timing of dominance of clusters may partly 

explain the difficulty in detecting an effect of CTs on the mean shift. 
A related issue is that the dominant influenza variants circulating in each 

influenza season in England & Wales were taken from the literature (ta- 

ble 3.2). The percentage of subtyped isolates that were influenza A/H3N2 

virus or influenza A/H1N1 virus was not available for most influenza sea- 
sons. Therefore, in addition to the uncertainty about when exactly each 

cluster became dominant in England & Wales, there is also uncertainty 

about what proportion of circulating variants in any season were influenza 

A/H3N2 virus variants. 

Dates 

The time-varying lag between the timing of `aberrant' periods across out- 

come variables, identified in chapter 6, is likely to be partly biological and 
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partly a function of the data, especially the laboratory data. One pos- 

sible biological reason for different lags between outcome variables across 
influenza seasons may be variability in the virulence of circulating variants 
in different influenza seasons. More virulent variants may result in mortal- 
ity sooner after their initial appearance than less virulent variants. Other 

possible biological explanations include the different types and subtypes of 
influenza circulating in different influenza seasons or interference in some 
influenza seasons by cocirculating viruses. In laboratory data, the change 
in 1993 to include in LabBase2 the positive reports from one of two new 

sentinel swabbing studies of ILI patients [33] means that the relationship 
between the non-laboratory confirmed outcome variables (P&I and ILI) and 
laboratory data changed at that point. Before 1993 most laboratory testing 

was done in hospitals; from 1993 onwards the data in LabBase2 are a mix- 
ture of hospital and sentinel GP laboratory reports. The lag between timing 

of `aberrant' periods in P&I and ILI did not appear to become time-varying 

around 1993, or to have had one value before 1993 and another value after 
1993, so this artefact probably does not fully explain the time varying lag. 
The time varying lag may also be partly due simply to random variation. 

Hospitalisations 

Part of the morbidity burden associated with influenza includes respiratory 
hospitalisations. [49,76] Vaccine impact, or the effect of CTs, on rates of 
respiratory hospitalisation could be substantial and has not be addressed 
in the thesis. However, the maximum number of hospital beds may blunt 

estimates of the relative impact of influenza seasons in terms of hospitalisa- 

tion. [42] This would limit their usefulness in estimating the relative impact 

of influenza seasons in terms of morbidity and determinants of this relative 
impact. 

8.5.2. Limitations of the modeling 

Autocorrelation plots of residuals show there is inadequate modeling of sea- 
sonality in two-state HMMs. Future work could include modeling seasonal- 
ity more flexibly, e. g. with splines with several df per year [42] or monthly 
indicators, [184] instead of with the sine and cosine terms. 

There is also inadequate modeling of large peaks in incidence. This is 
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partly due to the mean shift being the average ratio of incidence in the 
`aberrant' to `normal' weeks for a given influenza season and likely also 
due in part to the absence of important explanatory variables from the 

models. In addition, P&I and ILI data may be consistent with more than 

two states. HMMs with two states were fitted for the thesis since a biological 

explanation can be assigned to two states (i. e. incidence in the absence 
of influenza from one state and incidence attributable to influenza from a 
second state). Future work could explore fitting models with more than 

two states in an attempt to better model epidemics. For example, three 

states could be conceptualised as `normal', `aberrant (but not epidemic)' 

and `epidemic' incidence. 
There is a time-varying lag between state transitions for outcome variables 

within an age group (<65 for ILI and laboratory data and > 65 for P&I 

and laboratory data) and this is not allowed for in any model. 
Multivariate state sequences include some false alarms, where weeks are 

labeled as `aberrant' though the high incidence is probably unrelated to 
influenza. For example, several models define a short summer period as 
`aberrant' in some years, perhaps because of heat waves. An area for fur- 

ther development within the HMM framework would be to weight outcome 
variables for state sequence estimation (for example, more heavily weighting 
laboratory vs. other outcomes) to reduce the probability of false alarms in 

the state sequence. This would increase the specificity of the mean shift for 
influenza. The most specific state sequence for influenza would result from 

estimating the state sequence solely using the laboratory data. The state 
sequence estimated using only laboratory data could then be applied to the 
P&I and ILI data for estimation of mean shifts. This would produce the 
most specific mean shifts for influenza but would misclassify some influenza 

- attributable morbidity or mortality as `normal' because of lags between 
influenza-attributable incidence in laboratory and non-laboratory data and 
the fact that laboratory and non-laboratory data do not represent the same 
types of people in terms of comorbid illness, for example (see section 3.2.6). 

In relation to attempts to use the HMMs to estimate effects of exposures 
of interest, the models do not allow for heterogeneity in covariate effects. 
Heterogeneity in the effect of CTs on the mean shift could be allowed for 
by modeling the coefficient for CTs as a random effect. There may be 

spatial heterogeneity in vaccine coverage or VE, if intensity of influenza 
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transmission is greater in northern than southern areas of England & Wales. 

Models allowing for spatial heterogeneity in relative impact of influenza 

seasons and in covariate effects may therefore provide increased power to 

estimate vaccine impact. 

Some of the influenza - attributable P&I and ILI incidence may have been 

modeled by the cubic splines. Overfitting of the long-term trend could have 

occurred because the number of df for the splines was decided based on an 

analysis of data from 1970-2005 (chapter 4) whereas HMMs were fitted to 

data from 1975/76-2004/05. 
It is unclear why no multivariate HMM fitted to P&I in the > 65 age 

group converged. Even the univariate LOGR HMM fitted to P&I for the > 

65 age group failed to converge. The whole explanation for this cannot be 

a conflict between P&I and laboratory data because in the LOGR model, 

only P&I data were modeled. For the HMM framework to be most useful 
for modeling influenza-related data in England & Wales, it is necessary to 

find a way to use the HMM to model deaths in the elderly. Risk of death 

increases with older age. Analyzing data in the elderly in finer age bands 

may therefore also provide additional information with which to estimate 

covariate effects. 
Some of the problems of convergence of HMMs undoubtedly relate to 

sensitivity to model assumptions and not only to limited information in the 

data about the state sequence. Recall that in chapter 5 negative binomial 

and Gaussian HMMs were discarded in favour of Poisson HMMs because of 
lack of convergence. A possible explanation for the problems of the nega- 
tive binomial and Gaussian HMMs is that these models fail to distinguish 

overdispersion relative to the Poisson distribution from variability gener- 
ated by the hidden Markov process. The reliance on Poisson HMMs in the 

remainder of the thesis, where variability is generated solely by a mixture of 
Poisson distributions, is therefore probably optimistic. The variability gen- 
erated by the mixture of Poisson distributions may inadequately address the 

various potential explanations for overdispersion (like variation in reporting 

and spatiotemporal clustering of cases). Incorporating some structure into 

the model, where the Markov chain models the transmission of infection 

from infected to susceptible people, might help the model to distinguish 

the underlying state process from clustering of cases due to the infectious 

nature of influenza 1891 and thus lead to improved convergence. Detailed 
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spatial data, if available, could be used to allow reconstruction of chains of 
transmission by structuring the model in both space and time. This further 

model development would probably necessitate abandoning OpenBUGS in 
favour of other packages that might more efficiently handle the increased 

model complexity. 
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A. 'Fends in other GP 

consultations 

Similar declines to those in ILI since 2000 were observed for other upper and 
lower respiratory tract infections, as well as non-respiratory consultation 
categories (figures for upper respiratory tract infections: A. 1 to A. 4, figures 
for lower respiratory tract infections: A. 5 to A. 7, figure for non-respiratory 
infections: A. 8). 
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of the highest counts were excluded from model fitting. 
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Figure A 
. G.: Long-term trend in GP consultations for pneumonia 

in those aged (a) 0-4 years, (b) 5-14 years, (c) 15-44 

years, (d) 45-64 years and (e) 65 years of age and over. 
5Y4 of t1ic 1iiglx'st counts were excluded froiii inocfel fitting. 
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Long-term trend in GP consultations for acute bron- 
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15-44 years, (d) 45-64 years and (e) 65 years of age and 

over. 10`X, of the highest counts were excluded from model fit. - 
t iiig. 
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Figure A., S.: Long-term trend in GP consultations for infectious and 

parasitic diseases, which include most infectious dis- 

ease consultations apart from respiratory infections, 

in those aged (a) 0-4 years, (b) 5-14 years. (c) 15-44 

years, (d) 45-64 years and (e) 65 years of age and over. 
25(7( of the 1iigliest counts were excluded froiii model litting. 
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B. Sensitivity of long-term trend 
to exclusion of different 

percentages of high counts 
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C. Other model structures 

P& -l data for the > 65 age group and ILl data for the 15-11 age group are ttn- 
derdispersed relative to the NBLOGR and NBIDR models (e. g. figure C. I). 

No observed data points fall outside 95`%, CrIs for model-predicted counts. 

Transition probabilities from these models do not converge (figure C. 2). 

(a) NI I O(; li 

1915 19Hý' ý. .... ,. ý.., 

ýale 

(h) 1B11)R 

Fiý, ure C. 1.: Posterior predictive density plots of NBLOGR, and 
NBIDR models fitted to P&I from the > (i age 
group. The predicted counts and it Crl for each predicted count 
(lines) are plotted on the same graph as the observed data (cir- 

cles). These data are underdispersed (no observed data outside 
the posterior predicted Crls) relative to both models. 

SQ1 and LN1 models fit P&I data from the > 65 age group poorly 

(figum v s ('. 3 and ,. 4 
. 



'cýrosaoýýiý. 

,...., n 

\IiLUGIi 

P-. -421' 

(b) NRIllR 

Fi ; urn ('. 2 History plots of two chains for transition probability 
paraºnetc'rs from NBLOGR and NBIDR models fitted 

to P&I for the = 65 age group. For i(I(ntity-Iiiik model 
: AliIl)1i) chains do not niix wvell -1 chain moves widely around 

the p. craºneter spit('(' and (Ices not appear to settle clown to a 
value: the two rpains do not appear to be moving towards a 

('onunon paranuct('F spa('e. Two chains for transition probabil- 
ities froth NBLO(: li model mix better. 
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7 

nn 'M m 

R. iMUh 

Im 
19s5 ý 

iý; nre ('. a.. State-sequence for SQR. model fitted to P&I. Top panel: 
observed (d, Lshe(l) and 1it1cvi 1'<<1 data for the > 6T age group 
(soli(l): middle panel: state sequence (I is the `norinal' state. 2 

the 'aberrant' state): bottom panel: residuals (observed minus 
fitted Pk" I count for each week). The state sequence shown 
was plotted by averaging the state sequence estimated by each 
of the two chains. The model-predicted t in>e series is very dif- 
ferent from the observed time series. Residual plot shows that 

nuulel-predicted time series captured little of the variability in 

the data. Labels for state variables have also switched whereby 

state label I now refers to the 'aberrant' state and label 2 to 

11n no i m; l state: this is indicative of a poor model. 
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've5 '990 '995 2 000 

R. -M 

flJftLUftftLUJU 
=W5 

I' it, nre ('. 1.: State-sequence for LNR. models fitted to P&I for the > 
65 age group. As With SQli mo (lcl fit. nuxlel-prcclictecl titue 

series is vcrv different from t he observed time series and resid- 
ual plots show that model predicted time series captured little 

of the variability in the data. The state sequence is poorly es- 
t intated - for most weeks the two chains for the state sequence 
are not in agreement as to whether a given week is front the 

'uorutal' or 'aberrant' state - because trattsit. iott probability pa- 
ranicters have not converged. This is evidenced by the state 

sequence leaving a value of approximately 0.5 for most weeks: 
this is an average state sequence across two chains which do 

not agree on state , tssigmuent for most weeks. 
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D. Fit and convergence of 

univariate Poisson models 

Ii�gyn. ' D. I.: History plots of two chains for transition probability 
parannvters from IDR model fit to ILI from the > 6. T 

age group. I ()t Iº I ransition probabilities appear to converge 
to similar paranurter space. 

I ij, nrc I Iistory plots showing lack of convergence of two chains 
for LI, from IDR model fit to ILI from the 15-44 age 

group. 

'I ht lxýole I to within ehains Variainlity (top (red) line in figures D. 3 

and I). 1) is above 1 from the start of the simulation for all LOGR fits 

exeept tits to I'kI data for the 5-1.1 and > 65 age groups and to ILI for the 

30 lý1 



45-64 age group (figure D. 3). This shows that for all but these 3 model fits, 
initial values for two chains of LOGR model were sufficiently disparate. The 

pooled to within chains variability is above 1 for all IDR mode fits showing 
initial values were suitably disparate for all IDR model fits (figure D. 4). 
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Figure D. 5 shows better fit of the IDR than LOGR model to PkI from 

the 15-6.1 age group. 

tIjx; li (b) Illii 

FiKure U. ý.: Posterior predictive density plots of LOGR and IDR 

models fitted to P&I from the 45-64 age group. These 

ýlnt: i are nnýlerýlispýrýcýl (almost no observed (latn outside the 
posterior predicte(I Crls) relative to the LOCH model (a) but 

adecluatel}" ino<lele(1 1>V. the IUIR nlo(lel (b). 

; 1nt0con-clation plots of resi(lua]s from II)R and LOGR model fit to Pki 

froni t hc 1.56 1 age group are shown below (figum D. 7). The IDR model fits 

t hese (I'll a hadlt". 
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R 

1. l, l; fi J, I II)It 

I' i nrý I) Posterior predictive density plots from LOGR. and IDR 

models fitted to ILI from the > (i. i age group. The LOGR 

mmicl (a) adequately- mmlels these (lata: note large posterior 
predictive Uris at start and end of the time series for the IDR 

fit (h). indicating poor fit to these influenza seasons. 

lfiflodm IMIJ, 
, "Ju IMMU111111 

0 20 40 w0 
L., 

(h) 1I)1i 

100 120 

Atit oc"orrelation plots of residuals from LOGR. and 
11)Ii model fits to P&I from the 45-64 age group. The 

I I! If'I, w I i, nl between n "siduals against the lag bet\teen the resid- 
uals. O)rrelation between residuals is 1 at lag 0 because this 

correlation is between the residual and itself. Horizontal dot- 

ted lines are set at t2/ 17)(i(i. These data are poorly modeled 
by II)1t (1)) and adequately modeled by LOGR (a). 

: 3U! ) 



n ýl1 

r. v. -lfi 

(a) U)CFt 

nI History plot of two chains for transition probability 

parameters from LOGR model fitted to P&I from the 

0-4 age group. *1w (Alai!, (lo not ("onven., c. 
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E. Multivariate models 

ýý 
ý= 

ý 

I n, nr [. l. History plot, showing lack of convergence of LL from 
hiLOGR fit to P&I and laboratory reports from the 
0-4 age group. 
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�W '"s , wo i95 xaoo ý 

: x,. 

The state-sequence for biLOGR model fit to ILI and 
laboratory reports from the > 6.5 age group (shown) 

appears to converge for all but, the 2002/03 season, 
during which there is disagreement between the two 

chains as to the state assignment. 

3 1.5 



,., . MU ,! 5 IMO "5 xm0 

F.?. State-M q Ivnces for II)R models fitted to P&I in those 
15-4.1 years of age. 
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(al hiL(>Glt (1, ) hi11)1i 

Figure F. -'- Posterior predictive density plots of biLOGR and bi- 

11)Ii tiuxlels fitted to P&I from the 5-14 age group. 
IIt Iata im, underdispersed relative to both models (almost 

all observed data fall within posterior predictive Cris). The 

predicted coutrts (re(I line) and it Cr1 for each predicted count 
(blue lines) and the observed PkI data for the 5-11 age group 
(black circles). 

n 

W 
.1 , 00 In 

I' it; ure I :.! º.: A ut oc"orrelat. ion blot, of residuals from biIDR. model fit 

to II, I from the 5-14 age group. The iuoclcl's account- 
ing 14,1 airiocorrclation in the l1.1 datýl for the 5-11 age group 

was poor, with residual aut ocorrelation present at lags up to 

approxiuºatel* v 15 weeks. Horizontal clotted lines are set at 
2/ 1566. 
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F. Univariate model fits to 
influenza A laboratory reports 

In LO(; li m(micl tits to Nveckly rates of laboratory reports for influenza A, 

statI. ý, cy cnces appear to converge and are clearly estimated for the 0-1. 

5-11 and 15- 11 age groups (e. g. figures F. 1 and F. 2). 

os.. ý. s . ýa naw 

19ry I- IM Im 

ý.,. 

�5 moo MOS 

I i, iii II After 20,000 iterations, the state-sequence for LOGR 

model fit, to influenza A laboratory reports in those 0-4 

years of age appears to have converged and is clearly 
estimated. 

In II)R uu)del tits to wcckly counts of influenza A laboratory reports, 

nt; ate so-queuces appear to converge and are clearly estimated for the 0-4 

and 5 11 age groups (figures F. 3 to F. 1). 
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ý 

I it'mi, F. 2.: After 20.00( iterations, the state-sequence for LOGR 

model fit, to iufiucnza A laboratory reports in those 
5-1.1 years of age appears to converge and is clearly 
est. iniated. 
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ob:. N. d . nd filt. d 

ý [flUJllLUL 
qeem. ai, 

J- 

Figure F. 3.: After 20,000 iterations, the state-sequence for IDR 

model fit to influenza A laboratory reports in those 

0-4 years of age appears to converge and is clearly es- 
timated. 
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'loee., ea -. rt. 1 
sý 

19'5 +9/0 1985 1990 ý995 2000 2005 

Rev OV*h 

I- 11"nic I". 1. After 20.000 iterations, the state-sequence for IDR 

model fit to i»fluetiza A laboratory reports in those 
5i-1.1 years of age appears to converge and is clearly 
est inºated. 
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After 20,000 iterations, the state-sequence for LOGR 

model fit, to influenza A laboratory reports in those > 
65 has not, converged in the period 1988/89 to 1993/94. 
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G. Evidence for lag 

Evidence for state transitions for a particular influenza season occurring 
in different weeks for different outcome variables is seen by overlaying age 
group-specific univariate ILI, P&I and laboratory report model state se- 
quences (e. g. figures G. 1 and G. 2). 
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Figure G. 1.: State sequence from IDR fits to P&I (dashed line), 
ILI (dotted line) and lab reports for influenza A (solid 
line) from the > 65 age group: 1975/76-1992/93. The 
state sequence for the ILI model fit did not converge for all 
seasons. A time-varying lag between state transitions for one 
outcome and for another is evident. 
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Figure G. 2.: State sequence from IDR fits to P&I (dashed line), ILI 
(dotted line) and lab reports for influenza A (solid line) 
from the > 65 age group: 1993/04-2004/05. The state 
sequences do not converge for all seasons. A lag between state 
transitions across outcomes is evident and it varies by season. 
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The formula below is for a model with a lagged state transition effect on 
P&I relative to its effect on laboratory reports. 

YP&t, 
Ylabt 

/V 

N 

Poisson(µp&I, ) 

Poisson(µ1ab, ) 

log(pP&Ii )i 
Jt(nggcd =1 

lOg(uP&Ii )I "C(ayyed =2 

= 1og(Np&I,, ) + a0p&, + CP&I(t, APP&I) 
ß1P&z Siri 52.2 + ß2P&I COS 52.2 

+ 03p,,, artifacts 

= 1og(Np&Ir, ) + aor&t + ap&I[flu season]-}- Cp&I(t, tPp&I) 

+ Nlpdct sin 52.2 
+ )32P., cos 

2"t 

+ (3sP,, aTtifacts 

lOg( tlabt)l St =1= log(Nlab, )+ a0l, b 
+ Clab(t, 'Plab) 

+ Tab sin 2at52.2 + 12feb COS 
27rt 
52.2 

+ 03,, b artifacts 

Iog(Plabt) I St =2= log(Nlabt) + aolab + alab[flu season] + Clab(t, ýplab) 

+ 0118b sin 52 2+ 
ß218b cos 52 2 

+ ß3I b artifacts 

Stl St-1 - Bernoulli(b) 

bagged =t- lag +3 

lag ti dcat(p[1: 51) 
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Where Yt are the observed number of P&I deaths or laboratory- 

confirmed influenza A cases in week t, 

µt are the respective means of the Poisson distributions from 

which Yt are drawn, 
Nt are the populations at risk in week t, 

ao are the intercepts, 

a[flu season] are the yearly random effect mean shifts, 
C(t, (p) are the cubic splines with cp df, respectively, 
ßl sin 5 22 + 02 cos 52 represent seasonality, 

03artifacts represent the instantaneous change in the baseline 
because of artifacts in the data, 

and St is the state variable sampled from a Bernoulli distribu- 

tion with probability d, a two-by-two matrix of probabilities 
of moving (or not) between states at time t given which state 
the model was it at time t-1. 

Each of the 5 possible lags (± 2,1 or 0 weeks) was assigned equal prior 

probability (p = 0.20). 
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