
Compositional Approaches for Representing Relations
Between Words: A Comparative Study

Huda Hakami∗, Danushka Bollegala

Department of Computer Science, The University of Liverpool, L69 3BX, UK

Abstract

Identifying the relations that exist between words (or entities) is important
for various natural language processing tasks such as, relational search, noun-
modifier classification and analogy detection. A popular approach to represent
the relations between a pair of words is to extract the patterns in which the words
co-occur with from a corpus, and assign each word-pair a vector of pattern fre-
quencies. Despite the simplicity of this approach, it suffers from data sparseness,
information scalability and linguistic creativity as the model is unable to handle
previously unseen word pairs in a corpus. In contrast, a compositional approach
for representing relations between words overcomes these issues by using the at-
tributes of each individual word to indirectly compose a representation for the
common relations that hold between the two words. This study aims to com-
pare different operations for creating relation representations from word-level
representations. We investigate the performance of the compositional methods
by measuring the relational similarities using several benchmark datasets for
word analogy. Moreover, we evaluate the different relation representations in a
knowledge base completion task.

Keywords: Relation representations, Compositional semantics, Semantic
relations, Relational similarity.

1. Introduction

Different kinds of semantic relations exist between words such as synonymy,
antonymy, meronymy, hypernymy, etc. Identifying the semantic relations be-
tween words (or entities) is important for various Natural Language Processing
(NLP) tasks such as knowledge base completion [1], relational information re-
trieval [2] and analogical reasoning [3]. To answer analogical questions of the
form “a is to b as c is to d ”, the relationship between the two words in each

∗Corresponding author
Email addresses: h.a.hakami@liv.ac.uk (Huda Hakami),

danushka.bollegala@liv.ac.uk (Danushka Bollegala)

Preprint submitted to Elsevier September 5, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/131168323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pair (a, b) and (c, d) must be identified and compared. For example, (lion, cat)
is relationally analogous to (ostrich, bird) because a lion is a large cat as an
ostrich is a large bird. In relational information retrieval, given the query a is
to b as c is to? we would like to retrieve entities that have a semantic relation-
ship with c similar to that between a and b. For example, given the relational
search query Bill Gates is to Microsoft as Steve Jobs is to?, a relational search
engine [4] is expected to return the result Apple Inc.

A popular approach for representing the relations that exist between pairs
of words is to extract the lexical patterns in which the pairs of words co-occur
in some context [3, 5, 6]. In a text corpus, relationships between words are
categorised by the patterns in which they co-occur, for instance “a is a b” or “b
such as a ” patterns indicate that a is a hyponym of b. Following the Vector
Space Model (VSM) [7], each pair of words is represented using a vector of
pattern frequencies where the elements correspond to the number of times the
two words in a given pair co-occur with a particular pattern. This representation
allows us to measure the relational similarity between two given pairs of words
by the cosine of the angle between the corresponding pattern-frequency vectors.
We call this approach the holistic approach, because the pairs of words are
treated as a whole rather than individually. This method achieved human-
level performance for measuring relational similarity on Scholastic Aptitude
Test multiple-choice word analogy questions. The average score reported for
the US college applicants is 57.0%, whereas Latent Relational Analysis (LRA),
a state-of-the-art algorithm for measuring relational similarity using the holistic
approach, obtained a score of 56.1% [5, 8].

Despite the holistic method achieving human-level performance, especially
for relational similarity prediction tasks, a major drawback of the holistic ap-
proach is the data sparseness. Most of the elements in pair-pattern vector space
have zero occurrences, because most related words co-occur only with a small
fraction of the extracted patterns. Moreover, not every related word pair co-
occur even in a large corpus. Therefore the relations that exist between words
that co-occur rarely cannot be adequately represented. Another limitation of
this approach is its scalability, as we must consider co-occurrences between pat-
terns and all pairs of words. The number of all pair-wise combinations between
words grows quadratically with the number of words in the vocabulary. There-
fore, it is computationally costly, especially if the vocabulary size is very large
(> 106) and new words are continuously proposed because for each new word,
we must pair it with existing words in the vocabulary. Furthermore, a contin-
uously increasing set of patterns is required in order to cover the relations that
exist between the two words in each of those word-pairs.

To overcome the above mentioned issues in the holistic approach, an alterna-
tive method that does not rely on pair-pattern co-occurrences is required. Such
alternative methods must be able to represent the semantic relations that exist
between all possible pairings of words, requiring only semantic representations
for the constituent words. In this paper, we call such approaches for repre-
senting the relationship between words as compositional approaches, because
the way in which the relation representation is composed using the semantic

2

representations of the constituent words. Different approaches have been pro-
posed in the NLP community for representing the meaning of individual words
based on the distributional hypothesis [9], which states that the meaning of a
word can be predicted by the words that co-occur with it in different contexts.
Counting-based approaches [10] represent the meaning of a word by a poten-
tially high-dimensional sparse vector, where each dimension corresponds to a
particular word that co-occurs with the word under consideration in some con-
text. The values of the dimensions are computed using some word association
measure such as the pointwise mutual information or log-likelihood ratio [11].

Prediction-based approaches have also been used for representing the mean-
ings of words using vectors [12, 13]. Instead of counting the co-occurrences of
a target word in its context, Neural Network Language Model (NNLM) [14]
uses distributional information in a corpus to maximise the probability of pre-
dicting the target word from the surrounding context. This procedure embeds
the words into a low-dimensional latent dense vector space model. Mikolov
et al. [15] show that the learnt word embeddings using recurrent neural network
language model [16] captures linguistic regularities by simply applying vector
offset and addition operators. They evaluate the accuracy of the learnt word
representation by applying them to solve word analogy questions of the form
“a is to b as c is to d ”, where d is unknown and it is typically selected from
a subset of words from the vocabulary such that vb − va + vc ≈ vd (we denote
the vector representing the word a as va). Arguably, one of the most popular
examples is the following: vking − vman + vwoman ≈ vqueen, which describes a
gender relationship.

In compositional approaches, the meaning of longer lexical units such as
phrases or sentences are composed by applying some operators on the semantic
representations for individual words. The principle of compositionality states
that the meaning of the hole is a function of the meaning of the parts [17].
Over the years, researchers in compositional semantics have applied different
compositional approaches to extend the meaning of individual words to larger
linguistic units [18, 19, 20]. However, the problem of representing the meaning
of a sentence differs from our problem, representing the relation between two
words, in several important ways. First, a sentence would often contain more
than two words, whereas we consider word pairs that always contain exactly
two words. Second, a good sentence representation must encode the meaning
of the sentence in its entirety, ideally capturing the meanings of salient content
words in the sentence. On the other hand, in relation representation, we are
not interested in the meanings of individual words, but the relationship between
the two words in a word pair. For example, given the word pair (ostrich, bird),
the semantics associated with ostrich or bird is not of interest to us. We would
like to represent the relation is-a-large that holds between the two words in this
example. It is true that most of the compositional operators that have been
proposed in prior work on sentence representations such as vector addition or
element-wise multiplication could be used to create relation representations for
word pairs, but there is no guarantee that the exact same operators that have
found to be effective for sentence representation will be accurate for relation

3

representation. As we see later in our experiments, vector offset, which does not
scale up to sentences turns out to be a better operator for relation representation.

In this paper, we explore several compositional approaches for creating rep-
resentations for the relations between words. In brief, we need a function that
takes two vector representations for each word in a given word-pair to generate
a vector for the relation that exists between those words. Our contributions in
this work can be summarised as follows:

• An empirical comparison of the unsupervised compositional operators (off-
set, concatenation, addition and element-wise multiplication) to represent
relations between words.

• Investigate the performance of those operators on relational similarity and
a relational classification tasks using five different word-analogy bench-
mark datasets.

• Evaluate such operators on a knowledge base completion task.

• Understand to what extent the performance of those methods change
across different word representation methods including counting-based and
predicting-based approaches.

• Systematically examine how the performance of different compositional
operators are affected by the dimensionality of the word embeddings.

Our study shows that the offset operator for relational compositionality out-
performs other compositional operators on word-analogy datasets. For knowl-
edge base completion, element-wise multiplication shows its ability to capture
relations between entity embeddings for a given knowledge graph.

2. Related work

Representing the meaning of individual words has received a wide attention
in NLP. Different representation methods have been proposed using the distri-
butional semantics of the words in a corpus to obtain a vector space model of
semantics where each word is represented in term of its surrounding lexical con-
texts. The distributional hypothesis is summarised by Firth [21] as follows “You
shall know a word by the company it keeps”, which means that the words that
appear in similar contexts share similar meanings. The traditional count-based
word representations count the co-occurrences of a word with its neighbouring
words in a specific window size. In practice however this method generates high
dimensional and sparse vectors [22, 11].

Recently, instead of counting the occurrences between words and contexts,
machine learning techniques have been applied in NLP to directly learn dense
words vectors by predicting the occurrence of a word in a given context. For
example, skip-gram and continuous bag-of-words models learn vectors that max-
imise the likelihood of co-occurrence contexts in a corpus [12]. The word rep-
resentations learnt via prediction-based methods are often referred to as words

4

embeddings because the words are represented (embedded) using vectors in some
lower-dimensional space. In addition to the fact that the learnt semantic space
represents semantically similar words close to each other, Mikolov et al. [15]
report that word embeddings capture relational information between words by
simple linear offset between words vectors. In their study, they propose an ana-
logical reasoning task to evaluate word embeddings. To answer analogical ques-
tions of the form “a is to b as c is to ? ”, they subtract the embedding of word b
from a and then add the embedding of c. Next, a word in the entire vocabulary
set that is the most similar to the generated vector is selected as the answer.
They refer to this method for solving analogy as 3CosAdd. Following this work,
alternative methods have been proposed and compared with 3CosAdd for ana-
logical reasoning [23, 24, 25]. These prior studies focus on proposing methods
for solving word analogy problems given word embeddings but do not consider
composing representations for the relations that exist between two words in a
word-pair.

Vylomova et al. [26] conduct a study to evaluate how well the offset method
encodes relational information between pairs of words. They test the generali-
sation of the offset method across different types of relations by evaluating the
relational vectors generated by the offset method in an unsupervised (cluster-
ing) task and a supervised (classification) task. They conclude that information
about syntactic and semantic relations are implicitly embedded in the offset
vectors, especially under supervised learning. However, they find that the offset
method does not capture semantic relations to the same level of accuracy as it
captures the syntactic relations.

Many compositional operators have been proposed for the purpose of rep-
resenting sentences [19, 27]. For example, Mitchell and Lapata [27] introduce
additive and multiplicative models for sentence representations, whereas Nickel
et al. [28] proposed circular correlation for relational composition. However, to
the best of our knowledge, there exist no work that compares different compo-
sitional operators for the purpose of relation representation. To this end, our
study aims to systematically evaluate how well the contribution of word embed-
dings to represent relations between words by comparing different compositional
operators under unsupervised settings.

3. Relation Composition

3.1. Compositional operators

Our goal in this paper is to compare different compositional operators for
the purpose of composing representations for the relation between two words,
given the word embeddings for those two words. In this work, we assume that
pre-trained word embeddings are given to us, and our task is to use those word
embeddings to compose relation representations. Specifically, given a word-pair
(a, b), consisting of two unigrams a and b, represented respectively by their
embeddings va,vb ∈ Rn, we propose and evaluate different compositional op-

5

erators/functions that return a vector vr given by (1) that represents the rela-
tionship between a and b.

vr = f(va,vb) (1)

In this paper, we limit our study to non-parametric functions f . Parametric
functions that require labelled data for computing the optimal values of the
parameters for generating relation representations are beyond the scope of this
paper.

We use the following operators to construct a vector for a given pair of words:

PairDiff: Pair Difference operator has been used by Mikolov et al. [15] for
detecting syntactic and semantic analogies using the offset method. For
example, given a pair of words (a, b), they argue that (vb−va) produces a
vector that captures the relation that exits between the two words a and
b. Under the PairDiff operator, a resultant relation representation vector
has the same dimensionality as the input vectors. The PairDiff operator
is defined as follows:

vr = (vb − va) (2)

PairDiff captures the information related to a semantic relation by the
direction of the resultant vector. Similar relations have shown to pro-
duce parallel vectors in prior work on word embedding learning [13]. Such
geometric regularities are useful for NLP tasks such as solving word analo-
gies [15].

Concat.: The linear concatenation of two n-dimensional vectors va = (a1, . . . , an)
>

and vb = (b1, b2, . . . , bn)
>

produces a 2n-dimensional vector vr given by,

vr = (a1, a2, . . . , an, b1, b2, . . . , bn)>.

vr can then be used as a proxy for the relationship between a and b. Vec-
tor concatenation retains the information that exist in both input vectors
in the resulting composed vector. In particular, vector concatenation has
been found to be effective for combining multiple source embeddings to
a single meta embedding [29]. However, one disadvantage of concatena-
tion is that it increases the dimensionality of the relation representation
compared to that in the input word embeddings.

Mult: We apply element-wise multiplication between va and vb such that the
ith dimension of vr has the value of multiplying the ith dimensions of the
input vectors. Applying element-wise multiplication generates a vector
in which the dimensions common to both words receive non-zero values.
Mult operator is defined as follows:

vr = (va � vb)

vri = vai
vbi

(3)

Element-wise multiplication has the effect of selecting dimensions that are
common to the embeddings of both words for representing the relation-
ship between those words. Prior work on compositional semantics have

6

shown that element-wise multiplication to be an effective method for com-
posing representations for larger lexical units such as phrases or sentences
from elementary lexical units such as words [27]. However, element-wise
multiplication has an undesirable effect when the embeddings contain neg-
ative values. For example, two negative-valued dimensions can generate a
positive-valued dimension in the relational representation. If the relations
are directional (asymmetric), then such changes of sign can incorrectly
indicate opposite/reversed relations between words. For example, Baroni
and Zamparelli [19] report that word embeddings created via singular
value decomposition performs poorly when composing phrase representa-
tions because of this sign-flipping issue. As we see later in Section 5, Mult
also suffers from data sparseness because if at least one of the correspond-
ing dimensions in two word embeddings is zero (or numerically close to
zero), then the resultant dimension in the composed relational vector be-
comes zero. Our experimental results suggest that more than negativity,
sparseness is problematic for the Mult operator. However, to the best of
our knowledge, the accuracy of element-wise multiplication has not been
evaluated so far in the task of relation representation.

Add: We apply element-wise addition between va and vb such that the ith

dimension of vr has the value of adding the ith dimensions of the input
vectors, given as follows:

vr = (va + vb)

vri = vai + vbi

(4)

Element-wise multiplication and addition have been evaluated in compo-
sitional semantics for composing phrase-level or sentence-level representations
from word-level representations [30, 27]. In the context of relations, a relation-
ship might materialise between two entities because they share many attributes
in common. For example, two people might become friends in social media be-
cause they discover they have many common interests. Consequently, element-
wise addition and multiplication emphasise such common attributes by adding
their values together when composing the corresponding relation representation.
In this work, we hypothesise that some relations are formed between entities be-
cause they have common attributes. By pairwise addition or multiplication of
the attributes of two given words, we are emphasising these common attributes
in their relational representation.

Element-wise operators between word vectors assume that the dimensions
of the word representation space are linearly independent. Alternatively, we
can consider that the dimensions are cross-correlated and use cross-dimensional
operators (i.e. operators that consider ith and jth dimensions for i = j as well as
i 6= j) instead of element-wise operators to create relation representations. For
this purpose, given a word representation matrix W ∈ Rm×n of m words and n
dimensions, we create a correlation matrix C ∈ Rn×n in which the Cij element
is the Pearson correlation coefficient of W:,i and W:,j , (i.e., the ith and the jth

7

dimensions for all of the represented words). In our preliminary experiments, for
the pre-trained word embeddings we use as inputs, we found that the correlation
coefficients between i, j(6= i) dimensions are close to zero, which indicates that
the dimensions are indeed uncorrelated. Consequently, for the prediction-based
word embeddings we used in this comparative study, we did not obtain any
significant improvement in performance by using cross-dimensional operators.
Therefore, in the remainder of the paper, we do not consider cross-dimensional
operators.

3.2. Input Word Embeddings

We consider three widely used prediction-based word embedding methods
namely, Continuous Bag-of Words (CBOW), Skip-gram (SG)1[12] and Global
Vector Prediction (GloVe)2 [13]. CBOW and SG models the task of learn-
ing word embeddings as predicting words that co-occur in a local contextual
window. The latent dimensions in the embeddings can be seen as represent-
ing various semantic concepts that are useful for representing the meanings of
words. However, unlike in counting-based word embeddings, in prediction-based
word embeddings the dimensions are not explicitly associated with a particular
word or a class of words. In brief, CBOW learn word embeddings by maximis-
ing the probability of predicting a target word from the surrounding context
words, whereas SG aims to predict surrounding context words given a target
word in some context. On the other hand, GloVe learning method considers
global co-occurrences over the entire corpus. Specifically, GloVe first builds a
co-occurrence matrix between words, and then learns embeddings for the words
such that using the inner-product between the corresponding embeddings we
can approximate the logarithm of the co-occurrence counts between the words.

For consistency of the comparison, we train all word embedding learning
methods on the same ukWaC corpus3 which is a web-derived corpus of English
consisting of ca. 2 billion words [31]. We lowercase all the text and tokenise
using NLTK4. We use the publicly available implementations by the original
authors of CBOW, SG, and GloVe for training the word embeddings using the
recommended parameters settings. Specifically, the context window is set to 5
words before and after the target word, and words with frequency less than 6
in the corpus are ignored, resulting in a vocabulary containing 1,371,950 unique
words. The negative sampling rate in SG is set to 5 words for each co-occurrence.
Our vocabulary is restricted to the words that appeared more that 6 times in
the corpus, resulting in a vocabulary which includes 1,371,950 unique words.
Using each of the word embedding learning methods, we learn 300 dimensional
word embeddings.

In addition to prediction-based word embeddings described above (i.e. CBOW,
SG, and GloVe), we evaluate counting-based word representations for relation

1https://code.google.com/archive/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
3http://wacky.sslmit.unibo.it/doku.php?id=corpora
4http://www.nltk.org/_modules/nltk/tokenize.html

8

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://www.nltk.org/_modules/nltk/tokenize.html

representation. This method assigns each word with a high-dimensional vector
that captures the contexts in which it occurs. We first construct unigram counts
from the ukWaC corpus. The co-occurrences between low-frequency words are
rare and result in a sparse co-occurrence matrix. To avoid this issue, we consider
the most-frequent 50,000 words in the corpus as our vocabulary, and consider
co-occurrences between only those words. We found that a vocabulary of 50,000
frequent words to be sufficient for covering all the benchmark datasets used in
the evaluations. Moreover, truncating the co-occurrence matrix to the top fre-
quent contexts makes the dimensionality reduction methods computationally
inexpensive. Then the word-word co-occurrence statistics are computed from
the corpus using windows of size 5 tokens on each side of the target word. We
weight the co-occurrences by the inverse of the distance between the two words
measured by the number of tokens that appear between the two words. After-
wards, Positive Pointwise Mutual Information (PPMI) is computed from the
co-occurrence matrix W ∈ Rm×n as follows:

PPMI(x, y) = max

(
0, log

p(x, y)

p(x)p(y)

)
, (5)

where p(x, y) is the joint probability that the two words x and y co-occurring in a
given context, whereas p(x) is the marginal probability. We then apply Singular
Value Decomposition (SVD) to the PPMI matrix, which factorises W as, W =
USV>, where S is the singular values of W. We truncate S keeping only
the top 300 singular values to reduce the dimensionality and thus increase the
density of words representation. This count-based statistical method for word
representations is widely applied in NLP to produce semantic representations
for words and documents [32, 11].

As an alternative dimensionality reduction method, we use Nonnegative Ma-
trix Factorisation (NMF) in our experiments [33]. Given a matrix W ∈ Rm×n,
NMF computes the factorisation W = GH, where G ∈ Rm×d, and H ∈ Rd×n,
and G ≥ 0,H ≥ 0 (i.e. G and H contain non-negative elements). By setting
d < min(n,m), we can obtain lower d-dimensional embeddings for the rows
and columns of W, given respectively by the rows and columns in G and H.
Unlike, SVD, the embeddings created using NMF are non-negative. By using
non-negative embeddings in our evaluations, we can test the behaviour of the
different relation composition operators under nonnegativity constraints.

4. Evaluation methods

Prior work that proposed compositional operators such as Mult, Add etc.
evaluate their effectiveness on semantic composition tasks. For example, Mitchell
and Lapata [27, 18] used a crowd sourced dataset of phrase similarity. First,
a phrase is represented by applying a particular compositional operator on the
constituent word representations. Next, the similarity between two phrases
is computed using some similarity measure such as the cosine similarity be-
tween the corresponding phrase representations. Finally, the computed similar-
ity scores are compared against human similarity ratings using some correlation

9

measure such as the Spearman or Pearson correlation coefficients. If a particu-
lar compositional operator produces a higher agreement with human similarity
ratings then it is considered superior. However, our task in this paper is to
measure similarity between relations and not phrases (or sentences). Therefore,
this evaluation protocol is not directly relevant to us. Instead, we use word
analogy detection (Section 4.1) and knowledge base completion (Section 4.3)
tasks, which are more dependent on better relation representations.

4.1. Relational similarity prediction

Given two word pairs (a, b) and (c, d), the task is to measure the similar-
ity between the semantic relations that exist between the two words in each
pair. This type of similarity is often referred to as relational similarity in prior
work [5]. The task is to measure the degree of relational similarity between
two given word-pairs (a, b) and (c, d). We need a method that assigns a high
degree of relational similarity if the first pair stands in the same relation as
another pair. Two benchmark datasets have been used frequently in prior work
for evaluating relational similarity measures are SAT [34] dataset and SemEval
2012-Task25 [35] dataset. Next, we briefly describe the protocol for evaluating
relational similarity measures using those datasets.

The Scholastic Aptitude Test (SAT) word analogy dataset contains 374 mul-
tiple choice questions in which each question contains a word-pair as the stem,
and the examinees are required to select the most analogous word-pair from a
list of 4 or 5 candidate answer word-pairs. An example is shown in Table 1. We
generate relation embeddings for the question and its choice word-pairs using a
compositional operator. Next, the cosine similarity (Equation 6) between the
relation representation x of the question word-pair (a, b) and the relation rep-
resentation y of each of the candidate word-pairs (c, d) is computed to select
the candidate with the highest similarity score as the correct answer. Cosine
similarity between two vectors is defined as follows:

sim(x,y) = cos(θ) =
x>y

||x|| ||y||
(6)

The recorded accuracy is the ratio of the number of questions that are answered
correctly to the total number of the questions in the dataset. Because there are
five candidate answers out of which only one is correct, random guessing would
give a 20% accuracy.

SemEval 2012 Task-2 covers 10 categories of semantic relations, each with a
number of subcategories. In total the dataset has 79 subcategories. Each subcat-
egory (relation) has approximately 41 word pairs and three to four prototypical
examples. Example word-pairs from the SemEval dataset are illustrated in Ta-
ble 2. The task here is to assign a score to each word-pair, which indicates the
average of the relational similarity between the given word-pair and prototypical
word-pairs in a subcategory.

5https://sites.google.com/site/semeval2012task2/

10

https://sites.google.com/site/semeval2012task2/

Stem: ostrich:bird
Choices: (a) lion:cat

(b) goose:flock
(c) ewe:sheep
(d) cub:bear
(e) primate:monkey

Solution: (a) lion:cat

Table 1: An example question from the SAT dataset. In this question, the common relation
between the stem (ostrich, bird) and the correct answer (lion, cat) is is-a-large.

Main Category Description Subcategories Prototypical pairs

PART-WHOLE One word names a part of the Object:Component car:engin, face:nose
entity named by the other word Mass:Portion water:drop, time:moment

Collection:Member forest:tree, anthology:poem

CLASS-INCLUSION One word names a class that includes Taxonomic flower:tulip, poem:sonnet
the entity named by the other word Functional weapon:knife, ornament:brooch

Class Individual river:Nile, city:Berlin

CAUSE-PURPOSE One word represents the cause, purpose or goal Cause:Effect enigma:puzzlement, joke:laughter
of entity named by the other word, or the purpose Case:Compensatory Action hunger:eat, fatigue:sleep
or goal of using the entity named by the other wod Enabling Agent:Object match:candle, gasoline:car

Table 2: Example of taxonomy of the semantic relations in SemEval dataset

An alternative approach for measuring the accuracy of a relation embedding
method is to apply the relation embedding to complete word analogies. measur-
ing relational similarity could be evaluated in terms of completing an analogy
a : b :: c :?. In other words, we must find the fourth (missing) word d from a
fixed vocabulary such that the relational similarity between (a, b) and (c, d) is
maximised. Equation 7 uses the PairDiff operator for representing the relation
between two words, and use cosine similarity to measure the relational similarity
between the two word-pairs. Likewise, we can use the other compositional op-
erators Add and Mult to first create a relational embedding and then use cosine
similarity to measure relational similarity.

For the analogy completion task we use two datasets: MSR [15], and Google
analogy [36] datasets. MSR dataset contains 8,000 proportional analogies cover-
ing 10 different syntactic relations, whereas the Google contains 19,544 analogi-
cal word-pairs covering 9 syntactic and 4 semantic relation types, corresponding
to 10,675 syntactic and 8,869 semantic analogies. We restrict the search space
for the missing word to the words that appear in a large set of vocabulary con-
sists of 13,609 words in ukWaC, excluding the three words for each question.

d∗ = arg max
d∈V

(cos(vb − va,vd − vc)) (7)

4.2. Relation classification

In relation classification, the problem is to classify a given pair of words
(w1, w2) to a specific relation r in a predefined set of relations R according
to the relation that exists between w1 and w2 . We use the DiffVecs dataset
proposed by Vylomova et al. [26] that consists of 12,458 triples 〈w1, w2, r〉, where
word w1 and w2 are connected by a relation r. The relation set R includes 15

11

relation types comprising lexical semantic relations, morphosyntactic paradigm
relations and morphosemantic relations.6

We use the different compositional operators discussed in Section 3.1 to
represent each word-pair by a relational embedding. We then perform 1-nearest
neighbour (1-NN) classification in this relational embedding space to classify
the test word-pairs into the relation types. If the nearest neighbour has the
same relation label as the target word-pair, then we consider it to be a correct
classification. The classification accuracy is computed as follows:

Accuracy =
correct matches

total number of pairs
(8)

We experimented using both unnormalised word embeddings as well as `2
normalised word embeddings. We found that `2 normalised word embeddings
perform better than the unnormalised version in most configurations. Conse-
quently, we report results obtained only with the `2 normalised word embeddings
in the remainder of the paper.

4.3. Knowledge base completion

Knowledge graphs such as WordNet and FreeBase that link entities according
to numerous relation types that hold between entities are important resources for
numerous NLP tasks such as question answering, entity and relation extraction.
Automatic knowledge base completion attempts to overcome the incompleteness
of such knowledge bases by predicting missing relations in a knowledge base.
For instance, given a first entity (also known as the head entity h) and a relation
type r, we need to predict a second entity (also known as the tail entity t) such
that h and t are related by r.

To evaluate the unsupervised compositional operators for the knowledge
base completion task, we apply the following procedure. First, we require pre-
trained entity embeddings as the input to a compositional operator. Translating
embeddings (TransE) model is one of the popular methods for learning entity
representations from a given knowledge graph [37]. In TransE, if (h, r, t) holds,
then the entity embeddings are learnt such that: h + r ≈ t. We consider
two knowledge bases frequently used in prior work on knowledge base comple-
tion [37]. Namely, WordNet (WN18) and FreeBase (FB15k). The datasets and
the source code that generates entity embeddings are publicly available [38]7.

To evaluate the accuracy of a relation composition operator f , we first create
a representation ri for each relation type r using the entity pairs(h, t) in the
training data by applying f to the embeddings of the two entities h and t as
follows:

r =
1

|R|
∑

(h,r,t)∈R

f(h, t) (9)

Here, R is the set of pairs of entities that are related by ri.

6https://github.com/ivri/DiffVec
7https://github.com/thunlp/KB2E

12

Next, for each test triple (h′, r′, t′), we rank the candidate tail entities t′

according to the cosine similarity between each of the relation embedding r′ of
the relation r′ computed using (9), and the result of applying f to the entity
embeddings h′ and t′. The cosine similarity score we used to rank candidate
tail entities is given by,

cos(r, f(h′, t′)). (10)

We rank all tail entities in all test entity pairs according to (10) and select the
top-ranked entity as the correct completion. This process is repeatedly applied
for predicting the head entities for each test triple as well.

If the correct tail (or head) entity (according to the original test tuple)
can be accurately predicted using the relation embeddings created by applying
a particular compositional operator, then we can conclude that operator to
be accurately capturing the relational information. Following prior work on
knowledge base completion, we use two measures for evaluating the predicted
tail (or head) entities: Mean Rank and Hits@10. Mean rank is the average rank
assigned to the correct tail (or head) entity in the ranked listed of candidate
entities according to (10). A lower mean rank is better because the correct
candidate is ranked at the top by the compositional operator under evaluation.
Hits@10 is the proportion of correct entities that have been ranked among the
top 10 candidates. It is noteworthy that our purpose here is not to propose
state-of-the-art knowledge base completion methods. We are using knowledge
base completion simply as an evaluation task to compare different compositional
operators, whereas the prior works in knowledge base completion learn entity
and relation embeddings that can accurately predict the missing relations in a
knowledge base.

5. Experimental results

5.1. Performance of Relational Similarity Task

In Table 3, we compare the four compositional operators (PairDiff, Concat,
Add and Mult) described in Section 3.1 for the four different word representation
models as described in Section 3.2. We observe that PairDiff achieves the best
results compared with other operators for all the evaluated datasets and all the
word representation methods. PairDiff is significantly better than Add or Mult
for all embeddings (both prediction- and counting-based) in MSR, Google and
DiffVec datasets according to Clopper-Pearson confidence intervals (p < 0.05).
SAT is the smallest dataset among all, so we were unable to see any significant
differences on SAT.

Analogy completion in Google and MSR datasets are considered as an open
vocabulary task because to answer a question of the form “a is to b as c is
to ?”, we must consider all the words in the corpus as candidates, which is
an open vocabulary, not limited to the words that appear in the benchmark
datasets as in SAT or SemEval datasets. Therefore, applying PairDiff to each
pair (a, b) and (c, d) will retrieve candidates d that have relations with c similar
to the relation between a and b, but not necessary similar to the word c. For

13

instance, the top 3 ranked candidates for a question “man is to woman as
king is to ?” are women, pregnant and maternity. We notice that the top
ranked candidates indicate feminine entities. This explains the performance
of PairDiff on MSR and Google datasets, which is lower compared with other
datasets. Similar observations have been made by Levy et al. [23]. Moreover, the
open vocabulary task (Google and MSR) is harder than the closed vocabulary
task (SAT, SemEval and DiffVecs) as the number of incorrect candidates is
much larger in the open vocabulary setting. This means that the probability
of accidentally retrieving a noisy negative candidate as the correct answer is
higher than in the closed vocabulary task.

Representation Compositional SAT SemEval MSR Google DIFFVECS
model operator Sem. Syn. Total

CBOW PairDiff 41.82 44.35 30.16 24.43 32.31 28.74 87.38
Concat 38.07 41.06 0.39 3.01 1.26 2.05 83.74

Add 31.1 36.37 0.06 0.16 0.15 0.15 79.27
Mult 27.88 35.19 8.13 2.38 6.11 4.42 79.16

SG PairDiff 39.41 44.03 21.08 22.28 26.47 24.57 86.32
Concat 35.92 41.21 0.3 1.4 1.17 1.27 81.19

Add 28.69 35.48 0.0 0.17 0.13 0.15 78.48
Mult 24.4 35.4 3.26 2.29 4.47 3.48 78.33

GloVe PairDiff 41.02 42.8 16.74 15.42 21.0 18.47 83.87
Concat 36.19 40.17 0.31 2.27 1.17 1.67 81.1

Add 29.22 35.23 0.0 0.24 0.18 0.2 73.76
Mult 23.32 32.0 0.91 3.87 1.39 2.51 66.32

SVD PairDiff 36.9 43.44 8.49 2.84 11.26 7.44 85.8
Concat 38.77 42.04 0.35 0.5 0.82 0.68 81.25

Add 31.82 36.05 0.01 0.26 0.14 0.19 77.93
Mult 29.14 34.79 5.56 0.52 6.91 4.01 77.58

NMF PairDiff 35.29 42.88 2.8 1.75 3.66 2.79 84.66
Concat 31.02 41.39 0.19 0.44 0.65 0.5 81.4

Add 29.68 36 0.03 0.21 0.11 0.16 77.56
Mult 21.12 34.49 0.0 0.03 0.0 0.02 56.99

Table 3: Accuracy of the compositional operators for relational similarity prediction and
relational classification (last right column).

Mult is performing slightly worse with NMF compared to other embeddings.
Recall that NMF produces non-negative embeddings and Mult is performing
an elementwise multiplication operation on the two input word embeddings to
create the embeddings for their relation. If the negativity was the only issue
with Mult operator as previously suggested by [19], then Mult should have
performed better with NMF. We hypothesise the issue here is sparsity in the
relation representations. To test our hypothesis empirically we conduct the
following experiment.

First, we randomly select 140 word-pairs from the Google dataset and apply
different compositional operators to create relation embeddings for each word-
pair using 300 dimensional CBOW word embeddings as the input. Next, we
measure the average sparsity of the set of relational embeddings created by each

14

operator. We define sparsity at a particular cut-off level ε for a d dimensional
vector as the percentage of elements with absolute value less than or equal to ε
out of d. Formally, sparsity is given by (11).

sparsity =
1

d

d∑
i=1

I[|xi|≤ ε] (11)

Here, I is the indicator function which returns 1 if the expression evaluated is
true, or 0 otherwise. Our definition of sparsity is a generalisation of the `0 norm
that counts the number of non-zero elements in a vector. However, in practice,
exact zeros will be rare and we need a more sensitive measure of sparsity, such
as the one given in (11). Average sparsity is computed by dividing the sum
of sparsity values given by (11) for the set of word-pairs by the number of
word-pairs in the set (i.e. 140).

Figure 1 shows the average sparsity values for different operators under dif-
ferent ε levels. Figure 1 shows that Mult operator generates sparse vectors for
relations compared to other operators under all ε values. Considering that Mult
is performing a conjunction over the two input word embeddings, even if at least
one embedding has a nearly zero dimension, after elementwise multiplication we
are likely to be left with nearly zero dimensions in the relation embedding. Such
sparse representations become problematic when measuring cosine similarity be-
tween relation embeddings, which leads to poor performances in word analogy
tasks.

Figure 1: The average sparsity of relation embeddings for different operators using CBOW
embeddings with 300 dimensions for some selected pairs of words.

5.2. Effect of Dimensionality

The dimensionality of the relational embeddings produced by the compo-
sitional operators presented in Section 3.1 depends on the dimensionality of

15

the input word embeddings. For example, Mult, Add, and PairDiff operators
produce relational embeddings with the same dimensionality as the input word
embeddings, whereas the Concat operator produce relational embeddings twice
the dimensionality of the input word embedding. A natural questions therefore
is that how does the performance of the relational embeddings vary with the
dimensionality of the input word embedding. To study the relationship between
the dimensionality of the input word embedding and the composed relational
embedding we conduct the following experiment.

We first train word embeddings of different dimensionalities using the ukWaC
corpus. We keep all the other parameters of the word embedding learning
method fixed except for the dimensionality of the word embeddings learnt. Be-
cause CBOW turned out be the single best word embedding learning method
according to the results in Table 3, we use CBOW as the preffered word em-
bedding learning method in this analysis. Figure 2 shows the performance of
the different compositional operators on the benchmark datasets using CBOW
input word embeddings with dimensionalities in the range 50-800.

As seen from Figure 2, PairDiff outperforms all other operators across all di-
mensionalities. The best results on SemEval and DiffVecs datasets are reported
by PairDiff with 200 dimensions. Performance saturates when the dimension-
ality is increased beyond this point. On the other hand, SAT shows different
trend. On SAT, the performance of PairDiff continuously increases with the
dimensionality of the input word embeddings. On the other hand, in MSR and
Google datasets we see a different trend where the performance of PairDiff de-
creases while that of Mult increases with the dimensionality of the input word
embedding.

To understand the above-described trends first note that the dimensions in
word embeddings are providing almost complementary information related to
the semantics of a word.8 Adding more dimensions to the word embedding
can be seen as a way of representing richer semantic information. However,
increasing the dimensionality also increases the number of parameters that we
must learn. Prediction-based word embedding learning methods first randomly
initialise all the parameters and then update them such that the co-occurrences
between words can be accurately predicted in a given context window. However,
the training dataset, which in our case is the ukWaC corpus, is fixed. There-
fore, we will have more parameters than we could reliably estimate using the
data we have, resulting in some overfitted noisy dimensions as we increase the
dimensionality of the word embeddings learnt.

One hypothesis for explaining the seemingly contradictory behaviour with
PairDiff and Mult operators is as follows. When we increase the dimensionality
of the input word embeddings, there will be some noisy dimensions in the input
word embeddings. PairDiff operators amplifies the noise in the sense that the
resultant offset vector will retain noisy high dimensions that appear in both word

8As described in Section 3.1, Pearson correlation coefficients between different dimensions
in word embeddings are small, showing that different dimensions are uncorrelated.

16

Figure 2: The effect of the dimensionality of the CBOW word embeddings for compositional
relation representations.

embeddings. On the other hand, Mult operator can be seen as a low-pass filter
where we shutdown dimensions that have small (or zero) valued dimensions
in at least one of the two embeddings via the element-wise multiplication of
corresponding dimensions. Therefore, Mult will be robust against the noise
that exist in the higher dimensions of the word embeddings than the PairDiff
operator.

17

To empirically test this hypothesis we compute the `2 norm of (va − vb)
and (va � vb) for word embeddings of different dimensionalities and compute
the average over 140 randomly selected word-pairs. As shown in Figure 3, the
norm of PairDiff relation embedding is increasing with dimensionality, whereas
norm of the relation embedding generated by Mult decreases. This proves our
hypothesis that Mult is filers out the noise in high dimensional word embeddings
better than PairDiff.

Figure 3: Average `2 norm of relational vectors generated using PairDiff and Mult operators.

5.3. Performance on Knowledge Base Completion Task

Table 4 displays the performance on the compositional operators for the
knowledge base completion task on the two knowledge graphs WN18 and FB15k,
where low mean rank and high Hits@10 indicates better performance. As can
be seen from the Table, Mult operator yields the lowest mean rank and the
highest Hits@10 accuracy among other operators for the both knowledge bases.

Given that PairDiff was the best operator for relational similarity tasks, it is
surprising that Mult operator outperforms PairDiff in both WN18 and FB15k
datasets. Recall that knowledge base completion is the task where given that
(h, t) pair is related by a relation r (as provided in the train set) we need to
assess how likely that (h′, t′) is related by r. In our evaluation process, this task
is answered by measuring the inner-product between f(h, t) and f(h′, t′), where
f is a compositional function that represents the relationship between h and t.
In the case of Mult operator, we have: similarity-score = (h� t)>(h′� t′), this
indicates that if a dimension is not common across all four entities it does not
contribute to the overall similarity score. This can be seen as a strict way of
estimating relational similarity between train and test pairs because a particular
dimension must be on in all four words involved in an analogy.

On the other hand, PairDiff operator scores test entity pairs by (h−t)>(h′−
t′). Here, (h′, t′) is an entity pair in the test dataset with the target relation
r, and we are interested in finding, for example, candidate tail entities t′ that

18

has r with a given head entity h′. This score can be further expanded as
(h− t)>h′ − (h− t)>t′. The first term is fixed given the training dataset and
the head entity, and the rank of the tail entity is determined purely based on
(h− t)>t′, where the head entity h′ does not participate in. This is problematic
because entities t′ that are similar to t and dissimilar to h will be simply ranked
at the top irrespective of the relation t′ has with h′. Indeed in Table 4 we see
that mean rank for PairDiff is significantly higher compared to that of Mult.
This suggests that many irrelevant tail (or head) entities are ranked ahead of
the correct entity for each test tuple. On the other hand, in relational similarity
task, the two pairs between which we must measure similarity are fixed and this
issue is not

If a relation is asymmetric such as hypernym and hyponym as in WN18, ad-
dition model will be insensitive to the directionality of such relations compared
to PairDiff which explains the better performance of PairDiff over Add.

Compositional WN18 FB15k
operator MeanRank Hits@10(%) MeanRank Hits@10(%)

PairDiff 13,198 11.34 1,206 44.4
Concat 9,896 2.77 542 29.49

Add 12,178 1.88 1,211 21.7
Mult 812 54.93 256 50.66

Table 4: Accuracy of the compositional operators for knowledge base completion task.

5.4. Evaluating the Asymmetry of the PairDiff Operator

Relations between words can be categorised as either being symmetric or
asymmetric. If two words a and b are related by a symmetric relation r, then b
is also related to a with the same relation r. Examples of symmetric relations
include synonyms and antonyms. On the other hand, if a is related to b by an
asymmetric relation, then b might not be necessarily related to a with the same
relation r. Examples of asymmetric relations include hypernyms and meronyms.
As discussed in Section 5.1, PairDiff operator outperforms Add and Mult op-
erators. Unlike Mult and Add, which are commutative operators, PairDiff is
a non-commutative operator. Therefore, PairDiff should be able to detect the
direction of a relation.

To test the ability of PairDiff to detect the direction of a relation, we set up
the following experiment. Using a set of word-pairs where there is a common
directional relation r between the two words in each word pair as training data,
we use PairDiff to represent the relationship between two words in a word-pair,
given the word embeddings for those two words. Next, we swap the two words
in each word-pair and apply the same procedure to create relation embeddings
for the reversed relation r′ in each word-pair. We model the task of predicting
whether a given word-pair contains the original relation r or its reversed version
r′ as a binary classification task. Specifically, we train a binary support vector
machine with a linear kernel with the cost parameter set to 1 using held-out

19

data. If the trained binary classifier can correctly predict the direction of a
relation in a word-pair, then we can conclude that the relation embedding for
that word-pair accurately captures the information about the direction of the
relation that exists between the two words in the word-pair. We can repeat
this experiment with symmetric as well as asymmetric relation types r and
compare the performances of the trained classifiers to understand how well the
directionality in asymmetric relations is preserved in the PairDiff embeddings.

For the asymmetric relation types we use all relation types in the DIFFVECS

because this dataset contains only asymmetric relation types. For symmetric
relation types we use two popular symmetric semantic relations namely, syn-
onymy9 and antonymy10. We report five-fold cross-validation accuracies with
each relation type in Figure 4. If the classifier reports a high classification
accuracy for asymmetric relations than symmetric relations, then it indicates
that the relation embedding can encode the directional information in a rela-
tion. From Figure 4 we see that, overall, the accuracies for the two symmetric
relation types is lower than that for the asymmetric relation types. This re-
sult indicates that PairDiff can correctly detect the direction in the asymmetric
relation types.

Figure 4: The accuracy of SVM classifier.

9http://saifmohammad.com/WebDocs/LC-data/syns.txt
10http://saifmohammad.com/WebDocs/LC-data/opps.txt

20

http://saifmohammad.com/WebDocs/LC-data/syns.txt
http://saifmohammad.com/WebDocs/LC-data/opps.txt

6. Discussion and conclusion

This work evaluated the contribution of word embeddings for representing re-
lations between pairs of words. Specifically, we considered several compositional
operators such as PairDiff, Mult, Add, and Concat for creating a representation
(embedding) for the relation that exist between two words, given their word
embeddings as the input. We used different pre-trained word embeddings and
evaluated the performance of the operators on two tasks: relational similarity
measurement and knowledge base completion. We observed that PairDiff to be
the best operator for relational similarity measurement task, whereas Mult op-
erator to be the best for knowledge base completion task. We then studied the
effect of dimensionality on the performance of these two operators and showed
that the sparsity of the input embeddings is affecting the Mult operator, and
not the negativity of the input word embedding dimensions as speculated in
prior work. Our analysis in this paper was limited to unsupervised operators in
the sense that there are no parameters in the operators that can be (or must be)
learnt from training data. This raises the question whether we can learn better
compositional operators from labelled data to further improve the performance
of the compositional approaches for relation representation, which we plan to
explore in our future work.

References

[1] R. Socher, D. Chen, C. D. Manning, A. Ng, Reasoning with neural tensor
networks for knowledge base completion, in: Advances in Neural Informa-
tion Processing Systems, 2013, pp. 926–934.

[2] N. T. Duc, D. Bollegala, M. Ishizuka, Using relational similarity between
word pairs for latent relational search on the web, in: IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Tech-
nology, 2010, pp. 196 – 199.

[3] P. D. Turney, M. L. Littman, Corpus-based learning of analogies and
semantic relations, Machine Learning 60 (2005) 251–278.

[4] N. T. Duc, D. Bollegala, M. Ishizuka, Cross-language latent relational
search: Mapping knowledge across languages, in: Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011, pp. 1237
– 1242.

[5] P. D. Turney, Similarity of semantic relations, Computational Linguistics
32 (2006) 379–416.

[6] D. Bollegala, Y. Matsuo, M. Ishizuka, Www sits the sat: Measuring rela-
tional similarity on the web., in: ECAI, 2008, pp. 333–337.

[7] P. D. Turney, P. Pantel, From frequency to meaning: Vector space models
of semantics, Journal of Aritificial Intelligence Research 37 (2010) 141 –
188.

21

[8] P. D. Turney, Measuring semantic similarity by latent relational analysis,
arXiv preprint cs/0508053 (2005).

[9] Z. Harris, Distributional structure, The Philosophy of Linguistics (1985)
26 – 27.

[10] M. Baroni, G. Dinu, G. Kruszewski, Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors, in:
Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, Baltimore, Maryland, 2014, pp. 238–247.

[11] P. D. Turney, P. Pantel, et al., From frequency to meaning: Vector space
models of semantics, Journal of artificial intelligence research 37 (2010)
141–188.

[12] T. Mikolov, K. Chen, J. Dean, Efficient estimation of word representation
in vector space, in: Proceedings of International Conference on Learning
Representations, 2013.

[13] J. Pennington, R. Socher, C. D. Manning, Glove: global vectors for word
representation, in: Proceedings of Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

[14] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic
language model, journal of machine learning research 3 (2003) 1137–1155.

[15] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous space
word representations., in: HLT-NAACL, volume 13, 2013, pp. 746–751.

[16] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, S. Khudanpur, Recurrent
neural network based language model., in: Interspeech, volume 2, 2010,
p. 3.

[17] G. Frege, Über sinn und bedeutung, Zeitschrift für Philosophie und
philosophische Kritik 100 (1892) 25 – 50.

[18] J. Mitchell, M. Lapata, Composition in distributional models of semantics,
Cognitive Science 34 (2010) 1388 – 1429.

[19] M. Baroni, R. Zamparelli, Nouns are vectors, adjectives are matrices: Rep-
resenting adjective-noun constructions in semantic space, in: EMNLP’10,
2010, pp. 1183 – 1193.

[20] E. Guevara, A regression model of adjective-noun compositionality in dis-
tributional semantics, in: ACL’10 Workshop on Geometrical Models of
Natural Language Semantics, 2010, pp. 33 – 37.

[21] J. R. Firth, A synopsis of linguistic theory, 1930-1955 (1957).

22

[22] M. Baroni, A. Lenci, Distributional memory: A general framework for
corpus-based semantics, Computational Linguistics 36 (2010) 673–721.

[23] O. Levy, Y. Goldberg, I. Ramat-Gan, Linguistic regularities in sparse and
explicit word representations., in: CoNLL, 2014, pp. 171–180.

[24] T. Linzen, Issues in evaluating semantic spaces using word analogies, arXiv
preprint arXiv:1606.07736 (2016).

[25] A. Drozd, A. Gladkova, S. Matsuoka, Word embeddings, analogies, and
machine learning: Beyond king-man+ woman= queen, in: Proceedings
of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, 2016, pp. 3519 – 3530.

[26] E. Vylomova, L. Rimmel, T. Cohn, T. Baldwin, Take and took, gaggle and
goose, book and read: Evaluating the utility of vector differences for lexical
relation learning, arXiv preprint arXiv:1509.01692 (2015).

[27] J. Mitchell, M. Lapata, Vector-based models of semantic composition, in:
ACL-HLT’08, 2008, pp. 236 – 244.

[28] M. Nickel, L. Rosasco, T. Poggio, Holographic embeddings of knowledge
graphs, in: Proc. of AAAI, 2016.

[29] W. Yin, H. Schütze, Learning meta-embeddings by using ensembles of
embedding sets, in: Proc. of ACL, 2016, pp. 1351–1360.

[30] J. Mitchell, M. Lapata, Language models based on semantic composition,
in: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, Singapore, 2009, pp. 430–439.

[31] A. Ferraresi, E. Zanchetta, M. Baroni, S. Bernardini, Introducing and eval-
uating ukwac, a very large web-derived corpus of english, in: Proceedings
of the 4th Web as Corpus Workshop (WAC-4) Can we beat Google, 2008,
pp. 47–54.

[32] S. Clark, Vector space models of lexical meaning, Handbook of Contem-
porary Semantic Theory, The (2015) 493–522.

[33] D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization,
in: Advances in neural information processing systems, 2001, pp. 556–562.

[34] P. Turney, M. L. Littman, J. Bigham, V. Shnayder, Combining indepen-
dent modules to solve multiple-choice synonym and analogy problems, in:
Proceedings of the Recent Advances in Natural Language Processing, 2003,
pp. 482 – 489.

[35] D. A. Jurgens, P. D. Turney, S. M. Mohammad, K. J. Holyoak, Semeval-
2012 task 2: Measuring degrees of relational similarity, in: Proceedings
of the First Joint Conference on Lexical and Computational Semantics-
Volume 1: Proceedings of the main conference and the shared task, and

23

Volume 2: Proceedings of the Sixth International Workshop on Semantic
Evaluation, 2012, pp. 356–364.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: NIPS,
2013, pp. 3111 – 3119.

[37] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Trans-
lating embeddings for modeling multi-relational data, in: Advances in
neural information processing systems, 2013, pp. 2787–2795.

[38] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation
embeddings for knowledge graph completion., in: AAAI, 2015, pp. 2181–
2187.

24

	Introduction
	Related work
	Relation Composition
	Compositional operators
	Input Word Embeddings

	Evaluation methods
	Relational similarity prediction
	Relation classification
	Knowledge base completion

	Experimental results
	Performance of Relational Similarity Task
	Effect of Dimensionality
	Performance on Knowledge Base Completion Task
	Evaluating the Asymmetry of the PairDiff Operator

	Discussion and conclusion

