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ABSTRACT 

We report on the detection of metastable, solvated and surface adsorbed alkali metal-oxygen (M-

O2) discharge species using in situ attenuated total reflectance surface enhanced infrared absorp-

tion spectroscopy (ATR-SEIRAS). Oxygen-oxygen stretching bands (O-O) of superoxide species 

formed during M-O2 battery discharge have been challenging to observe by conventional infra-

red (IR) techniques and because of this, there has been limited use of IR techniques for in situ 

monitoring of the discharge products at the cathode in metal-O2 batteries. We explore SEIRAS 

technique to investigate lithium-oxygen and sodium-oxygen electrochemistry in acetonitrile 

(MeCN; a low Gutmann donor number solvent) as well as dimethyl sulfoxide (DMSO; a high 

Gutmann donor number solvent) in order to demonstrate the feasibility of our approach in the 

ongoing efforts toward the realization of M-O2 battery technology. In situ IR spectroscopy stud-

ies, together with coupled-cluster method including perturbative triple excitations [CCSD (T)] 

calculations, establishes that certain M-O and O-O stretching bands (M-O and O-O) of metal su-

peroxide and peroxide molecular species are IR active, although these vibrational modes are si-

lent or suppressed in their crystalline forms. An in situ IR spectroscopy based approach to distin-

guish between ‘solution mediated’ and ‘surface confined’ discharge pathways in non-aqueous M-

O2 batteries is demonstrated. 
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Introduction 

Lithium-ion batteries have revolutionized technological progress of the past two decades; however, 

there appears to be little room left to increase further their specific energy1. Developing new types 

of batteries with higher energy storage and superior performance is crucial for the realisation of a 

true alternative to fossil-fuel-based energy economy1, 2. In view of the overwhelmingly high grav-

imetric energy densities projected by theoretical as well as recent experimental reports, metal-

oxygen (M-O2) batteries, popularly known as metal-air batteries, promise to lead next generation 

energy storage systems.1-16 While the cathodes of metal-ion batteries rely on the intercalation re-

actions of metal ions, non-aqueous M-O2 batteries are based on the electrochemical reduction of 

molecular oxygen and their subsequent reaction with metal ions at the cathode. Under controlled 

conditions, the M-O2 electrochemical reaction products can be reversibly oxidised to regenerate 

molecular oxygen (O2) at the cathode and the corresponding metal (M = Li or Na) at the anode, 

making it a promising secondary battery. In spite of its huge advantage in terms of specific energy, 

currently several detrimental physical and chemical mechanisms during the charge-discharge pro-

cess prevents M-O2 becoming a practical technology.1-3, 17-20 Therefore, fundamental studies 

providing molecular level understanding and mechanistic insight into the underlying interfacial 

electrode processes during discharge-charge (electro) chemistry, as wells as other desirable or un-

desirable reaction pathways are required in order for M-O2 batteries to develop into a technology 

of the near future2.  

There has been tremendous effort in the area of non-aqueous Li-O2 batteries in the past few years 

that have given some significant insights, yet several unresolved issues prevent the realization of 

a sustainable Li-O2 battery. Recently, several groups have shifted attention to other M-O2 batteries 

as well, particularly Na-O2, with the aim of surpassing certain limitations and challenges in the Li-
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O2 system. Na-O2 batteries have been proposed as a more reversible, stable and energy efficient 

system in a series of recent reports,15, 16, 21 however Na-O2 research is still in its infancy and there 

is a need to address several issues in this area as well. More importantly, the storage capacity, 

reversibility as well as discharge products of M-O2 batteries depend on the electrolyte composition 

as well.22-25 The complexity and sensitivity of the discharge/charge reactions recognized by recent 

reports underlines the importance of detailed, theoretical as well as experimental, mechanistic in-

vestigations under controlled conditions in order to fill in the knowledge-gap hampering M-O2 

battery technology.  

The improvements and insights obtained in the area of M-O2 batteries in recent years hugely ben-

efited from in-depth in situ analyses. Notably, in situ Raman spectroelectrochemistry has played a 

key role in revealing intricate details of charge-discharge chemistry at the electrode/electrolyte 

interface in these systems.17, 23, 26-28 There have also been attempts to utilize in situ infrared (IR) 

spectroscopy in this direction, but conventional in situ infrared spectroscopy techniques suffer 

from huge IR absorption by the electrolyte, making interfacial analysis of model battery interfaces 

a challenging task. A recent study also highlights the limitations of ex situ IR spectroscopy tech-

niques in the context of electrode-electrolyte interface characterization in Li-O2 cell positive elec-

trodes.29 This study points out that even compounds such as lithium carbonate (carbonates have 

high IR absorption cross section compared to peroxides or superoxides) need to be present at sig-

nificant concentrations (≥ 6-8 mol%) in carbon matrices (typical positive electrode for lithium-

oxygen batteries) to be able to detect them using ex situ IR spectroscopy. Apart from these issues, 

the deployment of IR techniques with the goal of identifying oxygen reduction products is ques-

tionable for the simple reason that typical oxygen reduction reaction (ORR) products such as su-

peroxides and peroxides often do not have IR active O-O. In spite of this, our motivation stems 
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from the fact that these stretching modes in MO2 can be IR active under certain conditions where 

O-O bonds deviate from their innate homopolar nature. IR detection of superoxides and peroxides 

of lithium and sodium have been reported in matrix isolated systems,30-33 yet the detection of MxO2 

species in solution or at the interface remains unreported. The detection of electrochemically gen-

erated reduced oxygen species using in situ attenuated total reflectance (ATR) IR spectroscopy or 

surface enhanced infrared absorption spectroscopy (SEIRAS) techniques in alkaline and acidic 

media has been reported a few times.34-36 However, there have been no reports exploring SEIRAS 

techniques for studying oxygen reduction mechanisms in non-aqueous environments, especially 

in the area of M-O2 batteries. Our IR based approach was inspired by the recent reports suggesting 

solution mediated discharge mechanisms in non-aqueous M-O2 batteries. According to this postu-

late, the discharge product formation in non-aqueous M-O2 may follow a solution mediated or 

surface confined mechanism determined by the donicity of the solvent.22 In solution-mediated pro-

cesses, M-O2 intermediates were formed in the solution rather than on the electrode surface. If 

these discrete, intermediary ORR species formed in solution can be detected using SEIRAS, this 

would open up the scope of this approach in areas beyond M-O2 batteries, viz. catalysis, fuel cells, 

biomimetic electrochemical systems, etc. 

During the discharge of an M-O2 battery, oxygen is reduced at the cathode, forming nucleophilic 

oxygen species such as superoxides (O2
-) and peroxides (O2

2-). Undesirable reactions promoted by 

these highly nucleophilic species result in the degradation of the electrolytes. Recent efforts toward 

developing electrolytes that are stable against reactive oxygen species, as well as understanding 

the mechanistic details of the reaction pathways have led to interesting insights into the Li-O2 

(electro)chemistry. Bruce and co-workers investigated the mechanistic details of the cathode pro-

cess demonstrating ORR in several aprotic solvent - lithium salt combinations, and their in situ 
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Raman studies explicitly showed the crucial role played by the solvent donicity in determining the 

discharge chemistry and reversibility of Li-O2 system.22 High donor number solvents (e.g. dime-

thyl sulfoxide [DMSO]) have stronger coordination to the metal cations thereby reducing the 

Lewis acidity of the cations, thus extending the life of superoxide in solution, where the reaction 

proceeds via chemical disproportionation of superoxides to peroxides. Low donor number solvents 

(e.g. acetonitrile [MeCN]) promote a surface confined route to lithium superoxide (LiO2); rather 

than chemical disproportionation of superoxides to peroxides, a surface growth model of the in-

termediates and products, is highly likely in this case.22, 25 Since the report by Johnson et al.15 

demonstrated the influence of Gutmann donor number in dictating the solubility, stabilization and 

growth mechanism of LiO2 and lithium peroxide (Li2O2), there have been tremendous efforts to 

explore this phenomenon in analogous systems using various in situ techniques such as Raman 

Spectroscopy, Electron Paramagnetic Resonance (EPR), Electrochemical Quartz Crystal Micro-

balance (EQCM), etc.26, 37-40 as to identify intermediates and products in Li-O2 systems. Recently 

our group has explored the solvent dependence of Na-O2 electrochemistry using in situ Surface 

Enhanced Raman Spectroscopy (SERS).26  

In situ SERS has played a crucial role in shedding light on the intricate electrochemistry in M-O2 

cells in the recent years.22, 23, 26, 28, 41, 42 Various ex situ as well as in situ IR studies are also being 

routinely used in this context.43 We have recently explored the use of ATR-SEIRAS for gaining 

mechanistic insight into electrolyte degradation pathways.44 ATR-SEIRAS is a fascinating internal 

reflection technique that offers superior sensitivity to the interfacial region when compared to other 

ATR or external reflection techniques. The SEIRA phenomenon (an enhancement in IR absorption 

in internal reflection IR spectroscopy) was first reported by Hartstein et al.45, followed by the 

reports by Hatta et al.46 employing an ATR configuration using metal underlayer (Kretschmann 
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configuration)47 for signal enhancement. The acronym SEIRAS was first used by Osawa48 who 

then pioneered the use of this technique in the area of spectroelectrochemistry.49-51 SEIRAS has a 

rich record of accomplishment for studying molecular structure, orientation and functional changes 

of species present at the electrode/electrolyte interface. A majority of these studies were performed 

with aqueous electrolytes and used electrolessly deposited metal film on a silicon internal reflec-

tion element (IRE). This offers a practical spectroscopic window between 1200 cm-1 and 4000 cm-

1. IR bands of ORR products of interest generally appear below 1200 cm-1, hence the use of silicon 

IREs limit the use of SEIRAS for this purpose. We explore the use of ZnSe IRE instead of Si, a 

major advantage of this being the possibility to study lower wavenumber regions. Since ZnSe is 

not stable under the conditions in which the gold working electrode film is formed on the IRE by 

electroless deposition, we have adopted a thermal evaporation technique for this purpose.  
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Experimental 

In situ Electrochemical SEIRAS 

A Bruker IFS66v spectrometer equipped with MCT (mercury cadmium telluride; low frequency 

cut off ca. 550 cm-1) detector was used to record IR spectra (detector range x-y cm-1). The inter-

ferometer was driven by dry air; the specular reflection unit was also purged with carbon dioxide 

free dry air. The angle of incidence was set at 65° and p-polarized IR radiation was used. Electro-

chemical measurements were performed using a Bio-Logic potentiostat. A schematic of the spec-

troelectrochemical cell is shown in Figure 1a. A 60° ZnSe prism (PIKE Technologies) was chosen 

as the ATR internal reflection element. The gold film working electrode (~20 nm thickness) was 

formed on the polished side of a ZnSe prism, which was thoroughly cleaned in deionized water, 

sonicated in ethanol then dried overnight prior to gold deposition. The gold film was formed on 

the ZnSe prism by vacuum deposition of Au (99.999 %) using a Leybold Univex 300 thermal 

evaporation system. SEM as well as AFM images illustrating the morphology and thickness of the 

gold island film formed on the prisms are shown in Figure 1. In order to ensure a proper electrical 

contact to the gold island film, a thicker layer of gold (ca. 40 nm) was deposited around the rim of 

the gold covered face of ZnSe and electrical contact to the working electrode was made by pressing 

a gold foil against this. The spectroelectrochemical cell was formed by a PEEK liquid cup attached 

on top of a ZnSe prism in the Kretschmann configuration. Both counter (Pt) and reference (Ag) 

electrodes were attached to a PEEK disk and pressed against the top end of the PEEK liquid cup. 

On both ends of the PEEK liquid cup, a proper seal was ensured using Kalrez® O-rings. 
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A coiled platinum wire was used as a counter electrode and silver wire as reference electrode. This 

silver quasi-reference electrode was calibrated against an internal ferrocene reference and poten-

tials were then quoted against either Li/Li+ or Na/Na+ for convenient reference. The ATR-SEIRAS 

cell components and the salts used were dried at 120 °C under vacuum for 12 h and transferred to 

the glovebox without exposure to air or moisture. The in situ SEIRAS cell was assembled and the 

electrolytes were purged using either dry argon or dry oxygen passed through multiple desiccant 

columns, inside an argon filled glovebox. Anhydrous Superdry® solvents, MeCN and DMSO were 

purchased from ROMIL and further dried over activated 3 Å molecular sieves inside an argon 

filled glovebox. Lithium trifluoromethanesulfonate (LiOTf), sodium trifluoromethanesulfonate 

(NaOTf), tetraethyl trifluoromethanesulfonate (TEAOTf) and lithium chloride (LiCl) were pur-

chased from Sigma Aldrich. All salts and solvents were stored in a glovebox and in addition, so-

lutions and electrolytes were prepared in a glovebox. The water content of these solvents was 

tested using a Metrohm Karl Fischer Coulometer. Water content in these electrolytes was below 

10 ppm. All measurements were conducted at room temperature; the voltammograms were ob-

tained by scanning from the open circuit potential (OCP) to the oxygen reduction region then to-

ward positive potentials where oxygen evolution reactions occur. IR spectra were collected over 

30s while the electrode potential was varied with a 10 mV/s scan rate. SEIRA spectra were plotted 

as the relative change in the IR signal with respect to OCP using the formula, 

 
∆𝑆

𝑆
=

𝑆𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒−𝑆𝑂𝐶𝑃

𝑆𝑂𝐶𝑃
. 

where SOCP corresponds to signal obtained at OCP and Svariable indicate signal obtained at various 

stages during CV. A negative going band in this case indicates an increasing absorbance when 

compared to the OCP reference state. 
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Electrochemical Measurements 

Cyclic voltammetry (CV) was carried out in a three-electrode cell using a planar Au electrode as 

working electrode, Pt and Ag wire as counter and reference electrode respectively.  

Computational methods 

All structures were fully optimised using Gaussian09.52 All structures except Na2O2 were calcu-

lated using CCSD(T)/6-311+G(3d,f).53 Default settings were used apart from SCF=QC and 

INT=ULTRAFINE. Due to difficulties in completing the calculations Na2O2 was calculated using 

M06/6-311+G(3d,f).54  Harmonic vibrational frequencies were computed for all optimized struc-

tures to verify that they were minima possessing zero imaginary frequencies.  
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Results and Discussions 

In simple terms, the general mechanism of O2 reduction in non-aqueous Li-O2 and Na-O2 batteries 

can be represented in the following chemical and electrochemical reactions: 

𝐎𝟐(𝐚𝐝𝐬) + 𝐞− ⇌ 𝐎𝟐 (𝐚𝐝𝐬)
− (1) 

𝐎𝟐(𝐚𝐝𝐬)
− + 𝐌+ ⇌ 𝐌𝐎𝟐(𝐚𝐝𝐬)          (2) 

𝐌𝐎𝟐(𝐚𝐝𝐬) ⇌  𝐌𝐎𝟐(𝐬𝐨𝐥)          (3) 

𝟐𝐌𝐎𝟐(𝐬𝐨𝐥) ⇌  𝐌𝟐𝐎𝟐(𝐬𝐨𝐥) + 𝐎𝟐            (𝟒) 

𝐌𝐎𝟐(𝐚𝐝𝐬) + 𝐞− + 𝐌+ ⇌ 𝐌𝟐𝐎𝟐(𝐚𝐝𝐬)    (𝟓) 

𝐌𝟐𝐎𝟐(𝐚𝐝𝐬) ⇌  𝐌𝟐𝐎𝟐(𝐬𝐨𝐥)(6) 

In the above equations, M indicates alkali metal (Li or Na), “ads” indicated adsorbed species and 

“sol” indicates bulk/solubilized species. For both Li-O2 and Na-O2 batteries the first step is the 

reduction of oxygen to form superoxide (O2
-) and in the presence of metal cation, a chemical step 

occurs to form MO2 (i.e. LiO2 or NaO2). In general, the stability of alkali metal superoxide (MO2) 

increases down the group, but the kinetic stability of MO2 is also determined by the chemical and 

electrochemical environments. Depending on the conditions, the metastable MO2 can follow either 

the chemical step (equation 4) or the electrochemical step (equation 5) to form M2O2. If the MO2 

intermediate is soluble in the electrolyte, then M2O2 is formed via a solution-mediated process, in 

contrast to surface-confined reaction in solvents that do not efficiently dissolve the superoxide 

intermediate. Well-documented reports in the area of Li-O2 batteries suggest that Li2O2 is the pri-

mary discharge product in non-aqueous Li-O2 cells, whereas both NaO2 and Na2O2 have been 
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detected in Na-O2 cells,7, 55, 56 owing to the relative kinetic stability of NaO2 compared to LiO2. 

Recent studies demonstrated that the primary discharge products in M-O2 batteries is also deter-

mined by the stability and solubility of MO2 in the given (electro)chemical environment22, 26; the 

presence of water also affects the formation of discharge products57, 58. Using SEIRAS we inves-

tigate these mechanistic aspects of Li-O2 and Na-O2 chemistry in two different solvents, viz. 

DMSO and MeCN. Because no previous reports are available on the IR spectra of MO2 or M2O2 

in these environments, we intend to make an evaluation by comparing our results to the recent 

Raman spectro-electrochemistry studies in analogous systems. The assignment of bands and IR 

activity of these species are supported by our CCSD(T) calculations, as well as existing IR spec-

troscopy of superoxide species in isolated matrices. 

In situ SEIRAS Characterization 

Figure 2a shows a CV recorded in oxygen purged 0.1M LiOTf/DMSO electrolyte on an Au elec-

trode at 10 mVs-1 scan rate. A negative going current peak at 2.63 V vs. Li/Li+ indicates oxygen 

reduction forming O2
- followed by LixOy, and the positive peak at 3.5 V vs. Li/Li+ corresponds to 

the oxidation of reduced species back to O2 and Li+. The SEIRA spectra were obtained simultane-

ously during the potential scan; corresponding spectra are shown in Figure 2b. For convenience, 

only the sections relevant to O-O or Li-O of LiO2 and Li2O2 are shown here (see supplementary 

figure 1a for the SEIRA spectra over the entire 1700-700 cm-1 region). The black spectrum in 

Figure 2b corresponds to OCP (3.05 V vs. Li/Li+), which shows no remarkable features because 

at OCP the interface was virtually undisturbed and no changes were observed in this spectrum with 

respect to the reference spectrum that was also obtained at the OCP. From the OCP the potential 

was scanned toward the negative vertex (1.6 V vs. Li/Li+) and then to the positive vertex (3.9 V 

vs. Li/Li+) before returning to the initial OCP. The spectra collected during this potential scan are 
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shown in Figure 2b, a major feature being the two peaks developed respectively at around 1127 

cm-1 and 780 cm-1 as the electrode potential was scanned to negative values from OCP. The posi-

tion of these bands matches closely with that of LiO2 and Li2O2 typically observed using Raman 

spectroscopy. Calculations (CCSD(T)/6-311+G(3d,f).) assign these bands to LiO2 (O-O 1127 cm-

1) and Li2O2 ((Li-O 826 cm-1); these bands are IR active when the species are in their molecular 

forms. In order to rule out the appearance of these bands from the changing surface interaction of 

salt LiOTf, the experiment was repeated using the salt LiCl. SEIRAS corresponding to oxygen 

reduction in DMSO/LiCl electrolyte also shows analogous superoxide and peroxide bands (SI Fig-

ure 11).  

 

Table 1 Comparison of Experimental and Calculated IR active Harmonic Frequencies        

(cm-1). aFull list of calculated harmonic frequencies found in SI 

 Experiment 

 

(cm-1) 

Calculation 

 

(cm-1) 

Literature 

(matrix isolation studies) 

(cm-1) 

Li2O2 780, 830 826a ((Li-O ) 767-87233 

LiO2 1127-1139 1130a ((O-O) 109730, 32, 112732 

Na2O2 - 590a ((Na-O) - 

NaO2 1122-1125 1166a ((O-O) 108031, 111231 

H2O2 895 – 905 911a ((O-O)  

HO2
- - 756a (O-O)  

HO2
- - 1164a (H-O-O)  

LiOOH 1170 1176a (H-O-O)  
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In fact, there have been some reports on the IR activity of molecular LiO2 and Li2O2 from matrix 

isolation studies,30-33 but IR active bands within the wavenumber range accessible through the 

ZnSe prism are generally not to be expected for crystalline Li2O2, where bands are typically ob-

served at 530, 422, and 337 cm-1.17, 59 These factors present a rationale for the observation of mo-

lecular LiO2 and Li2O2 species in our system. Bruce et al. proposed that high donor number sol-

vents (DMSO for example) promote discharge product formation via a solvent mediated route.15 

The IR active bands corresponding to molecular LiO2 or Li2O2 species observed here could indi-

cate metastable species formed during this solvent mediated discharge product formation. Once 

these LiO2 or Li2O2 molecular species are transformed into solid crystalline phases or surface 

films, their corresponding O-O or Li-O would no longer be IR active in the range assessable using 

the ZnSe window >700 cm-1 (IR active bands for crystalline Li2O2 are observable at 530, 422 and 

337 cm-1),17  although Raman bands will remain active. Our observation of these peaks strongly 

supports the notion that DMSO promotes the formation of discrete molecules of reduced oxygen 

species. Significantly, this result is direct proof of the presence of molecular Li2O2 at the electrode 

interfacial region. Raman spectroscopy cannot distinguish spectroscopically between bulk and mo-

lecular Li2O2, whereas IR is only sensitive to molecular Li2O2. An alternative, but less likely, sce-

nario is that a large number of small clusters or crystallites of insoluble Li2O2 form at the interface, 

with symmetry breaking at their surface giving apparent IR activity to only the peripheral Li2O2. 

However, the results presented later in the manuscript for MeCN electrolytes also support the no-

tion that the IR bands are indeed from molecular Li2O2 in solution. 

It is also worth noting that the IR bands, particularly the Li2O2 band, do not disappear at the posi-

tive potentials, meaning there is still Li2O2 (and even small amounts of LiO2) present close enough 

to the interface to be detected by SEIRAS during the timescale of the experiment. In addition to 
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the two major IR bands, two weak bands around 830 cm-1 and 853 cm-1 starts to appear and the 

853 cm-1 band appears more pronounced after the oxidation peak in the CV.  These bands could 

be related to protonated peroxides or other forms or higher-order LixOy molecular clusters or any 

undesirable reaction products or intermediates.60, 61 Although computational studies employed in 

this report established the IR activity of low order molecular LixOy species, theoretical studies 

exploring other possible LixOy clusters and the contribution of solvent interaction with them would 

be necessary in order to accurately assign these band positions. Further studies are underway to 

explore this. None of these bands were observed in deoxygenated DMSO/LiOTf systems (please 

find details in the supporting figure S4a) indicating that all the peaks discussed here relate to de-

sirable or undesirable ORR products or intermediates. In addition to the bands related to the re-

duced oxygen species discussed above, we also observe some bands (major bands positioned 

around 1440 cm-1, 1410 cm-1, 1310 cm-1, 1245 cm-1, 1230 cm-1 and 1060 cm-1) appearing upon 

potential scan which do not appear “reversible” upon return to OCP. The position of these bands 

match well with the bands of the electrolyte components (please see Table S8), considering that 

small shifts in band positions are expected for species near the electrode surface. The apparent 

irreversibility of these bands is related to potential induced changes in the very thin gold layer (20 

nm) formed on the ATR prism, which alters absorbance of the species present at the interface. 

While a thin gold nanoisland film used here helps with the detection of reduced oxygen species, 

this technical issue limits any quantitative analysis based on the absorbance obtained.  

Figures 3a and 3b show a CV and corresponding SEIRA spectra respectively for 0.1 M NaOTf/ 

DMSO electrolyte on Au (see supplementary figure 1b for the SEIRA spectra recorded over the 

entire region). A band at 1122 cm-1 appears as the potential is scanned toward negative values. 

This process is apparently electrochemically reversible in this case as the corresponding peak dis-

appears at positive potentials. The position of this band is close to what we observed for LiO2, 
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which would indicate that this band corresponds to NaO2 in this case, but the calculated harmonic 

frequency of NaO2 is apparently 41 cm-1 higher. The chemical or electrochemical environment of 

the superoxide species will have subtle influences on the degree of charge transfer to their O-O 

bond. Extensive computational studies taking higher order molecular clusters of these species, as 

well as solvent coordination also into consideration would be necessary to establish precise as-

signments of these bands; studies to address this possibility are currently underway in our group. 

A major difference between the NaO2 and LiO2 spectroscopic peaks (Figures 2 and 3) is that the 

IR band observed for LiO2 does not completely reversibly disappear even at the most positive 

potential, whereas the band corresponds to NaO2 completely disappears at positive potentials. In-

terestingly, a significant electrode potential dependent shift in the LiO2 band (-9 cm-1/V) was also 

observed, while the shift is relatively small for the NaO2 peak (-4 cm-1/V). Electrode potential 

dependent wavenumber shifts could have a variety of origins; they could be due to the interaction 

of the dipole with the intense electric field at the interface or the shifts could be due to electrode 

potential dependent changes in charge transfer between the electrode and an adsorbate. More sub-

tle effects could include electrode potential dependent changes in solvation or interactions with 

charged species in the interfacial region. The observed larger shift in the LiO2 system could indi-

cate a stronger interaction of LiO2 with the surface or the electric field of the electrochemical 

double layer when compared to NaO2 system. Even though the coordination of DMSO assists in 

the formation of discrete LiO2 species, LiO2 would still have to maintain a strong interaction with 

the surface or electric field of the electrochemical double layer to exhibit appreciable electrode 

potential dependent wavenumber shifts. Conversely smaller shifts in the case of NaO2 might point 

to a weaker interaction with the surface or interfacial field. A recent report addressing the mecha-

nistic oxygen reduction in Li+ containing DMSO indicates that the formation of Li2O2 on gold 

electrode proceeds mainly via electrochemical reduction (equation (5) above) rather than chemical 

disproportionation (equation (4) above) in the bulk.62 This indicates that DMSO solvated LiO2 is 

within close vicinity of the gold electrode. However, since the electrode potential dependence of 

vibrational bands can have several origins it is not possible to definitively attribute the larger wave-

number shift for the LiO2 band to a stronger interaction with the surface. 

In contrast to the observation for the Li-O2 system (Figure 2a), we do not see any bands in the 780 

cm-1 - 860 cm-1 region in Na-O2 system (Figure 3b). However, this does not necessarily rule out 
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the possibility of Na2O2 formation in this system, as our computation studies suggest that the 

Na2O2 IR band would appear below 700 cm-1 (see supporting information, table S3), which is 

difficult to observe with our present setup using ZnSe ATR elements and MCT detector. Spectra 

resulting from the control experiments in argon purged 0.1 M NaOTf/ DMSO electrolyte are pro-

vided in the supporting information. 

An analogous set of measurements were carried out in MeCN-based electrolytes as well. In these 

measurements in MeCN, it proved very difficult to detect the superoxide as well as peroxide bands, 

in comparison to DMSO. These corresponding spectra recorded for electrolyte solutions contain-

ing 0.1 M LiOTf or 0.1 M NaOTf are shown in the supporting information Figures S4 and S5. We 

believe the lack of corresponding O-O IR bands in the MeCN-based electrolytes is due to the ab-

sence or low concentration of solvent coordinated discrete MO2 molecular species in this electro-

lyte, however a very weak band at ca 800 cm-1 (ν Li-O) may suggest the presence of Li2O2 (Figure 

S4). The solvation of ORR products (as in the case of DMSO) is apparently crucial for the IR 

activity of these species. The difference in solvation of the discharge products between DMSO and 

MeCN is linked to their donor number (which is a quantitative measure of Lewis basicity), 29.8 

kcal/mol and 14.1 kcal/mol respectively. This observation is in line with the solvent dependent 

ORR mechanisms postulated in recent reports.22, 24-26, 55 In order to examine this further, we carried 

out measurements in MeCN containing low concentrations (5 mM) of LiOTf or NaOTf. In order 

to maintain a reasonable ionic conductivity of the electrolyte 95 mM TEAOTf was included as the 

supporting salt. Comparable O-O corresponding to both NaO2 and LiO2 were observed in both 

these cases (Figures 4 and 5). Notably, in addition to the peaks observed in DMSO based electro-

lytes containing either LiOTf or NaOTf only (at 1127 cm-1 and 1122 cm-1 respectively), an addi-

tional peak at a lower wavenumber (~1100 cm-1) was also observed in this case. This low frequency 
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band could correspond to more weakly coordinated superoxide, such as the species TEA+O2
-. This 

latter species is typically observed using Raman spectroscopy when there is tetraalkylammonium 

salts present in the electrolyte instead of an alkali metal cation. Another notable point is that there 

is no significant Stark shift of the LiO2 or the NaO2 peaks in this case. This contrasts with our 

observations for the DMSO/0.1 M LiOTf electrolyte, where a considerable Stark shift of the LiO2 

band is apparent. This might suggest that in the presence of TEA+, the LixOy species are formed 

further away from the surface, i.e. out of the influence of the electric field of the electrochemical 

double layer and not directly surface attached. In this case the tetraalkylammonium cation additive 

might be acting as a phase transfer catalyst as has been suggested previously63, 64. Because of the 

presence of a phase transfer agent, the reduced oxygen species would not directly interact with the 

surface and thus no Stark shift would be observed in this case. Corresponding control experiments 

in argon-purged electrolytes are presented in the supporting information (Supporting Figures S7 

and S8).  

The presence of water has a detrimental effect in non-aqueous M-O2 batteries. In DMSO/LiOTf, 

when slightly contaminated with water ( > 50 ppm), we observed additional peaks, notably around 

1154 cm-1, 1170 cm-1 and 1500 cm-1 (Supporting Figure S10). Our CCSD calculations suggests 

that the 1170 cm-1 band can be related to the H-O-O mode of HO2
- or LiO2H. We have tentatively 

assigned this band to LiO2H (please see Table 1) in the light of a recent empirical evidence demon-

strating the absence of a band around this wavenumber for HO2
- in aqueous medium,35 though we 

do not completely rule out this possibility as the effect of solvation would be significantly different 

in our non-aqueous system. The 1154 cm-1 band appears only at positive potential which is in 

agreement with the formation of dimethyl sulfone reported by other groups, indicating that the 
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presence of trace water promotes this side reaction43. The 1500 cm-1 peak indicates that inorganic 

carbonates are also formed under these compromised conditions.  

Our ATR-SEIRAS studies comparing Li-O2 and Na-O2 electrochemistry in DMSO and MeCN 

provide important information about the ORR mechanism through the direct spectroscopic detec-

tion of reduced oxygen species. IR activity of these species is strongly dependent on the electrolyte 

composition as well as the donicity of the solvent. A qualitative evaluation highlighting the strong 

dependence of the ORR reactions on the solvent as well as the metal is shown in Figure 6. Insights 

obtained from our SEIRAS studies help to explain the differences between CVs shown in Figure 

6. The first reduction peak observed in all the CVs corresponds to the formation of superoxide by 

the reduction of molecular oxygen. In DMSO based electrolytes, both Li-O2 and Na-O2 systems 

show moderate peak-to-peak separation in the CVs of the superoxide electrochemistry (black 

curves in Figure 6a and Figure 6b respectively). However, after sweeping more cathodic to the 

peroxide formation step (second reduction peak in the voltammograms), a significantly higher 

overpotential for oxidation of DMSO/Li+ compared to DMSO/Na+ is observed in the anodic sweep 

(Figures 6a and 6b, red curves). Our SEIRAS results (Figure 2a) suggest that the IR bands corre-

sponding to ORR products formed in DMSO/Li+ are not completely re-oxidised presumably due 

to kinetic factor, whereas ORR in DMSO/Na+ gives more facile oxidation of the ORR products. 

This difference in the reduction/reoxidation electrochemistry observed in in the IR spectra is also 

apparent in the CVs. Interestingly, in MeCN, both the Li+ and Na+ systems show large reduction 

overpotentials when the electrode potential is scanned further negative to form the peroxide species 

(Figures 6c and 6d, red curves). This observation for MeCN highlights that the dramatic difference 

in overpotentials between the Li+ and Na+ systems in DMSO is not due to the difference in coor-

dination alone, but it is strongly influenced by the ORR mechanism. The solvent plays a significant 
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role in determining which mechanism is followed; i.e. whether the solution mediated or surface 

confined pathway. In MeCN even the superoxide oxidation electrochemistry (Figures 6c and 6d, 

black curves) shows a large overpotential compared to the DMSO system, indicating that even the 

first reduction step to superoxide follows a surface confined route leading to the direct deposition. 

Therefore, the formation of a surface film of LiO2 or NaO2 via a surface mediated reaction in 

MeCN is highly likely.  

The CVs shown in Figure 7 summarize the significant changes in the cyclability and reversibility 

discussed in the previous section. In DMSO/NaOTf system, both superoxide and peroxide for-

mation steps are solution mediated processes, whereas in DMSO/LiOTf, peroxide is formed on 

the surface and hence due to sluggish kinetics the discharge species formed on the electrodes sur-

face are not effectively removed therefore CV scans diminish significantly over 20 cycles (Figure 

7a). By contrast, the DMSO/NaOTf redox chemistry is stable (Figure 7b), because of the solution 

mediation and formation of superoxide in solution. Consistent with our spectroscopic observation, 

even the first reduction step (superoxide formation) follows a surface confined route in MeCN; the 

CV in Figure 7c shows diminishing ORR/OER peaks upon cycling in MeCN/NaOTf electrolyte 

despite limiting the lower vertex potential to 2.1V. 
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Conclusions 

An in situ ATR-SEIRAS based approach for the detection for the ORR species in model systems 

relevant to M-O2 batteries have been demonstrated. Our IR studies combined with CCSD (T) cal-

culations show that the electrolyte composition has a strong influence on the IR activity of the 

discharge species. We have demonstrated that the O-O of alkali metal superoxides (LiO2 and NaO2) 

and Li-O of lithium metal peroxides are IR active in electrolytes composed of DMSO and a metal 

salt (LiOTf or NaOTf). Importantly, SEIRAS provides direct experimental proof that molecular 

“Li2O2” is present at the electrode interface. The effect of electrolyte components on the IR activity 

of the discharge species proposes SEIRAS as a powerful methodology for selective detection of 

solubilized molecular species of dioxygen reduction products formed in non-aqueous electrolytes. 

Our in situ SEIRAS approach will aid the differentiation between the surface and solvent mediated 

routes for the discharge product formation in non-aqueous M-O2 batteries and support ongoing 

efforts towards understanding mechanistic pathways at the cathode. 
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Figures 

 

FIGURE 1.  

1a: Sketch of the experimental setup for ATR-SEIRAS spectroelectrochemical cell 

1b: SEM of the gold film formed on a ZnSe surface 

1c, 1d: AFM images showing structure, morphology and thickness of the gold island film formed 

on the prism 
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FIGURE 2.  CV of ORR/OER at 10 mV/s scan rate in O2 purged 0.1 M LiOTf in DMSO on a Au 

electrode (a) and corresponding in situ SEIRA spectra (b). Spectrum at the bottom was collected 

at the OCP and those acquired at different stages during potential sweep are color-coded to match 

different regions in the CV. Grey shadings show the region where LiO2 or Li2O2 bands are ob-

served. As explained in the experimental section, a negative going band corresponds to an increas-

ing absorbance when compared to the OCP reference state (this applies for subsequent spectra 

too). 
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FIGURE 3.  CV of ORR/OER at 10 mV/s scan rate in O2 purged 0.1 M NaOTf in DMSO on a Au 

electrode (a) and corresponding in situ SEIRA spectra (b). Spectrum at the bottom was collected 

at the OCP and those acquired at different stages during potential sweep are color-coded to match 

different regions in the CV. Grey shading shows the region where NaO2 bands are observed. 
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FIGURE 4.  CV of ORR/OER at 10 mV/s scan rate in O2 purged 0.005 M LiOTf + 0.095 M 

TEAOTf in MeCN on a Au electrode (a) and corresponding in situ SEIRA spectra (b). Spectrum 

at the bottom was collected at the OCP and those acquired at different stages during potential 

sweep are color-coded to match different regions in the CV. Vertical dotted lines in the grey shading 

show the doublet character of the superoxide band. 
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FIGURE 5.  CV of ORR/OER at 10 mV/s in O2 purged 0.005 M NaOTf + 0.095 M TEAOTf in 

MeCN on Au electrode (a) and corresponding in situ SEIRA spectra (b). Spectrum at the bottom 

was collected at the OCP and those acquired at different stages during potential sweep are color-

coded to match different regions in the CV. Vertical dotted lines in the grey shading show the 

doublet character of the superoxide band. 
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FIGURE 6.  CVs obtained on a Au electrode at 100 mV/s scan rate for four different electrolyte 

compositions. Electrolytes are composed of either DMSO (a and b) or MeCN (c and d) as the 

solvent and either 0.1 M LiOTf (a and c) or 0.1 M NaOTf (b and d) as the salt. Black CVs show 

cycles when the lower vertex was limited to the first reduction, while the red CVs show cycles 

when the potential was swept through both reduction peaks.  
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FIGURE 7.  CVs obtained at 100 mV/s scan rate on a Au electrode at three different electrolyte 

compositions: (a) 0.1 M LiOTf in DMSO (b) 0.1 M NaOTf in DMSO (c) 0.1 M NaOTf in MeCN. 

Figures a and b compares the effect of Li+/Na+ on the ORR/OER cyclability in the same solvent. 

Figures b and c compares the effect of solvent (DMSO vs. MeCN) at the same salt composition. 
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