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Abstract

This paper investigates the influence of the uncertainty in different microme-

chanical properties on the variability of the macroscopic response of cross-

laminated timber plates, by means of a probabilistic sensitivity analysis.

Cross-laminated timber plates can be modelled using a multiscale finite ele-

ment approach which although suitable, suffers from high computational cost.

Investigating parametric importance can incur considerable time penalty

since conventional sensitivity analysis relies on a large number of code eval-

uations to produce accurate results. In order to address this issue, we build

a statistical approximation to the code output and use it to perform sen-

sitivity analysis. We investigate the effect of a collection of parameters on

the density and Young’s moduli of wood. Additionally, the influence on the

response of cross-laminated timber plates subject to bending, in-plane shear
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and compression loads is investigated due to its relevance within the engi-

neering community. The presented results provide a practical insight into

the importance of each micromechanical parameter, which allows research

effort to be focused on the important wood properties.

Keywords: Probabilistic sensitivity analysis, Gaussian process emulation,

Cross laminated timber, Multi-scale analysis, Finite elements

1. Introduction1

In recent years, considerable attention has been paid to the investigation2

of wood at multiple length scales. At microscopic levels, wood shows re-3

markable features, such as its highly organised hierarchical design, its ability4

to deflect microcracks which results in an increased fracture toughness, and5

its lightweight and excellent thermal and acoustic insulation characteristics6

due to its porous microstructure. At very large scales, the above properties,7

combined with its reduced environmental impact, make wood to be an ideal8

candidate for building applications. In particular, cross-laminated timber9

(CLT) has been increasingly spreading in Europe and North America over10

the last decade as a novel prefabricated building system [1]. CLT panels are11

composite structures made up of several layers of boards stacked crosswise12

and glued together on their faces, as can be seen in Figure 1.13

[Figure 1 about here.]14

The main advantages of CLT are its fast and efficient on-site installation,15

its favourable seismic performance, its ability to self-protect against fire and16

its excellent strength [2].17
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Despite the above advantages, the computational modelling of CLT, and18

in general timber structures, still represents a very challenging task. This can19

be attributed to the highly heterogeneous macroscopic properties of wood.20

One possible approach to tackle this problem is to predict the macroscopic21

response using the mechanical information coming from its microstructure.22

This task can be achieved by means of the finite element (FE) based mul-23

tiscale modelling technique [3]. Considerable effort has been devoted to the24

computational modelling of timber structures [4, 5, 6, 7], but the complete25

understanding of the mechanical properties of this material at small spatial26

scales is still an open issue.27

The micromechanical properties of wood can be uncertain due to the lack28

of knowledge or because of measurement errors at such small length scales.29

As these properties are crucial to develop reliable predictive models, the un-30

certainty in their values must be taken into account. Recently, Saavedra31

Flores et al. [8, 9] considered the uncertainty in the micromechanical param-32

eters of a multiscale model for wood. This uncertainty was propagated to the33

macro-scale, giving rise to uncertain macroscopic properties. In this new pa-34

per, we continue the line of development started in the above references [8, 9].35

By means of a probabilistic sensitivity analysis, we investigate the influence36

of uncertainty in different microscopic properties on the variability of the37

macroscopic response of wood. Probabilistic sensitivity analysis (SA) relies38

on a large number of expensive code evaluations to produce accurate results.39

In order to tackle the high computational cost associated with the analysis,40

we build a more affordable surrogate of the code and use it to perform the41

numerical studies. There are a number of methodologies for approximating42
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the output of expensive codes, see e.g. [10]. One particular approach is43

Gaussian process emulation (GPE), which builds a statistical approximation44

to the output of the code. Using this technique we investigate the extent45

to which different micromechanical parameters influence the macroscopic re-46

sponse of wood. Due to its relevance within the engineering community, we47

also explore the influence on the response of CLT plates subject to bending,48

in-plane shear and compression loads. Once the relative importance of dif-49

ferent parameters is known, the information can be used to either reduce the50

computational cost of the model by fixing the least influential variables, or51

to maximize the reduction in response uncertainty by conducting research52

on the important wood properties.53

The rest of the paper is organized as follows: Section 2 outlines the rel-54

evant wood properties and corresponding modelling strategies. Section 355

introduces the basics of probabilistic sensitivity analysis and Gaussian pro-56

cess emulation. Section 4 presents the micro-macro study, in which the effect57

of the micro parameters on each macro parameter is measured. Section 558

provides an interpretation of the results from the previous section and finally59

Section 6 draws the main conclusions of the presented work.60

2. Multi-scale modelling61

The multiscale modelling of timber is described in this section. A com-62

putational homogenisation approach is adopted to capture the hierarchical63

nature of wood at different length scales. Here, four different spatial scales are64

considered. These are the nanometer, micrometer, millimeter and the struc-65

tural scales. For further details on the present homogenisation approach, we66
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refer, for instance, to Saavedra Flores et al.[11].67

2.1. Relevant wood micromechanical parameters68

At nanometer levels, wood contains three basic constituents: cellulose,69

hemicellulose and lignin [12]. These three fundamental constituents form the70

wood cell-wall composite material whose basic unit building block is called71

microfibril. This composite comprises reinforcing cellulose fibrils oriented72

mainly in a single direction (in almost the whole cell-wall volume) periodically73

embedded in a softer matrix.74

The specific angle of the microfibrils with respect to the longitudinal75

axis of the wood cell is typically called microfibril angle, MFA. The volume76

fraction of cellulose fc is defined as the volume of cellulose with respect to77

the total volume of the cell-wall composite. Similarly the volume fraction of78

hemicellulose fh relates the volume of hemicellulose. The reinforcing cellulose79

is made up of periodic alternations of crystalline and amorphous fractions.80

The degree of cellulose crystallinity fcc is defined as the volume fraction of the81

crystalline portion of cellulose with respect to the total volume of cellulose.82

As the cellulose is a long and stiff polymeric fibre, the length of the crystalline83

fraction is termed here Lcc.84

The matrix of the cell-wall composite is made of hemicellulose and lignin85

polymers. Hemicellulose is built up of sugar units and has little strength,86

with mechanical properties highly sensitive to moisture changes. Lignin is87

an amorphous and hydrophobic polymer and its main purpose is to cement88

the individual wood fibres together and to provide inter-fibre shear strength.89

At the micrometer scale, the material can be represented by a periodic90

arrangement of long slender tubular micro-fibres (or wood cells), oriented91
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nearly parallel to the axis of the stem. The cross-sections of each micro-fibre92

is (normally) hexagonal, and can be defined by means of four geometric pa-93

rameters. These are the tangential and radial dimensions of the hexagonal94

cross-section, denoted here as T and R (along the tangential and radial direc-95

tions of wood), respectively, the thickness of the cell-wall, tc, and the angle96

θ (whose value can be, for instance, 0o for a rectangular cross-section, or 30o
97

for a regular hexagonal shape). In softwoods, wood fibres can be divided98

into early-wood and late-wood. The early-wood fibres are characterised by99

large diameters and thin cell-walls, whereas late-wood fibres are composed of100

narrow diameters with much thicker cell-walls. In order to avoid confusion,101

we use in this paper the following terminology to differentiate both types of102

cells. The variables Tp, Rp and tcp refer to the tangential and radial dimen-103

sions and thickness of early-wood fibres. Similarly, Tv, Rv and tcv refer to the104

tangential, radial and thickness dimensions of late-wood fibres. Given the105

little information reported on the distinction of θ between early-wood and106

late-wood, such an angle is assumed to be the same for both types of cells.107

At the scale of a few millimeters wood is represented by the growth rings,108

typically found in the cross-section cut through the trunk of a tree. Within109

a growth ring, the volume fraction of early-wood fibres with respect to the110

total volume of growth ring is denoted as Pew. For further information about111

the morphology and composition of wood at microscopic levels, we refer, for112

instance, to [13, 14]. The final macroscopic or structural scale is represented113

by the periodic repetition of the growth rings which form the base material.114

Summarizing, 13 micromechanical parameters are defined. Four at the115

nanometer scale (MFA, fc , fh and fcc), eight at the micrometer scale (tc,116

6



θ, Tp, Rp, tcp, Tv, Rv and tcv) and one at the millimeter scale (Pew).117

2.2. Macroscopic parameters118

The general procedure consists of building a material model for wood by119

homogenising the three material scales described in the previous section (at120

the level of the microfibril, wood fibres and growth rings). With this model121

at hand, we can predict the response of any (macroscopic) timber structure122

(that is, the structural scale).123

In this study, we choose two types of structural configurations. First, we124

analyse a timber plate of length of 2.4 m (parallel direction to wood fibres),125

width of 1.2 m (perpendicular direction to wood fibres), and thickness of 4 cm.126

We note that the general dimensions of 1.2 m by 2.4 m belong to a standard127

geometry adopted typically for the experimental testing of structural panels128

[15, 16, 17]. The plate is subject to four-point bending along the length and129

width of the panel. From these analyses we obtain the longitudinal and trans-130

verse Young’s moduli for wood, E0 and E90, respectively. Second, we analyse131

a CLT plate. The motivation of choosing CLT for this study is because of its132

increasing use worldwide as a promising prefabricated construction system133

[11]. The CLT plate consists of three layers of boards stacked crosswise and134

glued together on their faces. Each layer is 4 cm of thick, with a length of135

2.4 m and a width of 1.2 m (that is, the first configuration described above).136

Thus, the total thickness of the CLT plate is 12 cm. The outer layers are137

made of timber members oriented in the long direction of the panel (that is,138

the strong direction). The central layer is made of members oriented in the139

short (or weak) direction. The CLT plate is subject to three-point bending140

along the strong direction, in-plane shear loading and compression parallel to141
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wood fibres in the outer layers. From these analyses, we obtain the bending142

stiffness Kbend, the in-plane shear stiffness Ksh and the axial stiffness Kcomp143

of the CLT plate. For further details on these stiffness components, we refer144

to [11]. In addition, we compute the macroscopic density of the material ρ.145

The above six macroscopic parameters (ρ, E0, E90, Kbend, Kcomp and Ksh) are146

selected because of their relevance in the day-to-day practice of analysis and147

design of timber structures, particularly in the context of CLT structures.148

2.3. Modelling of macro and micro-scales149

Multi-scale models enable specifying the relationships between physical150

variables observed at different length scales. These are of particular impor-151

tance in the study of heterogeneous materials with hierarchical microstruc-152

tures in which the macroscopic response of the material can be predicted153

from the information coming from the microscopic (or lower) level.154

In the present multiscale constitutive theory, each material scale is asso-155

ciated with a microstructure whose most statistically relevant features are156

incorporated within a representative volume element (RVE). This RVE is157

assumed to have a (microscopic) characteristic length much smaller than the158

macro-continuum, and at the same time, a size large enough to capture the159

microscopic heterogeneities in an averaged sense. This multiscale method-160

ology has proven to be successful to reproduce the mechanical behaviour of161

materials at several length scales. As described at the beginning of Section 2,162

four spatial scales can be identified. Three of them represent material scales,163

and a fourth is associated with the structural scale.164

Depending on the kinematic constraints imposed in the RVE, several165

classes of multiscale models can be defined. Here, we choose the periodic166
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boundary displacement fluctuations multiscale model [18], which is typically167

used to model periodic media, like wood micro structures and several other168

natural materials. The type of wood species chosen for this investigation is169

radiata pine grown in Chile, which has several applications in building and170

engineering structures.171

Each spatial scale was modelled using the FE model with meshes depicted172

in Figure 2. Note that all the FE meshes used in our computational sim-173

ulations were obtained after a preliminary convergence study. The results174

(omitted here for brevity) did not indicate a significant change of the simu-175

lation outcomes for increasing mesh densities. Additionally, the same mesh176

was used in previous works [2, 19] We also note that the first two material177

scales (Figure 2(a), Figure 2(b), Figure 2(c)) have already been described178

in [11] and therefore, we skip the details about their modelling. A typical179

finite element mesh of the RVE chosen to describe the mechanical response180

of the growth ring is shown in Figure 2(d). It consists of 288 nodes and 165181

hexahedral elements. The turquoise colour represents the portion of mate-182

rial calculated by the computational homogenisation of the early-wood RVE183

shown in Figure 2(c), whereas the light brown colour shows the material ob-184

tained by the homogenisation of the late-wood RVE shown in Figure 2(b).185

The periodic repetition of the growth rings forms the base material for the186

macroscopic or structural scale (in this case, the CLT panels). This scale187

is modelled using the finite element mesh depicted in Figure 2(e) (for the188

four-point bending) and 2(f) (for the three-point bending). The discretisa-189

tion is the same in both figures, with 379 093 nodes and 345 600 SOLID45190

elements. The computational homogenisation procedure described in this191
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section is implemented in the commercial software ANSYS [20].192

[Figure 2 about here.]193

3. Probabilistic sensitivity analysis194

Being a representation of a complex natural process, it is expected that195

the FE code will also be complex. Complexity of computer codes is mainly196

associated with their high computational cost and the lack of an analyti-197

cal expression of the input/output mapping i.e., the model is treated as a198

black box. The multiscale FE model used in this paper is a deterministic199

simulator. This means that the output is precisely the same, every time its200

multidimensional input is given the same value. Despite this, micromechan-201

ical parameters are physical quantities and as such come from some joint202

probability distribution, fX(x) effectively making them an uncertain multi-203

variate random variable, X. This uncertainty is propagated to the output204

through the simulator. Thus, the output y = η(x) can be seen as a random205

variable Y = η(X), with its own probability distribution. Very often the206

different inputs do not influence the output equally. Part of the computer-207

based investigation of the physical process is determining the influence of the208

uncertainty in the different inputs, or sets of inputs, on the variability of the209

output. This process is known as probabilistic sensitivity analysis (SA).210

There are two main types of sensitivity analyses, namely local (LSA) and211

global (GSA). LSA is concerned with determining the effect of small, local212

perturbations in the parameter value around a given base point. A very213

common local sensitivity approach is the one based on derivatives, namely214

∂Y/∂Xi, where Xi is the ith component of X. The local method is not used215
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in the current investigation, since it fails to capture the effect of the inputs216

when their values are arbitrarily chosen from the entire input domain. For217

more detail on LSA see [21].218

In order to fully explore the input space, GSA relies on a number of219

points carefully spread according to some experimental design. There ex-220

ists a variety of GSA techniques such as function decomposition in main221

and higher order effects, regression coefficients and variance-based methods,222

among others (see for example [21]).223

3.1. Variance-based sensitivity analysis224

Since the models of interest are deterministic, the variance of the output225

random variable will be entirely due to the uncertainty in the input values.226

This means that if one could learn the exact, true values of the inputs, the227

variance of Y would be reduced to 0. This leads to the notion that fixing228

one of the inputs Xi at a given value xi and re-running the code will result229

in Y having a lower variance. Let V∼i[Y |Xi] be the conditional variance of230

Y , taken over all factors, but Xi (denoted X∼i) and given Xi = xi. This231

conditional variance can be used as a measure of how influential the fixed232

parameter is. A severe drawback of this measure, however, is its dependence233

on the location of the point xi. This problem could be resolved by taking234

the average of the conditional variance over all possible values of xi, that is235

Ei[V∼i[Y |Xi]]. It is a well known fact in Probability theory that the variance236

of a random variable can be decomposed as:237

V[Y ] = Ei[V∼i[Y |Xi]] + Vi[E∼i[Y |Xi]] (1)
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Eq. (1) gives another important diagnostic - Vi[E∼i[Y |Xi]] - the first order238

effect of Xi on Y . The associated normalised sensitivity measure, also known239

as a Sobol’ index [22] is:240

Si =
Vi[E∼i[Y |Xi]]

V(Y )
(2)

A high value of the Sobol’ index for the given variable, means that it is241

important, i.e. if it is fixed, there will be a significant reduction in the242

variance of Y .243

Many practical models are of the so-called non-additive class. That is,244

the effect that individual inputs have on the variance cannot be separated245

to account for 100% of the output variance. Instead, interactions between246

individual inputs or sets of inputs will play an important role. To capture247

such effects, the higher-order Sobol’ indices can be constructed:248

Sp =
Vp[E∼p[Y |Xp]]

V(Y )
(3)

where p ⊂ {1, . . . , d} is a set of indices of all inputs under investigation. It249

can be shown that:250

d∑
i=1

Si +
d∑

i<j

Si,j +
d∑

i<j<k

Si,j,k + . . .+ S1,2...,d = 1 (4)

where the summation is carried out over all d dimensions, which means that251

summing over all Sobol’ indices recovers the full variance. Full analysis of the252

main effects of the model inputs and their respective interactions will result253

in Eq. (4) having 2d − 1 terms. This means that with relatively low num-254

ber of inputs, the summation components become too many to investigate255
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individually. Homma and Saltelli [23] introduced the Total Sobol’ index :256

STi
=

(
1− VX∼i

[EXi
[Y |X∼i]]

V(Y )

)
(5)

This measure captures the effect of the i− th input and all of its interactions,257

by fixing all other inputs. It is true that Si ≤ ST i, due to interactions between258

inputs. Equality can only arise in a perfectly additive model. An input is259

said to be truly non-influential if and only if ST i = 0. In [24] the authors260

have argued that a good, albeit non-exhaustive characterization of the input261

influences is given by the set of first order and total Sobol’ indices. This is262

further discussed with the results presented in Section 4.263

3.2. Gaussian process emulation264

Simulators used to model complex scientific phenomena are usually very265

computationally expensive. This is to say that a single evaluation of the266

code’s output at a given set of input values takes sufficiently long time, as267

to prohibit any type of analysis which requires a large number of model268

runs. The multiscale FE code used in this work is no exception. Since269

sensitivity analysis relies on Monte Carlo (MC) approximations of integrals,270

the estimators of the Sobol’ indices will converge to their true value as the271

number of points used to estimate them approaches infinity. Clearly, the272

analysis cannot be carried out using the code directly. In such cases it is273

common to use a less expensive approximation of the code output. These274

approximations are widely known as metamodels or emulators. There is a275

number of existing metamodelling techniques, but for the purposes of this276

study, Gaussian process emulators (GPE) are used. Formally, the model277
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structure is expressed as:278

η(x) = h(x)Tβ + Z(x) (6)

where η(x) is the simulator output as a function of its inputs, h(x)T is a279

known function of the inputs, β is a vector of unknown coefficients and Z(x)280

is a Gaussian process with zero mean, and covariance, σ2c(x,x′;ψ). The281

function h(x) should express any expert opinion about the form of the simu-282

lator output and together with the parameter β reflects its overall trend. In283

practice however, the trend is often taken to be constant as h(x) = 1, charg-284

ing the Gaussian process in Eq. (6) with the responsibility of capturing the285

behaviour of the underlying function. In the formulation above, σ2 is a scale286

parameter, c(x,x′;ψ) is a known correlation function and ψ is a parameter287

specifying the behaviour of the correlation function. The parameters of the288

Gaussian process are also commonly referred to as hyperparameters [25] to289

distinguish them from the model parameters.290

Using the GPE, a posterior probability distribution for the mean of the291

computer code’s output can be constructed, conditional on a relatively small292

number of simulator runs with outputs y and the estimated parameter values,293

θ̂ = {β̂, σ̂2, ψ̂}. It can be shown [26] that at a new unobserved set of input294

values, x∗, the posterior distribution has the form of a multivariate Gaussian295

distribution:296

η(x∗)|y, θ̂,∼ N (m(x∗), C(x∗,x′
∗
)) (7)

with posterior predictive mean function:297

m(x∗) = β̂ + t(x∗)TC−1(y − 1β̂) (8)
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and posterior predictive covariance function:298

C(x∗,x′
∗
) = σ̂2(c(x∗,x∗)− t(x∗)TC−1t(x′∗)) (9)

In Eqs. (8) and (9) C ∈ Rn×n such that Cij = c(xi,xj), t(x
∗) ∈ Rn such that299

t(x∗) = (c(x∗,x1), . . . , c(x
∗,xn))T and 1 ∈ Rn such that 1 = (1, . . . , 1)T . The300

process of estimating θ (i.e. constructing θ̂) from observed data is referred301

to as training and is very well described in [10] from a classical prospective302

or in [26, 27] from a Bayesian standpoint. Once the emulator is trained, its303

posterior distribution can be sampled many times at an affordable cost to304

provide data for various analyses.305

4. Micro-Macro analysis306

4.1. Gaussian process emulator validation307

The micro-macro analysis deals with the investigation of relations be-308

tween the 13 microscopic properties and the 6 macromechanical parameters309

described in Section 2. The 6 macro parameters are analysed independently310

by fitting one Gaussian process per parameter. Therefore, the black-box311

function is of the form Mj = η(m1, . . . ,m13), where the Mj is the jth macro312

parameter and m1, . . . ,m13 are the micro parameters.313

[Table 1 about here.]314

Since the multiscale model is expensive, it should only be run as many times315

as necessary. When performing computer experiments it is common to apply316

the 10d rule [22] for selecting the size of the training sample for the GPE.317
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Therefore, 130 uniformly distributed points were selected via a Latin hy-318

percube sampling (LHS). LHS was chosen because it best represents each319

individual dimension. Another 60 LHS points were chosen as a validation320

set to check the quality of the GPE. The GPE was coded in MATLAB R© and321

the model was run 190 times. The material properties of the model and the322

lower and upper bounds are retrieved from Saavedra Flores et al. [8, 11].323

Table 1 gives the ranges of the each micromechanical parameter. The val-324

ues were constrained in order to match physically possible values and the325

available experimental data. The properties are assumed to be stochasti-326

cally distributed as uniform random variables because they are susceptible327

to considerable variations when measured experimentally [11]. A genetic al-328

gorithm was used to perform a direct search for the optimal hyperparameter329

values and the mean and variance were calculated via maximum likelihood330

estimation (MLE) [10]. There are a variety of validation techniques, which331

could be used for identifying problems with the emulator (see for example332

[28]). Here we have used individual prediction errors which are represented333

by the normalised difference between the real and predicted values of each334

test point:335

DI
i =

yi − E[η(x∗i )|y]√
V[η(x∗i )|y]

(10)

where the expected value of the posterior distribution, E[η(x∗i )|y] and its336

variance V[η(x∗i )|y] are given in functional form in Eq. (8) and Eq. (9),337

respectively. If the emulator can accurately represent the simulator, these338

errors should have a standard Student-t distribution. With a large number of339

degrees of freedom the Student-t approaches a standard normal distribution340

and thus, any errors with absolute value greater than 2 (i.e. outside of the341
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95 % credible interval) can be considered local conflicts between emulator342

and simulator. Patterns of errors lying outside the [−2, 2] region could in-343

dicate more serious problems. A useful visual validation tool is the plot of344

predictions at the test points versus their true values. Figure 3 shows the345

validation results for all 6 macro parameters. It can be seen that there is a346

close correspondence between predictions and observations. Each point also347

displays the 95% credible interval, which is based on the posterior predictive348

variance. The individual prediction errors plotted against prediction values349

are shown in Figure 4. All but a few of the errors lie within the desired350

boundaries, which together with the plots in Figure 3 suggest that the emu-351

lator is a valid representation of the simulator. Once the GPE was validated352

the 60 points used for the process were added to the training sample and the353

surface was refit based on all 190 points.354

[Figure 3 about here.]355

[Figure 4 about here.]356

4.2. Calculation of Sobol’ indices357

As mentioned in Section 3.1, the calculation of Sobol’ indices requires358

the evaluation of both conditional and unconditional expectations and vari-359

ances. These operations are associated with the calculation of a number of360

integrals. In order to evaluate them, the integrals can be approximated by361

Monte Carlo (MC) simulation. Since this is the case, a relatively large sam-362

ple size is required to achieve reasonably accurate estimation results. This363

is often a problem because, coupled with the computational complexity of364

most scientific and engineering codes, extensive sampling results in a very365
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costly sensitivity analyses. Using GPEs as inexpensive approximations to366

the output of the code, together with the use of parallel computers, enables367

MC based analyses to be performed within reasonable time periods. The368

unconditional variance of the simulator output can be written as:369

V[Y ] = E[Y 2]− E[Y ]2 (11)

When using the emulator, the simulator output Y in Eq. (11) is substituted370

with the posterior mean of the emulator E[η(X)|y] (Eq. (8)). Then, the371

Monte Carlo approximations of the terms in Eq. (11) are given by:372

Ê[Y ] =
1

N

N∑
n=1

E[η(x(n))|y] (12)

373

V̂[Y ] =
1

N − 1

N∑
n=1

E[η(x(n))|y]2 − Ê[Y ]2 (13)

Here we only give the estimator for the first-order and the total conditional374

variances, since any higher-order variances could be calculated from their375

definitions in Eq. (2) and in Eq. (5).376

V̂[E[Y |Xi]] =
1

N − 1

N∑
n=1

E[η(x
(n)
i ,x∼i

(n))|y]E[η(x
(n)
i ,x′∼i

(n)
)|y]− Ê[Y ]2 (14)

377

V̂[E[Y |X∼i]] =
1

N − 1

N∑
n=1

E[η(x
(n)
i ,x′∼i

(n)
)|y]E[η(x

′(n)
i ,x′∼i

(n)
)|y]− Ê[Y ]2

(15)

where x and x′ come from two distinct sets of values for X each of size378

N × d. The full algorithm for the calculation of the first order and total379

Sobol’ indices is given in [29]. In some instances, analytical expressions380

from the GPE are available for all quantities of interest, but these rely on381
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some modelling assumptions and hence we resort to sampling the posterior382

of the GPE directly. A straightforward convergence study was carried out383

to determine a suitable sample size. The procedure was based on obtaining384

100 Sobol’ index estimates based on 20 different sample sizes between N =385

1000 and N = 20 000. In Figure 5 we plot the mean and one standard386

deviation of the first order indices for density and select the appropriate387

sample size as the one after which there is no appreciable change in the388

index’ standard deviation. In this case the size was selected to be N =389

10 000 points per variable. Inspecting Figure 6, which shows the same study390

based on the total indices, confirms the correctness of the choice. A sample391

of N = 10 000 points per variable results in a total of M = N × (d + 2) =392

150 000 points for estimating first and total Sobol’ indices for all 13 variables.393

It is immediately obvious that such a sample could have not come directly394

from the model at a reasonable computational cost. Figure 7 shows a set395

of bar graphs representing the first order and total Sobol’ indices of the 13396

micromechanical parameters for density, longitudinal and transverse Young’s397

modulus, in rows (a) - (c), respectively. Figure 8 follows the same logic and398

depicts the Sobol’ index ranking for bending, compression and shear stiffness399

in rows (a) - (c), respectively.400

[Figure 5 about here.]401

[Figure 6 about here.]402

[Figure 7 about here.]403

[Figure 8 about here.]404
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The indices represent a ratio of variances so they can not (in theory) be405

negative. However some estimated values that are close to 0 are negative,406

due to the fact that all integrals are estimated using sums (see Eq. (14)). It407

is useful therefore to have a measure of confidence in the estimations.408

Traditionally the use of bootstrap [30] has been employed when the data409

generating process is expensive and limits the size of available observations;410

see for instance [31]. When using the emulator however, this is not the case411

and predictions for any given input combination are readily available. The412

fact that the GPE is only an approximation to the output of the real code413

can be accounted for by sampling the whole posterior distribution, instead of414

just its mean. The error bars on Figures 7 and 8 depict ±2 sample standard415

deviations obtained from sampling the emulator 1000 times. These measures416

give a 95% confidence interval for the indices and reflect the validity in the417

predictions from the GPE shown in Figures 3 and 4418

5. Discussion419

Probabilistic sensitivity analysis used in conjunction with GPE provides420

an affordable way of constructing Sobol’ indices. Using this framework any421

number of indices or combinations thereof can be easily computed. For prac-422

tical (visualisation) reasons we only compute the first and total Sobol’ indices.423

We remind the reader that these two indicators measure the influence of the424

micromechanical properties on the uncertain macroscopic response. Here, a425

micromechanical parameter is considered to be non-influential (or with lit-426

tle impact) on the macroscopic response if both Sobol’ indices are zero (or427

nearly zero). In general, the same trends in the first-order and total Sobol’428
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indices are observed in both Figures 7 and 8, which represents weak inter-429

action among parameters. Interaction among input variables is indicated as430

the relative increase in the total Sobol’ indices as compared to the first order431

terms. It is noted that this increase quantifies that part of the response vari-432

ability which cannot be written off as a simple superposition of input effects.433

Weak interactions is not to say that their relative magnitude with respect434

to the corresponding first order effect is small, but rather that there are no435

major changes in the ordering of the inputs by importance. The insets in436

each figure show a magnification of those indices which can change order in437

the overall importance ranking due to their quantified uncertainty. Most of438

the affected parameters have relatively low Sobol’ indices and are thus simply439

a demonstrator of the fact that sensitivity ranking is a probabilistic measure440

and should not be taken to have a fixed numerical value. For example the441

inset in Figure 8(b) shows that the importance of the thickness of late wood442

fibres can dominate that early wood fibres for compression stiffness. In gen-443

eral, parameters that were identified as important kept their positions after444

the inclusion of uncertainty. For the sake of clarity only two first order Sobol’445

indices are show in the inset. On the other hand all total indices whose error446

bars could not be clearly distinguished are shown in the insets in the left col-447

umn of Figures 7 and 8. It is worth mentioning that the results presented in448

Section 4 depend on the assumed parametric distribution (see Table 1). This449

however, does not hold for the general methodology, which is independent of450

the modelling assumptions and can be applied to a wide variety of problems.451

A great influence of the cellulose content on the CLT stiffness parame-452

ters Kbend, Kcomp and Ksh is observed in Figures 8. The greatest influence453
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is produced by the cellulose volume fraction fc on the in-plane shear CLT454

stiffness Ksh, with a First order Sobol’ index S1
i close to 0.36, and a total455

Sobol’ index ST
i around 0.38. Furthermore, its influence on the CLT stiff-456

ness is lower for the bending and compression deformation mechanisms (i.e.,457

Kbend and Kcomp, respectively), with S1
i and ST

i just about 0.3 in both cases.458

This can be attributed to the fact that during the in-plane shear deformation459

process, the three CLT layers contribute greatly to the overall shear stiffness460

of the CLT plate. Nevertheless, for the bending and compression deforma-461

tion modes, only the two external CLT layers (whose wood fibres are aligned462

with the loading direction) contribute significantly to the overall stiffness.463

The central CLT layer provides little stiffness because the wood fibres are464

perpendicular to the loading direction.465

We note that the above strong influence of the cellulose content on the466

overall stiffness was expected. Nevertheless, neither the difference between467

the influence of the cellulose content on the shear deformation mode and on468

the bending and compression behaviour, nor its numerical quantification, was469

evident. This represents the main justification of carrying out the present470

sensitivity analysis.471

Other influencing parameters on the CLT stiffness components are the472

late-wood and early-wood cell-wall thicknesses, tcv and tcp, respectively, with473

first-order and total Sobol’ indices around 0.2 for the compression and shear474

stiffness, and tcp over 0.25 for bending.475

The influence of the microfibril angle, MFA, on the CLT stiffness is lower476

than that produced by the cell-wall thickness parameters. Here, the total477

Sobol’ indices reach a maximum value of 0.07 for shear, 0.14 for compression478
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and 0.12 for bending, and first order indices of 0.03, 0.12 and 0.11 , respec-479

tively. The remaining micromechanical parameters influence very little on480

the CLT stiffness components.481

As expected, the density ρ is strongly affected by the late-wood and early-482

wood cell-wall thicknesses, and by the angle θ. Their corresponding total483

indices exceed 0.37, 0.31 and 0.24, respectively. In particular, the strong484

influence of late-wood is due to their thicker cell-walls when compared with485

early-wood fibres. The influence of the remaining micromechanical parame-486

ters on wood density can be neglected.487

The influence on the longitudinal Young’s modulus E0 is mainly governed488

by the degree of cellulose crystallinity fcc, the cellulose volume fraction fc,489

and by the angle MFA. Their corresponding total Sobol’ indices are 0.29,490

0.27 and 0.23, respectively. The late-wood and early-wood thicknesses, and491

the angle θ also influence the longitudinal Young’s modulus, but their indices492

are lower. The first two have a total index of 0.11 with 0.08 for the third.493

Contrary to E0, the transverse Young’s modulus E90 is greatly influenced494

by the late-wood cell-wall thickness, with first-order and total Sobol’ indices495

nearly 0.6. This behaviour can be attributed to the fact that E90 is mainly496

governed by the cell-wall matrix’s response. The little influence of the MFA497

on E90 also contrasts with the great influence of MFA on E0. Here, both498

Sobol’ indices approach zero. Nevertheless, a greater influence on E90 could499

eventually be found if the values of MFA were greater. However, the emulator500

was trained with small values of MFA ∈ [0◦-22◦].501

The angle θ is another influencing parameter on E90. Its corresponding502

Sobol’ indices are close to 0.2. This behaviour is explained by the fact that503
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the angle θ determines the transverse shape of wood fibres. Therefore, it also504

affects the behaviour of E90.505

In general, the tangential and radial dimensions of wood fibres, Tp, Tv,506

Rp and Rv, have virtually no impact on the macroscopic response. Similarly,507

the volume fraction of hemicellulose fh, the length of the crystalline cellulose508

fraction Lcc and the volume fraction of early-wood fibres with respect to the509

total volume of growth ring Pew, have also very little impact on the macro-510

scale. The relevance of identifying these non-influencing parameters is that511

they can be removed from the modelling process in order to develop simpler512

and much more efficient models.513

6. Conclusion514

The influence of micromechanical properties of wood on its uncertain515

macroscopic response was investigated by means of a probabilistic sensitiv-516

ity analysis. A homogenisation-based multiscale approach was adopted to517

capture the micro-macro relations existing in wood. Due to the relevance518

within the engineering community, the influence on the structural response519

of sawn wood and CLT plates was studied. The most influential microscopic520

parameter on the CLT stiffness components was found to be the cellulose521

content fc. The degree of cellulose crystallinity, and the early and late wood522

thicknesses also played an important role on the CLT stiffness. The hemi-523

cellulose volume fraction, the tangential and radial dimensions of the wood524

fibre and the length of the crystalline cellulose showed very little influence525

on the macroscopic response. The volume fraction of early wood fibres with526

respect to the total volume of growth rings also showed little effect on the527
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macroscopic stiffness. A practical insight into the definition of the microme-528

chanical parameters allows to have an idea of the relevance of each parameters529

in the determination of the macroscopic response after the homogenisation530

procedure. Thanks to the sensitivity results presented in this work, the rel-531

evance of the parameters can not only be verified, but also quantitatively532

measured. These results are of practical interest, as they provide a simple533

criterion to weight the micromechanical parameters for future optimization534

of the macroscopic responses.535

Acknowledgments536

E.I. Saavedra Flores acknowledges the financial support from the Chilean537

National Commission for Scientific and Technological Research (CONICYT),538

FONDECYT REGULAR research project No 1160691.539

P.O. Hristov acknowledges the funding provided by Parker-Hannifin Manu-540

facturing (UK) Ltd.541

25



List of Figures542

1 Schematic representation of a CLT panel [32]. . . . . . . . . . 28543

2 Finite element meshes of the RVEs and structures analysed544

in this paper along with their corresponding length scales.545

(a) RVE associated with the microfibril scale (for the sake546

of clarity, only one half of the RVE is shown here); (b) RVE547

associated with the modelling of late-wood fibres; (c) RVE548

associated with early-wood fibres; (d) growth ring RVE; (e) 4-549

cm-thick layer subject to four-point bending; (f) 12-cm-thick550

CLT panel (consisting of three 4-cm-thick layers). For the sake551

of clarity, the FE mesh has been hidden. Figure adapted from552

[32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29553

3 Simulated versus emulated values. The prediction is given by554

the posterior mean and the 95% credible interval (error bars)555

is given by the posterior variance of the emulator. . . . . . . . 30556

4 Individual prediction errors for all six macro parameters. The557

emulator value has a Student-t posterior distribution and the558

errors should lie within the interval [−2, 2] with 95% confidence. 31559

5 Convergence study for the first order parameter effects on den-560

sity. Line and error bars are mean and ±1 standard deviation561

of the indices distribution estimated by sampling the emulator562

mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32563

6 Convergence study for the total parameter effects on density.564

Line and error bars are mean and ±1 standard deviation of565

the indices distribution estimated by sampling the emulator566

mean. All non-influential values are overestimated at small567

sample sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33568

7 First and total Sobol’ indices for density, longitudinal and569

transverse Young’s moduli, (a) to (c), respectively. Error bars570

show ±2 standard deviations of the indices obtained from the571

Gaussian process posterior. The insets show magnification of572

some sets of indices which could change importance due to573

errors. Refer to the text for more detail. . . . . . . . . . . . . 34574

26



8 First and total Sobol’ indices for bending, compression and575

shear stiffness, (a) to (c), respectively. Error bars show ±2576

standard deviations of the indices obtained from the Gaussian577

process posterior. The insets show magnification of some sets578

of indices which could change importance due to errors. Refer579

to the text for more detail. . . . . . . . . . . . . . . . . . . . . 35580

27



outer layer

outer layer

central layer

(a) Stacked layers. (b) Glued layers.

Figure 1: Schematic representation of a CLT panel [32].
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Figure 2: Finite element meshes of the RVEs and structures analysed in this paper along
with their corresponding length scales. (a) RVE associated with the microfibril scale (for
the sake of clarity, only one half of the RVE is shown here); (b) RVE associated with
the modelling of late-wood fibres; (c) RVE associated with early-wood fibres; (d) growth
ring RVE; (e) 4-cm-thick layer subject to four-point bending; (f) 12-cm-thick CLT panel
(consisting of three 4-cm-thick layers). For the sake of clarity, the FE mesh has been
hidden. Figure adapted from [32].
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(a) Density, ρ
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(b) Longitudinal Young’s modulus, E0
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(c) Transverse Young’s modulus, E90

Figure 7: First and total Sobol’ indices for density, longitudinal and transverse Young’s
moduli, (a) to (c), respectively. Error bars show ±2 standard deviations of the indices
obtained from the Gaussian process posterior. The insets show magnification of some sets
of indices which could change importance due to errors. Refer to the text for more detail.
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(a) Bending stiffness, Kbend
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(b) Compression stiffness, Kcomp
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Figure 8: First and total Sobol’ indices for bending, compression and shear stiffness, (a) to
(c), respectively. Error bars show ±2 standard deviations of the indices obtained from the
Gaussian process posterior. The insets show magnification of some sets of indices which
could change importance due to errors. Refer to the text for more detail.

35



List of Tables581

1 Input parameter distribution - U(a, b). . . . . . . . . . . . . . 37582

36



Table 1: Input parameter distribution - U(a, b).

fcc fc Lcc fh Rv Rp Tv Tp tcv tcp θ MFA Pew

% % nm % µm µm µm µm µm µm deg deg %
a 0.45 0.30 26.50 0.25 31.00 37.00 25.00 28.00 4.30 3.10 10.00 0.00 0.67
b 0.60 0.50 36.40 0.29 37.00 40.00 27.00 30.00 8.00 4.30 27.50 22.00 0.80
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