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Abstract

In this work we consider the communication over a wireless link, between a sender and a receiver,
being disrupted by a jammer. The objective of the sender is to transmit as much data as possible to the
receiver in the most efficient way. The data is sent as the payload of packets, and becomes useless if
the packet is jammed. We consider a jammer with constrained power, defined by parameters ρ and σ,
which represent the rate at which the adversary may jam the channel, and the length of the largest burst
of jams it can cause, respectively. This definition translates to the Adversarial Queuing Theory (AQT)
constraints, typically used for packet arrivals.

We propose deterministic algorithms that decide the length of the packets sent in order to maximize
the goodput rate; i.e., the amount of useful payload successfully transmitted over time. To do so, we
first define and study a static version of the problem, which is used as a building block for the dyna-
mic problem. We start by assuming packets of the same length and characterizing the corresponding
quasi-optimal length. Then, we show that by adapting the length of the packets, the goodput rate can be
improved. Hence, we develop optimal adaptive algorithms that choose the packet lengths depending on
the jams that have occurred up to that point in time, in order to maximize the total payload transmitted
successfully over a period T in the presence of up to f jams.
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1 Introduction

Motivation Transmitting data over wireless media in a fast and reliable way, has been attracting a lot of
attention from the research community for quite some time now [3, 7, 11, 12, 15, 20, 24, 25, 28, 29, 30],
and continues to increase its popularity, especially due to the increment of usage of mobile devices (e.g.,
smart phones, tablets). One of the many challenges of wireless communication, depending on the specific
model and applications, is to cope with disruptions, especially when they are caused intentionally, e.g., by
malicious jamming devices. Some of the research efforts already done in addressing this challenge, have
looked in different assumptions and constraints (e.g.,[4, 5, 6, 13, 16, 20, 23, 24, 25, 28]) and will be further
discussed in the Related Work part of this section.

In our work we look at a wireless communication over a single channel between a sender and a receiver,
being “watched” and disrupted by a malicious, adversarial jammer. The sender’s goal is to fully transmit
over the channel as much data possible in the most efficient way, despite the jams. More precisely, the
sender has a potentially unbounded amount of data to be transmitted. Each packet sent contains a header
of fixed size h and some payload whose size, l, depends on the scheduling algorithm used. Note that this
payload counts towards the total size of the actual data to be transmitted. For simplicity and without loss of
generality we assume that h = 1. We also consider constant bit rate for the channel (and hence constant
bandwidth), which means that the transmission time of each packet is proportional to its size (in particular, a
packet of size l+ 1 takes l+ 1 time units to be transmitted in full). What is more, when a packet is jammed,
it needs to be retransmitted; hence we assume a feedback mechanism that informs the sender when a jam
occurs. Our objective is to define optimal scheduling algorithms that decide the length of the packets to be
sent, in particular their payload, so that they maximize the amount of data transmitted in time.

We assume that the adversary has complete knowledge of the packet scheduling algorithm and it decides
on how to jam the channel dynamically. However, the jamming power of the adversary is constrained by
two parameters, ρ and σ, whose values depend on technological aspects. Parameter ρ represents the rate at
which the adversary can jam the channel and σ the largest size of a burst of jams that can be caused. More
precisely, parameter σ represents the maximum number of “error tokens” available for the adversary to use at
any point in time, and ρ represents the rate at which new error tokens become available (one at a time). Each
error token models the ability of the adversary to jam one packet. This adversarial model could represent
a jamming entity with limited resource of rechargeable energy, e.g., malicious mobile devices [1, 2] or
battery-operated military drones [14, 18]. In these cases, σ represents the capacity of the battery (in packets
that can be jammed) and ρ the rate at which the battery can be recharged (for instance, with solar cells). We
call this model dynamic, due to the unpredictability and dynamic nature of the adversary and the channel
jams.

To evaluate the scheduling algorithms considered, we use the goodput rate as our efficiency measure;
successful transmission rate achieved. Under this model, we first show upper and lower bounds on the trans-
mission time and goodput rate when the sender sends packets of the same length throughout the execution
(uniform case), not taking into account the history of jams. The interesting question then is whether this
bound can be surpassed by adapting the packet length depending on the channel jams. Considering first
the case of σ = 1, we propose an adaptive scheduling algorithm that changes the packet length based on
the feedback on jammed packets, and show that it can achieve better goodput and transmission time with
respect to the uniform case, for most values of ρ. However, the analysis technique used for the case σ = 1
turned out not to be easily generalized for cases where σ > 1. Devising an optimal solution for the overall
problem seems to be a challenging task.

In order to better understand the above problem and lay the groundwork for obtaining its optimal soluti-
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ons, we also consider a simpler version of the problem, for which we define a corresponding model, called
static. In particular, we focus on a specific time interval of length T , and instead of assuming that new error
tokens are continuously arriving we assume a fixed number of error tokens f . The sender’s objective now
is to correctly transmit the maximum amount of data, considering the jamming power of the adversary. The
adversary is constrained only by parameter f ; the maximum number of errors (packet jams) it can introduce
in the corresponding interval T (all tokens are available from the very beginning of the interval). Hence,
given T and f , we want to maximize the total useful payload transmitted within the interval of interest.∗

We then use the static model as a building block for the solution of the dynamic one. More details on
the two models and our assumptions are detailed in Section 2. However, we believe that it is a fundamental
and challenging problem by itself.

In a previous work [4], we studied the impact of adversarial errors on packet scheduling, focusing on the
long term competitive ratio of throughput, named relative throughput. We explored the effect of feedback
delay and proposed algorithms that achieve close to optimal relative throughput under worst-case errors, and
adversarial or stochastic packet arrivals. Part of the motivation to this work, was the question whether the
upper bound of the relative throughput could be exceeded when the power of the adversary is constraint, one
of the main differences with this work. Another difference is that in the current work the packet sizes are
chosen by the sender, whereas in the previous one they were given. And last but not least, in [4], jammed
packets were not retransmitted; the objective was to route packets as fast as possible and not strive to have
each packet transmitted. In the current work, the choice of the packet size is precisely the most critical part
from the side of the sender. Thus, we focus in devising scheduling algorithms for the decision of packet
length to be used and conduct worst-case analysis for the efficiency measures.

Contributions In this work, we first introduce our dynamic, AQT-based adversarial jamming model in
wireless networks. To the best of our knowledge, this is the first work that uses such approach to restrict the
power of adversarial jamming in such networks. AQT has been widely used for restricting packet arrivals
in similar settings (see related work below). However, not much research has been done that considers
the possibility of exploring its effects in the intent to “damage” a network. We compare our model with
the few that have considered similar approaches in the related work below. As already mentioned, our
approach of constrained adversarial jamming could be used to model battery-operated malicious devices
that have bounded battery capacity and specific recharging rate. In Section 2, we formalize the constrained
adversarial jamming model we consider, which we call dynamic, as well as the static version of the model
(focusing on their differences), that is used as a building block to the main optimization problem in the
dynamic model. To do that, we propose our approach in Section 2.3, explaining how the goodput rate of the
optimal algorithm in the static model will be the goodput rate for the algorithm described for the dynamic
model.

We then present the limitations these models impose on the efficiency of scheduling policies, focusing
on the goodput rate as our main performance measure. More precisely, we start by studying the static model
in Section 3, where we consider the case when an algorithm, S-UNI, is restricted in sending packets of
uniform length (this could be due to limitations in the communication protocol or the sender’s specifica-
tion). We compute the quasi optimal† packet size p∗ and show that the achievable goodput rate becomes
G(T,f )(S-UNIp∗) ≈ (1−

√
f /T )2.

∗Since we assume that the transmission time of each packet is equal to its length, it follows that T is an absolute upper bound
on the useful payload transmitted.
†We use the term “quasi optimal” because our analysis returns a packet length that is a real number, and the optimal length has

to be an integer.
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Next, we devise adaptive scheduling algorithms; ones that change the packet length based on the feed-
back on jammed packets received, in order to see whether this goodput rate can be exceeded. We start by first
considering the case of f = 1 (Section 4). We present adaptive algorithm S-DEC, and show that it achie-
ves a greater goodput for T > 2

7−3
√

5
≈ 6.8541. We continue by devising a new algorithm, S-OPT(T, 1)

and prove its optimality. More precisely, we show that the algorithm achieves optimal useful payload of
i−1
i T −

i+1
2 + 1

i , where i is the integer such that T ∈
[

(i−1)i
2 + 1, i(i+1)

2 + 1
)

. Algorithm S-OPT(T, 1)

chooses the length p of the first packet to be transmitted as a function of T . If the packet is jammed then it
transmits a second packet of length T − p, which is now guaranteed not to be jammed. If the first packet
goes through, then the algorithm is invoked recursively as S-OPT(T − p, 1).

Then, we generalize algorithm S-OPT(T, 1) into algorithm S-OPT(T, f ) and show that it obtains static-
optimal useful payload for any f (Section 5). Algorithm S-OPT(T, f ) is essentially a recursive algorithm
that also begins by choosing length p of the first packet to be transmitted as a function of T (a different
function from that of S-OPT(T, 1)). If the packet is jammed, the adversary (unlike in the case of f = 1)
still has error tokens that it can use. Therefore, instead of sending a packet that spans the rest of the interval,
S-OPT(T, f ) makes the recursive call S-OPT(T − p, f − 1). If the packet is not jammed, then it makes a
recursive call to S-OPT(T − p, f ). Although the above algorithmic approach is quite natural, the choice of
the length p of the packet to be sent as well as the algorithm’s analysis of optimality, are nontrivial.

In Section 6 we analyze the uniform packet scheduling for the dynamic model, showing how it is related
to the static one. We conclude in Section 7, where we summarize our results and discuss the general algo-
rithmic approach proposed in subsection 2.3 (using the optimal algorithm of the static model to solve the
scheduling problem in the dynamic model). Finally we comment on some open questions and future work.
However, emphasizing on our results, we show that giving guarantees in this setting, even when dealing
with the simplest scenarios, is quite complex.

Related work Several studies have investigated the effect of jamming in wireless channels and throughput
maximization. Two exhaustive surveys we recommend the reader to see include the work of Pelechrinis et
al. [20] where they present a detailed survey of the Denial of Service attacks. They explain the various
techniques used to achieve malicious behaviors and describe methodologies for their detection as well as for
the network’s protection from the jamming attacks. The second one [13], is the work of Dolev et al., where
they present several existing results in adversarial interference environments in the unlicensed bands of the
radio spectrum, discussing their vulnerability. Let us also present some examples of more specific works
done in the are. Gummandi et al. [17] consider 802.11 networks disrupted by radio frequency interference
and show that they are surprisingly vulnerable. In order to cope with these vulnerabilities they propose and
analyze a channel hopping design. Tsibonis et al. [29] studied the scenario of scheduling transmissions to
multiple users over a wireless channel with time-varying connectivity. Assuming saturated packet queues,
they then proposed an algorithm based on the weighted sum of the throughput of the channel. Thuente et
al. [28] studied the effects of different jamming techniques in wireless networks and the trade-off with their
energy efficiency. Their study includes from trivial/continuous to periodic and intelligent jamming (taking
into consideration the size of packets being transmitted).

On a different flavor, Awerbuch et al. [6] designed a medium access (MAC) protocol for single-hop wi-
reless networks that is robust against adaptive adversarial jamming (the adversary knows the protocol and its
history and decides to jam the channel at any time) and requires only limited knowledge about the adversary
(an estimate of the number of nodes, n, and an approximation of a time threshold T ). One of the differences
with our work is that the adversary they consider is allowed to jam (1 − ε)-fraction of the time steps. On
a later work [24], Richa et al. explored the design of a robust MAC protocol that takes into consideration
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the signal to interference plus the noise ratio (SINR) at the receiver end. In [25] they extended their work to
the case of multiple co-existing networks, proposing a randomized MAC protocol that guarantees fairness
between the different networks and efficient use of the bandwidth. In [23], Richa et al. considered an adap-
tive adversarial jammer that is also reactive; one that is allowed to make a jamming decision based on the
actions of the nodes at the current step. This, is similar to the adversary we consider in this work. However,
they consider a different constraint on jamming: given a time period of length T , the adversary can jam at
most (1− ε)T of the time steps in that period. In our case, the adversary, within a time period T can cause
f channel jams, where f does not correspond to a fraction of time, but on the number of packets it can
corrupt. Another difference is that they consider n nodes transmitting over the channel and hence they have
to deal with transmission collisions as well. What is more, their objective is to optimize throughput over the
non-jammed time periods, whereas we include the whole execution. In a more recent work of Ogierman et
al. [19], the authors introduce a new SINR model capturing various interference phenomena and propose a
distributed MAC protocol that achieves constant competitive throughput. Nonetheless, the main differences
with our work are similar to the ones mentioned for their previous works.

Gilbert et al. [16] worked on a theoretical analysis of the damage that can be introduced by a tiny mali-
cious entity having limited power in the communication delay between two nodes. In particular, the nodes
share a time-slotted single-hop wireless ratio channel and the malicious entity wishes to delay their commu-
nication. However, it can only broadcast a message up to β times, which is similar to the restriction imposed
in our work, but our model can be viewed as a generalization of this restriction by allowing recharging.
Nonetheless, the setting and objectives of their work are different. They first show a bound on the number
of rounds that the malicious node can delay the communication and then study its implication on an n-node
general problem, such as reliable broadcast and leader election.

Schmid and Wattenhofer [26, 27] look at TCP transmissions and assume a network where congestion
varies with time while packets are lost at random due to bit rate errors in the wireless links. The authors
consider two models for the congestion changes: dynamic and bursty. The second model uses an approach
based on network calculus which is similar to our approach, but unlike our work they use it in order to define
the congestion changes of the network and hence the available bandwidth and maximum transmission rate
at any time (slotted time is assumed). Recall that we assume a constant bit rate at all times, hence the nature
of the problem is different. Furthermore, unlike our approach, they perform competitive analysis.

However, none of the models studied considers an AQT modeling of the power of the adversarial entity.
Adversarial queuing has been used in wireless networks as a methodology for studying their stability under
worst case scenarios, removing the stochastic assumptions usually made for the generation of traffic. It
concerns the arrival process of packets in the system and it has been introduced by Borodin et al. [8] as a well
defined theoretical model since 2001. A variety of works has then followed, using AQT in different network
settings, such as on multiple access channels [11, 12] and routing in communication networks [9, 10]. We
associate our constrained type of adversarial channel jams with the AQT model for the arrival process of
packets in the following way. Classical AQT considers a window adversary that accounts packets being
injected within a time window w in such a way that they give a total load of at most wr at each edge of the
paths they need to follow, where w ≥ 1 and r ≤ 1. In our channel jams, for every window of duration 1/ρ,
there is exactly one new error token available for the adversary to use. In a long execution, considering for
example a time interval T > 1/ρ, there will be up to Tρ new error tokens available to the adversary.

Last but not least, as mentioned in Section 1, our adversarial jammer has limited sources of energy
and can be used to model, for example, military drones or mobile jammers. Drones or Unmanned Aerial
Vehicles (UAV) are at the peak of their development. As an upcoming technology that is rapidly improving,
it has already attracted the colossi of industry, like Google or Amazon, to invest in UAV research and
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development, creating even commercial models. There have already been a few research works [14, 18]
but the area is still being studied; the work in [14] focuses on UAV’s risk analysis and the work in [18]
focuses in analyzing cellular network coverage using UAV’s and software defined radio. Regarding mobile
jammers, in the recent years, many companies have made available battery-operated 3G/4G, WiFi or GPS
mobile jammers (e.g., [1, 2]); this market can only increase, as wireless communication is becoming the
dominating communication technology.

2 Model

In this section we first formalize the dynamic model, the main model considered in this work, and then we
highlight the differences with the static model, which is extensively used as a building block for the dynamic
one.

2.1 Dynamic Model

Network setting We consider a setting of a sending station (sender) that transmits packets to a receiving
station (receiver) over an unreliable wireless channel. We assume that the sender has enough data to transmit,
covering any interval length T , and follows some online scheduling [22, 21] in order to decide the lengths of
the packets to be sent in the transmission. The decisions need to be made during the course of the execution,
taking into consideration (or not) the channel jams. Each packet π consists of a header of a fixed predefined
size h and a payload of length l chosen by the algorithm. The payload represents the useful data to be
sent across the channel and is to be chosen by the sender. The total length of the packet is then denoted by
p = h + l. For simplicity and without loss of generality we use h = 1 throughout our analysis, and hence
p = l + 1. (Note that l needs not be an integer.) Furthermore, we consider constant bit rate for the channel,
which means that the transmission time of each packet is proportional to its length (i.e., a packet of size l+1
takes l + 1 time units to be transmitted in full).

Packet failures We model the unavailability of the channel to be controlled by the omniscient and adaptive
adversary (σ, ρ)-A, which is defined by its two “restrictive” parameters, ρ ∈ [0, 1] and σ ≥ 1 as follows.
The adversary has a token bucket of size σ where it stores “error tokens” and is initially full. From the
beginning of the execution and up to a time t, within interval T = [0, t], there will be bρT c such error
tokens created, where ρ is the rate at which they become available to the adversary. In other words, a new
error token becomes available at times 1/ρ, 2/ρ, . . .. Note that the values of the parameters are given to
the adversary (they are not chosen by it) and it can only use them in a “smart” way in order to control the
packet jams in the channel. If there is at least one token in the bucket, the adversary can introduce an error
in the channel and jam the packet being transmitted, consuming one token. If the token bucket is full (i.e.,
there are already σ error tokens in the bucket) and a new token arrives, then one token is lost. (This, models,
for example, the fact that a fully charged battery cannot be further charged.) As a worst case analysis, we
consider that the adversary jams some bit in the header of the packets in order to ensure their destruction.
Therefore, adversary (σ, ρ)-A defines the error pattern E as a collection of jamming events on the channel,
jamming the packet that is being transmitted in that instant. Finally, we assume that parameters ρ and σ are
known to the scheduling algorithm.

Efficiency measures For the efficiency of a scheduling algorithm, we look at the goodput rate, G; the
ratio of the total amount of payload successfully transmitted over time, despite the jams in the channel.
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To be more precise, let us define the amount of payload successfully transmitted as useful payload. We
denote the useful payload of an algorithm ALG in a time interval T , under error patternE, by UPT (ALG, E),
and it is calculated as the sum of payloads of the packets successfully transmitted in the interval. Since
we make a worst-case analysis, we actually calculate the worst useful payload of a fixed algorithm A as
UPT (A) = minE∈E(ρ,σ) UPT (A,E), where E(ρ, σ) is the set of all possible error patterns with parameters
ρ and σ. We also define the optimal useful payload as UP∗T = maxALG UPT (ALG). Now, when exami-
ning a period T in the execution of an algorithm ALG, under error pattern E, its goodput rate is defined as
GT (ALG, E) = UPT (ALG)/T and the optimal goodput as G∗ = UP∗T /T .

For simplicity, we use the shorter notations UP and G, when the algorithm used or the time interval
considered, respectively, are implied. We also overload the notation T to refer both to the interval and
its length. Note finally, that in most of our analysis we avoid using floors and ceilings in order to keep
the readability of our results as simple as possible for the reader. Nonetheless, this does not affect the
correctness of our results since when being applied on large enough time intervals and data, the “losses”
become negligible.

Feedback mechanism As a feedback mechanism, following [4], we assume that the sender receives in-
stantaneous feedback for a packet successfully received. We also assume that the notification packets cannot
be jammed by the errors in the channel because of their relatively small size. In particular, we consider no-
tification / acknowledgement messages sent for every packet that is received successfully. If such a message
is not received by the sender, then it considers the packet to be jammed.

2.2 Static Model

We now present the static model, focusing only on the differences it has from the dynamic one.

Packet failures We assume that the channel jams are orchestrated by an omniscient and adaptive adver-
sary, (T, f )-A. However, it has a constrained number of jams it can cause in a given period. Specifically,
for a time interval of length T , T ≥ 1, it can cause up to f packet jams. Thus, given a parameter T , the
adversary defines the error pattern E as a set of up to f jamming events on the channel over that period,
each given by a time instant in the period. As in the dynamic model, for a worst case analysis we assume
that the adversary jams some bit in the header of the packets in order to ensure their destruction. We will
sometimes use the special error pattern E = ∅ that corresponds to the case in which the adversary causes no
jamming. For a given T , we assume that f is known to the scheduling algorithm.

Efficiency measures We consider the same performance measure as in the dynamic model; goodput rate,
and use the useful payload in order to calculate the exact amount of data successfully transmitted; this time
for interval of length T and f error tokens.

More formally, similar to the dynamic model, we denote by UP(T,f )(ALG, E) the useful payload (pay-
load successfully received) when using scheduling algorithm ALG in an interval of length T against an
adversary of power f that uses error pattern E. Then, for a fixed algorithm A, its useful payload is
UP(T,f )(A,E) = minE∈E(f ) UP(T,f )(A,E), where E(f ) is the set of all possible error patterns with at
most f jams. From this, we also define the optimal useful payload as UP∗(T,f ) = maxA UP(T,f )(A). For
simplicity, we use the shorter notation UP. This is done when the algorithm used and the number of possible
errors in the interval are implied.
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The goodput rate is defined similarly, by simply dividing the useful payload by the length of the interval.
More precisely, when using scheduling algorithm ALG in an interval of length T against an adversary of
power f that uses error pattern E, its goodput rate is G(T,f )(ALG, E) = UP(T,f )(ALG, E)/T , and the
optimal goodput is G∗(T,f ) = UP∗(T,f )/T .

Feedback mechanism As in the dynamic model, we assume instantaneous feedback. Nonetheless, ob-
serve that if T ≤ f , then the adversary can jam all packets sent in the interval and no useful data will be
received. Hence, we focus only in time periods that are initially of length T > f .

We start with proving an absolute bound on the error rate with respect to the maximum packet length.

Observation 1 Let c be the smallest packet size used by an algorithm (i.e., ∀p, p.len ≥ c). For any error
rate ρ ≥ 1/c, no goodput larger than zero can be achieved.

Proof: If the error rate is ρ ≥ 1/c, a new error token arrives during the transmission of any packet (recall
that packets are of size at least c). Hence, there are error tokens in the bucket at all times for the adversary
to corrupt all packets being transmitted. Using an error token every c time, is sufficient to keep the goodput
at zero.

From this observation, it can be derived that algorithms that only use packets of length p.len ≥ 1/ρ are
not interesting.

2.3 Moving from the Static Model to the Dynamic Model

Our approach is to first analyze the static model, and then explore the way its solutions can be applied in the
dynamic model. In particular, we divide the executions of the continuous (dynamic) version of the problem
into successive intervals of length 1/ρ, and assume σ error tokens available at the beginning of each interval.
Then these intervals become instances of the static model, where T = 1/ρ and f = σ.

We therefore propose an algorithm ALGD, that uses the optimal solution of the static model, say algo-
rithm A, to solve the problem in the dynamic model, with parameters 1/ρ and σ.

Algorithm ALGD Description:
For every time interval Ti =

[
i
ρ ,

i+1
ρ

)
, where i = 0, 1, . . . , run A(1/ρ, σ).

Observation 2 Observe that, if the goodput of algorithm A is G(A), then the goodput of ALGD will also
be G(ALGD) = G(A). This is because the goodput per-interval will be repeated throughout the whole
execution.

3 Uniform packets for the Static Model

Let us start by studying the static model, for the case when the algorithm is restricted in sending packets
of equal (uniform) length. This could be due to limitations in the communication protocol or the sender’s
specification. We aim to define a quasi-optimal algorithm S-UNI that schedules uniform packets taking into
account the parameters of the adversary. For that, we compute the quasi-optimal necessary packet length,
p∗, that maximizes the minimum useful payload considering time interval T and maximum number of errors
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f .
Note that the approximations below are due to floors and ceilings; these approximations get closer to equa-
lity as T f grows.

Theorem 1 Let S-UNI use only uniform packets of length p. In an interval of length T and maximum
number of errors f , the optimal packet length for these algorithms, p∗, gives a useful payload

UP(T,f )(S-UNIp∗) = max
{ 1

b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
and thus a corresponding goodput rate

G(T,f )(S-UNIp∗) = max
{ 1

T b
√
T f c

(
b
√
T f c− f

)(
T −b

√
T f c

)
,

1

T d
√
T f e

(
d
√
T f e− f

)(
T −d

√
T f e

)}
.

In fact, UP(S-UNIp∗) ≈ T + f − 2
√
T f and G(S-UNIp∗) ≈

(
1−

√
f /T

)2
.

Proof: Let us denote by n the number of uniform packets of length p = T
n sent in an interval of length T

when the adversary has f error tokens available. In the worst case, the adversary will use its error tokens
to jam f packets in the interval, and hence there will be at least n − f successfully received packets by the
receiver by the end of the interval.

Let us denote by S-UNIn and S-UNIp the same algorithm, that uses n uniform packets of length p.
Recall that each packet consists of the payload and a unit-size header. Its useful payload will then be
UP(T,f )(S-UNIn) = (n− f )

(
T
n − 1

)
. Deriving this expression with respect to n, we get

∂UP(T,f )(S-UNIn)

∂n
=

f T

n2
− 1,

which implies that UP(T,f )(S-UNIn) is maximized for n =
√
T f . What is more, the derivative is positive

for n <
√
T f and negative for n >

√
T f . This means, that the useful payload is strictly increasing on the

left of n =
√
T f and strictly decreasing on the right. From this, we get that (1) there is no other n that

maximizes the useful payload, and (2) since the number of packets has to be an integer value, the only two
candidates for the optimal number of packets n∗ are b

√
T f c and d

√
T f e. Hence the value of these two that

maximizes the useful payload is the optimal number n∗.
Thus, the optimal useful payload is

UP(T,f )(S-UNIn∗) = (n∗ − f )
( T
n∗
− 1
)

= max
{ 1

b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
and the corresponding goodput rate

G(T,f )(S-UNIn∗) =
UP(T,f )(S-UNIn∗)

T

= max
{ 1

T b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

T d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
,

as claimed.
From the optimal number n∗, and the fact that p∗ = T

n∗ , we get that p∗ ≈
√
T/f . Then, the optimal

achievable useful payload becomes UP(T,f )(S-UNIp∗) ≈ T + f − 2
√
T f and the corresponding optimal

goodput rate, G(T,f )(S-UNIp∗) ≈
(

1−
√

f /T
)2

, as also claimed.
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4 Adaptive Algorithms for Static Model with f = 1

We now turn our attention to some adaptive algorithms; ones that change the packet sizes according to the
jams they have observed so far. Starting from the case of f = 1 we propose algorithms that achieve a
goodput rate greater than G∗(T,1)(S-UNI) ≈ (1−

√
1/T )2.

4.1 Algorithm S-DEC

The first algorithm we propose, that adapts the length of the packets sent, is called S-DEC and we show
here that for time intervals T large enough, for T > 2

7−3
√

5
to be exact, it achieves goodput rate greater than

G(T,1)(S-UNI) ≈ (1−
√

1/T )2.

Algorithm S-DEC Description:
Each period starts by scheduling packets of decreasing length pi = Z − i for i = 0, 1, 2, 3 . . .. If a packet
πj is jammed during the period, this transmission sequence is stopped, and after πj , a single more packet is
scheduled by the algorithm whose length spans the rest of the period.

Theorem 2 Adaptive algorithm S-DEC, with Z = 1
2

(√
1 + 8T − 1

)
, achieves goodput G(S-DEC) = 1 −

1
2T

(
1 +
√

1 + 8T
)
. This value is larger than the upper bound for the uniform case, if T > 2

7−3
√

5
≈ 6.8541.

Proof: There are two cases to be considered in a period:
(a) If the adversary jams a packet πj , the useless data sent in the period adds to Z + 1. This number

comes from the j headers of the packets sent before πj , plus the length pj = Z − j of the packet jammed,
plus the header of the last packet sent in the period (which cannot be jammed). Hence, in this case, the
useful payload of the period is T − (Z + 1).

Otherwise, (b) if no packet is jammed, the useless data sent in the period correspond only to the headers
of the packets sent. Then, if the last packet sent in the interval is πk, the useless data is k + 1, and the
corresponding useful payload is T − (k + 1). The value Z is chosen so that the total length of the packets
sent in this case is equal the length of the interval. From this property,

∑k
i=0 pi = T, the value of Z must

satisfy Z(k + 1)− k(k+1)
2 = T and hence

Z =
k

2
+

T

k + 1
. (1)

In a given period the choice of whether case (a) or (b) occurs is up to the adversary, since she can decide
which packet to jam, if any. This means that the useful payload achieved will be the minimum of the two
cases, UP = min{T − (Z+ 1), T − (k+ 1)}. Observe from this Eq. 1 that the length Z of the initial packet
increases if the number of packets k decreases. Additionally, it must hold that Z ≥ k and therefore UP is
maximized when when Z = k. Hence, the optimal k is the suitable solution of the equation k = k

2 + T
k+1 ,

which is k = 1
2

(√
1 + 8T − 1

)
= Z.

The useful payload achieved is then UP(S-DEC) = T −
(

1
2

√
1 + 8T − 1

2 +1
)

= T − 1
2

(√
1 + 8T +1

)
,

which is more than UP∗(S-UNI) = T · G(T,1)(S-UNI) = T
(

1 −
√

1/T
)

. The corresponding goodput is

therefore G(S-DEC) = UP
T = 1− 1

2T

(√
1 + 8T + 1

)
.
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4.2 Algorithm S-OPT(T, 1): optimal for f = 1

Since the performance of algorithm S-DEC is only better than the uniform packet scheduling approach for
a limited range of intervals, i.e., T > 2

7−3
√

5
, we aim to improve the result given by S-DEC in the previous

subsection, and see whether a goodput rate that surpasses G(S-UNI) exists for time intervals T < 2
7−3
√

5
.

In our effort to do so, we develop the following adaptive algorithm, named S-OPT(T, 1), which we prove
to be optimal for the static model, for f = 1. (See the algorithm’s pseudocode in Alg. 1.) By doing so, we
also hope to give an intuition to the reader on how the optimal algorithm for any number of error tokens will
work.
Algorithm 1 S-OPT(T, 1)

If T ∈ [1, 2) then
Send packet π with length p = T

else
Let i be the integer such that T ∈

[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
Let α = i− 2, and β = (i−1)i

2 − 1

Send packet π with length p = T+β
α+2 = T−1

i + i−1
2

If packet π is jammed then
Send packet with length p′ = T − p

else
Call S-OPT(T − p, 1)

Algorithm S-OPT(T, 1) is used in a time recursive fashion, with respect to the length of the interval of
interest, T . Its scheduling policy is as follows: It chooses the length p of the first packet to be transmitted
as a function of T . If the packet is jammed then it transmits a second packet of length T − p which is
guaranteed not to be jammed. If the first packet goes through, then the algorithm is invoked recursively as
S-OPT(T − p, 1).

A detailed pseudocode for the algorithm is given as Algorithm 1. Let us fix the interval length T ≥ 1,
and let i be the integer such that T ∈

[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
, as described in the above pseudocode. Let us

also define parameters α = i−2 and β = (i−1)i
2 −1, packet length p = T+β

α+2 , and interval length T ′ = T−p.
We first present the following two lemmas that are used to show the optimality of Algorithm S-OPT(T, 1)
in the static model.

Lemma 1 Interval length T ′ = T − p is such that T ′ ∈
[

(j−1)j
2 + 1, j(j+1)

2 + 1
)

for j = i− 1, where i is
an integer such that i ≥ 1.

Proof: Replacing the values of α and β in the calculation of T ′ = T − p,

T ′ =
(α+ 1)T − β

α+ 2
=

(i− 2 + 1)T −
(

(i−1)i
2 − 1

)
i− 2 + 2

=
(i− 1)T − (i−1)i

2 + 1

i
.

Now, using the fact that T ≥ (i−1)i
2 + 1, we have

T ′ ≥
(i− 1)

(
1 + (i−1)i

2

)
− (i−1)i

2 + 1

i
= · · · = (i− 1)(i− 2)

2
+ 1.
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Similarly, using the fact that T < i(i+1)
2 + 1, we have

T ′ <
(i− 1)

(
1 + i(i+1)

2

)
− (i−1)i

2 + 1

i
= · · · = (i− 1)i

2
+ 1.

Setting j = i− 1 in both cases, we have T ′ ∈
[

(j−1)j
2 + 1, j(j+1)

2 + 1
)

as claimed.

Lemma 2 Let T ≥ 2 and assume that UP(T ′,1)(S-OPT) = αT ′−β
α+1 , where T ′ = T − p. Then, Algorithm

S-OPT(T, 1) achieves useful payload UP(T,1)(S-OPT) = (α+1)T−(β+α+2)
α+2 .

Proof: Since T ≥ 2, that Algorithm S-OPT(T, 1) schedules first a packet π with length p = T+β
α+2 . If π is

jammed, then a packet of length equal to the rest of the interval, i.e., T ′ = T − p, can be sent successfully,
and hence the useful payload will be UP(T,1)(S-OPT) = T − T+β

α+2 − 1 = (α+1)T−(β+α+2)
α+2 .

Otherwise, if π is not jammed, the useful payload is obtained as UP(T,1)(S-OPT) = p−1+UP(T ′,1)(S-OPT) =

p − 1 + αT ′−β
α+1 = p − 1 + α(T−p)−β

α+1 = (α+1)T−(β+α+2)
α+2 . In both cases, the useful payload is as claimed,

which completes the proof.

Theorem 3 Given an interval of length T ≥ 1, Algorithm S-OPT(T, 1) achieves optimal useful payload
UP∗(T,1) = i−1

i T −
i+1

2 + 1
i , where i is the integer such that T ∈

[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
.

Proof: The proof is by induction on T . The base case is when T ∈ [1, 2), which implies that i = 1. In
this case only one packet is sent by S-OPT(T, 1), which spans the whole interval and can be jammed by the
adversary. Observe that in this case at most one packet can in fact be sent in the interval. This matches the
claim that S-OPT(T, 1) achieves optimal useful payload UP∗(T,1) = 0 in this case.

Let us now consider any interval length T ≥ 2, which implies i ≥ 2. Then, from Lemma 1, interval
length T ′ = T − p ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i− 1. By induction hypothesis, UP(T ′,1)(S-OPT) =

UP∗(T ′,1) = j−1
j T− j+1

2 +1
j = αT ′−β

α+1 , and from Lemma 2 we have that UP(T,1)(S-OPT) = (α+1)T−(β+α+2)
α+2 =

i−1
i T −

i+1
2 + 1

i .
To show that the useful payload achieved by S-OPT is optimal for this case T ≥ 2, consider an algorithm

A that follows one of the following approaches:
(a) First sends a packet π′ of length p′ > T+β

α+2 . We assume then that the adversary jams π′. The length of
the rest of the interval is T − p′ < T − T+β

α+2 . Hence the useful payload will be

UP(T,1)(A) < T − T + β

α+ 2
− 1 =

(α+ 1)T − (β + α+ 2)

α+ 2
= UP(T,1)(S-OPT).

(b) First sends a packet π′ of length p′ < T+β
α+2 , p′ ≥ 1. Then the adversary does not jam π′. The rest of the

interval has length T − p′ = T ′ + (p − p′) > T ′. We consider two cases (from Lemma 1 no other case is
possible):
Case (b).1: T −p′ = T ′+(p−p′) ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i−1. Then, by induction hypothesis,
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UP∗(T ′+(p−p′),1) = j−1
j (T ′ + (p − p′)) − j+1

2 + 1
j <

j−1
j T ′ − j+1

2 + 1
j + (p − p′) = UP∗(T ′,1) + (p − p′).

Hence,

UP(T,1)(A) ≤ p′ − 1 + UP∗(T ′+(p−p′),1) < p′ − 1 + UP∗(T ′,1) + (p− p′)
= p− 1 + UP∗(T ′,1) = UP(T,1)(S-OPT).

Case (b).2: T − p′ = T ′ + (p− p′) ∈
[

(i−1)i
2 + 1, i(i+1)

2 + 1
)

. In this case,

UP(T,1)(A) ≤ p′ − 1 + UP∗(T−p′,1) = p′ − 1 +
i− 1

i
(T − p′)− i+ 1

2
+

1

i

<
i− 1

i
T − i+ 1

2
+

1

i
= UP(T,1)(S-OPT),

where the first equality follows from induction hypothesis, and the second inequality follows from the fact
that p′ < i (derived from p′ < T+β

α+2 , the definition of α and β, and the fact that T < i(i+1)
2 + 1).

Hence, in none of the two cases, neither (a) nor (b), Algorithm A was able to achieve a higher useful
payload than S-OPT, which implies that the latter achieves optimality.

5 Algorithm S-OPT(T, f ): optimal for any f > 1 in the Static Model

We now turn our focus on the case of any number of error tokens available to the adversary, for an interval
of length T , i.e., s > 1. We present the general adaptive algorithm S-OPT(T, f ) for f > 1 as Algorithm 2,
and prove its optimality in the static model. The pseudocode of S-OPT(T, f ) for f > 1 is similar to that of
S-OPT(T, 1), with a couple of differences. First, in this case it is not possible to explicitly give the length p
of the first packet π sent (values of α, β, and γ) when T ≥ f + 1 (see Theorem 4). Second, if π is jammed,
the adversary still has some error tokens that it can use. Hence, instead of sending a packet that spans the
rest of the interval, S-OPT(T, f ) makes the call S-OPT(T − p, f − 1), which could be recursive if f > 2, or
a call to the algorithm S-OPT(T − p, 1) (see Algorithm 1), if f = 2. It will not be surprising then that the
proof of optimality of the algorithm S-OPT(T, f ) will use induction on f .

Algorithm 2 S-OPT(T, f ), for f > 1

If T < f + 1 then
Send packet π with length p = T

else
Send packet π with length p = αT+β

γ // α, β and γ depend on T ; see Theo-

rem 4

If packet π is jammed then
Call S-OPT(T − p, f − 1)

else
Call S-OPT(T − p, f )

Let us first prove some observations that hold for any optimal algorithm OPT, to be used later in the
analysis of Algorithm S-OPT(T, f).
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Observation 3 The useful payload of an optimal algorithm OPT, follows a non-decreasing function with
respect to the length of the interval of interest, T , when there are f ≥ 0 available errors, i.e., UP∗(T,f ) ≤
UP∗(T+δ,f ), for δ > 0.

Proof: Let us consider an optimal algorithm OPT that achieves optimal useful payload UP∗(T,f ) = α, for an
interval of length T and f error tokens available within the interval. Now let us construct an algorithm A,
that for interval length T + δ initially uses the exact same approach as OPT for T ; choosing the same packet
lengths OPT does during the initial T time of the interval. This means that it has at least the same useful
payload as OPT for T , i.e., UP(T+δ,f )(A) ≥ α. Since OPT is the optimal algorithm, it must achieve at least
the same useful payload as A for the interval of length T + δ, i.e., UP∗(T+δ,f ) ≥ UP(T+δ,f )(A). Hence,
UP∗(T,f ) ≤ UP∗(T+δ,f ) as claimed.

Observation 4 The useful payload of an optimal algorithm OPT, follows a non-increasing function with
respect to the number of available errors in an interval of length T , i.e., UP∗(T,f ) ≤ UP∗(T,f−1), where f ≥ 1.

Proof: Let us consider an optimal algorithm OPT, with a useful payload UP∗(T,f ) = β for an interval length
T with f errors available. Then, let us construct an algorithm A, that for f − 1 error tokens during the same
interval length T , uses the exact approach as OPT for f errors; choosing the same packet lengths until f − 1
error tokens are used by the adversary. Then, it schedules one packet equal to the size of the remaining in-
terval. This means that it has at least the same useful payload as OPT does for f errors, UP(T,f−1)(A) ≥ β.
And since OPT is the optimal algorithm, it must achieve at least the same useful payload for the same inter-
val and f − 1 errors, i.e., UP∗(T,f−1) ≥ UP(T,f−1)(A). Hence, UP∗(T,f ) ≤ UP∗(T,f−1) as claimed.

Lemma 3 There is an optimal algorithm OPT that is work-conserving, i.e., for each T and for each f , there
is an optimal work-conserving strategy deciding the packet lengths.

Proof: Assume by contradiction that there is some combination of interval and number of error tokens
(T, f ), for which no work-conserving scheduling strategy is optimal. We choose the smallest such T and
consider the following:
(1) There is an optimal strategy for this pair of T and f that does not send any packet during the interval.
Hence the optimal useful payload is zero, UP∗(T,f ) = 0. In this case, sending one packet that spans the whole
interval will lead to the same payload.
(2) There is a strategy that waits for ∆ time at the beginning of the interval before sending a packet of length
p. This packet can be jammed. Therefore,

UP∗(T,f ) = min{UP∗(T−∆−p,f−1), p− 1 + UP∗(T−∆−p,f )}
≤ min{UP∗(T−p,f−1), p− 1 + UP∗(T−p,f )}.

Where the inequality follows from Observation 3. The right side of the inequality is the useful payload
obtained by the strategy that does not wait the ∆ period, but instead schedules the packet of length p at the
beginning of the interval (which is work-conserving). Since both cases lead to a contradiction, the claim
follows.

Lemma 4 The optimal useful payload is a continuous function with respect to the length of the interval, T ,
when there are f ≥ 1 errors available.
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Proof: Assume by contradiction that the optimal useful payload is not a continuous function. This means
that there is an interval length T for which the following holds: lim

ε→0
UP∗(T−ε,f ) < UP∗(T,f ). Let us fix

parameter ε > 0, and observe the behavior of a work-conserving optimal algorithm OPT for interval lengths
T and T − ε (such an algorithm exists by Lemma 3). Let us then denote by pO and pε the lengths of the first
packet scheduled by OPT in each case respectively. These packets can be jammed or not. We observe that

UP∗(T−ε,f ) = min{UP∗(T−ε−pε,f−1), pε − 1 + UP∗(T−ε−pε,f )} (2)

UP∗(T,f ) = min{UP∗(T−pO,f−1), pO − 1 + UP∗(T−pO,f )} (3)

However, if we construct an alternative algorithm A that chooses a packet of length p′′ = pO − ε in the case
of interval of length T − ε, and works as OPT for smaller interval lengths, then

UP(T−ε,f )(A) = min{UP∗(T−pO,f−1), pO − ε− 1 + UP∗(T−pO,f )} ≥ UP∗(T,f ) − ε.

Since UP∗(T−ε,f ) ≥ UP(T−ε,f )(A), it is then trivial to conclude that lim
ε→0

UP∗(T−ε,f ) = UP∗(T,f ), which is a

contradiction. Hence the optimal useful payload is a continuous function with respect to the length of the
interval, as claimed.

We will now show how Algorithm S-OPT(T, f ) computes the packet length p of the packet π sent when
T ≥ f + 1. The computation assumes that it is possible to recursively call S-OPT(T ′, j) for any T ′ < T
and j ≤ f , and that the useful payload of each of these recursive calls is the optimal value UP∗(T ′, j).
Then, S-OPT(T, f ) chooses as length of packet π the smallest value p ∈ [1, T ] that satisfies the equality
UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ). Table 1 shows the values of p chosen for some interval lengths T when
f = 2. It also shows the useful payload achieved by the algorithm using these values of p.

T [1, 3) [3, 9/2) [9/2, 17/3) [17/3, 19/3) [19/3, 70/9) [70/9, 308/36)

p T T
3

T+6
7

3T+3
12

5T+16
26

6T+42
42

UP∗(T,2) 0 T−3
3

3T−10
7

6T−22
12

14T−54
26

24T−98
42

Table 1: Values of packet length p and optimal useful payload UP∗(T,2) achieved with Algorithm
S-OPT(T, 2).

We prove that the described process to make the choice leads to optimality in the following theorem.

Theorem 4 Given an interval of length T ≥ f +1, Algorithm S-OPT(T, f ) achieves optimal useful payload
by choosing the smallest value p ∈ [1, T ] that satisfies the equality

UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ).

Moreover, there are constantsαl, βl, γl, αk, βk, and γk such that UP∗(T−p,f ) = αl(T−p)−βl
γl

and UP∗(T−p,f−1) =
αk(T−p)−βk

γk
, and hence

p =
(αkγl − γkαl)T + γkγl + γkβl − βkγl

γkγl + αkγl − γkαl
.
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(Observe that the parameters used in Algorithm 2 are hence α = αkγl − γkαl, β = γkγl + γkβl − βkγl,
and γ = γkγl + αkγl − γkαl.) The optimal useful payload obtained is then

UP∗(T,f ) =
αkγlT − (αkγl + αkβl + βkγl − βkαl)

γkγl + αkγl − γkαl
.

Proof: We prove by a double induction on the number of error tokens f and the length of the interval T ,
that the approach followed by Algorithm S-OPT(T, f ) gives the optimal useful payload.
Base Cases. We have as base case of the induction on the number of error tokens the fact that (1) when
f = 0 the optimal strategy is to send a single packet of length T that spans the whole interval, leading to
UP∗(T,0) = T − 1, and (2) that the algorithm S-OPT(T, 1) presented before is optimal for any T , which
covers the case f = 1.

For a given f > 1, we also use induction in the length of the interval T . In this case the base case is
when T < f + 1, which has optimal payload UP∗(T,f ) = 0, since the adversary can jam each of the up to f
packets that can be sent.
Induction Hypotheses. We first inductively assume that S-OPT(T, j) is optimal for any number of tokens
j < f available to the adversary at the beginning of the interval and any interval length T > j. In particular,
for any j < f and any T > j, there is a known range Rij = [aij , bij) such that T ∈ Rij , and the optimal
useful payload is known to be UP∗(T,j) =

αijT−βij
γij

. Parameters αij , βij and γij are known positive integers,
such that βij > γij > αij .

We inductively also assume that, for f error tokens, there are m known ranges Rif = [cif , dif ) for
i = 1, 2, . . . ,m, such that

⋃m
i=1Rif = [1, dmf ). Also, for any interval length T such that T < dmf and

T ∈ Rif = [cif , dif ), the optimal useful payload is known to be UP∗(T,f ) =
αif T−βif

γif
. Parameters αif , βif

and γif are known positive integers such that (1) βif > γif > αif , and for l ≤ r ≤ m it holds that (2)
βrf
γrf
≥ βlf

γlf
and (3) αrfγrf

≥ αlf
γlf

.
Inductive Step. For interval length T ∈ [dmf , dmf + 1), the algorithm S-OPT(T, f ) chooses the smallest
packet length p ∈ [1, T ] that satisfies the following condition

UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ). (4)

Claim 1 There is at least one packet length p ∈ [1, T ] that satisfies Eq. 4.

Proof: Observe that, when p = 1, from Observation 4 we have that UP∗(T−p,f−1) ≥ p − 1 + UP∗(T−p,f ).
On the other hand, when p = T , we have that UP∗(T−p,f−1) = 0 ≤ p − 1 + UP∗(T−p,f ) = T − 1.
Hence, taking into consideration the continuity of the useful payload function of both f − 1 and f error
tokens (Lemma 4) and the Mean Value Theorem, there always exists a packet size p ∈ [1, T ] such that
UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ).

Now, let p be the packet length chosen, and assume that T − p ∈ Rkj and T − p ∈ Rlf . Then, by
induction hypothesis UP∗(T−p,f ) =

αlf (T−p)−βlf
γlf

and UP∗(T−p,f−1) =
αkj(T−p)−βkj

γkj
. Then, solving Eq. 4 for

p, the packet length is

p =
(αkjγlf − γkjαlf )T + γkjγlf + γkjβlf − βkjγlf

γkjγlf + αkjγlf − γkjαlf
,
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and the useful payload obtained is

UP(T,f )(S-OPT) = UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ) =
αkj(T − p)− βkj

γkj

=
αkjγlf T − (αkjγlf + αkjβlf + βkjγlf − βkjαlf )

γkjγlf + αkjγlf − γkjαlf
,

as claimed. To complete the induction step, we define α = αkjγlf , β = αkjγlf +αkjβlf + βkjγlf − βkjαlf
and γ = γkjγlf + αkjγlf − γkjαlf . Then, we show the following three properties (1) β > γ > α, (2)
β
γ ≥

βlf
γlf

, and (3) αγ ≥
αlf
γlf

as follows.

Property 1 For the new parameters α = αkjγlf , β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and γ =
γkjγlf + αkjγlf − γkjαlf , it holds that β > γ > α.

Proof: First, from the induction hypotheses, recall the definition of parameters αij ,βij and γij , being known
positive integers such that βij > γij > αij . Looking now at the current parameters α, β and γ individually,
we have the following:
(a) α = αkjγlf .
(b) β = αkjγlf + αkjβlf + βkjγlf − βkjαlf = αkj(γlf + βlf ) + βkj(γlf − αlf ).
(c) γ = γkjγlf + αkjγlf − γkjαlf = γkj(γlf − αlf ) + αkjγlf .

Observe that γkj(γlf −αlf )+αkjγlf > αkjγlf , since γkj > 0 and γlf −αlf > 0 by induction hypothesis.
Hence, from (a) and (c) γ > α. Also, αkj(γlf + βlf ) + βkj(γlf − αlf ) > γkj(γlf − αlf ) + αkjγlf , since
by induction hypothesis βkj > γkj , γlf − αlf > 0, and all parameters are positive. Hence, from (b) and (c)
β > γ holds as well. This completes the proof of the claim.

Property 2 For the new parameters β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and γ = γkjγlf + αkjγlf −
γkjαlf , it holds that βγ >

βlf
γlf

.

Proof: For this proof observe first, that since β > γ (as shown in Property 1), we can safely use the fact that
β
γ >

β−c
γ−c , where c is positive. Also by induction hypothesis we have that γlf − αlf > 0 and βkj − γkj > 0.

We therefore use some fraction inequality properties as follows:

β

γ
=

αkjγlf + αkjβlf + βkjγlf − βkjαlf
γkjγlf + αkjγlf − γkjαlf

=
αkj(γlf + βlf ) + βkj(γlf − αlf )

γkj(γlf − αlf ) + αkjγlf

>
αkj(γlf + βlf ) + (βkj − γkj)(γlf − αlf )

αkjγlf
>
αkjγlf + αkjβlf

αkjγlf
= 1 +

βlf
γlf

>
βlf
γlf

,

which completes the proof.

Property 3 For the new parameters α = αkjγlf and γ = γkjγlf + αkjγlf − γkjαlf , it holds that αγ >
αlf
γlf

.
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Proof: For this proof observe first, that since γ > α (as shown in Property 1), we can safely use the fact that
α
γ >

β+c
γ+c , where c is positive. Also by induction hypothesis we have that γlf − αlf > 0. We therefore use

some fraction inequality properties as follows:

α

γ
=

αkjγlf
γkjγlf + αkjγlf − γkjαlf

=
αkjγlf + γkjαlf
αkjγlf + γkjγlf

=
αkjαlf + αkj(γlf − αlf ) + γkjαlf

γlf (αkj + γkj)
=
αlf (αkj + γkj)

γlf (αkj + γkj)
+
αkj(γlf − αlf )

γlf (αkj + γkj)

>
αlf
γlf

,

which completes the proof.

We must now show that this useful payload is in fact optimal in the static model. Let us assume by
contradiction that an algorithm A is able to achieve a larger useful payload for the pair (T, f ) by sending
first a different packet length p′ 6= p. We consider the following cases:
(a) Algorithm A chooses a packet π′ of length p′ > p. Then, we assume that the adversary will jam the
packet π′. Hence, the useful payload achieved by A will be upper bounded as UP(T,f )(A) ≤ UP∗(T−p′,f−1)

which by Observation 3 is smaller than UP∗(T−p,f−1) = UP(T,f )(S-OPT), since T − p′ < T − p.
(b) Algorithm A chooses a packet π′ of length p′ < p. Observe that p′ does not satisfy Eq. 4, since p is the
smallest length that does. Then the adversary does not jam π′. Then, UP(T,f )(A) ≤ p′ − 1 + UP∗(T−p′,f ).
We show now that this value is no larger than p − 1 + UP∗(T−p,f ) = UP(T,f )(S-OPT). Let us assume that

T − p′ ∈ Rrf , where r ≥ l. Then, UP∗(T−p′,f ) =
αrf (T−p′)−βrf

γrf
≤ αrf

γrf
(T − p′) − βlf

γlf
, since βrf

γrf
≥ βlf

γlf
as

shown by Property 2. Similarly, UP∗(T−p,f ) =
αlf (T−p)−βlf

γlf
≥ αrf

γrf
(T − p)− βlf

γlf
, since αrf

γrf
≥ αlf

γlf
as shown

by Property 3. Finally, combining these bounds and the fact that αrfγrf
< 1 (see Property 1), we get that

UP(T,f )(A) ≤ p′ − 1 + UP∗(T−p′,f ) ≤ p
′ − 1 +

αrf
γrf

(T − p′)−
βlf
γlf

≤ p′ − 1 +
αrf
γrf

(T − p′)−
βlf
γlf

+ (p− p′)−
αrf
γrf

(p− p′)

= p− 1 +
αrf
γrf

(T − p)−
βlf
γlf
≤ UP(T,f )(S-OPT)

In all cases the resulting useful payload is smaller than the one achieved by choosing the smallest packet
size p such that UP∗(T−p,f−1) = p − 1 + UP∗(T−p,f ). Hence the packet size calculated by S-OPT(T, f ) is
optimal.

6 Uniform packets for the Dynamic Model

The main goal for the algorithms in the dynamic model, is to maximize the data successfully transmitted to
the receiver in any interval T . This, corresponds to minimizing the transmission time needed to successfully
transmit a total amount of data P to the receiver, considering a value P that will eventually grow to infinity.
As a consequence, this would also maximize the goodput rate, which is our main efficiency measure for the
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two models. Knowing both adversarial parameters, ρ and σ, let us consider algorithm D-UNI and uniform
packets of size p.len = l+ 1 < 1/ρ. We can then find the quasi optimal value for the length of the payload l
in each packet that minimizes the transmission time. For simplicity, we will assume that the total length of
the data to be transmitted, P , is a multiple of the payload length l. (For large values of P the error introduced
by this assumption is negligible.) Then, the objective is that P/l packets arrive successfully at the receiver.

Let us now derive a lower bound on the transmission time that can be achieved using uniform packets.
We denote with Tr(l) the transmission time with packets of uniform payload l. Let r be the number of
packets jammed and retransmitted by the sender. Then,

Tr(l) = (P/l + r)(l + 1). (5)

Observe that the last packet transmitted was correctly received, since otherwise the data would have been
completely transmitted by time Tr(l) − (l + 1), which contradicts the fact that Tr(l) is the transmission
time. Hence, the number of packets jammed and retransmitted is upper bounded as

r ≤ d(Tr(l)− (l + 1))ρe − 1 + σ, (6)

where we apply the fact that the last error used by the adversary must have been available before time
Tr(l) − (l + 1). We claim that the number of packets jammed by the adversary and retransmitted is in
fact equal to the bound of Eq. 6. Otherwise, the adversary could have jammed the last packet sent (at time
Tr(l)− (l + 1)), achieving a longer transmission time. Hence,

r = d(Tr(l)− (l + 1))ρe − 1 + σ. (7)

Moreover, since the adversary could not jam the last packet sent, it must also hold that r+1 ≥ Tr(l)ρ+
σ = (P/l + r)(l + 1)ρ+ σ, from which we can bound the value of r as

r ≥ Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)
. (8)

Let us define the lower bound of the transmission time when packets of uniform payload l are used, as
function LB(l). Then,

Lemma 5 Using algorithm D-UNI with uniform packets of payload l, the lower bound of the transmission
time is

Tr(l) ≥ LB(l) =
P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1).

Proof: Replacing the lower bound of r (Eq. 8) in Eq. 5 we have

Tr(l) ≥
(
P

l
+
Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)

)
(l + 1) =

P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1),

which when combined with the definition of LB(l), completes the proof.

Using calculus, we can find the payload length l∗ that minimizes LB(l), which yields the following
theorem.
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Theorem 5 Using uniform packets the transmission time is lower bounded as

Tr ≥ LB(l∗) =
P + (σ − 1)l∗

l∗(1− ρ(l∗ + 1))
(l∗ + 1)

and the goodput rate is upper bounded as

G(D-UNI) ≤ P

LB(l∗)
=

Pl∗(1− ρ(l∗ + 1))

(P + (σ − 1)l∗)(l∗ + 1)
,

where

l∗ =

√
P (Pρ+ (σ − 1)(1− ρ))− Pρ

Pρ+ σ − 1
.

Obviously, when P tends to∞, so does the transmission time Tr . However, we can derive in this case
an upper bound on the goodput as follows.

Corollary 1 Using algorithm D-UNI with uniform packets, the goodput rate is upper bounded asG(D-UNI) ≤
(1−√ρ)2, and in the limit as the value of P grows,

G∗ = lim
P→∞

G(D-UNI) = (1−√ρ)2

Proof: Using calculus it can be shown that the upper bound of G(D-UNI) obtained in Theorem 5 grows
with P . Observe that lim

P→∞
G(D-UNI) = l∗(1−ρ(l∗+1))/(l∗+1) and lim

P→∞
l∗ = (

√
ρ−ρ)/ρ = 1/

√
ρ−1.

Replacing the latter in the former the claims follow.

We now show a corresponding upper bound on the transmission time. We start by combining Eqs. 7 and
5 as follows:

r = d(Tr(l)− (l + 1))ρe − 1 + σ < (Tr(l)− (l + 1))ρ+ σ

= ((P/l + r)(l + 1)− (l + 1))ρ+ σ

= (P/l + r)(l + 1)ρ+ σ − (l + 1)ρ.

This allows us to find an upper bound of r as

r <
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)
. (9)

Let us now define the upper bound of the transmission time when packets of payload l are used, as
function UB(l). Then,

Lemma 6 Using algorithm D-UNI with uniform packets of payload l, the upper bound of the transmission
time is

Tr(l) < UB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1).

Proof: Replacing the upper bound of r (Eq. 9) in Eq. 5 we have

Tr(l) <

(
P

l
+
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)

)
(l + 1) =

P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1),
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which when combined with the definition of UB(l), completes the proof.

From Observation 1, ρ < 1/(l+ 1) must hold. Then, (l+ 1)ρ < 1 and the bound obtained in the above
lemma is strictly bigger than the lower bound presented in Lemma 5, as expected. In fact, the gap between
bounds can be obtained as shown in the following lemma.

Lemma 7 Using uniform packets of payload l, the transmission time satisfies Tr(l) ∈ [LB(l), LB(l) + l+
1).

Proof: Recall that the lower bound LB(l) is obtained in Lemma 5. Subtracting this expression from the
upper bound UB(l) presented in Lemma 6, we have

UB(l)− LB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1)− P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1)

=
l(1− ρ(l + 1))

l(1− ρ(l + 1))
(l + 1) = l + 1.

From the above and the fact that Tr(l) < UB(l) the claim follows.

Corollary 2 Using uniform packets of payload l, Tr(l) is the only multiple of l+ 1 that falls in the interval
[LB(l), LB(l) + l + 1).

Finally, combining Lemma 7 with Theorem 5 we derive the following theorem.

Theorem 6 Consider l∗ as defined in Theorem 5. Then

• the transmission time Tr(l∗) observed is less that l∗ + 1 (one packet) longer that the optimal. I.e.,
Tr(l∗) < Tr + l∗ + 1.

• the goodput G(l∗) converges to the optimal goodput G(D-UNI) as P grows. Additionally, when P
goes to infinity the goodput matches the optimalG∗, i.e. lim

P→∞
G(l∗) = lim

P→∞
G(D-UNI) = (1−√ρ)2.

Proof: The first claim follow directly from Lemma 7, since the value of l∗ is the one that minimizes LB(l).
For the second, recall that G(l∗) = P

Tr(l∗) . Hence, observing again Lemma 7 we get that

G(l∗) >
P

LB(l∗) + l∗ + 1
=

1
LB(l∗)
P + l∗+1

P

.

As P grows l∗+1
P tends to 0, making G(l∗) converge to P/LB(l∗) which is an upper bound on the optimal

goodput. Finally, as shown in Corollary 1, when P tends to infinity, P/LB(l∗) tends to (1 −√ρ)2, which
completes the proof.
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Figure 1: The goodput rate of algorithms S-OPT(T, 1), S-DEC and the uniform packet scheduling for both
static and dynamic models, with σ = f = 1 in a time interval 1/ρ = T = 1 . . . 22.

7 Discussion/Conclusions

In this paper we have applied Adversarial Queuing Theory (AQT), a well known theoretical modeling tool,
for the first time to restrict adversarial packet jamming on wireless networks, creating the dynamic model
studied. We have chosen a constrained adversarial entity, considering a bounded error-token capacity σ and
an error-token availability rate ρ. This model could be applied in various battery-operated malicious devices,
such as drones or mobile jammers.

We have also studied a static model, for which new parameters are considered; for an interval of time
T the adversary is able to create at most f jams, having all f error-tokens available at the beginning of the
interval. This model is used as a building block in our aim to find a solution to the problem of the dynamic
model.

We have first shown an upper bound on the goodput rate of the static model, when uniform packet lengths
are used, proposing algorithm S-UNI. Then, focusing on f = 1, we have shown that adaptive algorithms
that change the packet length based on feedback received for jammed packets, can actually achieve better
goodput rates, thus showing that the uniform packet scheduling is not the best approach. What might seem
surprising is that even for the “simple” case of f = 1, the analysis of the adaptive algorithms is nontrivial,
and imposes constraints also on T .

In Figure 1, you can see a graphical representation of the improvement in the goodput rate by the
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different algorithms developed, for the case of σ = f = 1 and T = 1/ρ. Unfortunately, as also shown
by our analysis, algorithm S-DEC is better than S-UNI only for T > 2

7−3
√

5
. However, this has given a

positive intuition for the fact that other adaptive algorithms may exist with better goodput rate, as well as
for the smaller time intervals. Exploring this further, we proposed algorithm S-OPT(T, 1), which as we
have also shown analytically, exceeds the performance of S-UNI for T > 4, and is in fact optimal. Finally,
we show the goodput rate of the uniform packet scheduling algorithm D-UNI, developed for the dynamic
model, which is actually better than all proposed algorithms for intervals T < 4. We believe that this is due
to the fact that D-UNI is not restricted to fit the packet length in the intervals 1/ρ, and further investigation
is necessary to see whether there exists any other adaptive packet scheduling algorithm that exceeds that
goodput rate.

In Section 2.3 we proposed a recursive algorithm ALGD, that uses the optimal solution of the static
model to solve the problem in the dynamic model. It divides the executions into consecutive intervals of
length 1/ρ, and assumes σ error tokens available at the beginning of each one. Then these intervals can be
seen as instances of the static model, where T = 1/ρ and f = σ. However, this algorithm may not be the
best possible, as we make the pessimistic assumption that at the beginning of each interval, the adversary
will have all σ error tokens available to use; this is true for the first interval, but in successive intervals this
might not be the case (with the exception of the case σ = 1, which we discuss further below).

Based on the dynamic model, a new error token will be arriving at the beginning of each interval. If
there are already σ tokens, then a token is lost (σ represents, for example, the capacity of the battery of
a jamming device – this cannot be exceeded). If in this interval, the adversary performs, say, three packet
jams, then at the beginning of the next interval it will have σ−2 available tokens. If the scheduling algorithm
keeps track of this, then in this interval it should use S-OPT(1/ρ, σ − 2) instead of S-OPT(1/ρ, σ). So, in
order to produce more efficient solutions, the scheduling algorithm needs to keep track (using the feedback
mechanism) how many jams took place in the previous interval, and using its knowledge of 1/ρ, run the
appropriate version of S-OPT(). Although there are other subtle issues that also need to be considered, the
proposed approach can be used as the basis for obtaining an optimal solution to the continuous version of
the problem. We plan to pursue this direction in future research.

Regarding the case of f = σ = 1, as demonstrated in Fig. 1 above, algorithm S-OPT(1/ρ, 1) obtains
better results than Algorithm S-DEC. Since in the case of σ = 1 it is best for the adversary to use the error
token (otherwise it will lose it), our improved goodput demonstrates the promise of the abovementioned
approach. Nonetheless, we have also noticed that the uniform packet scheduling algorithm D-UNI still
achieves better goodput rate for some small values of T . Apart from whether that can be exceeded, an
intriguing open question is whether it is still possible to obtain better efficiency than the uniform packet
lengths “policy”, with adaptive algorithms for σ > 1. Considering for example σ = 2 seems to already be a
challenging task.

We believe that our results are only the beginning of further interesting research lines. In general, they
motivate studies on the aspect of data partitioning in case of threads. Our work could also be seen in the
context of distributed or parallel job executions. An interesting future direction is to investigate the case
where one or both parameters ρ and σ are not known; here one will need to monitor the history of the
observed jams in an attempt to estimate these parameters. On the other hand, the adversary will try to
“hide” the true value of these parameters, yielding an interesting gameplay between the adversary and an
algorithm. Another direction to follow would be to consider in addition the channel errors due to congestion
and transmission rate. A related future research line could also be to consider multi-channel settings and
study the benefits that similar approaches could have depending on the strength of the adversaries assumed.
Furthermore, conducting a study on randomized algorithms and giving lower bounds for that case would be
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valuable in order to identify their limits as well.
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