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Abstract

We consider N = 2 four dimensional field theories compactified on a two torus in
the presence of a U(1) magnetic field. We discuss the restrictions leading to theories
with (2,2) supersymmetry or (0,2) supersymmetry in two dimensions. The field theories
live on D5 branes wrapped on four cycles of Calabi-Yau 3-folds or 4-folds described as
resolved ADE singularities or resolved conifold fibered over a two torus.
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1 Introduction

Recently there has been a substantial amount of interest dedicated to study various aspects
of two dimensional (0,2) theories living on branes. The first such brane configurations were
introduced about 20 years ago [1] as either D1 branes at singularities or brane boxes. The
recent developments involve using brane tilings and orbifold reductions from D3 probing
Calabi-Yau 3-folds to D1 probing Calabi-Yau 4-folds [2], compactifying F-theory on Calabi-
Yau 5-folds [3] or reducing N = 1 four dimensional theories on Riemann surfaces [4]. Some
important properties like (0,2) trialities have been discovered and their connection to N = 1
four dimensional theories opened the gate to exciting developments [5]. Other interesting
(0,2) theories in two dimensions were constructed as AdS3 solutions of M theory and type
IIB supergravity [6].

A different approach was initiated by Kutasov and Lin in [7]-[8] with D4 branes stretched
between orthogonal NS branes. The field theory on D4 branes is N = 1 in four dimensions
which is further compactified on a two torus to get a two dimensional (2,2) theory. The
supersymmetry can be broken by either turning on a D-term or a magnetic flux on the
two torus. When both are considered and the D-term is equal to the magnetic flux, the
supersymmetry is partially preserved and one gets a two dimensional (0,2) theories. The
value of the D term and the magnetic field can be read from the various rotations of the D4
branes.

The T-dual picture of the Kutasov-Lin results was considered in [9] based on the T-duality
between brane configurations with D4 branes stretched between orthogonal NS branes and
D5 branes wrapped on 2-cycles of resolved conifold configurations [10].

A non-zero D-term corresponds to rigid P1 cycles [19]. To obtain two dimensional theories
the D5 branes are wrapped on four cycles which are P1 fibres over the two torus. The
equality between the D-term and the magnetic field appears when imposing the covariant
spinor condition on the wrapped D5 branes.

In this work we go one step further and consider a larger class of two dimensional (0,2)
theories arising from 2-torus compactification of N = 2 four dimensional theories with non-
zero magnetic field and non zero D term. The four dimensional field theories live on D5
branes wrapped on resolution cycles of ALE spaces. If the D-term and the magnetic field
are equal, we show that the two dimensional SUSY is broken from (4,4) to (2,2). Adding
a superpotential as a polynomial in the chiral adjoint field breaks N = 2 to N = 1 in four
dimensions and we see that the two dimensional supersymmetry is broken from (2,2) to (0,2).

There are various aspects covered in this work:
1) in section 2 we consider the ALE spaces and their resolutions fibered over a two torus.

For A1 singularity and its resolutions, one interesting observation is that the patches covering
the resolution P1 are square root fibre bundles and this restricts the model to tensor products
of even degree. In the present work we only consider models with fibres of degree zero when
the fibre group becomes the zero Picard group which is a dual torus. This has four 2-torsion
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points and each 2-torsion point gives rise to a different (0,2) theory.
2) in section 3 we consider the existence of covariant spinors on the wrapped D5 branes

on four cycles of Calabi-Yau 3-folds and 4-folds. The supersymmetry preservation implies a
geometric equality between the magnetic flux and D-term, also involving the NS flux through
the P1 cycle and the area of the two torus.

3) In section 4 we discuss how the multiplets of the four dimensional N = 2 theory reduce
to multiplets of a (2,2) supersymmetric theory in two dimensions when compactified on a
two torus. In the presence of non zero D-terms and magnetic flux the supersymmetry is
partially broken to (2,2) in two dimensions. The N = 2 supersymmetry in four dimensions is
broken toN = 1 by adding a superpotential for the chiral adjoint field. When reducing to two
dimensions on a two torus with magnetic flux, the superpotential breaks (2,2) supersymmetry
to (0,2) supersymmetry.

4) In section 5 we consider the deformations of brane configurations which map a (4,4) two
dimensional theory into a (0,2) two dimensional theory. The (4,4) two dimensional theory
lives on D4 branes suspended between parallel NS branes. By rotating the D4 branes one
reaches the (2,2) supersymmetric theory and a further rotation of the NS branes provide the
(0,2) theory.

This work is a first step towards building a large set of (0,2) two dimensional theories.
There are many result in [10] which can be reconsidered after compactification on a two torus.

2 Calabi-Yau manifolds as fibrations over T 2

We start by describing the Calabi-Yau 3-folds and 4-folds as fibration of singular spaces and
their resolutions over a two torus.

2.1 Calabi-Yau threefolds

In this subsection we consider the case of Calabi-Yau 3-folds as ALE spaces and their reso-
lutions fibered over a two torus. One important aspect is the appearance of square root line
bundles which require a careful treatment of 2-torsion line bundles.

Consider the A1 singularity in C
3 i.e. the space C

2/Z2. This can be embedded in
C3(x0, x1, x2) as a hypersurface

A : x0 x1 − x22 = 0 (1)

which has a singularity at the origin. To smooth it out we blow-up C3 at the origin by
replacing (0,0,0) with an exceptional divisor P2. When we follow a path in the hypersurface
A towards the origin, we land on the exceptional P2 in the blow-up which provides a set
[X0, X1, X2] on P2 related by the quartic X0 X1 − X2

2 = 0, which is isomorphic to a P1

resolution cycle.
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The resolution P1 cycle can be wrapped by D5 branes to provide an N = 2 SUSY theory
in four dimensions. The normal bundle to P1 in the resolved space is O(−2) ⊕ O(0). The
O(0) coordinate is denoted as X and the O(−2) part can be understood as following: the P1

is covered by two affine pieces, one with X1 6= 0 parametrised by ξ = X0/X2 and one with
X0 6= 0 parametrised by η = X1/X2. The gluing between the two pieces is given by

η = ξ−1, X0 = X1ξ
2 (2)

When C
2/Z2 is fibered over a two torus the complex coordinates of C3(x0, x1, x2) are

promoted to being sections of line bundles L0, L1, L2 over the torus and the local Calabi-Yau
threefold is given by relation (1) in the four dimensional complex variety L0⊕L1⊕L2 → T 2.
The line bundles obey L0 ⊗ L1 = L2 ⊗ L2.

We now consider the resolution of the C2/Z2 singularity as the fibre in a Calabi Yau 3-
fold. The coordinates x0, x1, x2 are replaced by X0, X1, X2 and we use the same notation for
their interpretations as line bundles: L0, L1, L2. The affine coordinates of the two coordinates
patches of the P1 fibres η and ξ given in (2) are sections of the line bundle L satisfying the
condition L0 ⊗L−1

1 = L⊗L for ξ and L1 ⊗L−1
0 = L⊗L for η. In general a line bundle has a

non-zero degree which is the number of zeroes minus the number of poles in any holomorphic
section. For simplicity, in the current work we limit to the case of zero degree. If we consider
the complex surface S obtained by fibering P1 over T 2, for zero degree line bundle the volume
of S is given by the product of the volume of the P1 fibre and the area of the T 2 base.

A formula like L0 ⊗ L−1
1 = L⊗ L implies that the line bundle L is the square root of the

tensor product of line bundles L0⊗L−1
1 . If it exists, the square root line bundle is not unique

in general and two square root line bundles differ by a 2-torsion line bundle.
We briefly remind what the 2-torsion point of a two torus are. The 2-torus is the quotient

T 2 = C/Λ obtained by dividing the complex plane by a lattice Λ = Z2. The torus admits
the involution x → −x and for every y also admits the involution x → 2y − x, which fixes
y. The question is for which y the combined result of the involutions takes x into x. This
would mean that 2y − x = −x or 2y = 0. This is the definition of 2-torsion points on the
torus and there are 4 such points for a two torus.

The Picard group is the group of holomorphic line bundles. In case of line bundles of
zero degree, one deals with the zero Picard group Pic0(T 2) which is a dual torus and has
four 2-torsion points. The 2-torsion condition is written as L̃⊗ L̃ = E where is E is a trivial
bundle. So once the product L0 ⊗ L−1

1 is defined as L ⊗ L, there are 4 different values for
L⊗ L̃ which can’t be distinguish when considering L⊗ L.

The A1 discussion can be generalised to any A-D-E singularity which can be blown up to
a smooth space where the singular point is replaced by a collection of rational curves P1

i . For
an A,D,E group of rank n, there is a collection of n P1 cycles, each having an O(−2) fibre
bundle. The total space of the normal bundle over the i-th P1

i is

ηi = ξ−1
i , X0i = X1iξ

2
i , i = 1, · · · , n (3)
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The D5 branes are wrapped on n complex surfaces Si obtained by fibering the n various P1
i

over T 2. In case we have line bundles of degree 0, the volumes of each Si is the product of
the volume of the P

1
i fibre and the volume of the T 2 base.

X0i corresponds to a line bundle L0i, X1i to a line bundle L1i and ξi to a line bundle Li.
The consistency condition requires that for each P1

i

L0i ⊗ L−1
1i = Li ⊗ Li. (4)

Each Li comes with its own 2-torsion point in the dual torus.

2.2 Calabi-Yau fourfolds

The Calabi-Yau fourfolds as resolved/deformed conifold singularities fibered over T 2 were
considered in [20, 9].

The Calabi-Yau fourfolds are obtained by fibering conifold type geometries x0x1 = x2x3
over two tori. The xi, i = 0, 1, 2, 3 become line bundles Li, i = 0, 1, 2, 3 satisfying the condition

L0 ⊗ L1 = L2 ⊗ L3 (5)

The conifold singularity is resolved by replacing the origin with a P1
i with homogeneous

coordinates u, v such that x0u = x2v and the affine coordinates of the two patches of the P
1
i

fibre are z = u/v, w = v/u. They are sections of L0 ⊗ L−1
2 and L2 ⊗ L−1

0 respectively.
When deforming the Calabi-Yau threefolds into Calabi-Yau fourfolds, we need to also

consider the change in the equation (2). The simplest deformation of the fibre is

X0 = X1ξ
2 +Xξ (6)

where X is the coordinate of the O(0) part of the normal bundle inside the Calabi-Yau
threefold. We see that the consistency condition requires

L0 ⊗ L−1
1 = L⊗ L (7)

and
L0 = LX ⊗ L (8)

We see that line bundle over X can be written in terms of L0, L1, L so depends on the choice
of the 2-torsion point inherited form the Calabi-Yau threefold. It would be interesting to see
the dependence of the two dimensional field theories on the choice of the 2-torsion point.
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3 Field theory on wrapped D5 branes

3.1 D5 branes wrapped on 2-cycles of Calabi-Yau 2-folds

We start with D5 branes wrapped on 2-cycles of SU(2) holonomy manifolds. The sizes of the
2-cycles are non-vanishing due to either having a non-zero NS field or a real Kahler modulus.
In reality there exists a three dimensional space of deformations of the ALE metric for each
of the P1 cycles:

- a complex parameter α corresponding to integral of the holomorphic 2-form over the P1.
- a real parameter j corresponding to the integral of Kahler form on the P

1.
Together with the integral of the NS field BNS on P1, bNS =

∫

P1 BNS, we get a 5 parameter

family of deformations and the stringy volume is (j2 + b2NS + |α|2)1/2. In terms of the field
theory parameters, α corresponds to a field theory F-term and r to a field theory D-term. In
the current work we limit to the discussion of SUSY breaking when turning on D-terms so
we set α = 0 and the volumes becomes (j2 + b2NS)

1/2.
The two important limits of (j2 + b2NS)

1/2 are j = 0 which corresponds to a fractional
D3 brane and bNS = 0 which corresponds to D5 branes wrapping rigid 2-cycles. The two
solutions can be interpolated by uplifting to M theory and performing boosts [13]. The boost
along t and x11 direction is

t→ coshβ t− sinβ x11, x11 → −sinhβ t cosβ z11 (9)

The boost parameter β, the NS field BNS, the Kahler volume J and the dilaton are related
as

BNS = sinhβe−2ΦJ. (10)

The N = 1 interpolating solution between rigid branes and fractional branes of [13] has been
generalised to N = 2 models in [14]. For a constant dilaton Φ = Φ0, (10) can be integrated
over P1 and implies

b = sinhβe−2Φ0j. (11)

The calibration conditions do not change if we turn on magnetic flux or NS flux. For D5
branes wrapping a 2-cycle inside an SU(2) holonomy manifold with no magnetic or NS flux,
the solution corresponds to the usual calibration condition of a 2-cycle in a K3 manifold given
by the condition

(J,Re(Ω), Im(Ω) = (cosθ, sinθ cosφ, sinθ sinφ)volP1 (12)

where θ and φ are constant angles along the two-cycle. We can add to J two types of
antisymmetric tensors in two dimensions, one is the magnetic fluxM and the other is the NS
field. As discussed in [15], the antisymmetric tensors do not change the calibrations conditions
and the supersymmetry is preserved. The only difference is that instead of J = cosθ volP1,

5



we would have J + iBNS = eiθ volP1 and J tanθ = BNS such that the coupling constant of
the field theory on the wrapped D5 branes is

j cosθ + b sinθ =
√

j2 + b2. (13)

As θ is related to the boosting parameter β, we also see that for D5 branes wrapping two P1

cycles with values b1, b2 for
∫

P1

i

BNS and j1, j2 for
∫

P1 J , the two cycles should be calibrated

such that
b1
j1

=
b1
j1
, (14)

otherwise the supersymmetry is fully broken.

3.2 D5 branes wrapped on 4-cycles of Calabi-Yau 3-folds

We now want to consider the case when the supersymmetry is preserved in the presence of
both NS flux BNS and magnetic flux M . To do this we consider a four cycle S as a nontrivial
P1 fibration over T 2. The condition of preserving supersymmetry when D5 branes wrap
four-cycles is

(JP1 + iBNS)(AT 2 + iM) = eiθ
√

|g +M |
√

|g|
volS (15)

where volS is the volume of the four cycle.
This relation can be split into a real part

JP1 AT 2 − BNS M = cos θ

√

|g +M |
√

|g|
volS (16)

and an imaginary part

JP1 M +BNS AT 2 = sin θ

√

|g +M |
√

|g|
volS (17)

When the magnetic flux and the NS flux BNS are set to zero, the equations (16)-(17) are
satisfied for θ = 0 which reduces to the original condition that the four cycle is holomorphic

JP1 AT 2 = volS. (18)

We see that the equation (16) is also satisfied when JP1 AT 2 = BNS M for θ = π
2
. This is

the geometric version of the equality between the D-term and the magnetic flux which first
appeared in [7].

Our result is that the four cycle S is holomorphic when JP1 AT 2 = BNS M . This is the
geometrical relation between the rigidity parameter JP1 for the P1 cycle and the magnetic
fluxM through T 2 and is the equivalent of the equality between the D term and the magnetic
flux in field theory, considered in the next section.
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3.3 D5 branes wrapped on 4-cycles of Calabi-Yau four-folds

As we aim to describe supersymmetric theories with (0,2) supersymmetry in 2 dimensions, we
consider wrapping D5 branes on 4-cycles of Calabi-Yau four-folds. We consider the Calabi-
Yau fourfolds as resolved conifold geometries fibered over a two torus.

Fortunately the result of the previous subsections and the ones of [9] allow us to directly
build these geometries. We turn on a magnetic flux M and make the P1 cycle rigid such that
JP1 AT 2 = BNS M which ensures (2,2) supersymmetry in two dimensions. The second step
is to change the P1 normal bundle from O(0)⊕O(−2) to O(−1)⊕O(−1) without changing
the JP1 AT 2 = BNS M relation which ensures the preservation of (0,2) supersymmetry.

The set-up can be made more complicated if the processes of modifying the normal bundle
to P1, turning on the magnetic flux and making the cycle rigid are all done at the same time.
We plan to consider this more general consideration in a future publication.

4 Field Theory: from N = 2, d = 4 to (0, 2), d = 2

4.1 N = 2, d = 4 Theory

4.1.1 Theory without Flavours

Consider an N = 2, d = 4 theory with a gauge group SU(Nc) and no flavours. An N = 2
vector multiplet consists of an N = 1 vector multiplet (λ,Aµ) and an N = 1 chiral multiplet
(φ, ψ) in the adjoint representation of the group SU(NC). We denote the N = 1 chiral
multiplet by Φ. The two supersymmetry transformations are:

- the first SUSY transformation acts inside the N = 1 vector or chiral multiplets and
relates λ to Aµ and φ to ψ respectively.

- the second SUSY transformation is obtained by rotating the fermions λ and ψ into each
other

λ→ i ψ; ψ → − i λ (19)

4.1.2 Theory with Flavours

We now add flavour fields as N = 2 hypermultiplets. An N = 2 hypermultiplet consists
of an N = 1 chiral multiplet (Q, φQ) and an N = 1 antichiral multiplet (Q̃†, φ†

Q̃
). Q and

Q̃† are in the same representation of the gauge group which implies that Q and Q̃ are in
conjugate representation of the gauge group. For hypermultiplets the two supersymmetry
transformations act as:

- the first SUSY transformation acts inside the two N = 1 chiral multiplets and connects
Q with φQ and (Q̃† and φ†

Q̃
) respectively.

- the second SUSY transformation is obtained by rotating Q and Q̃† into each other.
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For SU(Nc) gauge group with Nf flavours in the fundamental representation, Q and
Q̃† are in the fundamental representation which implies that Q̃ is in the antifundamental
representation. The coupling between the matter fields and the N = 2 vector multiplet is
written in the N = 1 superspace as

∫

d2 θ Q Φ Q̃.

4.2 From N = 2, d = 4 to (2, 2), d = 2

4.2.1 Equal magnetic flux and D term lead to (2, 2), d = 2

We now want to discuss the breaking of supersymmetry to (2,2) in two dimensions. To do this
we apply a similar procedure to the one in [7] but when the starting point is an N = 2, d = 4
theory instead of N = 1, d = 4 theory. We consider that the flavours are charged with respect
to an external U(1) group. The fields Q and Q̃† have the same charge under the U(1) group
which implies that the fields Q and Q̃ have opposite charges. The current supermultiplets of
the N = 2, d = 4 theory are coupled to an external N = 2, d = 4 vector multiplet with the
fermion content λ and ψ.

Consider that the four dimensional theory lives in the (x0, x1, x2, x3) space and the di-
rections (x1, x2) are compactified on a two torus. We chose the expectation value of the
magnetic field through the torus to be F12 =M which breaks both supersymmetries

δξλ = Fµνσ
µνξ, δξ′ψ = −iFµνσ

µνξ′ (20)

The second equation arises from the map λ → iψ and ψ → −iλ when interchanging the
two SUSY transformations generated by ξ and ξ′.

To preserve supersymmetry, we turn on a non-zero D field for the external U(1) group
and we encounter the super Bogomolnyi limit of the model treated in [16]. They considered
N = 1, d = 4 supersymmetric QED theory with three chiral superfields Φ0,Φ+,Φ− with
charges 0, 1, -1. In our case the field Q has positive charge and takes the place of Φ+, Q̃ has
negative charge and takes the place of Φ− whereas the N = 1 chiral multiplet component of
the N = 2 vector multiplet is uncharged and replaces Φ0.

The transformations of λ and ψ0 components of the N = 1 gauge multiplet and the N = 1
neutral chiral multiplet are [16]

δξλ = (Fµνσ
µν + iD)ξ (21)

and
δξ′ψ0 = (−iFµνσ

µν −D)ξ′ (22)

D field is related to the charged scalar fields due to the presence of the terms D2 +Dφ†Tφ
in the Lagrangian which gives D = |φ+|2 − |φ−|2.

Consider now the resulting two dimensional spacetime of the form R1,1 × T 2 with R1,1

spanned by (x0, x3) and T 2 described by the coordinates (x1, x2). The magnetic flux has
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zero components only through the 2-torus, F12 = B. The 4-dimensional spinors ξ and ξ′

are doublets (ξ−, ξ+), (ξ
′
−, ξ

′
+) of right and left R1,1 spinors. The 2-dimensional supersymme-

try is (4,4) and the possible partially broken supersymmetry could be (4,0), (0,4) or (2,2)
supersymmetry in two dimensions. To see which one is actually obtained, we first consider
the choice D = B which implies that the theory preserves (0,2) SUSY coming from ξ and
(2,0) SUSY coming from ξ′, they combine to provide a (2,2) SUSY. For the case D = −B the
theory preserves (2,0) SUSY coming from ξ and (0,2) SUSY coming from ξ′ which combine to
provide a (2,2) SUSY. We conclude that for D = ±B, the two supersymmetries are partially
broken and we remain with (2,2) supersymmetry in two dimensions. It is not clear how to
obtain (0,4) or (4,0) models ( see [18, 17] for considerations of such examples).

4.2.2 Fields in the (2, 2), d = 2 theory

We now discuss the surviving fields and superpotential in the (2, 2), d = 2 theory. The starting
point is a (4,4) two dimensional theory which is obtained by reducing a four dimensional
N = 2 theory on a torus. The N = 2 theory has N = 2 vector multiplets and N = 2
hypermultiplets . When reduced to the (4,4) two dimensional theory, the four dimensional
vector multiplet decomposes into a (2, 2), d = 2 chiral multiplet denoted by Φ and a twisted
chiral mutiplet λ. The four dimensional chiral multiplet decomposes into two (2,2) chiral
multiplets Q and Q̃ in conjugate representations of the gauge group.

There is also a superpotential Q̃ΦQ integrated over the (2,2) superspace θ1,+θ1,−. We can
write the (2,2) multiplets in terms of (0,2) components

Q = Q(0,2) +
√
2θ−Λ

(0,2)
Q − iθ−θ̄−(D0 −D3)Q

(0,2), (23)

Q̃ = Q̃(0,2) +
√
2θ−Λ̃

(0,2)

Q̃
− iθ−θ̄−(D0 −D3)Q̃

(0,2), (24)

Φ = Φ(0,2) +
√
2θ−Λ0,2

Φ − iθ+θ̄+(D0 +D3)Φ
(0,2), (25)

where Q(0,2), Q̃(0,2) and Φ(0,2) are (0,2) chiral superfields and Λ
(0,2)
Q , Λ̃

(0,2)

Q̃
and Λ0,2

Φ,+ are the

corresponding (0,2) Fermi superfields. The (0,2) superfields have themselves expansions as

Q(0,2) = q +
√
2θ+ψ+ − iθ+θ̄+(D0 +D3)q, (26)

Q̃(0,2) = q̃ +
√
2θ+ψ̃+ − iθ+θ̄+(D0 +D3)q̃, (27)

Φ(0,2) = φ+
√
2θ+ψφ,+ − iθ+θ̄+(D0 +D3)φ, (28)

and similar ones for the Fermi superfields.
We now discuss what happens when the (4, 4), d = 2 SUSY is broken to (2, 2), d = 2 due

to the combined effect of turning on a magnetic field and a D term. To do this we need to
consider the effect on the N = 2 hypermultiplet. This contains an N = 1 chiral multiplet
with scalar component Q and an N = 1 antichiral multiplet with scalar component Q̃†. Both
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Q and Q̃† transform in the same representation of the gauge group. If we turn on an extra
U(1) gauge group, Q and Q̃† are required to have the same charge e which means that Q̃ has
charge −e. The vector multiplet for the original gauge group is not charged under the extra
U(1) so the superpotential Q̃ΦQ has zero charge, as it should.

We now identify the massless fields present in the two dimensional (2,2) theory after the
first step of SUSY breaking, when the contributions of the magnetic field and the D-term
are taken into account. As in [7], we consider a free complex scalar charged under a U(1)
gauge field which is represented by a background gauge field A2 = B x1. The Klein-Gordon
equation for φ corresponds to the Landau problem for a particle in magnetic field with a
mass spectrum

m2
n = (2 n + 1)|e B|. (29)

which can be made zero by turning on the D component of the vector multiplet, leading to
the mass spectrum

m2
n = (2 n + 1)|e B| − e D (30)

For B > 0 we see that the fields with positive charge e > 0 give rise to massless two
dimensional scalars whereas the ones with negative charge e < 0 do not. Nevertheless, there
are also spin 1/2 field with a spectrum [7]

m2
+ = (2n + 1)|eB| − e B,m2

− = (2n+ 1)|eB|+ e B. (31)

We see that the right moving fermions can be massless for positive e and for B = D they can
be combined with the corresponding massless scalars to give rise to (0,2) chiral multiplets.
Therefore the 4 dimensional fields Q reduce to two dimensional (0,2) chiral multiplets denoted
by Φe>0

Q with an expansion

Φe>0
Q = φe>0

Q,+ +
√
2θ+ψe>0

Q,+ − iθ+θ̄+(D0 +D3)φ
e>0
Q . (32)

where φe>0
Q is the massless complex scalar field and ψe>0

Q,+ is the corresponding massless complex
right-moving fermion.

Due to the absence of a massless two dimensional scalar from the spectrum for negative
magnetic charge, a four dimensional fields Q̃ with negative magnetic charge reduces to a two
dimensional (0,2) Fermi superfields with the following expansion:

Λe>0
Q̃

= ψe>0
Q̃

−
√
2θ+F e>0 − i θ+θ̄+(D0 +D3)ψ

e>0
Q̃

−
√
2θ̄+Ee>0 (33)

where E is a chiral superfield which is combination of other chiral superfields in the theory.
The fields Φe>0

Q and Λe>0
Q̃

combine into a (2,2) chiral multiplet.

The chiral multiplet inside the N = 2, d = 4 vector multiplet is not charged under the
magnetic field and will be a full (2,2) two dimensional chiral multiplet with the following θ−

expansion
Φ2,2 = ΦΦ +

√
2θ−ΛΦ − i θ+θ̄+(D0 −D3)ΦΦ (34)
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where ΦΦ is a (0,2) chiral superfield and ΛΦ is a (0,2) Fermi superfield.
The N = 2, d = 4 theory with Nf flavours has a SU(Nf ) flavour symmetry and a

U(1)R × SU(2)R R-symmetry. The N = 1, Q components of the N = 2 hypermultiplet
transform in the fundamental representation of SU(Nf ) and the N = 1, Q̃ components in the
antifundamental representation of SU(Nf ). We chose the supersymmetry breaking magnetic
field to represent a U(1) group inside SU(N)f . The U(1) charges for the N = 1 components
of the i-th N = 2 hypermultiplet are related by ei = −ẽi where ei is the charge of Qi and
ẽi the charge of Q̃i. The global symmetry would then be an SU(Nf ) acting on the Q fields
times an SU(Nf ) acting on the Q̃ fields.

But this is not the fully story. As discussed in [7], the anomaly freedom constraints for a
global U(1) orthogonal to the gauge group require an extra condition on ei and ẽi:

∑

i

ei =
∑

i

ẽi = 0 (35)

and we use the same choice as in [7] to take Nf/2 of the ei and Nf/2 of the ẽi to be +1 and
the rest to be −1. The global symmetry is in general broken to SU(Nf/2)

4×U(1) but there
is a superpotential inherited from the N = 2 theory

∫

dθ(Qe=1ΦQ̃e=−1 +Qe=−1ΦQ̃e=1) (36)

which breaks the global symmetry from SU(Nf/2)
4 to SU(Nf/2)1 × SU(Nf/2)2. The

fields Qe=1 and Q̃e=−1 belong to the fundamental and anti-fundamental representations of
SU(Nf/2)1 whereas Qe=−1 and Q̃e=1 belong to the fundamental and anti-fundamental rep-
resentations of SU(Nf/2)2. The field Φ is not charged under SU(Nf/2)1 × SU(Nf/2)2.

The θ− expansions for the reduction of the field Qe=+1 and Qe=1 (or Q̃e=+1 and Q̃e=1) are

Q2,2 = ΦQ, Q̃2,2 =
√
2θ−ΛQ̃, (37)

due to the absence of the (0,2) Fermi superfield and (0,2) chiral superfield respectively.
We can now see what is the reduction of the four dimensional superpotential

∫

d2 θ Q Φ Q̃.
In the (2,2) two dimensional theory notations this would be

∫

d θ+d θ−ΦQ(ΦΦ +
√
2θ−ΛΦ)

√
2θ−ΛQ̃ (38)

The integration over θ− provide the superpotential
∫

d θ+
√
2ΦQΦΦΛQ̃+ (39)

The original N = 2, d = 4 theory has both Q and Q̃† in the same representation of the
gauge group. They also have the same charge +1 under the extra global U(1) group. At
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the same time, Q† and Q̃ also have the same charge -1 under extra global U(1) group. The
previous argument implies that, after the reduction to 2 dimensions, the field Q† reduces to
a (0,2) Fermi field ΛQ whereas Q̃† reduces to a (0,2) chiral superfield ΦQ̃. The fields ΦQ and
ΛQ together form a (2,2) multiplet

Φ
(2,2)
Q = ΦQ +

√
2ΛQ − i θ−θ̄−(D0 −D3)ΦQ, (40)

and ΦQ̃ and ΛQ̃ also form a (2,2) multiplet

Φ
(2,2)

Q̃
= ΦQ̃ +

√
2ΛQ̃ − i θ−θ̄−(D0 −D3)ΦQ̃, (41)

The conclusion is that our reduction of the N = 2, d = 4 theory on a T 2 with magnetic
flux gives rise to a (2,2) supersymmetric theory in 2 dimensions with (2,2) matter chiral

multiplets Φ
(2,2)
Q and Φ

(2,2)

Q̃
.

The coupling between the matter fields and the gauge fields is represented by a (0,2)
superpotential. In [7] a superpotential of interest for a collection of Λa = φ−−

√
2θ+F Fermi

superfields and Φi = φi +
√
2θ+ψ+ chiral superfields was

∫

d2xd θ+ΛaJ
a(Φi) =

∫

d2x(FaJ
a + ψ−aψ+i

∂Ja

∂φi
) (42)

where Ja are holomorphic functions of the chiral superfields Φi. In our case the superpotential
inherited from the N = 2, d = 4 theory couples one Fermi superfield ΛQ̃ and two chiral
superfields ΦΦ and ΦQ of the form:

∫

d2xd θ+ΛQ̃ΦΦΦQ =

∫

d2x(FQ̃φΦφQ + ψ−,Q̃ψ+,Φφq + ψ−,Q̃φΦψ+Q̃) (43)

The term ψ−,Q̃φΦψ+Q̃ provides the usual description of the Coulomb branch related to a
vacuum expectation value for the field φ.

4.3 From (2, 2), d = 2 to (0, 2), d = 2

In four dimensions a theory with N = 1 SUSY and fields Q, Q̃ in the (anti) fundamental
representations of the gauge group is obtained by adding a general polynomial in the N = 1
chiral multiplet Φ to the term Q Φ Q̃:

n
∑

k=1

1

k + 1
TrΦk+1 +Q Φ Q̃ (44)

which implies the extremum condition

n
∑

k=1

TrΦk +Q Q̃ = 0. (45)
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This relates the vevs of the flavour fields to the one of the scalar Φ.
After compactification to four dimensions and partially breaking the SUSY to (2,2), in

(0,2) language we can write the potential as Φn
ΦΛΦ so the total superpotential is

∫

d θ+(
√
2ΦQΦΦΛQ̃ + Φn

ΦΛΦ) (46)

whose derivative with respect to ΦΦ implies
∫

d θ+(
√
2ΦQΛQ̃ + Φn−1

Φ ΛΦ) = 0 (47)

The solution of this equation would provide a (0,2) field theory in two dimensions.

5 Brane Configurations and Geometries with D and F

terms

5.1 N = 2, d = 4, U(Nc) theories

5.1.1 Geometric Engineering

We first consider the IIB picture where the gauge group lives on D5 branes wrapped on
2-cycles. The geometry corresponds to a resolved xy = z2 singularity where the singular
x = y = z = 0 point is replaced by a P1 cycle with normal bundle O(0)⊕O(−2). By wrapping
D5 branes on the P1 cycle, the field theory living on the D5 branes is N = 2, d = 4, U(Nc).
We have a 5 parameter family of deformations in type IIB string theory:

- two choices for a two form composed of the NS field BNS and the RR field BRR.
- the holomorphic volume of the P1 cycle defined by

α =

∫

P1

dxdy

z
(48)

- the real Kahler modulus which is the integral of the Kahler form k

r =

∫

P1

k (49)

The stringy volume of the P1 cycle is V = (B2
NS + r2 + α2)1/2. and the coupling constant

of the field theory on the D5 branes is

1

g2
=
V

gs
. (50)

The real parameter r is related to the value of D-term (the real value of the D field inside
the N = 1 vector multiplet component of the N = 2 vector multiplet) and the complex
parameter α is related to the value of the F-term (the complex value of the F field inside the
N = 1 chiral multiplet Φ component of the N = 2 vector multiplet).
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5.1.2 Brane Configurations

The T-dual of the geometric picture is a brane configuration containing the following:
- two NS branes oriented along (012345) directions
- Nc D4 branes in the (01236) directions suspended between the NS branes.
The D4 branes can move along the NS branes in the (45) directions, spanning the

Coulomb branch and preserving the full N = 2 supersymmetry. The coupling constant
of the N = 2, SU(Nc) theory is proportional to the distance between the the NS branes in
the x6 directions.

What about the directions x7, x8, x9? We can move the NS branes with respect to each
other in these direction, keeping the D4 branes suspended between the NS branes. The x7

displacement corresponds to the geometric real blow-up parameter r of the D and the x8, x9

displacements to the deformation complex parameter α. The steps from r = 0, α = 0 to
r 6= 0, α 6= 0 are understood in brane configurations as

a) r = 0, α = 0 to r = 0, α 6= 0 corresponds to separating the NS branes in the x8, x9

directions.
b) r = 0, α 6= 0 to r 6= 0, α 6= 0 corresponds to separating the NS branes in the x7

directions.

5.2 SUSY breaking N = 2, d = 4 to N = (2, 0), d = 2 for U(Nc)×U(Nf)

5.2.1 Geometric Engineering

We now consider the A2 singularity xy = z3 and its resolutions. The singular x = y = z = 0
point is replaced by a two P1 cycles with overlapping O(0) ⊕ O(−2) normal bundles. By
wrapping Nc D5 branes on the first P1 cycle and Nf D5 branes on the second P1 cycle, the
field theory living on their worldvolume is N = 2, d = 4, U(Nc)× U(Nf ). Each P1 cycle has
a 5 parameter family of deformations in type IIB string theory including the NS and RR
2-forms, the holomorphic volumes α1, α2 and the real Kahler parameters r1, r2:

αi =

∫

P1

i

dxdy

z
, ri =

∫

P1

i

k, i = 1, 2. (51)

Besides the gauge multiplets for U(Nc)×U(Nf ) there are also N = 2 hypermultiplets which
are collections of N = 1 chiral multiplets Q and Q̃ transforming in (Nc, Ñf) and (Ñc, Nf)
representation. In this work we consider the α1, α2 parameters to be zero, the D term r1 for
the gauge group remains at zero whereas the D term r2 for the flavour group is non-zero.

In order to partially preserve the supersymmetry we compactify on a torus with magnetic
flux. When compactifying on a T 2, the N = 2, d = 4 theory becomes N = (4, 4), d =
2, U(Nc) × U(Nf ). As we saw in the previous section, turning on a magnetic flux equal to
the D term implies that the supersymmetry is broken to N = (2, 2), d = 2. Therefore, we
consider a fibration of the resolved A2 singularity over a two torus.
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5.2.2 SUSY breaking in Brane Configurations

Consider the compactification two torus to be in the x1, x2 directions. The above two steps
of supersymmetry breaking can be described in brane configurations as follows:

1) breaking to N = (2, 2), D = 2.
- having a non-zero D term r 6= 0 implies a rotation of the D4 branes in the x6, x7 plane

by an angle θ such tan θ = r.
- having a non-zero flux M 6= 0 implies a rotation of the D4 branes in the x1, x2 plane by

an angle θ such tan θ =M .
The NS branes are left unrotated. If r =M , the supersymmetry is partially preserved as

(2,2) in 2 dimensions.
2) breaking to N = (2, 0), D = 2.
A mass for the adjoint fields Φ1,Φ2 corresponds to rotating the NS branes in the (4589)

plane. The N = (0, 2) two dimensional configuration is obtained from the N = (4, 4) two
dimensional configuration by rotating the D4 branes in the (1267) plane and the NS branes
in the (4589) plane.

6 Conclusions

In this work we covered the steps describing the breaking of N = 2 supersymmetry in
four dimensions to (0,2) supersymmetry in two dimensions. The theories live on D5 branes
wrapped on 2-cycles inside Calabi-Yau 3-folds or 4-folds and the supersymmetry is partially
broken after a further compactification on a two torus with magnetic flux. The magnetic flux
is made equal to the volume of the 2 cycle to preserve (2,2) in two dimensions and a further
deformation of the normal bundle to the 2-cycle leads to (0,2) theory in two dimensions. We
left a collection of issues for future publications. On one hand the line bundles considered in
this work are of zero degree and it is important to generalise to bundles of even degree (we
need an even number to allow the definition of the square root bundle). It is also important to
understand the different types of geometric deformations as line bundles over the two torus.
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