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Abstract. In the present work, we consider an optimal control for a three-factor stochastic
factor model. We assume that one of the factors is not observed and use classical filter-
ing technique to transform the partial observation control problem for stochastic differential
equation (SDE) to a full observation control problem for stochastic partial differential equa-
tion (SPDE). We then give a sufficient maximum principle for a system of controlled SDEs
and degenerate SPDE. We also derive an equivalent stochastic maximum principle. We apply
the obtained results to study a pricing and hedging problem of a commodity derivative at a
given location, when the convenience yield is not observable.

1. Introduction10

The use of stochastic factor model in stock price modeling has increased in the recent years11

in the financial mathematics’ literature (see for example [4, 7, 9] and references therein). This12

is due to the fact that the dynamics of the underlying commodity (stock) could depend on13

a stochastic external economic factor which may or may not be traded directly. Let us for14

example consider the hedging problem of a commodity derivative at a given location that faces15

an agent, when the convenience yield is not observed; see for example [4]. It may happen that16

there is no market in which the commodity can be traded directly. Hence the agent needs to17

trade similar asset and thus faces the basis risk which may depend on factors such as market18

demand, transportation cost, storage cost, etc. The presence of the risk associated to the19

location and which cannot be perfectly hedge makes the market incomplete. In this situation,20

it is not always possible to have an exact replication of the derivative. One way to overcome21

this difficulty is through utility indifference pricing. The method consists of finding the initial22

price p of a claim Π that makes the buyer of the contract utility indifferent, that is, buying23
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the contract with initial price p and with the right to receive the claim Π at maturity or not24

buying the contract and receive nothing. Due to the unobserved factor, the above optimisation25

problems can be seen as problems of optimal control for partially observed systems. There26

are three existing methods to solve such problem in the literature: the duality approach, the27

dynamic programming and the maximum principle; see e.g., [1, 2, 3, 9, 15, 19, 20, 23, 25, 26]28

and references therein. When using dynamic programming, the value function satisfies a29

non-linear partial differential equation known as the Hamilton-Jacobi-Bellman which does30

not always admits a classical solution. Moreover, it does not give necessary condition for31

optimality unless the value function is continuously differentiable.32

In this paper, we use the stochastic maximum principle to solve an optimal control prob-33

lem for the given stochastic factor model when the factor is not observable. The factor is34

replaced by its conditional distribution and we use filtering theory to transform the partial35

observation control problem for (ordinary) stochastic differential equation to a full observa-36

tion control problem for stochastic partial differential equation (for more details on filtering37

theory see for example [1, 2]). Since the state (or signal process) and the observation process38

are correlated, the diffusion operator in the derived unnormalized density depends on its first39

order derivatives. This leads to a degenerate controlled stochastic partial differential equa-40

tion and the sufficient stochastic maximum principle obtained in [22, 23] cannot directly be41

applied in this paper. Tang in [25] also studies a problem of partially observed systems using42

stochastic maximum principle. However, he uses Bayes’ formula and Girsanov theorem to43

obtain a related control problem while here we use an approach based on Zakai’s equation of44

the unnormalized density. In addition, the value function in [25] only depends on the signal45

process. Our setting also covers that of [22] since we have a more general controlled stochastic46

partial differential equation for the system in full information. Our setting is related to [26],47

where the author derives a “weak” necessary maximum principle for an optimal control prob-48

lem for stochastic partial differential equations. The author shows existence and uniqueness of49

generalised solution of the controlled process and the associated adjoint equation. In the same50

direction, let us also mention the interesting book [17], where the authors solve a “strong”51

necessary maximum principle for evolution equations in infinite dimension. The operator is52

assumed to be unbounded and in contrary to [26], the diffusion coefficient does not depend on53

the first order derivative of the state process. Our result can be seen as a “strong” sufficient54

stochastic maximum principle, since we assume existence of strong solution of the associated55

degenerate controlled stochastic partial differential equation. Conditions on existence and56

uniqueness of strong solutions for such SPDE can be found in [8]. In fact, assuming some reg-57

ularity on the coefficients of the controlled processes, the profit rate and the bequest functions58

of the performance functional, there exists a unique strong classical solution for the backward59

stochastic partial differential equation representing the associated adjoint processes; see e.g.,60

[5] and references therein. Note that the particular setup identified by [26] (or [17]) can be61

derived from our setup as well and in this case, the resulting Hamiltonians are the same, and62

so are their associated adjoint processes. The sufficient maximum principle obtained in this63

work is used to solve a problem of utility maximization for stochastic factor model.64

The sufficient maximum principle presented in this paper requires some concavity assump-65

tions which may not be satisfied in some applications. To overcome this situation, we also66

present an equivalent maximum principle for degenerate stochastic partial differential equa-67

tion which does not require concavity assumption.68

The paper is organised as follows: In Section 2, we motivate and formulate the control69

problem. In Section 3, we derive a sufficient and an equivalent stochastic maximum principle70
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for degenerate stochastic partial differential equation. In Section 4, we apply the obtained71

results to solve a hedging and pricing problem for a commodity derivative at a given location72

when the convenience yield is not observable.73

2. Model and problem formulation74

2.1. A motivative example. In this section, we motivate the problem by briefly summariz-75

ing the classical Gibson-Schwartz two-factor model for commodity and convenience yield (see76

for example [7] and [4] for unobservable yield). Let us fix a time interval horizon [0, T ]. Let77 (
Ω,F , {Ft}t∈[0,T ] ,P

)
be a complete filtered probability space on which are given two corre-78

lated standard Brownian motionsW 1(t) = {W 1(t), t ∈ [0, T ]} andW 2(t) = {W 2(t), t ∈ [0, T ]}79

with correlation coefficient ρ ∈ [−1, 1].80

We consider the replicating and pricing problem of an agent in a certain location who81

wishes to buy a contingent claim written on a commodity and that pays off Π(S∗) at time T .82

Here S∗ denotes the commodity spot price. Unfortunately there is no market for derivatives83

written on S∗ and there can only be bought over-the-counter. One way is then to price and84

hedge the claim on a similar traded asset. However, using the corresponding traded asset85

exposes the agent to the basis risk, which can be seen as a function of several variables such86

as transportation cost, market demand, etc. One can think of the basis risk as a non traded87

location factor. Therefore, the claim depends on the commodity (traded asset) price S̃ and88

the non-traded location factor B, that is Π = Π
(
S̃(T ), B

)
.89

We assume that the dynamics of the convenience unobserved yield Z(t) = {Z(t), t ∈ [0, T ]}90

and the observed spot price S̃(t) = {S̃(t), t ∈ [0, T ]} are respectively given by the following91

stochastic differential equations (SDEs for short)92

dS̃(t) = (r(t)− Z(t)) S̃(t)dt+ σS̃(t)dW 1(t) (2.1)

and93

dZ(t) = k (θ − Z(t)) dt+ γdW 2(t). (2.2)

From now on, we will often use Y (t) = log S̃(t), then (2.1) and (2.2) become respectively94

dY (t) =

(
r(t)− 1

2
σ2 − Z(t)

)
dt+ σdW 1(t), (2.3)

dZ(t) =k (θ − Z(t)) dt+ ργdW 1(t) +
√

1− ρ2γdW⊥(t), (2.4)

where W⊥(t) = {W⊥(t), t ∈ [0, T ]} is a standard Brownian motion on
(

Ω,F , {Ft}t∈[0,T ] ,P
)

95

independent of W 1(t). Let r(t) = {r(t), t ∈ [0, T ]} denote the short rate and assume that it96

is deterministic. Then the price of the riskless asset S0(t) = {S0(t), t ∈ [0, T ]} satisfies the97

following ordinary differential equation98

dS0(t) = S0(t)r(t)dt. (2.5)

Denote by u(t) = {u(t), t ∈ [0, T ]} the amount of wealth invested in the risky asset. We99

assume that u(t) takes values is a given closed set U ⊂ R. It follows from the self-financing100

condition that the dynamics of the wealth X(t) = {X(t), t ∈ [0, T ]} evolves according to the101

following SDE102

dX(t) = u(t)
dS̃(t)

S̃(t)
+ (1− u(t))

dS0(t)

S0(t)
,
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that is103

dX(t) = (r(t)X(t)− Z(t)u(t)) dt+ σu(t)dW 1(t), X(0) = x. (2.6)

Using (2.3), the above equation becomes104

dX(t) =
(
r(t)X(t)− (r − 1

2
σ2)u(t)

)
dt+ σu(t)dY (t). (2.7)

Recall that in this market, we are interested on a replicating and pricing problem of an105

economic agent who wishes to buy a contingent claim that pays off Π(T ) at time T > 0 in a106

given geographical location. The dependence of the claim Π on the location factor B makes107

the market incomplete and therefore perfect hedging is not possible. In this situation, the108

optimal portfolio can be chosen as the maximiser of the expected utility of the terminal wealth109

of the agent and the initial price of the claim can be derived via utility indifference pricing.110

The utility indifference price is given as follows: fix a utility function U : R→ (−∞,∞). The111

agent with initial wealth x and no endowment of the claim will simply face the problem of112

maximizing her expected utility of the terminal wealth Xx,u(T ); that is113

V0(x) = sup
u∈Uad

E
[
U
(
Xx,u(T )

)]
= E

[
U
(
Xx,û(T )

)]
, (2.8)

where û is an optimal control (if it exists) and Uad is the set of admissible controls to be114

defined later. The agent with initial wealth x and who is willing to pay pb today for a unit of115

claim Π at time T faces the following expected utility maximization problem116

VΠ(x− pb) = sup
u∈Uad

E
[
U
(
Xx−p,u(T ) + Π

(
S̃(T ), B

))]
=E
[
U
(
Xx−p,û(T ) + Π

(
S̃(T ), B

))]
. (2.9)

The utility indifference pricing principle says that the fair price of the claim with payoff117

Π
(
S̃(T ), B

)
at time T is the solution to the equation118

VΠ(x− pb) = V0(x). (2.10)

We assume in this paper that the claim is a concave function. Example of such claims119

are forward contracts. Let F S̃t = σ
(
S̃(t1), 0 ≤ t1 ≤ t

)
be the σ-algebra generated by the120

commodity price, the set of admissible controls is given by121

Uad ={u(t) : u is FS̃-progressively measurable ;E[

∫ T

0
u2(t)dt] <∞,

Xx,u(t) ≥ 0, P-a.s. for all t ∈ [0, T ]}. (2.11)

Assumption A1. The basis B = B
(
Z(T )

)
+ B̄, where B is a smooth function and B̄ is a122

random variable independent of FT .123

Since B̄ is independent of FT , we can rewrite (2.9) as follows:124

VΠ(x) = sup
u∈Uad

E
[ ∫

R
U
(
Xu,x(T ) + Π

(
S̃(T ), B

(
Z(T )

)
+ b̄
))

dPB̄
]

= E
[ ∫

R
U
(
X û,x(T ) + Π

(
S̃(T ), B

(
Z(T )

)
+ b̄
))

dPB̄
]
, (2.12)
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where125 
d ln S̃(t) =

(
r(t)− 1

2
σ2 − Z(t)

)
dt+ σdW 1(t),

dX(t) = (r(t)X(t)− Z(t)u(t)) dt+ σu(t)dW 1(t),

dZ(t) = k (θ − Z(t)) dt+ ργdW 1(t) +
√

1− ρ2γdW⊥(t).

(2.13)

Let us mention that the agent only has knowledge of the information generated by the observed126

commodity price; that is the information given by the filtration FS̃ = {F S̃t }t≥0. Since the127

convenience yield is not observed, the above problem can be seen as a partial observation128

control problem from a modeling point of view.129

Let us also observe the following: the drift coefficient in the dynamic of the observation130

process Y (t) = ln S̃(t) is affine on the unobserved factor Z(t) but is independent of Y (t)131

whereas the drift of the unobserved factor Z(t) (see (2.13)) is only affine in Z(t). The drift132

of the wealth is affine on the wealth process itself. Their diffusions are independent on the133

processes. In the sequel, we consider a more general model for the commodity and unobserved134

convenience yield prices that include the above one as a particular case. Filtering theory will135

then enable us to reduce the partial observation control problem (2.12)-(2.13) of systems of136

SDEs into a full observation control problem of a system of SDEs and SPDE.137

2.2. From partial to full information. As already stated earlier, in this section, we use138

the filtering theory to transform the partial information control problem (2.12) to a full139

information control problem. For this purpose, we briefly summarize some known results (see140

for example [1, 2, 4]); in particular, we follow the exposition in [4].141

In the following, we consider a general model of both the observed and unobserved fac-142

tor that includes the above example. Let W⊥ and W be two independent m-dimensional143

Brownian motions. Let us consider the subsequent general correlated model for observed and144

non-observed process Y and Z, respectively. We assume that Y (t) = {Y (t), t ∈ [0, T ]} and145

Z(t) = {Z(t), t ∈ [0, T ]} are n and d-dimensional processes whose dynamics are respectively146

given by:147

dY (t) = h (t, Z(t), Y (t)) dt+ σ (t, Y (t)) dW (t); Y (0) = 0, (2.14)

and148

dZ(t) = b (t, Z(t), Y (t)) dt+ α (t, Z(t), Y (t)) dW (t) + γ (t, Z(t), Y (t)) dW⊥(t); Z(0) = ε,
(2.15)

We further make the following assumptions (compared with [4, 8]):149

Assumption A2.150

• h : [0, T ]× Rd × Rn → Rn is globally continuous and of linear growth (in z and y).151

• σ : [0, T ]×Rn → L(Rn,Rm) is uniformly continuous and has bounded C3(Rm) -norm152

and satisfies the following: σσ′ ≥ λI for all y and t, for some constant λ > 0 (uniform153

ellipticity condition). Here ′ denote the transposition.154

• α : [0, T ]×Rd×Rn → L(Rd,Rm) and γ : [0, T ]×Rd×Rn → L(Rd,Rm) are uniformly155

continuous, and α is uniformly elliptic.156

• b : [0, T ]× Rd × Rn → Rd are uniformly continuous in z and y and C2-bounded.157

Remark 2.1. As pointed in [4], although our model does not have bounded drift,, one can158

use localization argument to take into consideration linear-growth coefficient.159

In the sequel, let FYt = σ{Y (s), 0 ≤ s ≤ t} be the σ-algebra generated by the observation160

process Y (t). The above σ-algebra is equivalent to the one generated by S̃. Recall that161
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an admissible control must be adapted to FYt . Hence, in order to obtain such control, the162

unknown parameter Z(t) is replaced by its conditional expectation with respect to FYt in the163

optimal control problem (2.12).164

Next, assume that D(t) = D (t, Y (t)) := σσ′ (t, Y (t)) is symmetric and invertible and define165

the process166

dϕ(t) = −ϕ(t)h> (t, Z(t), Y (t))D−1/2 (t, Y (t)) dW (t), ϕ(0) = 1. (2.16)

Here “>” denote the transpose of a matrix. Under Assumption A2, since h satisfies the167

linear growth condition, one can show (see for example [1, Lemma 4.1.1]) that ϕ(t) is a168

supermartingale with E[ϕ(t)] = 1 for all t ∈ [0, T ], that is ϕ(t) is a martingale. Define the169

new probability measure P̃ on Ft, 0 ≤ t ≤ T by170

dP̃ := ϕ(t)dP on Ft, 0 ≤ t ≤ T. (2.17)

Using Girsanov theorem, there exists a Brownian motion W̃ under P̃ such that171

dY (t) = σ (t, Y (t)) dW̃ (t) (2.18)

and172

dZ(t) =
(
b (t, Z(t), Y (t))− α> (t, Z(t), Y (t))h> (t, Z(t), Y (t))D−1/2(t)

)
dt

+ α> (t, Z(t), Y (t))D−1/2(t)dY (t) + γ (t, Z(t), Y (t)) dW⊥(t). (2.19)

Define the process173

dỸ (t) := D−1/2(t)dY (t). (2.20)

Then dỸ (t) is a Brownian motion under P̃. One can also show (see [1]) that dỸ and W⊥ are174

two independent Brownian motions. Moreover, since D(t) is invertible, FYt = F Ỹt . Define175

K(t) =
1

ϕ(t)
:= exp

{∫ t

0
h> (s, Z(s), Y (s))D−1/2(s)dW (s)

+
1

2

∫ t

0
h> (s, Z(s), Y (s))D−1(s)h (s, Z(s), Y (s)) ds

}
= exp

{∫ t

0
h> (s, Z(s), Y (s))D−1(s)dY (s)

−1

2

∫ t

0
h> (s, Z(s), Y (s))D−1(s)h (s, Z(s), Y (s)) ds

}
. (2.21)

Then K(t) is a martingale. Assume that there exists a process Φ(t, z) = Φ(t, z, ω), (t, z, ω) ∈176

[0, T ]× Rd × Ω such that177

Ẽ
[
f(Z(t))K(t)

∣∣∣FYt ] =

∫
Rd

f(z)Φ(t, z)dz, f ∈ C∞0 (Rd), (2.22)

where C∞0
(
Rd
)

denotes the set of infinitely differentiable functions on Rd with compact178

support and Ẽ denotes the expectation with respect to P̃. The process Φ(t, z) is called the179

unnormalized conditional density of Z(t) given FYt .180

Let LZ denotes the second-order elliptic operator associated to Z(t), then LZ is defined by181

182

LZ :=
∑
i

gi (s, z, y)
∂

∂zi
+

1

2

∑
i,j

(
αα> + γγ>

)
i,j

(s, y, z)
∂2

∂zi∂zj
. (2.23)
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Denote by L∗ its formal adjoint. By applying Itô’s formula to K(t)f (Z(t)), taking expectation183

and using integration by parts, one finds that the process Φ(t, z) satisfies the following Zakai184

equation185 {
dΦ(t, z) = L∗Φ(t, z)dt+M∗Φ(t, z)dỸ (t), t ∈ [0, T ],
Φ(0, z) = ξ(z),

(2.24)

where ξ(z) is the density of Z(0) and186

M∗Φ(t, z) = h(t, z, y)−
∑ ∂

∂zi
(αi(t, z, y) · Φ(t, z)) .

Remark 2.2. Assuming that the initial condition ξ(z) is adapted, square integrable and187

smooth enough, one can show under Assumption A2 that the SPDE (2.24) has a unique188

FY -adapted strong solution in an appropriate Sobolev space; see for example [8, Proposition189

2.2].190

Assume in addition that the wealth process X(t) = {X(t), t ∈ [0, T ]} satisfies the following191

SDE192

dX(t) = h̃ (t, Z(t), X(t), u(t)) dt+ σ̃ (t,X(t), u(t)) dW (t); X(0) = x, (2.25)

where the coefficients h̃ and σ̃ are such that the above SDE has a unique strong solution. For193

example, such unique solution exists if the coefficients satisfy for example global Lipstichz194

and linear growth conditions.195

Applying once more Girsanov theorem, we obtain196

dX(t) =
(
h̃ (t, Z(t), X(t), u(t))− σ̃> (t,X(t), u(t))h> (t, Z(t), Y (t))D−1/2(t)

)
dt

+ σ̃> (t,X(t), u(t))D−1/2(t)dY (t)

=
(
h̃ (t, Z(t), X(t), u(t))− σ̃> (t,X(t), u(t))h> (t, Z(t), Y (t))D−1/2(t)

)
dt

+ σ̃> (t,X(t), u(t)) dỸ (t). (2.26)

Combining (2.12) and (2.22), we can tranform the partial observation control problem for197

SDE to a full observation control problem for SPDE198

sup
u∈Uad

E
[∫

R
U
(
Xx,u(T ) + Π

(
exp{Y (T )}, B

(
Z(T ) + b̄

)))
dPB̄

]
= sup
u∈Uad

Ẽ
[∫

R

∫
Rd

U
(
Xx,u(T ) + Π

(
exp{Y (T )}, B

(
z + b̄

)))
dPB̄Φ(T, z)dz

]
, (2.27)

where X(t) and Φ(t, z) are given by (2.26) and (2.24), respectively. Here S̃(t) = exp{Y (t)}
is given by

dS̃(t) = S̃(t)
(1

2
D(t)dt+D1/2(t)dỸ (t)

)
.

Note that the control only affects the wealth process Xx,u and not the commodity price199

process S̃(T ) nor the density Φ(t, z). We summarize the full observation counterpart of the200

model described in Section 2.1 in the following remark.201
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Remark 2.3. In our model Y = log S̃ and dỸ (t) = D−1/2(t)dY (t) = 1
σdS(t). It follows that202

203 
dS̃(t) =

1

2
σ2S̃(t)dt+ S̃(t)σdỸ (t),

dXx,u(t) =
(
r(t)X(t)− (r(t)− 1

2
σ2)u(t)

)
dt+ u(t)σdỸ (t),

dΦ(t, z) =
(1

2
γ2∂

2Φ(t, z)

∂z2
+

∂

∂z
(k(θ − z)Φ(t, z))

)
dt+

(
r(t)− 1

2
σ2 − z − ργ ∂Φ(t, z)

∂z

)
dỸ (t),

(2.28)

where Ỹ (t) is a standard Brownian motion under P̃.204

Define LΦ(t, z) :=
γ2

2

∂2

∂z2
Φ(t, z) and b (t, z,Φ(t, z),Φ′(t, z)) := −kΦ(t, z)+k (θ − z) Φ′(t, z)205

so that206

L∗Φ(t, z) = LΦ(t, z) + b
(
t, z,Φ(t, z),

∂Φ(t, z)

∂z

)
(2.29)

and define M∗Φ(t, z) = σ
(
t, z,Φ(t, z),

∂Φ(t, z)

∂z

)
:= r2(t) − 1

2
σ2 − z − ργ ∂Φ(t, z)

∂z
. Then we207

obtain208

dΦ(t, z) =
{
LΦ(t, z) + b

(
t, z,Φ(t, z),

∂Φ(t, z)

∂z

)}
dt

+ σ
(
t, z,Φ(t, z),

∂Φ(t, z)

∂z

)
dỸ (t), t ∈ [0, T ]. (2.30)

Let us observe the following: in the above SDEs for S and X, the coefficients are affine in209

their parameters. The drift coefficient of the SPDE depends on a linear differential operator,210

whereas its diffusion coefficient is affine in the first order derivative of the SPDE. In the211

next section, we use a model that has the above one as a particular case and present general212

sufficient and equivalent stochastic maximum principles to the above optimal control problem213

(2.27).214

3. Stochastic Maximum Principle for factor models215

In this section, we consider a more general framework. We assume a more general form216

of the processes X(t), Y (t) and Φ(t, z). We first derive sufficient maximum principle for the217

optimal control (2.12)-(2.30). Second, we derive an equivalent maximum principle.218

Let T > 0, be a fixed time horizon. Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be a filtered probability space219

on which is given a one dimensional standard Brownian motion W (t). In the previous sec-220

tion setting, this probability space corresponds to
(

Ω,F , {F Ỹt }t∈[0,T ], P̃
)

with the Brownian221

motion Ỹ . For clarity of the exposition, we work in one dimension, extension to the multidi-222

mensional case follows similarly. The state process is defined by the triplet (Y (t), X(t),Φ(t, z))223

whose dynamics are respectively given by:224

dY (t) = b1 (t, Y (t), u(t)) dt+ σ1 (t, Y (t), u(t)) dW (t), Y (0) = y0, (3.1)

225

dX(t) = b2 (t,X(t), u(t)) dt+ σ2 (t,X(t), u(t)) dW (t), X(0) = x0, (3.2)
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226 
dΦ(t, z) =

(
LΦ(t, z) + b3

(
t, z,Φ(t, z), ∂Φ(t,z)

∂z , u(t)
))

dt

+ σ3

(
t, z,Φ(t, x), ∂Φ(t,z)

∂z , u(t, z)
)

dW (t)

Φ(0, z) = ξ(z); z ∈ R
lim‖z‖→∞Φ(t, z) = 0, t ∈ [0, T ],

(3.3)

where L is a linear differential operator acting on x; b1, b2, b3, σ1, σ2, σ3 are given functions227

satisfying conditions of existence and uniqueness of strong solution of the system (3.1)-(3.3);228

see for example [4, Lemma 4.1] (see also [8, 12, 13, 14, 26]) for (3.3) and [10, 21] for (3.1)-(3.2)).229

Let f and g be given C1 functions with respect to their arguments. We define230

J(u) =E
[∫

R

[∫ T

0

∫
R
f
(
t, z,X(t), Y (t),Φ(t, z), b̄, u(t)

)
dzdt

+

∫
R
g
(
z,X(T ), Y (T ),Φ(T, z), b̄

)
dz

]
dPB̄

]
. (3.4)

We denote by Uad the set of admissible controls contained in the set of Ft-predictable control231

such that the system (3.1)-(3.3) has a unique strong solution and232

E
[ ∫

R

[ ∫ T

0

∫
R

∣∣∣f (t, z,X(t), Y (t),Φ(t, z), b̄, u(t)
) ∣∣∣dzdt

+

∫
R

∣∣∣g (z,X(T ), Y (T ),Φ(T, z), b̄
) ∣∣∣dz]dPB̄] <∞.

We are interested in the following control problem233

Problem 3.1. Find the maximizer û of J , that is find û ∈ Uad such that234

J(û) = sup
u∈Uad

J(u). (3.5)

3.1. Sufficient stochastic maximum principle. We first define the Hamiltonian235

H : [0, T ]× R× R× R× R× R× U × R× R× R× R× R× R→ R by236

H
(
t, z, x, y, φ, φ′, u, p1, q1, p2, q2, p3, q3

)
=

∫
R
f
(
t, z, x, φ, b̄, u

)
dPB̄ + b1 (t, y, u) p1 + σ1 (t, y, u) q1

+ b2 (t, x, u) p2 + σ2 (t, x, u) q2

+ b3
(
t, z, φ, φ′

)
p3 + σ3

(
t, z, φ, φ′

)
q3, (3.6)

where φ′ =
∂φ

∂z
. Suppose that H is differentiable in the variable x, y, φ and φ′. For u ∈237

Uad, we consider the adjoint processes satisfying the system of backward stochastic (partial)238
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differential equations in the unknowns p1(t, z), q1(t, z), p2(t, z), q2(t, z), p3(t, z), q3(t, z) ∈ R239 

dp1(t, z) = −∂H(t, z)

∂y
dt+ q1(t, z)dW (t)

p1(T, z) =

∫
R

∂g(z, b̄)

∂y
dPB̄

dp2(t, z) = −∂H(t, z)

∂x
dt+ q2(t, z)dW (t)

p2(T, z) =

∫
R

∂g(z, b̄)

∂x
dPB̄

dp3(t, z) = −
(
L∗p3(t, z) +

∂H (t, z)

∂φ
− ∂

∂z

(∂H (t, z)

∂φ′

)
dt+ q3(t, z)dW (t)

p3(T, z) =

∫
R

∂g(z, b̄)

∂φ
dPB̄

lim
‖z‖→∞

p3(T, z) = 0,

(3.7)

where L∗ is the adjoint of L and we have used the short hand notation
g(z) = g(z,X(T ), Y (T ),Φ(T, z), b̄) and

H (t, z) = H
(
t, z,X(t), Y (t), u(t),Φ(t, z),Φ′(t, z), p1(t, z), q1(t, z), p2(t, z), q2(t, z), p3(t, z), q3(t, z)

)
.

Remark 3.2. If one assumes for example that the coefficients of the controlled processes,240

the profit rate and the bequest functions of the performance functional are smooth enough,241

then there exists a unique strong classical solution for the system of BSDEs and BSPDE242

representing the associated adjoint processes; see for example [5, 11] and references therein.243

Next we give the sufficient stochastic maximum principle.244

Theorem 3.3 (Sufficient stochastic maximum principle). Let û ∈ Uad with corresponding245

solutions Ŷ (t), X̂(t), Φ̂(t, z), (p̂1(t, z), q̂1(t, z)); (p̂2(t, z), q̂2(t, z)); (p̂3(t, x), q̂3(t, x)) of (3.1)-246

(3.7). Suppose that the followings hold:247

(i) The function (x, y, φ) 7→ g(z, x, y, φ) is a concave function of x, y, φ for all z ∈ R.248

(ii) The function249

h̃(x, y, φ, φ′) = sup
u∈Uad

H
(
t, z, x, y, u, φ, φ′, p̂1(t, z), q̂1(t, z), p̂2(t, z), q̂2(t, z), p̂3(t, z), q̂3(t, z)

)
.

(3.8)

exists and is a concave function of x, y, φ, φ′ for all (t, z) ∈ [0, T ]× R a.s.250

(iii) (The maximum condition)251

H
(
t, z, X̂(t), Ŷ (t), û(t), Φ̂(t, z), Φ̂′(t, z), p̂1(t, z), q̂1(t, z), p̂2(t, z), q̂2(t, z), p̂3(t, z), q̂3(t, z)

)
= sup

v∈Uad
H
(
t, z, X̂(t), Ŷ (t), v, Φ̂(t, z), Φ̂′(t, z), p̂1(t, z), q̂1(t, z), p̂2(t, z), q̂2(t, z), p̂3(t, z), q̂3(t, z)

)
.

(3.9)

(iv) Assume in addition that the following integral conditions hold252

E
[∫

R

∫ T

0

{(
Φ(t, z)− Φ̂(t, z)

)2
q̂2

3(t, z) + p̂2
3(t, z)σ2

3(t, z,Φ(t, z),Φ′(t, z), u(t))

}
dtdz

]
<∞
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and253

E
[∫

R

∫ T

0

{(
X(t)− X̂(t)

)2
q̂2

1(t, z)2 + p̂2
1(t, z)σ2

1(t,X(t), u(t))

+
(
Y (t)− Ŷ (t)

)2
q̂2

2(t, z) + p̂2
2(t, z)σ2

2(t, Y (t), u(t))

}
dtdz

]
<∞

for all u ∈ Uad.254

Then û(t) is an optimal control for the control problem (3.1)-(3.5).255

Proof. We will prove that J(û) ≥ J(u) for all u ∈ Uad. Choose u ∈ Uad and let X(t) =256

Xu(t), Y (t) = Y u(t) and Φ(t, z) = Φu(t, Z) be the corresponding solutions to (3.1)-(3.3). In257

the sequel, we use the short hand notation:258

b1(t) =b1 (t, Y (t), u(t)) , b̂1(t) = b1(t, Ŷ (t), û(t)),

σ1(t) =σ1 (t, Y (t), u(t)) , σ̂1(t) = σ1(t, Ŷ (t), û(t)),

b2(t) =b2 (t, Y (t), u(t)) , b̂2(t) = b2(t, Ŷ (t), û(t)),

σ2(t) =σ2 (t, Y (t), u(t)) , σ̂2(t) = σ2(t, Ŷ (t), û(t)),

b3(t, z) =b3(t, z,Φ(t, z),Φ′(t, z), u(t)), b̂3(t, z) = b̂3(t, z, Φ̂(t, z), Φ̂′(t, z), û(t)), etc

Since
∫
R f(t, z, b̄)dPB̄ does not depend on p̂1(t, x), q̂1(t, x), p̂2(t, z), q̂2(t, z)), p̂3(t, z) and q̂3(t, z),259

we can write260 ∫
R
f̂(t, z, b̄)dPB̄ =Ĥ(t, z)− b̂1(t)p̂1(t, z)− σ̂1(t)q̂1(t, z)− b̂2(t)p̂2(t, z)− σ̂2(t)q̂2(t, z)

− b̂3(t, z)p̂3(t, z)− σ̂3(t, z)q̂3(t, z)

and261 ∫
R
f(t, z, b̄)dPB̄ =H(t, z)− b1(t)p̂1(t, z)− σ1(t)q̂1(t, z)− b2(t)p̂2(t, z)− σ2(t)q̂2(t, z)

− b3(t, z)p̂3(t, z)− σ3(t, z)q̂3(t, z).

Using the above and (3.6), we have262

J(û)− J(u) =E
[ ∫

R

∫ T

0

∫
R

(f̂(t, z, b̄)− f(t, z, b̄))dzdtdPB̄
]

+ E
[ ∫

R

∫
R

(ĝ(z, b̄)− g(z, b̄))dzdPB̄
]

=I1 + I2, (3.10)

with263

I1 =E
[ ∫ T

0

∫
R

{
Ĥ(t, z)−H(t, z)−

(
b̂1(t)− b1(t)

)
p̂1(t)−

(
σ̂1(t)− σ1(t)

)
q̂1(t)

−
(
b̂2(t)− b2(t)

)
p̂2(t)−

(
σ̂2(t)− σ2(t)

)
q̂2(t)

−
(
b̂3(t, z)− b3(t, z)

)
p̂3(t)−

(
σ̂3(t, z)− σ3(t, z)

)
q̂3(t)

}
dzdt

]
,

I2 =E
[ ∫

R

∫
R

(ĝ(z, b̄)− g(z, b̄))dzdPB̄
]
.
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Now, using the concavity of (x, y, φ) 7→ g(z, x, y, φ) and the Itô’s formula, we get264

I2 ≥E
[ ∫

R

∫
R

{∂ĝ(z, b̄)

∂x

(
X̂(T )−X(T )

)
+
∂ĝ(z, b̄)

∂y

(
Ŷ (T )− Y (T )

)
+
∂ĝ(z, b̄)

∂φ

(
Φ̂(T, z)− Φ(T, z)

)}
dzdPB̄

]
=E

[∫
R

{
p̂1(T, z)

(
X̂(T )−X(T )

)
+ p̂2(T, z)

(
Ŷ (T )− Y (T )

)
+p̂3(T, z)

(
Φ̂(T, z)− Φ(T, z)

)}
dz
]

=E
[∫

R

{
p̂1(0, z)

(
X̂(0)−X(0)

)
+

∫ T

0

(
X̂(t)−X(t)

)
dp1(t, z)

+

∫ T

0
p̂1(t, z)d

(
X̂(t)−X(t)

)
+

∫ T

0
q̂1(t, z) (σ̂1(t)− σ1(t)) dt

+ p̂2(0, z)
(
Ŷ (0)− Y (0)

)
+

∫ T

0

(
Ŷ (t)− Y (t)

)
dp2(t, z) +

∫ T

0
p̂2(t, z)d

(
Ŷ (t)− Y (t)

)
+

∫ T

0
q̂2(t, z) (σ̂2(t)− σ2(t)) dt+ p̂3(0, x)

(
Φ̂(0, x)− Φ(0, x)

)
+

∫ T

0

(
Φ̂(t, z)− Φ(t, z)

)
dp3(t, z) +

∫ T

0
p̂3(t, z)d

(
Φ̂(t, z)− Φ(t, z)

)
+

∫ T

0
q̂3(t, x) (σ̂3(t, z)− σ3(t, z)) dt

}
dz

]
≥E
[ ∫

R

{∫ T

0
−
(
X̂(T )−X(T )

) ∂Ĥ(t, z)

∂x
dt+

∫ T

0
p̂1(t, z)

(
b̂1(t)− b1(t)

)
dt

+

∫ T

0
q̂2(t, z) (σ̂2(t)− σ2(t)) dt−

∫ T

0

(
Ŷ (T )− Y (T )

) ∂Ĥ(t, z)

∂y
dt

+

∫ T

0
p̂2(t, z)

(
b̂2(t)− b2(t)

)
dt+

∫ T

0
q̂2(t, z)

(
σ̂2(t)− σ2(t)

)
dt

−
∫ T

0

(
Φ̂(t, z)− Φ(t, z)

)(
L∗p̂3(t, z) +

∂Ĥ(t, z)

∂φ
− ∂

∂z

(∂Ĥ(t, z)

∂φ′

))
dt

+

∫ T

0
p̂3(t, z)

(
L
(

Φ̂(t, z)− Φ(t, z)
))

+
(
b̂3(t, z)− b3(t, z)

)
dt

+

∫ T

0
q̂3(t, z) (σ̂3(t, z)− σ3(t, z)) dt

}
dz
]
. (3.11)

Since lim‖z‖→∞

(
Φ̂(t, z)− Φ(t, z)

)
= lim‖z‖→0 p̂3(T, x) = 0, we have265

∫
R

(
Φ̂(t, z)− Φ(t, z)

)
L∗p̂3(t, z)dz =

∫
R
p̂3(t, z)L

(
Φ̂(t, z)− Φ(t, z)

)
dz. (3.12)
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Combining (3.10), (3.11) and (3.12) we get266

J(û)− J(u) ≥E
[ ∫

R

∫ T

0

{(
Ĥ(t, z)−H(t, z)

)
− ∂Ĥ(t, z)

∂x

(
X̂(t)−X(t)

)
− ∂Ĥ(t, z)

∂y

(
Ŷ (t)− Y (t)

)
−
(∂Ĥ(t, z)

∂φ
− ∂

∂z

(∂Ĥ(t, z)

∂φ′

))(
Φ̂(t, z)− Φ(t, z)

)}
dtdz

]
=E
[ ∫

R

∫ T

0

{(
Ĥ(t, z)−H(t, z)

)
− ∂Ĥ(t, z)

∂x

(
X̂(t)−X(t)

)
− ∂Ĥ(t, z)

∂y

(
Ŷ (t)− Y (t)

)
− ∂Ĥ(t, z)

∂φ

(
Φ̂(t, z)− Φ(t, z)

)
− ∂Ĥ(t, z)

∂φ′

(∂Φ̂(t, z)

∂z
− ∂Φ(t, z)

∂z

)}
dtdz

]
. (3.13)

One can show, using the same arguments in [6] that, the right hand side of (3.13) is non-267

negative. For sake of completeness we shall give the details here. Fix t ∈ [0, T ]. Since268

h̃(x, y, φ, φ′) is concave in x, y, φ, φ′, it follows by the standard hyperplane argument that (see269

e.g [24, Chapter 5, Section 23]) there exists a subgradient d = (d1, d2, d3, d4) ∈ R×R×R×R270

for h̃(x, y, φ, φ′) at x = X̂(t), y = Ŷ (t), φ = Φ̂(t, x), φ′ = Φ̂′(t, x) such that if we define i by271

i(x, y, φ, φ′) :=h̃(x, y, φ, φ′)− Ĥ(t, z)− d1(x− X̂(t))− d2(y − Ŷ (t))

d3(φ− Φ̂(t, x))− d4(φ′ − Φ̂′(t, x)), (3.14)

then i
(
X̂(t), Ŷ (t), Φ̂(t, x), Φ̂′(t, x)

)
= 0 for all X,Y,Φ,Φ′.272

It follows that,273

d1 =
∂h̃

∂x
(X̂(t), Ŷ (t)Φ̂(t, x), Φ̂′(t, x)),

d2 =
∂h̃

∂y
(X̂(t), Ŷ (t)Φ̂(t, x), Φ̂′(t, x)),

d3 =
∂h̃

∂Φ
(X̂(t), Ŷ (t)Φ̂(t, x), Φ̂′(t, x)),

d4 =
∂h̃

∂Φ′
(X̂(t), Ŷ (t)Φ̂(t, x), Φ̂′(t, x)).

Substituting this into (3.13), using conditions (ii) and (iii), we conclude that J(û) ≥274

J(u) for all u ∈ Uad. This completes the proof. �275

In the next section, we present an equivalent maximum principle which does not require276

the concavity assumption.277

3.2. Equivalent stochastic maximum principle. The concavity assumption sometimes278

fail to be satisfied in some interesting applications. In this case one may need an equivalent279

maximum principle to overcome this difficulty. In order to derive such maximum principle,280

we need the following additional conditions281
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(C1) The functions b1, b2, b3, σ1, σ2, σ3, f and g are C3 with respect to their arguments282

x, y,Φ, u.283

(C2) For all 0 < t ≤ r < T all bounded Ft-measurable random variables α, and all bounded,284

deterministic function ζ : R 7→ R, the control285

β(s, z) = α(ω)χ[t,r](s)ζ(z), 0 ≤ s ≤ T and (s, z) ∈ Ω× R (3.15)

belongs to Uad.286

(C3) For all u ∈ Uad and all bounded β ∈ Uad, there exists r > 0 such that287

u+ δβ ∈ Uad (3.16)

for all δ ∈ (−r, r) and such that the family288 {
∂f

∂x

(
t, z,Xu+δβ(t), Y u+δβ(t),Φu+δβ(t, z), b1, u(t, z) + δβ(t, z), ω

) d

dδ
Xu+δβ(t)

+
∂f

∂y

(
t, z,Xu+δβ(t), Y u+δβ(t),Φu+δβ(t, z), b1, u(t, z) + δβ(t, z), ω

) d

dδ
Y u+δβ(t)

+
∂f

∂φ

(
t, z,Xu+δβ(t), Y u+δβ(t),Φu+δβ(t, z), b1, u(t, z) + δβ(t, z), ω

) d

dδ
Φu+δβ(t, z)

+
∂f

∂u

(
t, z,Xu+δβ(t), Y u+δβ(t),Φu+δβ(t, z), u(t, z) + δβ(t, z), ω

)
β(t, z)

}
δ∈(−r,r)

is λ× P× µ-uniformly integrable;289 {
∂g

∂x

(
z,Xu+δβ(T ), Y u+δβ(T ),Φu+δβ(T, z)

) d

dδ
Xu+δβ(t)

+
∂g

∂y

(
z,Xu+δβ(T ), Y u+δβ(T ),Φu+δβ(T, z)

) d

dδ
Y u+δβ(t)

+
∂g

∂φ

(
z,Xu+δβ(T ), Y u+δβ(T ),Φu+δβ(T, z)

) d

dδ
Φu+δβ(t, z)

}
δ∈(−r,r)

is P× µ-uniformly integrable.290

(C4) For all u, β ∈ Uad with β bounded, the processes291

Γ1(t) = Γβ1 (t) =
d

dδ
Y u+δβ(t)

∣∣∣
δ=0

,
292

Γ2(t) = Γβ2 (t) =
d

dδ
Xu+δβ(t)

∣∣∣
δ=0

,
293

Γ3(t, z) = Γβ3 (t) =
d

dδ
Φu+δβ(t, z)

∣∣∣
δ=0

,

exist and294

LΓ3(t, z) =
d

dδ
LΦu+δβ(t, z)

∣∣∣
δ=0

,
295

∂Γ3(t, z)

∂z
=

d

dδ

(∂Φu+δβ(t, z)

∂z

)∣∣∣
δ=0

.

Moreover, the processes Γ1(t),Γ2(t),Γ3(t, z) satisfy296

dΓ1(t) =
(∂b1(t)

∂y
Γ1(t) +

∂b1(t)

∂u
β(t, z)

)
dt+

(∂σ1(t)

∂y
Γ1(t) +

∂σ1(t)

∂u
β(t, z)

)
dW (t), (3.17)
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dΓ2(t) =
(∂b2(t)

∂x
Γ2(t) +

∂b2(t)

∂u
β(t, z)

)
dt+

(∂σ2(t)

∂y
Γ2(t) +

∂σ2(t)

∂u
β(t, z)

)
dW (t), (3.18)

297

dΓ3(t, z) =
(
LΓ3(t, z) +

∂b3(t, z)

∂φ
Γ(t, z) +

∂Γ3(t, z)

∂z

∂b3(t, z)

∂φ′
+
∂b3(t, z)

∂u
β(t, z)

)
dt

+
(∂σ3(t, z)

∂φ
Γ3(t, z) +

∂Γ3(t, z)

∂z

∂σ3(t, z)

∂φ′
+
∂σ3(t, z)

∂u
β(t, z)

)
dW (t), (3.19)

with298

Γ1(0) = 0, Γ2(t) = 0, Γ3(0, z) = 0 for all z and lim
‖z‖→∞

Γ3(t, z) = 0, t ∈ [0, T ],

where we used the short hand notation299

b1(t) = b1 (t, Y (t), u(t)) , σ1(t) = σ1 (t, Y (t), u(t)) , etc.

We have the following theorem300

Theorem 3.4 (Equivalent stochastic maximum principle). Retain conditions301

(C1)-(C4). Let u ∈ Uad with corresponding solutions X(t), Y (t),Φ(t, z),302

(p1(t, z), q1(t, z)), (p2(t, z), q2(t, z)); (p3(t, z), q3(t, z)),Γ1(t),Γ2(t) and Γ3(t, z) of (3.1)-303

(3.3); (3.7);(3.17)-(3.19). Under some integrability conditions that guaranty the use of the304

Itô’s product rules, the following are equivalent:305

(i)

d

ds
J(u+ sβ)

∣∣∣
s=0

= 0 for all bounded β ∈ Uad. (3.20)

(ii)

∂H

∂u

(
t, z,X(t), Y (t), u(t),Φ(t, z),Φ′(t, z), p1(t, z), q1(t, z), p2(t, z), q2(t, z), p3(t, z), q3(t, z)

)
= 0

(3.21)

for all t ∈ [0, T ] and almost all z ∈ R.306

Proof.307

308

(i) ⇒ (ii). Assume that
d

ds
J(u+ sβ)

∣∣∣
s=0

= 0. Then309

0 =
d

ds
J(u+ sβ)

∣∣∣
s=0

=
d

ds
E
[ ∫

R

{∫ T

0

∫
R
f
(
t,X(t), Y (t),Φ(t, z), b̄, u(t, z) + sβ(t, z)

)
dzdt

+

∫
R
g
(
z,X(T ), Y (T ),Φ(T, z), b̄

)
dz
}

dPB̄
]
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310

=E
[ ∫

R

∫ T

0

∫
R

{∂f (t, z, b̄)
∂y

Γ1(t) +
∂f
(
t, z, b̄

)
∂x

Γ2(t) +
∂f
(
t, z, b̄

)
∂φ

Γ3(t, z)
}

dzdtdPB̄
]

+E
[ ∫

R

∫ T

0

∫
R

∂f
(
t, z, b̄

)
∂u

β(t, z)dzdtdPB̄
]

+E
[ ∫

R

∫
R

{∂g (z, b̄)
∂y

Γ1(T ) +
∂g
(
z, b̄
)

∂x
Γ2(T ) +

∂g
(
z, b̄
)

∂φ
Γ3(T, z)

}
dzdPB̄

]
=I1 + I2 + I3. (3.22)

Using the notation in the preceding section, we have311

I1 =E
[ ∫

R

∫ T

0

{
Γ1(t)

(∂H(t, z)

∂y
− p1(t, z)

∂b1(t)

∂y
− q1(t, z)

∂σ1(t)

∂y

)
+ Γ2(t)

(∂H(t, z)

∂x
− p2(t, z)

∂b2(t)

∂x
− q2(t, z)

∂σ2(t)

∂y

)
+ Γ3(t, z)

(∂H(t, z)

∂φ
− p3(t, z)

∂b3(t, z)

∂φ
− q3(t, z)

∂σ3(t, z)

∂φ

)}
dtdz

]
. (3.23)

On the other hand, using Itô’s formula, we have312

I3 =E
[ ∫

R

∫
R

{∂g (z, b̄)
∂y

Γ1(T ) +
∂g
(
z, b̄
)

∂x
Γ2(T ) +

∂g
(
z, b̄
)

∂φ
Γ3(T, z)

}
dzdPB̄

]
=E
[ ∫

R
p1(T, z)Γ1(T ) + p2(T, z)Γ2(T ) + p3(T, z)Γ3(T, z)dz

]
=E
[ ∫

R

(∫ T

0

{
− ∂H(t, z)

∂y
Γ1(t) + p1(t, z)Γ1(t)

∂b1(t)

∂y
+ p1(t, z)β(t, z)

∂b1(t)

∂u

+ q1(t, z)
(∂σ1(t)

∂y
Γ1(t) +

∂σ1(t)

∂u
β(t, z)

)}
dt

+

∫ T

0

{
− ∂H(t, z)

∂x
Γ2(t) + p2(t, z)Γ2(t)

∂b2(t)

∂x
+ p2(t, z)β(t, z)

∂b2(t)

∂u

+ q2(t, z)
(∂σ2(t)

∂x
Γ2(t) +

∂σ2(t)

∂u
β(t, z)

)}
dt

+

∫ T

0

{
−
(
L∗p3(t, z) +

∂H(t, z)

∂φ
− ∂

∂z

(∂H(t, z)

∂φ′

))
Γ3(t, z)

+ p3(t, z)
(
LΓ3(t, z) + Γ3(t, z)

∂b3(t, z)

∂φ
+
∂b3(t, z)

∂φ′
∂Γ3(t, z)

∂z
+ β(t, z)

∂b3(t, z)

∂u

)
+ q3(t, z)

(
Γ3(t, z)

∂σ3(t, z)

∂φ
+
∂σ3(t, z)

∂φ′
∂Γ3(t, z)

∂z
+ β(t, z)

∂σ3(t, z)

∂u

)}
dt
)

dz
]
. (3.24)
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Combining (3.24) and (3.23) yields313

I1 + I2 + I3

=E
[ ∫ T

0

∫
R

{
−
(

Γ3(t, z)L∗p3(t, z)− Γ3(t, z)
∂

∂z

(∂H(t, z)

∂φ′

))
+ p3(t, z)LΓ3(t, z) +

∂Γ3(t, z)

∂z

∂b3(t, z)

∂φ′
p3(t, z) +

∂Γ3(t, z)

∂z

∂σ3(t, z)

∂φ′
q3(t, z)

+
(
p1(t, z)

∂b1(t)

∂u
+ q1(t, z)

∂σ1(t)

∂u
+ p2(t, z)

∂b2(t)

∂u
+ q2(t, z)

∂σ2(t)

∂u

+ q3(t, z)
∂b3(t, z)

∂u
+ q3(t, z)

∂σ3(t, z)

∂u
+
∂f(t, z)

∂u

)
β(t, z)

}
dzdt

]
=E
[ ∫ T

0

∫
R

{
−
(
p3(t, z)LΓ3(t, z) +

∂Γ3

∂z
(t, z)

(∂b3(t, z)

∂φ′
p3(t, z) +

∂σ3(t, z)

∂φ′
q3(t, z)

))
+ p3(t, z)LΓ3(t, z) +

∂Γ3(t, z)

∂z

(∂b3(t, z)

∂φ′
p3(t, z) +

∂σ3(t, z)

∂φ′
q3(t, z)

)
+
∂H(t, z)

∂u
β(t, z)

}
dzdt

]
=E
[ ∫ T

0

∫
R
β(t, z)

∂H(t, z)

∂u
dzdt

]
. (3.25)

This holds in particular for β(t, z, ω) ∈ Uad of the form

β(t, z, ω) = α(ω)χ[s,T ](t)ζ(z); t ∈ [0, T ]

for a fixed s ∈ [0, T ), where α is a bounded Fs-measurable random variable and ζ(z) ∈ R is314

bounded and deterministic. This gives315

E
[ ∫

R

∫ T

s

∂H(t, z)

∂u
ζ(z)dtdz × α

]
= 0. (3.26)

Differentiating with respect to s, we get316

E
[ ∫

R

∂H(s, z)

∂u
ζ(z)dzd× α

]
= 0. (3.27)

Since this holds for all bounded Fs-measurable α and all bounded deterministic ζ, we conclude317

that318

E
[∂H(t, z)

∂u

∣∣∣Ft] = 0 for a.a., (t, z) ∈ [0, T ]× R.

Hence319
∂H(t, z)

∂u
= 0 for a.a., (t, z) ∈ [0, T ]× R,

since all the coefficients in H(t, z) are Ft-adapted. It follows that (i)⇒(ii).320

321

322

(ii) ⇒ (i). Assume that there exists u ∈ Uad such that (3.21) holds. By reversing the
argument, we have that (3.27) holds and hence (3.26) is also true. Hence, we have that (3.25)
holds for all β(t, z, ω) = α(ω)χ[s,T ](t)ζ(z) ∈ Uad that is

E
[ ∫

R

∫ T

s

∂H(t, z)

∂u
ζ(z)dtdz × α

]
= 0
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for some s ∈ [0, T ], some bounded Fs-measurable random variable α and some bounded and323

deterministic ζ(z) ∈ R. Hence the above equality holds for all linear combinations of such324

β. Using the fact that all bounded β ∈ Uad can be approximated pointwisely in (t, z, ω) by325

such linear combination, we obtain that (3.25) holds for all bounded β ∈ Uad. Therefore, by326

reversing the previous arguments in the remaining part of the proof, we get that327

d

ds
J(u+ sβ)

∣∣∣
s=0

= 0 for all bounded β ∈ Uad

and therefore (ii) ⇒ (i). �328

Remark 3.5. Example of systems not satisfying concavity assumption are regime switching329

systems; see for example [16, 18].330

4. Application to hedging and pricing factor model for commodity331

In this section, we apply the results and ideas developed in the previous sections to solve332

optimal investment problem and pricing for convenience yield model with partial observations.333

The model is that of Section 2.334

We consider the following partial observation market:335

(Riskless asset) dS0(t) = S0(t)r(t)dt, (4.1)

(observed spot price) dS̃(t) = (r(t)− Z(t)) S̃(t)dt+ σS̃(t)dW 1(t), (4.2)

(unobserved yield) dZ(t) = k (θ − Z(t)) dt+ ργdW 1(t) +
√

1− ρ2γdW⊥(t). (4.3)

where W⊥(t) = {W⊥(t), t ∈ [0, T ]} is a standard Brownian motion on
(

Ω,F , {Ft}t∈[0,T ] ,P
)

336

independent of W 1(t) and r(t) = {r(t), t ∈ [0, T ]} is the short rate assumed to be determin-337

istic. Let u(t) be a portfolio representing the amount of wealth invested in the risky asset at338

time t. Then the dynamics of the wealth process is given by339

dX(t) = (r(t)X(t)− Z(t)u(t)) dt+ σu(t)dW 1(t), X(0) = x. (4.4)

A portfolio u is admissible if u ∈ Uad as described in (2.11). The problem of the investor340

is to find û ∈ Uad such that341

sup
u∈Uad

E
[
U
(
Xx,u(T )

)]
= E

[
U
(
Xx,û(T )

)]
(4.5)

and342

sup
u∈Uad

E
[
U
(
Xx−p,u(T ) + Π

(
S̃(T ), B

))]
=E
[
U
(
Xx−p,û(T ) + Π

(
S̃(T ), B

))]
, (4.6)

where U(x) = −e−λx is the exponential utility, Π is the contingent claim on the commodity343

price and B is the basis risk. (4.5) (respectively (4.6)) represents the performance functional344

without contingent claim (respectively with claim).345

We know from Section 2 that the partial observation control problem for SDE (4.1)-(4.6)346

can be transformed in a full observation control problem for SPDE. In this situation, we347

replace the process Z(t) by its unnormalized conditional density Φ(t, z) given FYt . Then348
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again from Section 2 the equations for the dynamics of X, S̃ and Φ are given by349

dX(t) =
(
r(t)X(t)− (r(t)− 1

2
σ2)u(t)

)
dt+ u(t)σdW (t), (4.7)

dS̃(t) =S̃(t)
(1

2
σ2dt+ σdW (t)

)
, (4.8)

dΦ(t, z) =
{1

2
γ2Φ′′(t, z)− kΦ(t, z) + k(θ − z)Φ′(t, z)

}
dt

+
{
r(t)− σ2

2
− z − ργΦ′(t, z)

}
dW (t)

=L∗Φ(t, z)dt+M∗Φ(t, z)dW (t), (4.9)

where ′ represent the derivative with respect to z and W is a Brownian motion.350

Recall that the objective of the investor is: find û ∈ Uad such that351

J(û) = sup
u∈Uad

J(u), (4.10)

with352

J(u) = Ẽ
[∫

R
U (Xx,u(T )) Φ(T, z)dz

]
, or (4.11)

353

J(u) = Ẽ
[ ∫

R

∫
R
U
(
Xx−pb,u(T ) + Π

(
S̃(T ), B(z) + b̄

))
Φ(T, z)dzdPB̄

]
. (4.12)

In the sequel, the performance functional (4.12) will be used in solving the optimisation354

problem (4.10) and the solution to the utility maximisation without claim will follow by355

setting Π = 0 = pb. Let us observe that in the controlled state system (4.7)-(4.9), only the356

process X depends on the control u. In addition, the coefficients satisfy condition of existence357

and uniqueness of strong solutions of system (4.7)-(4.9). We wish to apply Theorem 3.3 to358

solve the above control problem.359

We start by writing down the Hamiltonian360

H(t, z, x, s̃, b̄, u, φ, φ′, p1, q1, p2, q2, p3, q3)

=
1

2
σ2s̃p1 + σs̃q1 +

(
rx− (r − 1

2
σ2)u

)
p2 + σuq2

+
(
−kφ+ k(θ − z)φ′

)
p3 +

(
r − 1

2
γ2 − z − ργφ′

)
q3, (4.13)

where the adjoint processes (p1(t, z), q1(t, z)) , (p2(t, z), q2(t, z)) and (p3(t, z), q3(t, z)) are given361

by362 
dp1(t, z) = −

(1

2
σ2p1(t, z) + σq1(t, z)

)
dt+ q1(t, z)dW (t)

p1(T, z) =

∫
R
λ
∂Π

∂S

(
S̃(T ), B(z) + b̄

)
e−λ(X(T )+Π(S̃(T ),B(z)+b̄))Φ(T, z)dPB̄,

(4.14)

dp2(t, z) = −rp2(t, z)dt+ q2(t, z)dW (t)

p2(T, z) = λ

∫
R
e−λ(X(T )+Π(S̃(T ),B(z)+b̄))Φ(T, z)dPB̄,

(4.15)
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and363


dp3(t, z) = −1

2
γ2∂

2p3(t, z)

∂z2
dt+ q3(t, z)dW (t)

p3(T, z) =

∫
R
e−λ(X(T )+Π(S̃(T ),B(z)+b̄))dPB̄.

(4.16)

The generators of the BSDEs (4.14) and (4.15) are linear in their arguments and thanks to364

[8, Proposition 2.2], the final condition belongs to a Sobolev space. Hence, there exists a365

unique strong solution to the BSDE (4.14) (respectively (4.15)) in an appropriate Banach366

space. Furthermore, the BSPDE (4.16) is classical and thus has a unique strong solution; see367

for example [22].368

Let û be candidate for an optimal control and let X̂, ˆ̃S, Φ̂ be the associated opti-369

mal processes with corresponding solution p̂(t, z) = (p̂1(t, z), p̂2(t, z), p̂3(t, z)), q̂(t, z) =370

(q̂1(t, z), q̂2(t, z), q̂3(t, z)) of the adjoint equations.371

Since U and Π are concave and H is linear in its arguments, it follows that the first372

and second conditions of Theorem 3.3 are satisfied. In the following, we use the first order373

condition of optimality to find an optimal control.374

Using the first order condition of optimality, we have375

(
r − 1

2
σ2
)
p̂2(t, z) = σq̂2(t, z). (4.17)

Since the BSDE satisfied by (p̂, q̂) = (p2, q2) is linear, we try a solution of the form376

p̂2(t, z) = −e−λ
(
X̂(t)e

∫T
t r(s)ds+Ψ(t, ˆ̃S(t),Φ(t,z)))

)
, (4.18)

where Ψ is a smooth function. For simplicity, we write ˆ̃S = S. Let X̃(t) = e−λX̂(t)e
∫T
t r(s)ds

.377

Then using Itô’s formula, we have378

dX̃(t)

=− λe−λX̂(t)e
∫T
t r(s)ds

d
(
X̂(t)e

∫ T
t r(s)ds

)
+

1

2
λ2e−λX̂(t)e

∫T
t r(s)ds

d〈X̂(·)e
∫ T
· r(s)ds〉t

=− λe
∫ T
t r(s)dse−λX̂(t)e

∫T
t r(s)ds

{
(
σ2

2
− r(t))u(t)dt+ u(t)σdW (t)− 1

2
λe
∫ T
t r(s)dsu2(t)σ2dt

}
=− λe

∫ T
t r(s)dsX̃(t)

{(
(
σ2

2
− r(t))u(t)− 1

2
λe
∫ T
t r(s)dsu2(t)σ2

)
dt+ u(t)σdW (t)

}
. (4.19)

On the other hand, applying the Itô’s formula to the two dimensional process (S,Φ), we have379
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d
(
e−λΨ(t,S(t),Φ(t,z))

)
=− λe−λΨ(t,S(t),Φ(t,z))dΨ(t, S(t),Φ(t, z)) +

1

2
λ2e−λΨ(t,S(t),Φ(t,z))d〈Ψ(t, S(t),Φ(t, z))〉t

=− λe−λΨ(t,S(t),Φ(t,z))
{

Ψt(t, S(t),Φ(t, z))dt+
∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)

(1

2
σ2dt+ σdW (t)

)
+

1

2

∂2Ψ

∂S2
(t, S(t),Φ(t, z))S2(t)σ2dt+

∂Ψ

∂Φ
(t, S(t),Φ(t, z))L∗Φ(t, z)dt

+
∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)dW (t) +

1

2

∂2Ψ

∂Φ2
(t, S(t),Φ(t, z))(M∗Φ(t, z))2dt

+
∂2Ψ

∂Φ∂S
(t, S(t),Φ(t, z))σS(t)M∗Φ(t, z)dt

}
+

1

2
λ2e−λΨ(t,S(t),Φ(t,z))

{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

}2
dt

=− λe−λΨ(t,S(t),Φ(t,z))
({

Ψt(t, S(t), φ(t, z)) +
1

2

∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ2

+
1

2

∂2Ψ

∂S2
(t, S(t),Φ(t, z))S2(t)σ2 +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))L∗Φ(t, z)

+
1

2

∂2Ψ

∂Φ2
(t, S(t),Φ(t, z))(M∗Φ(t, z))2 +

∂2Ψ

∂Φ∂S
(t, S(t),Φ(t, z))σS(t)M∗Φ(t, z)

− 1

2
λ
(∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)2}
dt

+
{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

}
dW (t)

)
. (4.20)

Combining (4.19) and (4.20) and using product rule, we have380

dp2(t, z)

=X̃(t)λe−λΨ(t,S,Φ)
({

Ψt(t, S(t), φ(t, z)) +
1

2

∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ2

+
1

2

∂2Ψ

∂S2
(t, S(t),Φ(t, z))S2(t)σ2 +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))L∗Φ(t, z)

+
1

2

∂2Ψ

∂Φ2
(t, S(t),Φ(t, z))(M∗Φ(t, z))2 +

∂2Ψ

∂Φ∂S
(t, S(t),Φ(t, z))σS(t)M∗Φ(t, z)

− 1

2
λ
(∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)2}
dt

+
{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

}
dW (t)

)
(4.21)

+ e−λΨ(t,S(t),Φ(t,z))λe
∫ T
t r(s)dsX̃(t)

{(
(
1

2
σ2 − r(t))u(t)− 1

2
λe
∫ T
t r(s)dsu2(t)σ2

)
dt+ u(t)σdW (t)

}
− λ2e

∫ T
t r(s)dsX̃(t)e−λΨ(t,S(t),Φ(t,z))u(t)σ

{∂Ψ

∂S
(t, S(t),Φ(t, z))Sσ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

}
dt.
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From this, we get381

dp2(t, z) =− λp2(t, z)
[{

Ψt(t, S(t), φ(t, z)) +
1

2

∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ2

+
1

2

∂2Ψ

∂S2
(t, S(t),Φ(t, z))S2(t)σ2 +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))L∗Φ(t, z)

+
1

2

∂2Ψ

∂Φ2
(t, S(t),Φ(t, z))(M∗Φ(t, z))2 +

∂2Ψ

∂Φ∂S
(t, S(t),Φ(t, z))σS(t)M∗Φ(t, z)

− 1

2
λ
(∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)2

− e
∫ T
t r(s)dsλu(t)σ

(∂Ψ

∂S
(t, S(t),Φ(t, z))Sσ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)
+ e

∫ T
t r(s)ds

(
(
1

2
σ2 − r(t))u(t)− 1

2
λe
∫ T
t r(s)dsu2(t)σ2

)}
dt (4.22)

+
{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z) + e

∫ T
t r(s)dsu(t)σ

}
dW (t)

]
.

Comparing (4.22) and (4.15), we get that Ψ must satisfy the following differential equation:382

r =λ
{

Ψt(t, S(t), φ(t, z)) +
1

2

∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ2

+
1

2

∂2Ψ

∂S2
(t, S(t),Φ(t, z))S2(t)σ2 +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))L∗Φ(t, z)

+
1

2

∂2Ψ

∂Φ2
(t, S(t),Φ(t, z))(M∗Φ(t, z))2 +

∂2Ψ

∂Φ∂S
(t, S(t),Φ(t, z))σS(t)M∗Φ(t, z)

− 1

2
λ
(∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)2

− e
∫ T
t r(s)dsλu(t)σ

(∂Ψ

∂S
(t, S(t),Φ(t, z))Sσ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

)
+ e

∫ T
t r(s)ds

(
(
1

2
σ2 − r(t))u(t)− 1

2
λe
∫ T
t r(s)dsu2(t)σ2

)}
, (4.23)

with

Ψ(T, S,Φ) = − 1

λ
ln
(
λ

∫
R
e−λΠ(S̃(T ),B(z)+b̄)Φ(T, z)dPB̄

)
and383

q2(t, z) =− p2(t, z)
{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z) + e

∫ T
t r(s)dsu(t)σ

}
.

(4.24)

Substituting (4.24) into (4.17), we get384

(r(t)− 1

2
σ2) =− σ

{∂Ψ

∂S
(t, S(t),Φ(t, z))S(t)σ +

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z) + e

∫ T
t r(s)dsu(t)σ

}
,

i.e.,385

û(t) =û(t, z) (4.25)

=e−
∫ T
t r(s)ds

{ 1

σ2

(
r(t)− σ2

2

)
+
∂Ψ

∂S
(t, S(t),Φ(t, z))S(t) +

1

σ

∂Ψ

∂Φ
(t, S(t),Φ(t, z))M∗Φ(t, z)

}
.

Hence the total value invested is the cost invested in the risky asset and another cost due386

to partial observation.387
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Remark 4.1. Assume that there is no claim, then388

û0(t) = û0(t, z) =e−
∫ T
t r(s)ds

{ 1

σ2

(
r(t)− σ2

2

)
+

1

σ

∂Ψ

∂Φ
(t,Φ(t, z))M∗Φ(t, z)

}
. (4.26)

We have shown the following :389

Theorem 4.2. The optimal portfolio û ∈ Aad, to the partial observation utility maximisation390

control problem (2.1)-(2.9) (respectively (2.1)-(2.8)) is given by (4.25) (respectively (4.26)).391

Assume that the interest rate is constant. The terminal wealth with initial value x can be392

expressed as393

Xx(T ) = xerT −
∫ T

0
er(T−t)(r − 1

2
σ2)u(t)dt+

∫ T

0
er(T−t)u(t)σdW (t) (4.27)

and the wealth with initial value x− pb is given by394

Xx−pb(T ) = xerT − pberT −
∫ T

0
er(T−t)(r − 1

2
σ2)u(t)dt+

∫ T

0
er(T−t)u(t)σdW (t). (4.28)

Since the wealth process is the only process depending on the control in the utility maximi-395

sation problems (2.8)-(2.9), we have the following result for the utility indifference price.396

Theorem 4.3. Assume that the interest rate is constant. The price indifference pb for the397

buyer of the claim Π = Π
(
S̃(t), B(z) + b̄

)
is given by398

p
b

= −
e−rT

λ
ln

 Ẽ
[ ∫

R

∫
R

expλ
(∫ T

0

e
r(T−t)

(r −
1

2
σ

2
)û0(t)dt−

∫ T

0

e
r(T−t)

û0(t)σdW (t)
)

Φ(T, z)dzdPB̄
]

Ẽ
[ ∫

R

∫
R

expλ
(∫ T

0

e
r(T−t)

(r −
1

2
σ

2
)û(t)dt−

∫ T

0

e
r(T−t)

û(t)σdW (t)
)
e
−λΠ

Φ(T, z)dzdPB̄
]
 , (4.29)

where û and û0 are given by (4.25) and (4.26) respectively.399

5. Conclusion400

In this paper, we have derived a sufficient and equivalent stochastic maximum principle for401

an optimal control problem for partially observed systems. The existence of correlated noise402

between the control and the observations systems lead to a degenerated Zakai equation and403

hence the need of results on existence of unique strong solutions of such equations. Based404

on the existence results, we are able to give a sufficient and equivalent“strong” maximum405

principle. The results obtained are then applied to study a hedging and pricing problem for406

partially observed convenience yield model. The coefficients of the controlled and observation407

processes studied in this paper are time independent and it will be of great interest to consider408

time dependent coefficients due to seasonality factors. Furthermore, dependence of jumps of409

the commodity price has recently been studied, hence extension to systems with jumps is410

necessary and will be the object of future research. Using a more general system could also411

lead to optimal control depending on adjoint equations and hence the need of numerical412

implementation of BSPDE with jumps to find values of the optimal portfolio and utility413

indifference price when the parameters are known.414
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