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Abstract

We study a combinatorial problem arising from the microarray synthesis. The objective
of the Border Minimization Problem (BMP) is to place a set of sequences in the array and
to find an embedding of these sequences into a common supersequence such that the sum
of the “border length” is minimized. A variant of the problem, called P-BMP, is that the
placement is given and the concern is simply to find the embedding.

An exponential time algorithm has been proposed for the problem but it is unknown
whether the problem is NP-hard or not. In this paper, we give a comprehensive study of
different variations of BMP by presenting NP-hardness proofs and approximation algorithms.
We show that BMP, P-BMP, and 1D-BMP are all NP-hard and 1D-P-BMP is polynomial
time solvable. The interesting implications include (i) the BMP is NP-hard regardless of the
dimension (1D or 2D) of the array; (ii) the array dimension differentiates the complexity of
the P-BMP; and (iii) for 1D array, whether placement is given differentiates the complexity
of the BMP. Another contribution of the paper is devising approximation algorithms, and in
particular, we present a randomized approximation algorithm for BMP with approximation
ratio O(n1/4 log2 n), where n is the total number of sequences.

1 Introduction

In this paper, we study an optimization problem called (asynchronous) border minimization
problem (BMP), arising from a biological problem of microarray synthesis. We first describe the

∗Preliminary versions of the paper appeared in “Approximating Border Length for DNAMicroarray Synthesis”
in Proceedings of the 5th Annual Conference on Theory and Applications of Models of Computation, 2008, pp.
410–422 and “Hardness and Approximation of The Asynchronous Border Minimization Problem” in Proceedings
of the 9th Annual Conference on Theory and Applications of Models of Computation, 2012, pp. 164–176.
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BMP (formal definition is given in Section 2) and then explain its relation with the biological
problem. The input is a set of sequences S = {s1, s2, · · · , sn}. We want to find a common
supersequence D of S and an embedding εi for each sequence si into D, where εi is obtained by
inserting spaces into si up to length |D| with the constraint that the j-th position of εi is either
the character at the j-th position of D or a space. The border length of si with respect to sj
is the number of non-space positions of εi that are different from εj . We then have to “place”
the sequences into a

√
n × √

n array such that the total border length is minimized (the total
border length is the sum of the border length between every two sequences that are neighbors
in the array). We study the complexity of BMP and give approximation algorithms.

Motivation. DNA and peptide microarrays [8,13] are important research tools used in gene
discovery, multi-virus discovery, disease and cancer diagnosis. Apart from measuring the amount
of gene expression [29], microarrays are an efficient tool for making a qualitative statement about
the presence or absence of biological target sequences in a sample, e.g., peptide microarrays are
used for detecting tumor biomarkers [6,25,31]. Microarray design raises a number of challenging
combinatorial problems, such as probe selection [17, 23, 30], deposition sequence design [20, 26]
and probe placement and synthesis [3–5,15,18,19].

A microarray is a plastic or glass slide consisting of thousands of sequences called probes.
The synthesis process [12] consists of two components: probe placement and probe embedding.
In the probe placement the goal is to place each probe to a unique array cell. In the probe
embedding we want to find a common supersequence of all sequences, called the deposition
sequence, and a sequence of 2D arrays, called masks. The cells of a mask can be either opaque
or transparent allowing the deposition of the character associated with the mask. For any cell,
concatenating the characters for which the cell is transparent has to be the same as the probe in
that cell of the microarray. See Figure 1(a) for an example. The embedding of a probe placed
in a cell c is a sequence in which the ith character is “−” if cell c is opaque in the ith mask, or
the ith character of the deposition sequence if transparent (see Figure 1(b)).

Due to diffraction, the cells on the border between the masked and the unmasked regions
are often subject to unintended illumination [12], and can compromise experimental results. As
the microarray chip is expensive to synthesize, unintended illumination should be minimized.
The magnitude of unintended illumination can be measured by the border length of the masks
used, which is the number of borders shared between masked and unmasked regions, e.g., in
Figure 1(a), the border length of M1,M3,M4 is 2 andM2 is 4. Note that the sum of the border
length of all the masks is the same as the sum of border length as defined by the corresponding
embedding (c.f. the first paragraph).

In this paper we study the asynchronous synthesis where a mask may deposit a character to
different positions of different probes. For example, in Figure 1(a), we want to synthesize the
microarray with the four sequences AC, TA, CT, CA in the respective cells as shown in the left
hand side. The right is four masks M1, M2, M3 and M4, where M1 deposits the character C
and there are two transparent cells at the bottom row and two opaque cells at the top of M1,
and so on. This sequence of masks shows an asychronous synthesis because M2 deposits the
character T to the second position of the sequence CT and the first position of TA (different
positions of different probes). On the other hand, in synchronous synthesis, each deposition
character can only be deposited to the i-th position of the probes for a particular i. The
synchronous variant of the problem was first studied [15]. For this problem, if the placement is
fixed, the border length is unique and is proportional to the Hamming distance of neighboring
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Figure 1: (a) Asynchronous synthesis of a 2× 2 microarray with four input sequences AC, TA, CT, CA
in the four respective cells (left). The deposition sequence D = CTAC corresponds to the sequence of
four masks M1, M2, M3, and M4 (right). The corresponding embeddings are −−AC, −TA−, CT−−,
and C−A−. The masked regions are shaded. The borders between the masked and unmasked regions
are represented by bold lines. (b) Different embeddings of the sequence s = CT into deposition sequence
D = (ACGT)2.

probes. Thus the only problem is the placement of the probes. The synchronous version is
NP-hard [21], O(

√
n)-approximable [22] and there are also some experimental results [4,18,19].

Notice that the NP-hardness of the synchronous BMP [21] does not imply that asynchronous
BMP—the problem that we study—is NP-hard.

Previous work on asynchronous BMP. The Asynchronous Border Minimization Problem
(BMP) was introduced by Kahng et al. [18]. The problem appears to be difficult as they
studied a special case in which the deposition sequence is given and the embeddings of all but
one probes are known. A polynomial time dynamic programming algorithm was proposed to
compute the optimal embedding of this single probe. This algorithm is used as the basis for
several heuristics [3–5,18,19] that are shown experimentally to reduce unintended illumination.
The dynamic programming [18] computes the optimal embedding of a single probe in time
O(ℓ|D|), where ℓ is the length of a probe and D is the deposition sequence. The algorithm can
be extended to an exponential time algorithm to find the optimal embedding of all n probes in
O(2nℓn|D|) time. It is however unknown whether the general problem is NP-hard or not. This
naturally raises a number of questions. Let us denote by P-BMP the problem with placement
already given.

• Is the BMP NP-hard?

• If BMP is NP-hard, can we derive approximation algorithms for the problem?

• Does the complexity of the problem change for some restricted cases? e.g., when the
placement is given or when the array is one-dimensional.

Our contributions. We give a comprehensive study of different variations of the asyn-
chronous border minimization problem. We answer the above questions by giving several NP-
hardness proofs and approximation algorithms. Our contributions are listed below (see Table 1
also):
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1. We show that P-BMP is NP-hard via a reduction from the Shortest Common Superse-
quence problem [27]. On the other hand, we show that 1D-P-BMP is polynomial time
solvable. This means that the dimension differentiates the complexity of P-BMP.

2. We show that 1D-BMP (placement not given) is NP-hard, via a reduction from the Ham-
ming Traveling Salesman Problem [9]. This result implies that when the array is one di-
mensional, whether placement is given differentiates the complexity of BMP as 1D-P-BMP
is polynomial time solvable.

3. We also show that 1D-BMP can be reduced to BMP, i.e. BMP is NP-hard. This means
that BMP is NP-hard regardless of the dimension of the array.

4. For the variants that are NP-hard, we devise approximation algorithms:

• a randomized (log n)-approximate algorithm for P-BMP;

• a randomized (n
1
4 log2 n)-approximate algorithm for BMP; and

• a deterministic 3/2-approximate algorithm for 1D-BMP.

5. Furthermore, we show that BMP can be defined as a maximization problem, namely, the
agreement maximization problem (AMP), with the objective to maximize the “agreement”
among sequences. We mention that a polynomial time exact algorithm for one problem
implies a polynomial time exact algorithm for the other problem. However, from the
approximation point of view, the problems are totally different. In particular, we are able
to devise O(1)-approximation algorithms for AMP regardless of whether the placement is
given in advance or not.

This is not uncommon in the design of approximation algorithms. Consider, for example,
the minimum vertex cover and the maximum independent set problems. The minimum
vertex cover in a graph G = (V,E) is equal to |V | minus the size of the maximum in-
dependent set. Thus, a polynomial time exact algorithm for the minimum vertex cover
implies a polynomial time exact algorithm for the maximum independent set. However,
the approximability of the two problems is different.

We note that the reductions for (1) and (2) work for constant alphabet size. An interesting
implication of (1) is that with placement already given, the synchronous problem [15] is trivial
as the border length equals the Hamming distance. Nevertheless, the asynchronous problem
is NP-hard. This indicates that the difficulty of the asynchronous problem is due to both the
asynchronicity and the need to find a placement. Furthermore, our approximation algorithm
also gives an O(n

1
4 ) approximation for the synchronous problem.

Technically speaking, the results for (1) and (4) are more challenging. The reduction for
the NP-hardness proof of P-BMP proves that the Shortest Common Supersequence problem
on binary alphabets can be solved with polynomially many calls to P-BMP. As for the ap-
proximation algorithm for BMP, it is more tricky to find a good placement. Our idea is to
define a metric and use the randomized algorithm in [10] for “embedding” the metric into a tree
distribution. This is a crucial step, since in this way we can control both the border length on
the rows and the border length on the columns. Another idea is to use an embedding in other
metrics (e.g. Euclidean), but it is not at all clear how this can yield a better approximation
algorithm.
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Setting 2D 1D

BMP NP-hard NP-hard

O(n1/4 log2 n)-approximate 3

2
-approximate

P-BMP NP-hard polynomial time solvable
O(log n)-approximate

Table 1: Results on BMP and P-BMP.

Organization of the paper. The rest of the paper is organized as follows. Section 2 gives
formal problem definitions and preliminaries. Section 3 discusses the P-BMP in both one- and
two-dimension. Sections 4 and 5 give the NP-hardness proofs and approximations for the BMP,
respectively. In Section 6, we present approximations for the AMP. We conclude in Section 7.

2 Notation and preliminaries

In this section we define some notations (Section 2.1), give the formal definitions of the problems
BMP and P-BMP (Section 2.2) and discuss several problems that are closely related to our
problems (Section 2.3).

2.1 Notations

The input to the problems is a set of n sequences S = {s1, s2, · · · , sn} and a
√
n × √

n array,
where

√
n is an integer. For any sequence si, we write ℓi for the length of si and si[t] for the

t-th character of si.
We use the notion of subsequence and supersequence, which is defined formally below.

Definition 1. A sequence a = a1a2 . . . an is a subsequence of a sequence b = b1b2 . . . bm if there
exist n integers 1 ≤ i1 < i2 < · · · < in ≤ m such that a1 = bi1 , a2 = bi2 , . . . , an = bin . In this
case, we say that b is a supersequence of a.

We give definitions for deposition sequence and mask, which we use to introduce the embed-
ding of a set of sequences and finally to define the problems BMP and P-BMP.

Definition 2. A deposition sequence D is a supersequence of all the input sequences (the
characters of D are named deposition characters).

Definition 3. A mask M is a 2D-array associated to each character of the deposition sequence
such that M(i, j) is either the character associated with M (i.e. the cell is transparent) or a
space “−” (i.e. the cell is opaque).

Figure 1(a) shows a deposition sequence CTAC and the four corresponding masks.

Placement and embedding. A placement is to map each sequence to a unique cell in the
array and an embedding of a sequence describes the relationship between the sequence and the
deposition sequence. We give the formal definitions as follows.

Definition 4. A placement of a set of sequences S = {s1, s2, . . . , sn} to a
√
n×√

n array is a
bijective function φ : S → {1, 2, . . . ,√n} × {1, 2, . . . ,√n}.
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For example, in Figure 1(a) the sequence AC is placed on the position (1, 1), TA on (1, 2), CT
on (2, 1) and CA on (2, 2).

Definition 5. An embedding ε = {ε1, ε2, . . . , εn} of a set of sequences S = {s1, s2, . . . , sn} into
a deposition sequence D is a set of n length-|D| sequences such that for all 1 ≤ i ≤ n:

1. εi[t] is either D[t] or a space “− ”; and

2. Removing all spaces from εi gives si.

For example, referring to Figure 1(a), the embeddings of the four sequences AC, TA, CT, and
CA into the deposition sequence CTAC are respectively −−AC, −TA−, CT−− and C−A−.

Border length. Before we define the border length we formally state what the neighbor of a
cell in an array is (informally, the neighbors of a cell are the four cells on the top, right, bottom
and left).

Definition 6. Given an
√
n × √

n array, two cells v1 = (x1, y1) and v2 = (x2, y2) are said to
be neighbors if |x1 − x2|+ |y1 − y2| = 1. For each cell v, we denote the set of neighbors of v by
N (v).

We use two alternative definitions for border length, one in terms of masks and the other in
terms of embeddings. The latter definition is useful when we want to analyze the contribution
to the total border length of two adjacent strings in the microarray. We use the first definition,
which is more intuitive and perhaps easier to understand for the reader, when we analyze the
contribution of the total border length of a certain character—this is often useful in the hardness
reduction.

In the first definition the border length is the sum over all masks of the border between the
transparent and opaque regions.

Definition 7. For any mask M of deposition character X, the border length of M, denoted by
BL(M), is defined as the number of neighboring cells (i1, j1) and (i2, j2) such that M(i1, j1) = X
and M(i1, j1) 6= M(i2, j2).

For example, referring to Figure 1(a), BL(M1) = BL(M3) = BL(M4) = 2 and BL(M2) = 4.

Definition 8. For a placement φ and embedding ε that corresponds to a sequence of masks M1,
M2, · · · , Md, we define the border length BL(φ, ε) to be:

BL(φ, ε) =
d

∑

h=1

BL(Mh)

Alternatively, we can define border length in terms of the embeddings of the sequences into
the deposition sequence.

Definition 9. Consider an embedding ε. For two sequences si and sj, the border length of si
with respect to sj , denoted by borderε(si, sj), is the number of positions p’s of the embedding εi
such that εi[p] 6= “−” and εj [p] = “−” and the share of si and sj, denoted by shareε(si, sj), is
the number of positions p’s of the embedding εi such that εi[p] 6= “−” and εj [p] 6= “−”.
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By definition, borderε(si, sj)+shareε(si, sj) = ℓi. Note that border() is an asymmetric measure,
i.e., borderε(si, sj) 6= borderε(sj , si), because the length of si and sj may differ. On the other
hand, share() is symmetric, i.e., shareε(si, sj) = shareε(sj , si), Furthermore, the Hamming
distance between εi and εj equals to borderε(si, sj)+borderε(sj , si). Suppose s1 = ATT and s2
= CT, D = ATCT, ε1 = AT−T and ε2 = −−CT. Then border(s1, s2) = 2, border(s2, s1) = 1,
share(s1, s2) = share(s2, s1) = 1, and the Hamming distance between ε1 and ε2 is 3.

Definition 10. The border length of a placement φ and an embedding ε is defined as the sum
of borders over all pairs of neighboring sequences

BL(φ, ε) =
∑

si, sj :
φ(sj) ∈ N (φ(si))

borderε(si, sj) .

Agreement. In Definition 9, we define the counterpart of border length, namely, the share.
The sum of share is defined as the agreement.

Definition 11. The agreement of a placement φ and an embedding ε is defined as the sum of
shares over all neighboring sequences

A(φ, ε) =
∑

si, sj :
φ(sj) ∈ N (φ(si))

shareε(si, sj)

In the example in Figure 1(a), borderε(AC,CT) = borderε(CT,AC) = 2 and the border length
of all other pairs of neighbors is 1, while shareε(AC,CT) = shareε(CT,AC) = 1 and the share
of all the rest is 2. Furthermore, BL(φ, ε) = 10, and A(φ, ε) = 6,

We say that an algorithm is a c-approximation for a minimization (maximization) problem
if the value of the solution returned by the algorithm is less than c (more than 1/c) times the
value of the optimal solution.

2.2 Problem definitions

Using the previous definitions we present the border minimization problem.

Problem 1 (BMP). Given a set of sequences over an alphabet Σ, S = {s1, s2, . . . , sn} and a√
n × √

n array, the objective of BMP is to find a placement φ and an embedding ε so that
BL(φ, ε) is minimized.

P-BMP is the variant of BMP when the placement is given.

Problem 2 (P-BMP). Given a set of sequences over an alphabet Σ, S = {s1, s2, . . . , sn}, a√
n × √

n array and a placement φ, the objective of P-BMP is to find an embedding ε so that
BL(φ, ε) is minimized.

1D-BMP and 1D-P-BMP are the variants of BMP and P-BMP, respectively, when the array is
one dimensional.
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Problem 3 (1D-BMP and 1D-P-BMP). Given a set of sequences over an alphabet Σ, S =
{s1, s2, . . . , sn} and a 1 × n array, the objective of 1D-BMP is to find a placement φ and an
embedding ε so that BL(φ, ε) is minimized. Given a set of sequences over an alphabet Σ, S =
{s1, s2, . . . , sn}, a 1 × n array and a placement φ, the objective of 1D-P-BMP is to find an
embedding ε so that BL(φ, ε) is minimized.

We further define the problem AMP, which is the counterpart of BMP.

Problem 4 (AMP). Given a set of sequences over an alphabet Σ, S = {s1, s2, . . . , sn} and
a
√
n × √

n array, the objective of the Agreement Maximization Problem (AMP) is to find a
placement φ and an embedding ε, so that A(φ, ε) is maximized.

Note that if all sequences have the same length ℓ, then A(φ, ε) = 4ℓ(n−√
n)−BL(φ, ε). In this

case, minimizing the border length BL(φ, ε) is equivalent to maximizing the agreement A(φ, ε).

2.3 Related problems

In this section we discuss several problems that are related to the BMP. Roughly speaking, the
length of common subsequence of two sequences gives us a lower bound on the border length
of the two sequences (to be used in Section 5); the approximation algorithm for the weighted
multiple sequence alignment problem gives us an approximation algorithm for P-BMP, where
the former is obtained via an approximation for the minimum routing cost tree problem (to be
used in Section 3.2).

Common subsequence and common supersequence. The border length is closely related
to the common subsequence and common supersequence between neighboring sequences in the
placement. Consider any two sequences p and q of length ℓp and ℓq, respectively. We denote the
longest common subsequence and shortest common supersequence of two sequences p and q by
LCS(p, q) and SCS(p, q), respectively, and the corresponding length as lcs(p, q) and scs(p, q),
respectively. SCS(p, q) can be obtained by finding LCS(p, q) and inserting into p the characters
in q that are not in LCS(p, q) while preserving the order in q. Therefore, scs(p, q) = ℓp + ℓq −
lcs(p, q). For any embedding ε, the maximum number of common deposition characters between
p and q is lcs(p, q), in other words, borderε(p, q) + borderε(q, p) ≥ ℓp + ℓq − 2 · lcs(p, q) and
shareε(p, q) + shareε(q, p) ≤ 2 · lcs(p, q). We define the LCS distance to be ℓp + ℓq − 2 · lcs(p, q),
denoted by dist(p, q). In other words, dist(p, q) is a lower bound of borderε(p, q) + borderε(q, p)
for any embedding ε.

Note that the embeddings needed to achieve dist(p, q) may not be compatible with each
other in a particular placement. For example, for the placement φ in Figure 1, dist(p, q) = 2
for every neighboring pair p and q, and so the sum is 8. Yet the minimum border length is 10
as shown in the figure.

Multiple sequence alignment (MSA) and Weighted MSA (WMSA). As we will see in Sec-
tion 3.2, the variant of BMP problem, namely P-BMP (BMP in which the placement is given),
is polynomial time reducible to WMSA. As a consequence, we can apply the approximation re-
sults on WMSA to P-BMP, which we can further use as a building block for the approximation
for BMP. We first review the MSA and WMSA problems. MSA and WMSA have been studied
extensively [2, 11, 14, 28]. Let Σ be the set of characters and S = {S1, S2, . . . , Sk} be a set of k
sequences, with maximum length m, over Σ. An alignment of S is a matrix S′ = (S′

1, S
′
2, . . . , S

′
k)
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such that |S′
i| = m′ and S′

i is formed by inserting spaces into Si. For a given distance function
δ(a, b) where a, b ∈ Σ∪{−}, the pairwise score of S′

i and S′
j is defined as

∑

1≤y≤m′ δ(S′
i[y], S

′
j [y]).

Given a weight function w(i, j) for the pair of sequences Si and Sj , the weighted sum-of-pair
(SP) score SP(S′, w) = 1

2

∑

1≤i,j≤kw(i, j)
∑

1≤y≤m′ δ(S′
i[y], S

′
j [y]). The WMSA problem is to

find an alignment S′ such that SP(S′, w) is minimized. WMSA has been proved to be NP-
complete and there is a randomized algorithm with approximation ratio O(log n) [1,10,32], via
a reduction to the minimum routing cost tree problem (MRCT), see Lemma 1.

Minimum routing cost tree problem (MRCT). In this problem, a graph with weighted
edges is given. For a spanning tree of the graph, the routing cost between two vertices is the
sum of weights of the edges on the unique path between the two vertices in the spanning tree.
The routing cost of the spanning tree is defined as the sum of routing cost between every pair
of two vertices. The MRCT problem is to find a spanning tree whose routing cost is minimum.
The results in [1, 32] imply that there is a polynomial time reduction from WMSA to MRCT.
Each sequence in the input of WMSA corresponds to a vertex in the input graph of MRCT.
The edge weight between two vertices is set to be the weighted edit distance between the
two corresponding sequences. The reduction result states that (1) there is a routing spanning
tree T whose routing cost is at most O(log2 n) times

∑

i,j w(i, j)d(i, j), where d(i, j) is the edit
distance between the two sequences i and j; and (2) there is an alignment S′ whose SP(S′, w)
is at most the routing cost of T . Note that

∑

i,j w(i, j)d(i, j) is a lower bound on the weighted
SP score. The approximation ratio of the algorithm for the WMSA problem is given by the
distortion of O(log2 n) of the metric embedding algorithm1 of Bartal [1]. Fakcharoenphol, Rao
and Talwar [10] show a similar algorithm with distortion O(log n). Thus, we have the following
lemma.

Lemma 1 ( [10, 32]). There is a randomized algorithm that is O(log n)-approximate for the
WMSA problem, where n is the number of sequences to be aligned.

3 P-BMP: Finding embeddings when placement is given

We first prove the NP-hardness of P-BMP in Section 3.1 and then give an approximation algo-
rithm in Section 3.2. In Section 3.3, we show that when the array is one-dimension, 1D-P-BMP
is polynomial time solvable.

3.1 Hardness of P-BMP

We show the NP-hardness of P-BMP via a reduction from the shortest common supersequence
(SCS) problem over a binary alphabet to the P-BMP. Note that the SCS problem is NP-
hard [27]. Suppose that the binary alphabet is {0, 1}. Consider an instance of the SCS problem
with a set S of k binary strings s1, · · · , sk. Let ℓi be the length of si, ℓ = max1≤i≤k ℓi be the
length of the longest string in S, and L =

∑

1≤i≤k ℓi. For any 1 ≤ p, q ≤ ℓ, we define an instance
of P-BMP, denoted by I(p, q). As we show later, a shortest common supersequence can be
found by computing the optimal solutions for a polynomial number of instances I(p, q).

1Notice that we use the term “embedding” in two contexts: probe embedding refers to finding the deposition
sequence while embedding a metric into a tree distribution is used in the approximation algorithm. The meaning
of the term “embedding” should be clear from the context and should not cause confusion.
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000 000 000 000 000 000 000

$ 010 $ 100 $ 00 $

111 111 111 111 111 111 111

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

Table 2: s1 = “010”, s2 = “100”, s3 =“00”. The supersequence D = “010011” is an optimal
deposition sequence for I(3, 3). Ignoring the border of the mask for the dummy strings “$”, the
optimal border length equals 2(p∗ + q∗) × (2k + 1) + 2L = 100, where p∗ = q∗ = k = 3 and
L = 8.

The input I(p, q). We construct a (2k + 1) × (2k + 1) array. The sequences are over the
alphabet {0, 1, $}, where $ is a character different from 0 or 1.

• Except for row 2-4, each cell of row 1, 5, 6, 7, 8, · · · of the array contains the string “$”.
We call these rows dummy-rows.

• All the cells of row 2 contain the same string “0p”. We call this row all-0-row.

• All the cells of row 4 contain the same string “1q”. We call this row all-1-row.

• Row 3 contains s1, s2, · · · , sk in alternate cells, and the rest of the cells contain the string
“$”, precisely, row 3 contains “$”, s1, “$”, s2, “$”, · · · , “$”, sk, “$”. We call this row
seq-row.

Tables 2 and 3 show examples of I(3, 3) and I(1, 1), respectively.

Common supersequence and deposition sequence. Consider an instance I(p, q), we need
at least one mask for the dummy strings “$”, and the best is to use exactly one mask, say
M$ for all these strings. For M$, row 1 (dummy-row) incurs a border length of 2k + 1 on the
bottom boundary with all-0-row, and row 5 (dummy-row) incurs 2k + 1 on the top boundary
with all-1-row. For seq-row, the border length on top boundary with all-0-row is k + 1, on
bottom boundary with all-1-row is also k + 1, and within seq-row on left and right boundaries
is 2k. Therefore, the border length BL(M$) = 4(2k + 1). The total border length for I(p, q)
equals to BL(M$) plus the border length of the remaining deposition sequence, which in turn is
related to a common supersequence of the strings in S. We ignore the quantity BL(M$) when
we discuss the border length for I(p, q), since BL(M$) is present in all the embeddings. The
following lemma states the relationship between a common supersequence and an embedding of
the sequences. Table 2 gives an example.

Lemma 2. If D is a common supersequence of the strings in S and the number of 0’s and 1’s
in D is p∗ and q∗, respectively, then D is an optimal deposition sequence for I(p∗, q∗) and the
resulting optimal embedding has a border length of 2(p∗ + q∗)(2k + 1) + 2L.

Proof. First of all, it is easy to observe that D is a deposition sequence for I(p∗, q∗) since it is a
common supersequence of the strings in S and has the same number of 0’s and 1’s in all-0-row
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$ $ $ $ $ $ $

0 0 0 0 0 0 0

$ 010 $ 100 $ 00 $

1 1 1 1 1 1 1

$ $ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $

Table 3: s1 = “010”, s2 = “100”, s3 =“00”. The shortest common supersequence is D = “0100”.
The optimal deposition sequence for I(1, 1) is D. Ignoring the border of the mask for the dummy
strings “$”, the optimal border length equals to (2× 7+ 2× 7+ 2× 3+ 2× 2) + 2× 8 = 54 (the
first four terms refer to border length with top and bottom boundaries and the last term with
left and right boundaries). On the other hand, 2(p∗ + q∗) × (2k + 1) + 2L = 44 < 54, where
p∗ = q∗ = 1, k = 3 and L = 8.

and all-1-row of the array in I(p∗, q∗), respectively. Notice that p∗ is at least the number of
0’s in each of si and similarly q∗ is at least the number of 1’s. In the deposition sequence D,
when D[j] = 0, all-0-row incurs a border length of 2k + 1 on the top boundary with row 1
(dummy-row); all-0-row and seq-row together incur a border length of 2k + 1 on the bottom
boundary; and a border length of 2x within seq-row, where x is the number of cells on seq-row
that 0 is deposited. A similar calculation can be done for the case when D[j] = 1. As a whole,
the total border length equals 2(p∗ + q∗)(2k + 1) + 2L.

We further argue that this is the minimum border length for I(p∗, q∗). In any deposition
sequence, the number of 0’s is at least p∗ and the number of 1’s is at least q∗. Therefore,
all-0-row and the cells with ‘0’ on seq-row together incur a border length at least 2p∗(2k + 1),
and similarly, all-1-row and the cells with ‘1’ on seq-row incur at least 2q∗(2k + 1). The cell
on seq-row which contains the string si incurs 2ℓi on the left and right boundaries, implying all
these cells together incur 2L. Therefore, no matter how we deposit characters to the cell, the
total border length is at least 2(p∗ + q∗)(2k + 1) + 2L.

Lemma 2 implies that if p + q is large enough, then there is a formula for the optimal
border length of the instance I(p, q) in terms of p, q, and L. The following lemma considers the
situation when p+ q is small. Table 3 gives an example.

Lemma 3. If D is a shortest common supersequence of the strings in S and the number of
0’s and 1’s in D is p∗ and q∗, respectively, then for any p1, q1 such that p1 + q1 < p∗ + q∗, the
optimal embedding for I(p1, q1) has a border length greater than 2(p1 + q1)(2k + 1) + 2L.

Proof. Notice that any deposition sequence must be a common supersequence, and thus must
have total length ℓD ≥ p∗+q∗ > p1+q1. With this deposition sequence, the border length equals
to 2ℓDk+2(p1+q1)(k+1)+2L > 2(p1+q1)k+2(p1+q1)(k+1)+2L = 2(p1+q1)(2k+1)+2L. The
term 2(p1 + q1)k refers to the top and bottom border length for columns with si in the seq-row
while the term 2(p1 + q1)(k + 1) is for columns with dummy string “$” in the seq-row.

Using Lemmas 2 and 3, we can find the optimal solution for SCS from optimal solutions for
P-BMP as follows. For all pairs of 1 ≤ p ≤ ℓ and 1 ≤ q ≤ ℓ, we find the optimal solution to
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I(p, q). If the border length of the optimal solution equals to 2(p + q)(2k + 1) + 2L, there is a
common supersequence of length p+q. Among all such pairs of p and q, those with the minimum
p+q correspond to shortest common supersequences. Notice that there are a polynomial number
of, precisely ℓ2, pairs of p and q to be checked. We then have the following theorem.

Theorem 4. The P-BMP is NP-hard.

3.2 Approximation algorithm for P-BMP

We show that P-BMP is O(log n)-approximable by giving a reduction to the weighted multiple
sequence alignment problem (WMSA), for which there is an O(log n)-approximation algorithm
(Lemma 1).

Lemma 5. There is a polynomial time reduction from P-BMP to WMSA.

Proof. Let I be an instance of the P-BMP problem with a given placement φ. We construct an
instance I ′ for WMSA such that there is a solution for I with border length X if and only if
there is a solution for I ′ with a weighted SP score of X.

Construction of I′. We first show the construction of I ′. The input sequence set for WMSA
is the same as the input sequence set S. The weight w(i, j) is defined as follows:

w(i, j) =

{

1 if φ(sj) ∈ N (φ(si)),

0 otherwise.

The distance function δ(a, b), for a, b ∈ Σ ∪ {−}, is defined as follows:

δ(a, b) =











0 if a = b,

1 if a 6= b and (a = “− ” or b = “− ”),

∞ otherwise.

Solution for I implies solution for I′. Suppose we have an embedding ε for I. Note that
ε = {ε1 · · · εn} is an alignment for S and the pairwise score of εi and εj equals borderε(si, sj) +
borderε(sj , si). So,

SP(S ′, w) =
1

2

∑

1≤i,j≤n

w(i, j)
∑

1≤y≤|D|
δ(εi[y], εj [y])

=
∑

1≤i,j≤n

w(i, j)borderε(si, sj)

=
∑

si, sj :
φ(sj) ∈ N (φ(si))

borderε(si, sj)

= BL(φ, ε) .

The second last equality is due to the definition of w(i, j), which is based on φ.
Solution for I ′ implies solution for I. On the other hand, suppose we have a solution

for I ′, i.e., an alignment S ′ = (s′1 · · · s′n) for S and |s′i| = m′, for some m′. In the alignment S ′,
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each column contains the same character or “ − ” because of the definition of the distance
function δ(a, b). We denote the resulting matrix as ε = (ε1 · · · εn). It can be seen that ε
is an embedding for S and the Hamming distance between εi and εj , i.e., borderε(si, sj) +
borderε(sj , si), equals the pairwise score of s′i and s′j. Then

BL(φ, ε) =
∑

si, sj :
φ(sj) ∈ N (φ(si))

borderε(si, sj)

=
1

2

∑

si, sj :
φ(sj) ∈ N (φ(si))

∑

1≤y≤|D|
δ(s′i[y], s

′
j [y])

=
1

2

∑

1≤i,j≤n

w(i, j)
∑

1≤y≤|D|
δ(s′i[y], s

′
j [y])

= SP(S ′, w) .

Note that the second last equality holds for the same reason as above. Therefore, the lemma
follows.

With Lemmas 1 and 5, we have the following corollary.

Corollary 6. The P-BMP is O(log n)-approximable.

3.3 A polynomial time algorithm for 1D-P-BMP

In this section, we study the special case on an 1D array. We mention that, although 1D mi-
croarrays are not used in biology, the 1D-P-BMP problem is still interesting from the theoretical
perspective. Intuitively, the problem is computationally easier than the 2D case and, indeed, in
this section we show that P-BMP on an 1D array can be solved optimally in polynomial time.

The algorithm Embed1d shown in Algorithm 1 makes use of a procedure called Extend.
Extend takes two sequences p and q, and a supersequence Ŝ of p as input and returns a
supersequence of Ŝ and q (recall Section 2.3 for the definitions of LCS and SCS). Let c = lcs(p, q),
x1, x2, . . . , xc be the indices of Ŝ corresponding to p that belongs to LCS(p, q), and y1, y2, . . . , yc
be the indices of q that belongs to LCS(p, q). Extend then extends Ŝ by inserting characters
in q but not in LCS(p, q): characters between q[yk−1] and q[yk] are inserted right before Ŝ[xk]
and characters beyond q[yc] are appended to the end of Ŝ. Extend keeps track of the indices
of the new Ŝ that correspond to q (see Figure 2).

Algorithm 1 Embed1d: Optimal embedding for P-BMP on 1D array.

Input: Sequence set S = {s1, s2, . . . , sn}, placed on a 1D array in that order.
Output: An embedding ε with minimum border length.
1: Set D = s1.
2: For each i > 1, call the procedure Extend with si−1, si and D as the input to obtain a new D.
3: For each si, set εi such that ε[y] = D[y] if D[y] corresponds to a character in si kept track by

Extend, and ε[y] = “− ” otherwise.

Theorem 7. Algorithm Embed1d finds an optimal embedding for the P-BMP problem on 1D
array in polynomial time.
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Figure 2: An illustration of Extend. Shaded squares refer to characters in LCS(p, q). Char-
acters in q but not in LCS(p, q) are inserted into Ŝ so that the order preserves as in q (see the
arrows).

Proof. We first observe that D constructed in each iteration by Extend is a common super-
sequence of s1, . . . , si. This is clear from the way Extend finds LCS(si−1, si) and inserts
characters into D. It also implies that the number of characters shared by si−1 and si is main-
tained as lcs(si−1, si), which is the maximum possible. Note that this property does not change
by later steps. Hence, the border length of the final embedding is the minimum. As for time
complexity, the bottleneck is finding the longest common subsequences of two sequences, which
is known to take polynomial time [16,24]. This is done for n−1 times only. Therefore, Embed1d
also takes polynomial time.

4 Hardness of BMP: Finding placement and embedding

In Section 4.1, we show the NP-hardness of 1D-BMP via a reduction from a variant of the
Hamming Traveling Salesman Problem, termed Hamming a-b Path TSP in which we want to
find a path from vertex a to vertex b (not a tour, as it is the case in the original Hamming TSP),
that visits each vertex precisely once. Then in Section 4.2 we give a reduction from 1D-BMP
to BMP, thus proving the NP-hardness of BMP regardless of the dimension of the array.

4.1 1D-BMP: BMP on a 1D array

The Hamming a-b Path TSP. The input consists of a set of length-ℓ strings s1, s2, . . . sn over
the alphabet {0, 1} and two strings a and b. We denote by ham(si, sj) the Hamming distance
between si and sj (i.e., the number of positions at which si and sj differ). The goal is to find
a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such that sπ(1) = a, sπ(n) = b and the sum
∑n−1

i=1 ham(sπ(i), sπ(i+1)) is minimized.

In the Hamming TSP problem, the goal is to minimize the sum
∑n−1

i=1 ham(sπ(i), sπ(i+1)) +
ham(sπ(1), sπ(n)), i.e., unlike the Hamming a-b Path TSP, in the Hamming TSP the goal is to
find a closed tour instead of a path. Ernvall et al. [9] proved that the Hamming TSP problem
is NP-hard, via a reduction from the Rectilinear TSP, i.e., TSP where the vertices are points
in the plane and the distance is the L1 norm (Manhattan distance). The NP-hardness theorem
in [9] implies the NP-hardness of the Hamming a-b Path TSP as stated in Corollary 8.

Corollary 8. The Hamming a-b Path TSP problem is NP-hard.
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Proof. We show a polynomial time reduction from the Hamming a-b Path TSP to Hamming
TSP. For a given graph, compute the minimum a-b TSP path, between any two vertices a and
b. The optimum Hamming TSP tour is the one such that the cost of the a-b path, plus the cost
of the edge between a and b is minimized. Thus, if we could solve the Hamming a-b Path TSP
problem in polynomial time, then we could have solved Hamming TSP problem in polynomial
time by checking O(n2) pairs of a and b and the corresponding a-b-paths.

Reduction. Consider an Hamming a-b Path TSP instance with n binary strings s1, s2, . . . sn.
We construct an instance of 1D-BMP with n sequences to be placed on an array of size 1 × n.
We now define the alphabet Σ and the sequences S.

1. Alphabet: Σ = {0, 1, $,#, ∗}, where $ is a special character which serves as a delimiter
and # and ∗ are characters that appear only in the strings s and t .

2. Sequences: for each string s = x1x2 . . . xℓ in the Hamming TSP instance, where xi ∈ {0, 1},
we construct the sequence s′ = x1$

2nℓx2$
2nℓ . . . $2nℓxℓ. Moreover, we append #2nℓ at the

end of the string a′ and ∗2nℓ at the end of b′. The role of the characters # and ∗ is to
ensure that the strings corresponding to a and b are placed on the first and respectively
last position of the microarray.

The hardness of the 1D-BMP is stated in the following theorem.

Theorem 9. The 1D-BMP is NP-hard if the size of the alphabet is at least 5.

Proof. We claim that the border length of an optimal placement and embedding is precisely
4nℓ plus two times the minimum length of a path in the Hamming a-b TSP path instance.

We prove the direct implication. Given the optimal Hamming a-b TSP path π, we define
OPT to be

∑n−1
i=1 ham(sπ(i), sπ(i+1)). Then, we place the strings s′ in the array exactly in the

order given by π. We now argue that the optimal embedding incurs a border length of exactly
2OPT + 4nℓ. The optimal sequence of masks synthesizes the block of $ symbols at the same
time (and therefore, the border length of this sequence is 0) and the border length obtained
in this case is at most 2nℓ (in the case where the adjacent strings differ on all the positions).
Otherwise, if we skip a block of $ characters (i.e. we do not select a mask which synthesizes the
entire row of $’s in one step), then the border length is greater than 2nℓ (since each of the 2nℓ
$ characters increases the border length by one). Thus, the border length of two consecutive
strings s′i and s′j is two times their Hamming distance (on each position they differ, the two
masks that synthesize s′i and s′j increase the border length by 1) and the optimal embedding
incurs a border length of exactly 2OPT . The extra 4nℓ in the total border length is incurred
by the characters # and ∗ appended to a and b, respectively.

To prove the reverse implication we show two facts. First, observe that except for the two
characters ∗ and #, the embedding of any placement gives a border length which two times the
sum of the Hamming distance between consecutive sequences. This embedding synthesizes all
the $ characters in the same step and thus the cost for these characters is 0. Since the strings
have length ℓ, we can obtain an embedding with cost at most 2nℓ. The embedding of the
characters ∗ and # may add either 4nℓ , 6nℓ, or 8nℓ to the total border length. Assume now,
by contradiction that two characters on different positions are synthesized in the same step,
and thus, the embedding doesn’t correspond to two times the sum of the Hamming distance
between consecutive sequences. In this case, the synthesis of the $ sign, incurs a border length
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of at least 2nℓ which is not optimal (we obtain a border length of at most 2nℓ if we synthesize
all the $ signs in a single block).

Secondly, we argue that the strings a′ and b′ are placed on the first and the last position of
the microarray. We showed in the above paragraph that except for the two characters ∗ and
#, the embedding of any placement gives a border length which is at most 2nℓ. Placing the
two strings a′ and b′ on the first, respectively the last, position adds an extra 4nℓ to the border
length. Otherwise, the border length is at least 6nℓ, which is not optimal. Thus, finding the
optimal placement is equivalent to finding the optimal Hamming a-b TSP path. The theorem
follows.

4.2 BMP on 2D array

In this section, we reduce the BMP on an 1×n array to BMP on an n×n array. Together with
the hardness result from the previous subsection, this reduction implies that BMP is NP-hard.
Consider an instance I1 for 1D-BMP where there are n sequences s1, s2, · · · , sn over an alphabet
Σ, and the length of si is ℓi. Let ℓ = max1≤i≤n ℓi. We construct an instance I2 for BMP which
contains two types of sequences, namely, a given sequence and a dummy sequence. The alphabet
Σ′ used by the BMP on the 2D array is a superset of Σ, Σ′ = Σ∪ {x1, x2, · · · , xn} ∪ {$}, where
$ /∈ Σ and xi /∈ Σ, for all 1 ≤ i ≤ n. The instance I2 is constructed as follows. Let k > ℓ be a
large integer to be determined later.

• Dummy sequences: we create n2 − n dummy sequences each containing one character $.

• Given sequences: for each si, we create a length k sequence xk−ℓi
i · si.

We claim that in an optimal placement the n sequences are on the top row. In that case,
the optimal solution for I1 would give an optimal solution for I2 and vice versa.

We now prove the claim. For each cell in the array, there are four boundaries, top, bottom,
left, and right. A sequence placed in a certain cell contributes to the overall border length an
amount of four times its length minus the sharing of characters with its four neighbors. Recall
that share(s, s′) denotes the number of characters that can be shared between to sequences s
and s′. Let gs, ds, and b be a given sequence, a dummy sequence, and the outmost boundary of
the array. Notice that the share between of a sequence and the boundary of the array is always
the length of that sequence.

Then we have the following relationships.

share(gs, gs) ≤ ℓ, share(gs, ds) = 0, share(gs, b) = k,

share(ds, ds) = 1, share(ds, b) = 1

If we arrange all the sequences such that the given sequences are placed on the top row, we
would have a sharing of (n + 2) × share(gs, b) = (n + 2)k. If any of these given sequences are
not placed on the top row, we lose a sharing of at least k. No matter how the sequences are
placed, the maximum sharing apart from those with the outmost boundaries of the array is at
most 4n2ℓ. If we set k to be large enough, e.g., k = 4n2ℓ+1, then any possible internal sharing
(not with outmost boundaries) is not sufficient to compensate the loss of k.2 Intuitively, it is

2It is possible to set a smaller value of k by more careful analysis. Yet the ultimate conclusion is still the same
that we have an instance for BMP that it is the best to have all the given sequences placed on the top row of the
array.
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ideal to place the given sequences on the top row since they are the longest. If we place them in
a different fashion, then the sharing of the characters in the sequences si does not compensate
the loss of the sharing between the given sequences and the boundary (this motivates our choice
of k).

We have argued that all the given sequences should be placed on the top row of the array
and the following theorem follows from Theorem 9.

Theorem 10. The (two-dimensional) BMP is NP-hard.

5 Approximation algorithms for BMP

We give approximation algorithms for the 2D- and 1D-BMP in Section 5.1 and 5.2, respectively.

5.1 An O(n
1

4 log2 n) approximation algorithm for the BMP

In Section 3.2, we showed that there is an O(log n)-approximation for the P-BMP in which
the placement of the sequences is given (Corollary 6). Therefore, to obtain an approximation
for the BMP, it suffices to find a “good” placement of the sequences. The algorithm named
Place&Embed is given in Algorithm 2.

The intuitive ideas of our approximation algorithm are as follows. Recall that in Section 2.3
we define a distance function dist(si, sj) for any pair of sequences si and sj, which gives a lower
bound on border(si, sj) + border(sj, si). A placement can be viewed as a permutation π. We
define a function p(π) based on dist(si, sj) and show that p(π) is a lower bound on the border
length of any embedding (including the optimal one) for the permutation π. Therefore, if we
can find an embedding such that the border length is at most a certain factor of p(π), then we
have an approximation for BMP. We then observe that it is difficult to find in polynomial time a
permutation optimizing the value p(π) on the general metric and turn to embedding the metric
into a tree (distribution) such that (in expectation) the distance on the tree distT (si, sj) satisfies
the property dist(si, sj) ≤ distT (si, sj) ≤ O(log n) dist(si, sj). Finally, we show that using an
Euler tour on the embedded tree as a permutation to place the sequences on the array gives
us an O(n

1
4 ) approximation on pT (π), which is the counterpart of p(π) with dist(·) replaced

by distT (·). Combining all the arguments, we obtain an O(n
1
4 log2 n) approximation for BMP.

Details are as follows.

The function p(π). In Section 2.3, we define the notion dist(si, sj) for any two sequences si
and sj of length ℓi and ℓj . Precisely, dist(si, sj) = ℓi + ℓj − 2 · lcs(si, sj) and it is a lower bound
on borderε(si, sj) + borderε(sj, si) for any embedding ε. Therefore, the sum over all neighbors
of distances dist(si, sj) is a lower bound on the optimal border length of a given placement. We
observe that this distance dist(·) is a metric.

A placement can be viewed as a permutation π : {1, . . . , n} → {1, . . . , n} such that the
sequences π(1), . . . , π(

√
n) are placed on the first row of the array in this order, π(

√
n +

1), . . . , π(2
√
n) on the second row and so on. Then any embedding for a placement π has a

border length at least p(π), which is defined as:
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p(π) =
n−1
∑

i=1

dist(π(i), π(i + 1))−
√
n−1
∑

i=1

dist(π(i
√
n), π(i

√
n+ 1))

+

√
n

∑

i=1

√
n−1
∑

j=1

dist(π(i+ (j − 1)
√
n), π(i+ j

√
n)) .

We name the problem to minimize this “proxy” value p(π) the Proxy problem. Note that
the border length for a placement π can be much larger than p(π) as the embeddings needed
to achieve dist(si, sj) for all si and sj may not be compatible with each other. Nevertheless, as
shown in the proof of Proposition 11, the P-BMP approximation algorithm returns an embedding
with the border length less than O(log n)p(π). Therefore, if we can place the sequences into
the array such that the sum of the distances between any neighbors is within a factor c of p(π),
then we can apply the O(log n) approximation algorithm for the P-BMP and obtain a O(c log n)
approximation for the BMP. We summarize this in the following proposition.

Proposition 11. A c-approximation algorithm for the Proxy problem implies an O(c log n)-
approximation algorithm for the BMP.

Proof. First, we show that the lower bound for the P-BMP approximation algorithm for a
given placement π is precisely p(π). More precisely, the O(log n)-approximation algorithm
for the P-BMP on instance π will return a solution ALG(π) such that ALG(π) ≤ O(log n) ·
p(π). As discussed in Section 2.3 the O(log n) approximation algorithm for the P-BMP uses
the approximation algorithm for WMSA, which in turn uses the approximation algorithm for
MRCT. The lower bound of the approximation algorithm is the sum of the edit distances of
adjacent strings in the microarray. Since the edit distance between two strings x and y is
precisely dist(x, y), it follows that this lower bound is precisely p(π).

We turn now to the proof of the proposition. Let π′ be a placement such that p(π′) is
minimized. A c-approximation algorithm for the Proxy problem returns a placement π′′ such
that p(π′′) ≤ c · p(π′). Then, ALG(π′′) ≤ O(log n) · p(π′′) ≤ c · O(log n) · p(π′). Since p(π′)
is a lower bound for the optimum value of the P-BMP problem on the placement π′, we have
p(π′) ≤ P-BMP(π′). Thus, ALG(π′′) ≤ c ·O(log n) ·P-BMP(π′) and the proposition follows.

Tree embedding and Euler tour to approximate p(π). Since it is difficult to find in
polynomial time a permutation which optimizes the function p on this general metric, we first
embed the metric into a tree (in fact, into a distribution of trees) with O(log n) distortion using
the algorithm of Fakcharoenphol, Rao and Talwar [10] (the same algorithm used in the MRCT,
and implicitly P-BMP, approximation). This randomized embedding algorithm takes the input
sequences as tree vertices and returns a tree with a metric distT (·) defined by a tree such that in
expectation dist(si, sj) ≤ distT (si, sj) ≤ O(log n) dist(si, sj). The distance distT (si, sj) on the
tree is the sum of distances along the unique path between si and sj. Notice that the resulting
tree may have vertices in addition to the n input sequences. Using the metric distT (si, sj), we can
define a counterpart of pT (π) by replacing dist(si, sj) with distT (si, sj). Then a c-approximation
to pT () leads to an O(c log n) approximation to p(). Together with Proposition 11, we have the
following proposition.
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Proposition 12. If we can approximate the Proxy problem on a tree (i.e., approximate pT )
within a factor of c, then we have an O(c log2 n) approximation to the BMP.

We now present how to approximate pT . Our approximation algorithm for the Proxy

problem on trees is very simple: we consider the ordering of the vertices given by an Euler tour
of the tree (we ignore the additional vertices which do not correspond to the input sequences).

We then prove that this is an O(n
1
4 ) approximation algorithm for pT . Then, by Proposition 12

we are guaranteed to have an O(n
1
4 log2 n) approximation algorithm for the BMP.

The algorithm for the BMP problem is described formally in Algorithm 2.

Algorithm 2 Place&Embed: The O(n
1
4 log2 n) approximation algorithm for the BMP

1: Input: The sequences s1, s2, . . . , sn.
2: Define dist(si, sj) = ℓi + ℓj − 2 · lcs(si, sj)
3: Embed the metric given by this distance and the set of input points into a tree T using the

algorithm from [10].
4: Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be the ordering of the sequences according to an Euler

tour of the tree T from which the additional vertices have been removed.
5: Place the sequences in the array according to π: the sequences π(1), . . . , π(

√
n) are placed

on the first row of the array in this order, π(
√
n+1), . . . , π(2

√
n) on the second row and so

on. (See Figure 3).
6: Apply the P-BMP approximation algorithm to find an embedding for the sequences.
7: Output: The placement of the sequences on the array based on the Euler tour and the

embedding of the sequences given by the P-BMP approximation algorithm.

Analysis. We denote by T the tree obtained after the tree embedding. Notice that the cost
of a solution is given by summing each edge of T several times. We say that an edge (x, y) ∈ T
is crossed r times in a solution π if it belongs to exactly r of the 2

√
n(
√
n − 1) paths of the

solution.
Now, we want to find a lower bound for the optimal solution. We do so, by showing that in

any solution, each edge of the tree has to be crossed at least a certain number of times. This is
stated formally in the following lemma. Let (x, y) ∈ T and let A and B be the two connected
components resulted from removing (x, y).

Lemma 13. In any permutation π the edge (x, y) is crossed at least
√

min{|A|, |B|} times.

Proof. If we consider an arbitrary placement of the sequences on a grid graph (i.e., an
√
n×√

n
array), then the two sets of sequences A and B determine a cut in the graph. We argue that the
size of the cut is exactly the number of times the edge (x, y) is crossed: for each edge (π(i), π(j))
in the cut, we have to add to the solution the corresponding path π(i) → π(j). But the path
π(i) → π(j) has to cross the edge (x, y), since π(i) ∈ A and π(j) ∈ B. The minimum cut
determined by two sets of size |A| and |B| has size

√

min{|A|, |B|} and therefore the lemma
follows.

We give an upper bound by considering the ordering of vertices given by an Euler tour of
the tree.

Lemma 14. In an Euler tour ordering, (x, y) is crossed at most O(min{√n, |A|, |B|}) times.
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Figure 3: (a) Suppose the embedding in [10] returns such a tree for 9 sequences. The vertices that
are mapped to input strings are labeled with numbers and the additional vertices introduced by
the embedding algorithm are labeled with letters. (b) The placement of these sequences on the
array according to an Euler tour of the tree. An Euler tour of the tree is: 1, a, 2, 8, 3, 4, b, 5, 9, 6, 7.
After removing the additional vertices a and b the ordering of n the vertices corresponding to
sequences is: 1, 2, 8, 3, 4, 5, 9, 6, 7.

Proof. Due to the Euler tour, each edge can be crossed by edges from the paths π(i) → π(i+1)
at most twice. Then we have to count how many edges from the paths π(i) → π(i +

√
n)

cross the edge (x, y). We argue that (x, y) cannot be crossed more than 4min{|A|, |B|} times.
Suppose A is the set with the smaller cardinality. In the worst case for each element in A all
its four neighbors are in B and, therefore (x, y) is crossed 4 ·min{|A|, |B|} (this is actually too
pessimistic but this suffices for our analysis since we are not interested in the precise constants).

We also argue that (x, y) cannot be crossed more than O(
√
n) times. Since we follow an

Euler tour, for an element π(i), we have two cases: either π(i+
√
n) ∈ A, or π(i+

√
n) /∈ A and

π(j +
√
n) /∈ A,∀j > i. Therefore, for only

√
n elements π(i) of A, π(i+

√
n) is in B. Then the

lemma follows.

Theorem 15. The randomized algorithm Place&Embed is an O(n
1
4 log2 n)-approximation to

the BMP.

Proof. By Lemma 14, the cost of the algorithm is at most O(min{√n, |A|, |B|} · |T |). By
Lemma 13, the cost of the permutation π is at least O(

√

min{|A|, |B|} · |T |). Therefore, to
analyze the performance of Place&Embed we analyze the ratio of the two multiplicative
factors.

Consider the placement of the sequences in the
√
n × √

n array in the order given by the
Euler tour. For an edge (x, y) ∈ T , there are two cases that we have to consider:

1. If min{|A|, |B|} ≤ √
n, then
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min{√n, |A|, |B|}
√

min{|A|, |B|}
=

√

min{|A|, |B|} ≤ n
1
4

2. If min{|A|, |B|} >
√
n, then

min{√n, |A|, |B|}
√

min{|A|, |B|}
<

√
n

n
1
4

= n
1
4

We then apply Proposition 12 and Lemmas 13 and 14 and the theorem follows.

5.2 A 3/2 approximation algorithm for 1D-BMP

In Section 3.3, we show that when the array is one dimension, 1D-P-BMP is polynomial time
solvable. For 1D-BMP, the algorithm Place&Embed1d (shown in Algorithm 3) finds a place-
ment guided by some traveling salesman path (TSP) on a particular graph (to be defined) and
then use Algorithm Embed1d to find the optimal embedding for that placement.

The algorithm Place&Embed1d first constructs the graphGc, which is a weighted complete
graph vertices representing S and edge weight representing dist() between the two vertices. A
traveling salesman path (TSP) Q̃ is obtained from Gc and we place the sequences on the 1D
array in the order of Q̃ from left to right. We then apply the embedding algorithm Embed1d

in Section 3.3. We denote the resulting placement and embedding as φ̃ and ε̃, respectively.

Algorithm 3 Place&Embed1d: Approximation algorithm for 1D-BMP.

Input: Sequence set S = {s1, s2, . . . , sn} to be placed on a 1× n array.
1: Construct the weighted complete graph Gc.
2: Find an approximate TSP Q̃ for Gc using algorithm in [7].
3: Place the sequences on the array according to the order of Q̃ to obtain placement φ̃.
4: Run the algorithm Embed1d to find an optimal embedding ε̃ for φ̃.

Output: A placement φ̃ and an embedding ε̃ for S.

Theorem 16. The algorithm Place&Embed1d is a 3/2-approximation for the 1D-BMP.

Proof. Consider a one-dimensional array. For any placement φ, we denote by dist(φ) the sum
over all neighboring sequences p and q of the value dist(p, q). The proof of Theorem 7 implies that
for any placement φ, dist(φ) = BL(φ, ε̃), where ε̃ is found by Algorithm Embed1d. Therefore,
dist(φ̃) = BL(φ̃, ε̃) and dist(φ∗) = BL(φ∗, ε∗), where φ∗ and ε∗ is the optimal placement and
optimal embedding. The optimal TSP gives the placement φ∗. Therefore, since dist() satisfies
the triangle inequality and since there exists a 1.5-approximation algorithm for metric TSP [7],
we have that dist(φ̃) ≤ 3dist(φ∗)/2. Therefore, the theorem follows.

6 The agreement maximization problem (AMP)

In this section, we study the counterpart of BMP, which we called agreement maximization
problem (AMP) (recall definition in Section 2). In contrast to BMP, AMP admits constant
approximations, whether the placement is given in advance or not.
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Figure 4: (a) A set of sequences placed on a 3 × 3 array. The values represent the length of
LCS between the two neighboring sequences. An arrow from p to q means parent(p) = q. (b)
The tree constructed by AEmbed with root CTT. (c) How the deposition sequence D changes
iteratively. The sequences are drawn in a way the characters align with the final D.

6.1 Approximation for P-AMP

We first study the P-AMP, a variant of AMP with a placement already given.
Algorithm AEmbed. The algorithm AEmbed (Embed for Agreement) makes use of

procedure Extend in Section 3.3. The order of sequences to be considered is determined by a
certain tree T with the bottom rightmost sequence in the array being the root. To construct T ,
for each sequence s, we assign a parent to the sequence, denoted by parent(s). We denote by
r(s) and b(s) the right and bottom neighbors of sequence s, respectively. The sequences in
the rightmost column has r(s) = NULL and those in the bottommost row has b(s) = NULL.
We set parent(s) to r(s) or b(s) depending on whether lcs(s, r(s)) or lcs(s, b(s)) is larger. A
detailed description of AEmbed is shown in Algorithm 4. The embedding found is denoted
by ε̂. Figure 4 shows an example.

Algorithm 4 AEmbed: Approximate algorithm for P-AMP.

Input: Sequence set S = {s1, s2, . . . , sn} placed on a
√
n×√

n array according to a placement φ.
1: Construct a tree T by assigning parent to each sequence s: if lcs(s, r(s)) ≥ lcs(s, b(s)) set parent(s) =

r(s) else set parent(s) = b(s).
2: Set D to be the bottom rightmost sequence in the array.
3: Traverse T in a pre-order fashion: for each sequence s traversed, call the procedure Extend with

parent(s), s and D as input.
4: For each si, set ε̂i such that ε̂[y] = D[y] if D[y] corresponds to a character in si kept track by

Extend, and ε̂[y] = “− ” otherwise.
Output: The embedding ε̂ for S.

Analysis. To analyze the performance of AEmbed, we first observe that in the final
embedding ε̂, the number of characters shared by a sequence and its parent equals to the length
of their LCS (by a similar argument as the proof of Theorem 7). We then bound the performance
of AEmbed as follows.

Theorem 17. AEmbed is a polynomial-time 2-approximation algorithm for P-AMP.

Proof. For the given placement φ, let ε∗ be the optimal embedding. For any embedding ε,
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Figure 5: Row-by-row threading of a group of sequences on an array. Solid and dotted edges
connect neighbors in the placement that are and are not, respectively, neighbors in the group.

we have A(φ, ε) = 2 ×∑

s∈S(shareε(s, r(s)) + shareε(s, b(s))). We assume shareε(s1, s2) = 0 if
s2 = NULL. As mentioned in Section 2.3, for any embedding ε, share(s1, s2) ≤ lcs(s1, s2). Thus,
lcs(s, r(s)) ≥ shareε∗(s, r(s)) and lcs(s, b(s)) ≥ shareε∗(s, b(s)). Note that shareε̂(s, parent(s)) =
max{lcs(s, r(s)), lcs(s, b(s))} ≥ 1

2(shareε∗(s, r(s)) + shareε∗(s, b(s))). Therefore,

A(φ, ε̂) ≥ 2×
∑

s∈S
shareε̂(s, parent(s)) ≥

∑

s∈S
(shareε∗(s, r(s)) + shareε∗(s, b(s))) =

1

2
A(φ, ε∗) .

Finally, AEmbed runs in polynomial time as the bottleneck is finding LCS between two se-
quences.

6.2 Approximation for AMP

In this section, we study the general AMP problem to find both the placement and the em-
bedding to maximize the agreement. We consider the case when the size of the alphabet
is 4, since this is the most relevant in biological applications. We prove that the algorithm
APlace&Embed as shown in Algorithm 5 has an asymptotic approximation ratio of 4 when
all the sequences have the same length (for general alphabets, the algorithm has approximation
ratio |Σ|).

Algorithm 5 APlace&Embed: Approximation algorithm for AMP.

Input: Sequence set S = {s1, s2, . . . , sn} to be placed on a
√
n×√

n array.
1: Partition S into four disjoint groups A, C, G and T : a sequence belongs to A if the number of A in

the sequence is the maximum over the number of other characters (similarly for C, G and T ).
2: “Thread” the sequences in group A on the array in a row-by-row fashion, followed by threading of

sequences in C, G, and T to form the placement φ̌. See Figure 5 for the way threading works.
3: For sequences in A, align them such that the maximum number of A are aligned while different

characters are not aligned. This forms a partial embedding ε̌a with deposition sequenceDa. Similarly,
find ε̌c, ε̌g, ε̌t and Dc, Dg, Dt.

4: Combine Da, Dc, Dg, and Dt to form D (append one after the other).
5: Extend the embeddings ε̌a, ε̌c, ε̌g, ε̌t according to D by inserting “− ” in the columns corresponding

to other groups. The union of the extended embeddings is the resulting embedding ε̌.
Output: The placement φ̌ and an embedding ε̌ for S.

Example 1. Suppose we are given nine sequences S = {AACT, ACGA, ACGG, CAGA, CCTA,
GGAA, GGAT, TACT, TTAC}. Then A = {AACT, ACGA, CAGA, GGAA}, C = {CCTA},
G = {ACGG, GGAT}, and T = {TACT, TTAC}. The placement returned by APlace&Embed

would be
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AACT ACGA CAGA

ACGG CCTA GGAA

GGAT TACT TTAC

As for the embeddings, we have Da = GGCACGACT, Dc = CCTA, Dg = ACGGAT, and
Dt = TACTAC. Furthermore D = GGCACGACTCCTAACGGATTACTAC.

Theorem 18. The asymptotic approximation ratio of APlace&Embed is 4. when the size of
the alphabet is 4 and the sequences have the same length ℓ.

Proof. Consider the optimal placement φ∗ and embedding ε∗. For every pair of neighboring
sequences si, sj , shareε(si, sj) + shareε(sj , si) ≤ 2ℓ. There are a total of 2(n − √

n) pairs of
neighbors in the array in total. So, the optimal agreement A(φ∗, ε∗) ≤ 4ℓ(n − √

n). On the
other hand, consider φ̌ and ε̌ returned by APlace&Embed. According to the way we partition
the sequences into group, for any two sequences si, sj in a group, the number of characters that
can be shared is at least ℓ/4. Hence, shareε̌(si, sj) + shareε̌(sj , si) ≥ 2(ℓ/4) = ℓ/2. As we have
seen above, there are altogether 2(n −√

n) pairs of neighbors in the array. We may not share
any character when the pair belongs to different groups. According to the way we thread the
groups, there are at most 3

√
n+3 such pairs (

√
n pairs of vertical neighbors between consecutive

groups and 3 pairs of neighbors that are the last one in a group and the first one in the next
group). As a result, we have at least 2n − 5

√
n − 3 pairs each with sum of share at least ℓ/2.

Therefore, A(φ̌, ε̌) ≥ ℓ(n − 2.5
√
n − 1.5). Then A(φ̌, ε̌)/A(φ∗, ε∗) tends to 4 as A(φ∗, ε∗) tends

to infinity. So, the asymptotic approximation ratio of APlace&Embed is 4.

7 Concluding remarks

We give a comprehensive study of different variations of the Border Minimization Problem and
present NP-hardness proofs and approximation algorithms. With regard to the complexity of
different variants, our results show that (i) the BMP is NP-hard regardless of the dimension of
the array; (ii) the array dimension differentiates the complexity of the P-BMP; and (iii) for 1D
array, whether placement is given differentiates the complexity of the BMP.

Moreover, our techniques can be used to improve the approximation ratio for the synchronous
case from O(n1/2) to O(n1/4) using the placement method given by Algorithm 2 (where the
metric is defined by the Hamming distance between the sequences). Once a placement is found,
the synchronous embedding can be computed exactly in polynomial time.

Note that the NP-hardness reduction for the P-BMP works for alphabets of size 3. In
contrast, the hardness result for the BMP uses non-constant alphabets. An open problem is to
prove that the BMP is hard also on constant alphabets (intuitively the BMP is harder than the
P-BMP) but this does not seem to be easy.

Another natural open question is to further improve approximation algorithms for the BMP
and the P-BMP and/or to derive inapproximability results. As mentioned in the introduction,
there is an exponential time algorithm to compute the optimal BMP solution. Improving the
exponential time algorithm could be useful in practice and is of theoretical interest.
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Wiesner, Ralf Bogumil, Ursula Möller, Dirk Osterloh, Karl-Jürgen Halbhuber, and Ferdi-
nand von Eggeling. A technical triade for proteomic identification and characterization of
cancer biomarkers. Cancer Research, 64(12):4099–4104, 2004.

[26] S. Rahmann. The shortest common supersequence problem in a microarray production
setting. Bioinformatics, 19(suppl. 2):156–161, 2003.
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