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Abstract. In this paper we describe compactified universal Jacobians, i.e. compact-
ifications of the moduli space of line bundles on smooth curves obtained as moduli
spaces of rank 1 torsion-free sheaves on stable curves, using an approach due to Oda–
Seshadri. We focus on the combinatorics of the stability conditions used to define
compactified universal Jacobians. We explicitly describe an affine space, the stability
space, with a decomposition into polytopes such that each polytope corresponds to
a proper Deligne–Mumford stack that compactifies the moduli space of line bundles.
We apply this description to describe the set of isomorphism classes of compactified
universal Jacobians (answering a question of Melo), and to resolve the indeterminacy
of the Abel–Jacobi sections (a problem raised by Grushevsky–Zakharov).

1. Introduction

In this paper we study the problem of extending the universal Jacobian J dg,n over the
moduli space of smooth n-pointed curves of genus g to a proper family over the moduli
spaceMg,n of stable pointed curves. Recall that J dg,n is the moduli space of degree d line
bundles on smooth curves. We extend it as a moduli space of sheaves. One extension
of J dg,n is the moduli space Simpdg,n of all simple rank 1 torsion-free sheaves of degree d,
but this extension fails to be proper. Indeed, while it satisfies the existence part of the
valuative criterion of properness [Est01, Theorem 32], it is not proper because it fails to
be separated and of finite type.

Rather than working directly with Simpdg,n, we analyze extensions of J dg,n that are

suitable proper subspaces (or substacks) of Simpdg,n. The proper subspaces of Simpdg,n
we describe are the subspaces defined by choosing a set of multidegrees for each curve and
taking the subspace of Simpdg,n parameterizing the sheaves with multidegree equal to one
of the chosen multidegrees. Here the multidegree of a line bundle L on a reducible curve
is the vector whose components are the degrees of the restrictions of L to the irreducible
components of the curve. The problem of prescribing a collection of multidegrees with
the property that the resulting subspace of Simpdg,n is a proper extension of J dg,n has
been studied by a large number of authors; see e.g. [OS79, AK80, Cap94, Sim94, Pan96,
Est01, Cap08, Mel09, Mel11, Mel16]. In this paper, we introduce and study subspaces of

Simpdg,n produced by generalizing to the universal family of curves an approach developed
by Oda–Seshadri. With our construction, we produce the commonly studied spaces that
extend J dg,n to a proper space. In particular, our construction recovers the moduli spaces
constructed by Melo in [Mel16]. We explain the relation with Melo’s work in Remark 4.6
and with other work in Remarks 5.11 and 6.8.
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In [OS79] Oda–Seshadri introduced, for a nodal curve C (and d = 0), the stability
space V d(C) as the affine space of functions φ∶{Ci ⊂ C an irreducible component} → R
such that ∑φ(Ci) = d. For a nondegenerate φ ∈ V d(C) (i.e. a φ not lying in a certain
locally finite collection of hyperplanes) they proved that the moduli space of φ-semistable
sheaves, i.e. sheaves whose multidegree is sufficiently close to φ (in a sense that we make
precise in Definition 4.1), is a proper subspace JC(φ) of the space of simple sheaves on
C, which we call a (fine) φ-compactified Jacobian.

We extend Oda–Seshadri’s approach to describe moduli spaces overMg,n. In Section 3

we construct a space V d
g,n of stability conditions for the universal stable pointed curve.

The affine space V d(C) associated to a nodal curve C depends only on the dual graph
ΓC of C. Denoting by Gg,n the set of isomorphism classes of stable n-marked graphs of
genus g, we define

V d
g,n ⊂ ∏

Γ∈Gg,n
V d(Γ)

as the subspace consisting of those vectors φ = (φ(Γ) ∈ V d(Γ))Γ∈Gg,n that satisfy a
compatibility condition with respect to automorphisms and contractions of the dual
graphs (see Definition 3.2 for details). For a nondegenerate φ ∈ V d

g,n, we show that

{φ-stable sheaves on stable curves} ⊂ Simpdg,n

is a proper moduli space that we call a (fine) φ-compactified universal Jacobian J g,n(φ).
We give the precise definition of J g,n(φ) in Section 4. When φ is nondegenerate, we show

in Corollary 4.4 that J g,n(φ) is a proper Deligne–Mumford stack, a result we deduce
from Simpson’s representability result [Sim94, Theorem 1.21].

The main result about the stability space is Theorem 1, where we describe V d
g,n as

the degree d subspace of the real relative Picard group of the universal curve. As a by-
product of that theorem, in Corollary 3.6 we prove that an element φ ∈ V d

g,n is uniquely
determined by its components φ(Γ) for Γ the dual graph of certain stable pointed curves
with two smooth irreducible components and at most two nodes, so that in particular,
two extensions J g,n(φ1) and J g,n(φ2) that coincide in codimension 2 must be equal.

The main contribution of this paper is the description in Section 5 of how the moduli
spaces depend on φ. There we define φ1 to be equivalent to φ2 when φ1-stability coincides
with φ2-stability. The equivalence classes are the interiors of rational bounded convex
polytopes in V d

g,n that we call stability polytopes. We then exhibit in Theorem 2 an
explicit set of equations for the defining hyperplanes.

Theorem. For g ≥ 2 and N = N(g, n) the number of boundary divisors in Mg,n, the

decomposition of V g−1
g,n ≅ RN−1 ×Rn into stability polytopes is the product of the decom-

position of RN−1 by integer translates of coordinate hyperplanes and the decomposition
of Rn by integer translates of the following hyperplanes

(1) {x⃗ ∈ Rn∶ ∑
i∈S
xi −

`

2g − 2

n

∑
i=1

xi = 0} for ` = 0, . . . ,2g − 3, S ⊆ {1, . . . , n}.

This is Theorem 2 in the special case when d = g − 1. When d ≠ g − 1, the de-
composition of V d

g,n is similar but the hyperplanes are translated. The factors in the
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product decomposition correspond to two vector spaces Cg,n and Dg,n that we introduce
in Definition 3.5.

The hyperplanes in (1) with ` = 0 are known as the resonance hyperplanes in the
literature, so (1) defines a refinement of the resonance hyperplane arrangement. The
above description of the stability polytopes should be compared with a similar description
in [KP16]. There we carried out the analogous program for extensions of J g−1

g,n over the

moduli stack of treelike curves MTL
g,n ⊆ Mg,n using an affine space V TL

g,n analogous to

V d
g,n. As we explain in Remarks 3.11 and 4.5, V TL

g,n is canonically isomorphic to Cg,n.
Theorem 2 shows a considerable increase in the combinatorial complexity when passing
from the problem of extending J dg,n overMTL

g,n to the problem of extending it overMg,n

as the resonance hyperplane arrangement is more complicated than the arrangement of
coordinate hyperplanes.

The difference between MTL
g,n and Mg,n is also demonstrated by the results in Sec-

tion 6.2, where we describe how J g,n(φ) depends on φ ∈ V d
g,n. Over treelike curves, we

showed in [KP16] that, while changing φ ∈ V TL
g,n changes the set of φ-stable sheaves, the

Deligne–Mumford stack J g,n(φ) does not change. The situation over Mg,n is different.
We show

Theorem. When Mg,n is of general type, there exists nondegenerate φ1, φ2 ∈ Vg,n such

that J g,n(φ1) and J g,n(φ2) are not isomorphic as Deligne–Mumford stacks.

This is Corollary 6.17, and the result answers a question of Melo in [Mel16, Ques-
tion 4.15] (see Remark 4.6 for a description of the relation of that work to this paper).

We deduce the result from Corollary 6.15 which states that, for all (g, n) with g > 0
except for those in the finite list (41), there exist nondegenerate φ1 and φ2 such that
J g,n(φ1) and J g,n(φ2) are not isomorphic as Deligne–Mumford stacks over Mg,n. In

fact, in Section 6.2 we show that the isomorphism classes of J g,n(φ)’s, considered as

stacks overMg,n, are in bijection with the quotient of the set Pg,n of stability polytopes

by the action of the generalized dihedral group P̃Rg,n of the relative Picard group of
the universal curve. From this analysis we also deduce that, for fixed (g, n), there are
finitely many non-isomorphic J g,n(φ) for all d ∈ Z and all nondegenerate φ ∈ V d

g,n.

In Section 6.1 we give a second application of our description of V d
g,n, namely a res-

olution of the indeterminacy of the Abel–Jacobi sections. Recall that, given a vector
d⃗ = (d1, . . . , dn) of integers satisfying d1 + . . . + dn = d, the rule

(2) (C,p1, . . . , pn)↦ OC(d1p1 + . . . + dnpn)
defines a morphism σd⃗∶Mg,n → J dg,n and hence a rational map from Mg,n into any

extension of J dg,n. Grushevsky–Zakharov raised the problem of resolving the indetermi-
nacy of this map in [GZ14, Remark 6.3]. In Proposition 6.4, we describe the locus of
indeterminacy as

Theorem. For φ nondegenerate, the locus of indeterminacy of σd⃗∶Mg,n ⇢ J g,n(φ) is
the closure of the locus of pointed curves (C,p1, . . . , pn) that consist of two smooth curves
meeting in k ≥ 2 nodes with the property that OC(d1p1 + . . . + dnpn) fails to be φ-stable.

This result extends earlier work of Dudin. In [Dud17, Section 3], Dudin proved that,
for certain φ, the locus of indeterminacy of σd⃗ is contained in the closure of the locus



4 JESSE LEO KASS AND NICOLA PAGANI

of pointed curves that consist of two smooth curves meeting in k ≥ 2 nodes satisfying
the above stability condition [Dud17, Proposition 3.3]. Thus the main new content of
the above theorem is that the containment of the indeterminacy locus is in fact an
equality. (For a detailed explanation of which J g,n(φ) Dudin studies, see the discussion
immediately after [KP16, Corollary 5.4] and Remark 4.6.)

The result can be described in terms of the degenerate vector φd⃗ ∈ V d
g,n that is the

multidegree of OC(d1p1 + . . . + dnpn). When φ is nondegenerate and sufficiently close
to φd⃗, our result states that the locus of indeterminacy is empty. For general φ, the

rational map σd⃗∶Mg,n ⇢ J g,n(φ) has indeterminacy that we can resolve as follows. If

φ0 is nondegenerate and sufficiently close to φd⃗, then J g,n(φ) is related to J g,n(φ0) by
a series of flips that correspond to the values of t ∈ [0,1] such that tφ0 + (1 − t)φ lies
in the boundary of a stability polytope. Indeed, the moduli spaces J g,n(φ) are locally
constructed using GIT (through our use of [Sim94]), and the structure of these flips is
described by Thaddeus in [Tha96]. The above theorem shows that the indeterminacy of
σd⃗ is resolved by modifying J g,n(φ) by these flips.

The relation of this result to the work of Grushevsky–Zakharov [GZ14] is complicated
as they consider σd⃗ as a rational map into the extension of J 0

g,n given by Mumford’s

rank 1 degenerations, and this extension is different from, but related to, the J g,n(φ)’s.
We discuss this relation in detail in Remark 6.8.

The reader is encouraged to also see David Holmes’ preprint [Hol17] for another ap-
proach to analyzing the indeterminacy of the Abel–Jacobi section. Rather than modify-
ing the target of the section (as we do in this paper), Holmes modifies Mg,n to resolve
the indeterminacy. He analyzes σd⃗ when ∑di = 0 and produces a morphism from an
open substack of an explicit toric blowup into the separated space J parameterizing
multidegree 0 line bundles on stable curves. Holmes uses this resolution to study the
double ramification cycle, a topic we do not study here.

This paper is organized as follows. In Section 2 we recollect background material
on the moduli spaces of curves. In Section 2.1 we fix the notation for stable graphs,
in Section 2.2 we define a notion of contraction, in Section 2.3 we discuss the stratifi-
cation of Mg,n by topological type and in Section 2.4 we describe the relative Picard

group of the universal curve π∶Cg,n → Mg,n. In Section 3 we introduce the universal

stability space V d
g,n and prove two results that describe it explicitly: Theorem 1 and

Corollary 3.6. In Section 4 we define the stacks J g,n(φ) and prove that they are k-
smooth Deligne–Mumford stacks when φ is nondegenerate. In Section 5 we introduce
the stability polytope decomposition Pg,n and prove Theorem 2, which gives an explicit

description of the stability hyperplanes in the stability spaces V d
g,n. In Section 6 we apply

our results to resolve the indeterminacy of the Abel–Jacobi sections (Section 6.1) and
to enumerate the different J g,n(φ) (Section 6.2). Section 7 is the Appendix, where we
recollect some algebra lemmas needed in Section 6.

1.1. Conventions. We denote by [n] the set {1, . . . , n}. If S ⊂ [n], we write Sc for
[n] ∖ S. For a given subset S ⊂ [n] and f ∶S → Z, we denote by fS the sum ∑j∈S f(j).
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By δ1,g we denote the Kronecker delta:

δ1,g =
⎧⎪⎪⎨⎪⎪⎩

1 when g = 1,

0 otherwise.

We work over a fixed algebraically closed field k of characteristic 0 throughout.
A curve over a field Spec(k) is a Spec(k)-scheme C/Spec(k) that is proper over

Spec(k), geometrically connected, and pure of dimension 1. A curve C/Spec(k) is a

nodal curve if C is geometrically reduced and the completed local ring of C ⊗ k at a
non-regular point is isomorphic to k[[x, y]]/(xy). Here k is an algebraic closure of k.

A family of curves over a k-scheme T is a proper, flat morphism C → T whose fibers
are curves. A family of curves C → T is a family of nodal curves if the fibers are nodal
curves.

A family of rank 1 torsion-free sheaves over a family of curves C → T is a rank 1 sheaf
F on C, flat over T , whose fibers over the geometric points are torsion-free.

If F is a rank 1 torsion-free sheaf on a nodal curve C with irreducible components
Ci, we define the multidegree of F by deg(F ) ∶= (deg(FCi)). Here FCi is the maximal
torsion-free quotient of F ⊗ OCi . We define the (total) degree of F to be degC(F ) ∶=
χ(F )−1+pa(C) where pa(C) = h1(C,OC) is the arithmetic genus of C. The total degree
and the multidegree of F are related by the formula degC(F ) = ∑degCi

F −δC(F ), where
δC(F ) denotes the number of nodes of C where F fails to be locally free.

2. Background

2.1. Graphs. A graph Γ is a tuple (Vert,HalfEdge,a, i) consisting of a finite set of
vertices Vert, a finite set of half-edges HalfEdge, an assignment function a∶HalfEdge →
Vert, and a fixed point free involution i∶HalfEdge → HalfEdge. The edge set is defined
as the quotient set Edge ∶= HalfEdge / i. The endpoint of a half-edge h ∈ Edge is defined
to be v = a(h). A loop based at v is an edge whose two endpoints coincide.

A n-marked graph is a graph Γ together with a (genus) map g∶Vert(Γ) → N and
a (markings) map p∶{1, . . . , n} → Vert(Γ). We call g(v) the genus of v ∈ Vert(Γ). If
v = p(j), then we say that the j-th marking lies on the vertex v.

A subgraph Γ′ of Γ is always assumed to be proper (Vert(Γ′) ⊊ Vert(Γ)) and complete
(for all v′ ∈ Vert(Γ′), if h ∈ HalfEdge(Γ) and a(h) = v′, then h ∈ HalfEdge(Γ′)). A
subgraph of a n-marked graph is tacitly assumed to be given the induced genus and
marking maps.

We say that a n-marked graph Γ is stable if it is connected (in the obvious sense, a
bit tedious to write down), and if for all v with g(v) = 0, the sum of the number of
half-edges with v as an endpoint plus the number of markings lying on v is at least 3.
The (arithmetic) genus of Γ is g(Γ) ∶= ∑v∈Vert(Γ) g(v) −# Vert(Γ) +# Edge(Γ) + 1.

An isomorphism of Γ = (Vert,HalfEdge,a, i) to Γ′ = (Vert′,HalfEdge′,a′, i′) is a pair
of bijections αV ∶Vert → Vert′ and αHE∶HalfEdge → HalfEdge′ that satisfy the compati-
bilities αHE ○ i = i′ and αV ○ a = a′. If Γ and Γ′ are endowed with structures of n-marked
graphs by the maps (g, p) and by (g′, p′) respectively, (αV , αHE) is an isomorphism of
n-marked graphs if it also satisfies the compatibilities αV ○ p = p′ and αV ○ g = g′. An
automorphism is an isomorphism of a graph to itself.
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We fix once and for all a finite set Gg,n of stable n-marked dual graphs of genus g, one
for each isomorphism class.

2.2. Contractions. We will need a notion for contractions of stable graphs. This notion
is ubiquitous in the literature of moduli of curves (see, for example [GP03, Appendix],
where contractions are key to giving an algorithmic description of the intersection prod-
uct of tautological classes). Here we first introduce a strict contraction (of one edge),
and then define a contraction to be a strict contraction followed by an isomorphism.
Unlike in [GP03] and in other sources, with our terminology an isomorphism of graphs
is not a particular case of a contraction.

If Γ is a n-marked graph and e ∈ Edge(Γ) is an edge, the strict (elementary) contraction
of e in Γ is the graph Γe where the half-edges corresponding to e are removed, the two
(possibly coinciding) endpoints v1 and v2 of e are replaced by a unique vertex ve, and
the genus and marking functions are extended to ve by pe(j) ∶= ve whenever p(j) equals
v1 or v2, and

ge(ve) ∶=
⎧⎪⎪⎨⎪⎪⎩

g(v1) + g(v2) when e is not a loop,

g(v1) + 1 when e is a loop.

If Γ and Γ′ are n-marked graphs, a (elementary) contraction c∶Γ → Γ′ is the choice of
an edge e of Γ, and of an isomorphism of Γe (the strict contraction of e in Γ) to Γ′. The
contraction c is completely determined by the two maps it induces cV ∶Vert(Γ)→ Vert(Γ′)
(on vertices) and cHE∶HalfEdge(Γ)→ HalfEdge(Γ′) (on half-edges).

2.3. Moduli of curves. In this paper we always assume that g, n are natural numbers
satisfying 2g − 2 + n > 0. Under this assumption, the moduli stack Mg,n parameteriz-
ing families of stable n-pointed curves of arithmetic genus g is a k-smooth and proper
Deligne–Mumford stack. We will denote by π∶Cg,n →Mg,n the universal curve, and by
ωπ its relative dualizing sheaf.

If (C,p1, . . . , pn) is a stable pointed curve, we define its dual graph ΓC to be the n-
marked graph whose vertices are the irreducible components of C, whose edges are the
nodes of C, whose genus map is given by assigning the geometric genus to each vertex,
and whose markings map is the assignment p∶{1, . . . , n} → Vert(ΓC) such that p(j) is
the vertex containing pj .

For each Γ ∈ Gg,n, the locusMΓ ⊂Mg,n of stable curves whose dual graph is isomorphic
to Γ is locally closed. We are now going to fix a notation for some special stable graphs
Γ (and their corresponding loci MΓ), which will play an important role in this paper.

For all pairs (i, S) with 0 ≤ i ≤ g and S ⊂ [n], such that if i = 0 then ∣S∣ ≥ 2, and if
i = g then ∣S∣ ≤ n− 2, we define Γ(i, S) to be the graph with two vertices of genera i and
g − i connected by one edge with markings S and Sc respectively. The closure of the
locus MΓ(i,S) in Mg,n is a divisor that we we will denote by ∆(i, S). In this paper we
will assume (in summation formulas etc.) that the set of indices {(i, S)} for 0 ≤ i ≤ g
and S ⊂ [n] satisfies the additional requirement that

(1) if n = 0, then i < g − i,
(2) if n ≥ 1, then 1 ∈ S.
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We adopt this convention so that there is a bijection between the set of indices (i, S)
and the set of boundary divisors ∆(i, S) whose inverse image in the universal curve
Cg,n →Mg,n consists of two components.

When g ≥ 1 and n ≥ 1 + δ1,g, for each j = 1 + δ1,g, . . . , n we denote by Γj the graph
with two vertices of genera 0 and g − 1 respectively, connected by two edges, and with
marking j on the first vertex and all other markings on the second vertex.

Another collection of curves that will play a crucial role in this paper, and that includes
those discussed in the previous two paragraphs, consists of the so-called generalized dollar
sign curves. These are by definition curves with two smooth irreducible components or,
equivalently, curves whose dual graph has two vertices and no loops.

2.4. The relative Picard group of the universal curve. In this paper we will often
need to work with the relative Picard group of the universal curve π∶Cg,n → Mg,n,
and with its affine subspaces of elements of fixed fiberwise degree. For this reason, we
introduce the following definition/notation.

Definition 2.1. We denote by

PicRelg,n(Z) ∶= Pic(Cg,n)/π∗(Pic(Mg,n))
the relative Picard group of the universal curve π and by

PicRelg,n(R) ∶= PicRelg,n(Z)⊗Z R
the relative Picard group of real line bundles.

For every d ∈ Z (resp. ∈ R), we let PicReldg,n(Z) (resp. PicReldg,n(R)) be the affine
subspace of PicRelg,n(Z) (resp. of PicRelg,n(R)) of elements of fiberwise degree d.

Let Σj be the j-th section of the universal curve π∶Cg,n →Mg,n, and ωπ be the relative
dualizing sheaf.

We make the following (canonical) choice for a base point in PicReldg,n(R):

(3)

⎧⎪⎪⎨⎪⎪⎩

d
2g−2 ⋅ ωπ when g ≥ 2,

d ⋅Σ1 when g ≤ 1.

The choice of a base point makes PicReldg,n(R) into a vector space isomorphic to PicRel0g,n(R).
We now recollect what will later be needed about the structure of the free abelian

group PicRelg,n(Z) and the striucture of its subgroup PicRel0g,n(Z). The results we state

follow from the description of the Picard group ofMg,n by Arbarello–Cornalba [AC87].

Definition 2.2. For each pair (i, S) satisfying the assumptions of Section 2.3, we define
C+
i,S and C−

i,S to be the two components of the universal curve π∶Cg,n →Mg,n over the

boundary divisor ∆(i, S). The component C+
i,S is the one that contains the first marked

point, and, when n = 0, it is the component of lowest genus. We define Wg,n to be the

subgroup of PicRel0g,n(Z) generated by the line bundles O(C+
i,S).

For j = 1 + δ1,g, . . . , n, define the twisted sections

Tj ∶=
⎧⎪⎪⎨⎪⎪⎩

O(Σj −Σ1) if g = 1,

O((2g − 2)Σj)⊗ ω−1
π if g ≥ 2.

(When g = 0 we have intentionally defined no twisted sections).
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Fact 1. The group PicRelg,n(Z) is freely generated

(1) by the components O(C+
i,S) over the boundary divisors when g = 0,

(2) by the components over the boundary divisors and by the first section Σ1 (or by
any other section) when g = 1,

(3) by the components over the boundary divisors, by the relative dualizing sheaf ωπ
and by all sections Σ1, . . . ,Σn when g ≥ 2.

Proof. As observed in [AC87], rational and homological equivalence coincide in the Pi-
card group ofMg,n, so H2(Mg,n) coincides with Pic(Mg,n). Identify the universal curve

π∶Cg,n →Mg,n with the map forgetting the last point and stabilizing π∶Mg,n+1 →Mg,n.

On Mg,n+1 choose the generators indicated in [AC98, Theorem 2.2]. Under this iden-
tification, the relative dualizing sheaf ωπ becomes κ1 + ψ1 + . . . + ψn and each section
Σj becomes the boundary divisor ∆(0,{j, n + 1}). Then use the right hand side of the
equalities in [AC98, Lemma 1.2] to eliminate redundant generators. When g ≤ 2, use
the relations indicated in (c) and (d) of [AC98, Theorem 2.2] to get rid of the relative
dualizing sheaf, and of the sections. �

By singling out the degree zero elements, we deduce the following corollary.

Corollary 2.3. The group PicRel0g,n(Z) is freely generated by the components O(C+
i,S),

and by the twisted sections Tj.

In particular, when either g = 0 or n = 0, the group PicRel0g,n(Z) coincides with Wg,n.

3. The universal stability space

In this section we construct and study the stability R-vector space Vg,n, whose affine

subspaces V d
g,n of elements of total degree d ∈ Z are the stability spaces of φ-compactified

universal Jacobians over Mg,n, which we will construct in Section 4.

In [KP16, Section 3] we introduced a similar stability space, which we called V TL
g,n : the

stability space of degree φ-compactified universal Jacobians of degree g−1 over moduli of
treelike curves. For more details on V TL

g,n and its relation to the space V g−1
g,n we introduce

here, we direct the reader to Remarks 3.11 and 4.5.
Our main result is Theorem 1, which describes the stability space Vg,n as the real

relative Picard group of the universal curve π∶Cg,n →Mg,n. An important by-product
is Corollary 3.6, where we show that, for fixed d, every degree d stability parameter is
uniquely determined by its restriction to all stable curves with two smooth irreducible
components that (1) have precisely one separating node, and (2) have two nodes and
one component of genus 0 that carries a unique marked point (the curves whose dual
graph is Γ(i, S) or Γj respectively, see Section 2.3). In order to make the statement of
our main result more transparent, in this section we allow d to be a real number.

Definition 3.1. Given Γ ∈ Gg,n a stable n-marked graph of genus g, we denote by

V (Γ) ∶= RVert(Γ) the free real vector space generated by the vertices of Γ. For d ∈ R, the
affine subspace V d(Γ) is the set of φ ∈ V (Γ) such that ∑v∈Vert(Γ) φ(v) = d.

Every automorphism α of Γ induces an automorphism of V (Γ) defined by α(φ)(v) =
φ(α(v)). An element φ ∈ V (Γ) is automorphism invariant if φ(v) = φ(α(v)) for all
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v ∈ Vert(Γ). A vector φ ∈ ΠΓ∈Gg,nV (Γ) is automorphism invariant if for every Γ ∈ Gg,n,
the component φ(Γ) of φ along Γ is automorphism invariant in the sense just defined.

Suppose that c∶Γ1 → Γ2 is a contraction of stable marked graphs as defined in Sec-
tion 2.2. We say that φ(Γ1) ∈ V (Γ1) is c-compatible with φ(Γ2) ∈ V (Γ2) if

(4) φ(Γ2)(v2) = ∑
c(v1)=v2

φ(Γ1)(v1)

for all vertices v2 ∈ Vert(Γ2). An element φ ∈ ΠΓ∈Gg,nV (Γ) is compatible with contractions
if its components are c-compatible for every contraction c∶Γ1 → Γ2.

Definition 3.2. We define Vg,n to be the subspace of ∏Γ∈Gg,n V (Γ) of vectors that are

automorphism invariant and compatible with contractions. For d ∈ R, we define V d
g,n

to be the affine subspace of vectors φ ∈ Vg,n that satisfy ∑v∈Vert(Γ) φ(Γ)(v) = d for all
Γ ∈ Gg,n.

Remark 3.3. We could have equivalently defined V d
g,n as the subspace of vectors of

∏Γ∈Gg,n V
d(Γ) that are automorphism invariant and compatible with contractions.

If π∶Cg,n →Mg,n denotes the universal curve, there is a natural multidegree homo-

morphism deg∶Pic(Cg,n)→ Vg,n defined by associating to L the vector φ = deg(L) whose
Γ-component φ(Γ) is the multidegree of L on any stable pointed curve whose dual graph
is isomorphic to Γ.

There is a natural choice of a basepoint in V d
g,n that mirrors the basepoint we chose

in Section 2.4 for the relative Picard group.

Definition 3.4. We define the canonical parameter as follows

(5) φdcan ∶=
⎧⎪⎪⎨⎪⎪⎩

d
2g−2 ⋅ deg(ωπ) when g ≥ 2,

d ⋅ deg(Σ1) when g ≤ 1.

In order to state the main result of this section, we first observe that for every L ∈
Pic(Mg,n), the stability parameter deg(π∗(L)) ∈ Vg,n is trivial, so the multidegree map
descends to a well-defined map deg∶PicRelg,n(Z)→ Vg,n.

Theorem 1. The multidegree homomorphism deg induces an isomorphism

deg∶PicRelg,n(R) = Pic(Cg,n)/π∗(Pic(Mg,n))⊗Z R→ Vg,n

from the relative Picard group of real line bundles to the stability space.

Before we prove Theorem 1, we now give another description of the stability spaces
that will be the one we will mostly use in this paper. To this end, we make the following
definition.

Definition 3.5. Let
Tg,n ∶= ⊕

# Vert(Γ)=2
Γ has no loops

V 0(Γ).

Then define:

(1) The vector space Cg,n is the quotient space of Tg,n obtained as the direct sum of
all V 0(Γ(i, S)) (see Section 2.3 for the definition of Γ(i, S)).
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(2) The vector space Dg,n is the quotient space of Tg,n obtained as the direct sum
of all V 0(Γj) for j = 1 + δ1,g, . . . , n (see Section 2.3 for the definition of Γj . In
particular, D0,n = {0}).

There are natural projections pC ∶Tg,n → Cg,n and pD ∶Tg,n →Dg,n.

There is a natural restriction map ρ∶V 0
g,n → Tg,n. More generally, for every d ∈ R,

there is a natural map ρd∶V d
g,n → Tg,n obtained by composing ρ with the translation

φ↦ φ−φdcan. Choosing the canonical parameter φdcan for the origin in V d
g,n makes ρd into

a homomorphism of vector spaces. We have then the following alternative description
of each degree d stability space.

Corollary 3.6. The composite homomorphism

(pC ⊕ pD) ○ ρd∶V d
g,n → Cg,n ⊕Dg,n

is an isomorphism.

We now aim to prove Theorem 1 and Corollary 3.6. Here is the idea of our proof when
g ≥ 2. It is not hard to reduce both results to proving that, in degree zero, both maps

PicRel0g,n(R)→ V 0
g,n → Cg,n ⊕Dg,n

are isomorphisms. Injectivity of PicRel0g,n(Z) → Cg,n ⊕Dg,n follows by computing the
bidegree of the free generators of the Picard group on curves whose dual graph is Γ(i, S)
and Γj (Lemma 3.7), and observing that the resulting matrix is nonsingular. From this

we immediately deduce that PicRel0g,n(R)→ Cg,n⊕Dg,n is an isomorphism, because the
source and the target have the same dimension. Our results follow if we can prove that
PicRel0g,n(R) → V 0

g,n is surjective, or equivalently that V 0
g,n → Cg,n ⊕ Dg,n is injective.

This is the content of Proposition 3.10, which we prove inductively in n. An important
intermediate step is Lemma 3.8, where we show that V 0

g,n → Tg,n is also injective. The
base case of the induction n = 0 is settled by combining Lemma 3.8 and Lemma 3.9

We now compute the bidegree of the free generators we chose in Corollary 2.3 for the
relative Picard group PicRel0g,n(Z) on the special dollar sign curves appearing in parts
(1) and (2) of Definition 3.5. When ordering the two components of the curve, we follow
the same convention that we chose in Definition 2.2 to order the two components C+

i,S

and C−
i,S of the inverse image of ∆i,S in the universal curve.

Lemma 3.7. The bidegrees of the components O(C+
i′,S′) and of the twisted sections Tk

on curves whose dual graph is Γ(i, S) and Γj is given by the following formulas:

(6) deg (O(C+
i,S)∣Γ(i′, S′)) =

⎧⎪⎪⎨⎪⎪⎩

(−1,+1) if (i′, S′) = (i, S),
(0,0) if (i′, S′) ≠ (i, S).

(7) deg (O(C+
i,S)∣Γj) = (0,0)

(8) deg (Tk∣Γ(i, S)) =
⎧⎪⎪⎨⎪⎪⎩

(2g − 2i − 1,2i + 1 − 2g) if k ∈ S,
(1 − 2i,2i − 1) if k ∉ S;
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(9) deg (Tk∣Γj) =
⎧⎪⎪⎨⎪⎪⎩

(2g − 2 − δ1,g,2 − 2g + δ1,g) if j = k,
(0,0) if j ≠ k.

Proof. Straightforward. �

Combining Lemma 3.7 with Corollary 2.3 we deduce that rational and numerical
equivalence are equivalent in PicRel0g,n(Z), and from this we deduce that the composite

map (pC ⊕ pD) ○ ρ ○ deg∶PicRel0g,n(Z)→ Cg,n ⊕Dg,n is injective.

An important fact that we will use throughout is that every element φ ∈ V 0
g,n is com-

pletely determined by its value over all curves with two smooth irreducible components
(the generalized dollar sign curves, see Section 2.3 and Definition 3.5).

Lemma 3.8. The restriction ρ∶V 0
g,n → Tg,n is injective.

Proof. Let Γ′ ∈ Gg,n be a stable graph. By applying compatibility with contractions we
can assume without loss of generality that Γ′ has no loops. Then consider a spanning
tree Γ of Γ′, and run the injectivity part of the proof in [KP16, Lemma 3.9], with the
only difference being that the right hand side of [KP16, Equation (15)] should equal
zero. �

Lemma 3.9. Let φ ∈ V 0
g,0 and Γ ∈ Gg be a graph with two vertices connected by ≥ 2 edges.

Then φ(Γ) is trivial.

Proof. We begin by fixing the notation for loopless graphs with two vertices and at least
two edges, when n = 0. Let α, i, j ∈ N such that α + i + j − 1 = g, α ≥ 2 and subject to
the stability condition min(i, j) = 0 Ô⇒ α ≥ 3. Define the stable graph Γ(α, i, j) ∈ Gg
to consist of two vertices v1, v2 of genera i and j respectively, with α edges connecting
v1 to v2. We aim to prove that φ(Γ(α, i, j)) = (0,0).

We first prove our claim in the special case when j = 0 (so 3 ≤ α = g + 1 − i). Consider
the trivalent graph GSymg that has 2g − 2 vertices v1, . . . , v2g−2 of genus 0, where each
vertex vi is connected to vi−1, vi+1 and vi+g−1 (here indices should be considered modulo
2g − 2). The cyclic group of order 2g − 2 acts on GSymg and its induced action on the
set of vertices Vert(GSymg) is transitive. By automorphism invariance, the component

φ(GSymg) of φ ∈ V 0
g,0 along GSymg is trivial.

Choose 2g − α consecutive vertices of GSymg and contract them to one vertex, pos-
sibly contracting all loops based at that vertex in the process. Then also contract the
complement set of α−2 vertices of GSymg to a second vertex and contract all loops based
at that vertex. The resulting graph is isomorphic to Γ(α, i,0) and by compatibility with
contractions we have that the Γ(α, i,0)-component of φ ∈ V 0

g,0 is trivial, thus proving the
claim in the case j = 0.

We now deduce that the Γ(α, i, j)-component of φ is zero for all α, i, j by using con-
tractions to relate Γ(α, i, j) to a graph of the form Γ(β, k,0), specifically the graph
Γ(i − j + 2, α + 2j − 2,0).

Assume without loss of generality that i > j. Consider the graph with 4 vertices
w1,w2,w3,w4 where w1 and w2 have genus j, and w3 and w4 have genus 0. The vertices
w1 and w2 are connected by α − 1 edges; w1 is connected to w3 by one edge, and so
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is w2 to w4. Finally, w3 and w4 are connected by i − j + 1 edges. By invariance under
automorphism, the component of φ ∈ V 0

g,0 along this graph equals (a, a,−a,−a) for some
a ∈ R.

Contracting the vertices w1,w2 and w4 to a single vertex and then contracting all
remaining loops on it, produces a graph isomorphic to Γ(i− j + 2, α+ 2j − 2,0). Because
we have already computed that the component of φ along this graph is trivial, we deduce
that a = 0.

Contracting the vertices w1,w3 and w4 to a single vertex and then contracting all
remaining loops on it, produces a graph isomorphic to Γ(α, i, j), so by compatibility with
contractions the component φ(Γ(α, i, j)) is also trivial, and the statement is proven. �

The following is the key part of the proof of the main result of this section.

Proposition 3.10. Both the multidegree homomorphism

(10) deg∶PicRel0g,n(R)→ V 0
g,n

and the composition

(11) (pC ⊕ pD) ○ ρ∶V 0
g,n → Cg,n ⊕Dg,n

are isomorphisms.

Proof. In Lemma 3.7 we computed the bidegrees of all generators of PicRel0g,n(Z) given
in Corollary 2.3 against curves whose dual graph is Γ(i, S) and Γj . The corresponding
square matrix is nonsingular: it consists of four blocks

((6) (7)
(8) (9)

) ,

where (6) is the identity, (7) is the zero matrix and (9) is (2g−2+δ1,g) times the identity.
Combining this with Corollary 2.3, we deduce that the composite map

(12) (pC ⊕ pD) ○ ρ ○ deg∶PicRel0g,n(R)→ Cg,n ⊕Dg,n is an isomorphism.

Because of this, both claims of this proposition follow by proving that

(13) (pC ⊕ pD) ○ ρ∶V 0
g,n → Cg,n ⊕Dg,n is injective.

The g = 0 case is easily settled. We have that Tg,n = Cg,n, so (13) follows immediately
from Lemma 3.8.

From now on we assume g ≥ 1 and we aim for proving (13). We simplify the problem
by quotienting out the images of the space Wg,n ⊗R via deg and via (pC ⊕ pD) ○ ρ ○deg.
Applying parts (6) and (7) of Lemma 3.7, we deduce that the image via (pC⊕pD)○ρ○deg
of Wg,n ⊗R equals Cg,n ⊕ {0}. Call Kerg,n the kernel of V 0

g,n → Cg,n. By (12) we know
that pD ○ ρ∶Kerg,n → Dg,n is surjective. For these reasons, to prove (13) it is enough to
prove the inequality

(14) dim(Kerg,n) ≤ n − δ1,g.

(A posteriori, (14) will be an equality.) We will prove Inequality (14) inductively in n.
When g = n = 1 it is straightforward to check that V 0

1,1 = {0}. When g ≥ 2, the n = 0

case of (14) follows from Lemma 3.9, which implies that (pC⊕pD)○ρ = pC ○ρ is injective.
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From now on, we apply the induction hypothesis. Assuming (14) holds, we aim to
prove it holds for n + 1, i.e.

(15) dim(Kerg,n+1) ≤ n + 1 − δ1,g.

Define the subspace Kg,n+1 ⊆ Kerg,n+1 as the subspace of vectors φ ∈ Kerg,n+1 such that
φ(Γ)(v) equals zero for all Γ ∈ Gg,n and v ∈ Vert(Γ) such that v becomes unstable after
forgetting the last marking n+1. To prove (15) it is enough to prove the two inequalities

(16) dim(Kerg,n+1) ≤ dim(Kg,n+1) + 1, and dim(Kg,n+1) ≤ dim(Kerg,n).
We first prove the inequality dim(Kerg,n+1) ≤ dim(Kg,n+1)+1. By applying Lemma 3.8

again, we identify Kerg,n+1 with a subspace of Tg,n+1, and observe that Kg,n+1 contains
(a posteriori, it will coincide with) the codimension-1 subspace of Kerg,n+1 of vectors φ
whose component φ(Γn+1) is trivial (for Γn+1 defined in Section 2.3).

We prove the inequality dim(Kg,n+1) ≤ dim(Kerg,n) by showing the existence of a
surjective linear map λ∶Kerg,n → Kg,n+1, which we define as follows. Let Γ ∈ Gg,n+1 and
Γ′ ∈ Gg,n be obtained from Γ by forgetting the last marking and possibly by stabilizing. If
φ ∈ Kerg,n, then λ(φ) is defined to equal φ on all vertices of Γ that correspond bijectively
to vertices of Γ′, and 0 on the extra vertex (if any). Because φ is automorphism-
invariant and compatible with contractions, so is λ(φ). Because φ ∈ Kerg,n, and because
of the very definition of λ, we have that λ(φ) ∈ Kg,n+1. Again by its very definition,
λ∶Kerg,n →Kg,n+1 is surjective (a posteriori, it will be an isomorphism). This concludes
our proof. �

From Proposition 3.10 we easily deduce Theorem 1 and Corollary 3.6.

Proof. (Of Theorem 1) By Proposition 3.10 we have that the multidegree map

deg∶PicRel0g,n(R)→ V 0
g,n

is an isomorphism. Moreover, both PicRel0g,n(R) ⊂ PicRelg,n(R) and V 0
g,n ⊂ Vg,n are

inclusions of codimension-1 subspaces. By definition, the multidegree map deg maps
the base point of PicReldg,n(R) we defined in Equation (3) to the base point of V d

g,n we
defined in Equation (5). This concludes our proof. �

Proof. (Of Corollary 3.6) By Proposition 3.10 we have that the projection

(pC ⊕ pD) ○ ρ∶V 0
g,n → Cg,n ⊕Dg,n

is an isomorphism. Translation by φdcan is also an isomorphism of vector spaces V d
g,n →

V 0
g,n. This concludes our proof. �

We conclude the section with some remarks on our Theorem 1.

Remark 3.11. In [KP16, Definition 3.7] we introduced a vector space V TL
g,n governing

universal stability over moduli of treelike curves, and when d = g−1. (Treelike curves are
stable pointed curves whose nodes are either separating or belong to a unique irreducible
component). By definition, there is a quotient map q∶V g−1

g,n → V TL
g,n , and by Corollary 3.6

the treelike stability space V TL
g,n is identified with Cg,n (after subtracting the degree g−1

canonical parameter φg−1
can ).
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By Corollary 3.6 we also have that if ψ ∈ V TL
g,n , the preimage q−1(ψ) can be identified

with Dg,n.

Remark 3.12. By Lemma 3.8 the restriction map V 0
g,n → Tg,n is injective, and in

Corollary 3.6 we have made a choice of a subset Q of the set of 2-vertices loopless graphs
such that the restriction map V 0

g,n →∏Γ∈Q V
0(Γ) is a surjection.

We claim that if Q is any such subset of the set of 2-vertices loopless graphs, then
Q must contain all Γ(i, S). Indeed as a consequence of Equation (6) we have that
Wg,n → V 0

g,n is injective. Moreover, similar to what was seen in Equation (7), the
bidegree of all elements of Wg,n on curves with two smooth components and at least two
nodes is trivial. It follows that the restriction map V 0

g,n → ∏Γ∈Q V
0(Γ) would not be

surjective, were Q not to contain some of the Γ(i, S).
In this sense, choosing all graphs Γ(i, S) in Definition 3.5 is natural. On the other

hand, choosing all graphs Γj in loc. cit. is arbitrary — one could have opted for another
choice of n − δ1,g loopless graphs with two vertices and at least two edges.

4. Compactified universal Jacobians

For all nondegenerate φ ∈ V d
g,n we construct φ-compactified universal Jacobians J g,n(φ)

as k-smooth, proper Deligne–Mumford stacks that are flat over Mg,n. Theorem 1 im-
plies that all such universal Jacobians can be constructed from Simpson’s result [Sim94,
Theorem 1.21]. We start by reviewing the notion of (Oda–Seshadri) φ-stability on a
single curve.

Let (C,p1, . . . , pn) be a stable pointed curve with dual graph Γ and C0 ⊂ C be a
subcurve (i.e. the union of some of the irreducible components of C) with dual graph
Γ0 ⊂ Γ. We write degΓ0

(F ) for the total degree degC0
(F ) of the maximal torsion-free

quotient of F ⊗OC0 and C0 ∩ Cc0 or Γ0 ∩ Γc0 for the set of edges e ∈ Edge(Γ) that join
a vertex of Γ0 to a vertex of its complement Γc0. Given a rank 1 torsion-free sheaf F of
degree d, we have degC0

(F ) + degCc
0
(F ) = d − δΓ0(F ) for δΓ0(F ) the number of nodes

p ∈ Γ0 ∩ Γc0 such that the stalk of F at p fails to be locally free.

Definition 4.1. Given φ ∈ V d(Γ), we define a rank 1 torsion-free sheaf F of degree d on
a nodal curve C/k over an algebraically closed field to be φ-semistable (resp. φ-stable) if

(17)

RRRRRRRRRRRR
degΓ0

(F ) − ∑
v∈Vert(Γ0)

φ(v) + δΓ0(F )
2

RRRRRRRRRRRR
≤ #(Γ0 ∩ Γc0) − δΓ0(F )

2
(resp. <).

for all proper subgraphs Γ0 ⊂ Γ.
We define φ ∈ V d(Γ) to be nondegenerate if every φ-semistable sheaf is φ-stable.

We say that φ ∈ V d
g,n is nondegenerate if for all Γ ∈ Gg,n, the Γ-component φ(Γ) is

nondegenerate in V d(Γ).

Definition 4.2. Given φ ∈ V d
g,n we say that a family of rank 1 torsion-free sheaves

of degree d on a family of nodal curves is φ-(semi)stable if Equation (17) holds on

all geometric fibers. We define J pre
g,n(φ) to be the category fibered in groupoids whose

objects are tuples (C,p1, . . . , pn;F ) consisting of a family of stable n-pointed curves
(C/T, p1, . . . , pn) of genus g, and a family of φ-(semi)stable rank 1 torsion-free sheaves
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F of degree d on C/T . The morphisms of J pre
g,n(φ) over a k-morphism t∶T → T ′ are pairs

consisting of an isomorphism of pointed curves t̃∶ (C,p1, . . . , pn) ≅ (C ′
T , (p′1)T , . . . , (p′n)T ),

and an isomorphism of OC-modules F ≅ t̃∗(F ′
T ).

For every object (C,p1, . . . , pn;F ) of J pre
g,n(φ)(T ) the rule that sends g ∈ Gm(T ) to

the automorphism of F defined by multiplication by g defines an embedding Gm(T ) →
Aut(C,p1, . . . , pn;F ) that is compatible with pullbacks. The image of this embedding is
contained in the center of the automorphism group, so the rigidification stack is defined,
and we call this stack the φ-compactified universal Jacobian J g,n(φ).

Theorem 1 implies that, for all nondegenerate φ’s, the φ-compactified universal Ja-
cobian can be given the structure of a proper Deligne-Mumford stack using Simpson’s
formalism, as we are now going to show.

Let (C,p1, . . . , pn) ∈Mg,n and A,M ∈ Pic(C) with A ample, and let a (respectively
m) be the total degree of A (respectively of M). In [KP16, Formula 10] we observed
that if φ(A,M) is defined by the formula

(18) φ(A,M) ∶= (d + 1 − g +m)
a

⋅ deg(A) + 1

2
⋅ deg(ωC) − deg(M),

and F is any rank 1 torsion-free sheaf of degree d on C, then F is φ-(semi)stable if and
only if F ⊗M is slope (semi)stable (in the sense of slope/Gieseker-stability) with respect
to A.

In [CMKV15, p.10], the authors proved that for every φ ∈ V d(ΓC) there exist A,M as
above such that φ = φ(A,M). Reasoning in the same way, and employing Theorem 1,
we can prove that the same holds over Mg,n.

Corollary 4.3. Let φ ∈ V d
g,n. Then there exist line bundles A,M on the universal

curve Cg,n → Mg,n with A ample relative to Mg,n such that, for every stable curve
(C,p1, . . . , pn), a rank 1 torsion-free sheaf F of degree d on C is φ-semistable if and only
if F ⊗M is A-(semi)stable.

Proof. We first observe that we can reduce to the case when φ has rational coefficients.
In order to do that, we claim that for all φ ∈ V d

g,n there exists φε ∈ V 0
g,n such that (φ+φε)

has rational coefficients, and φ-(semi)stability is equivalent to (φ + φε)-(semi)stability.
This follows immediately from Theorem 2, a result we prove later in Section 5, which
in particular asserts that the locus of degenerate φ’s in V d

g,n consists of a locally finite
union of hyperplanes.

Define M ∶= ωπ(p1 + . . . + pn)−k for k >> 0 a sufficiently large integer such that the
inequality

(19) φ(ΓC)(v) + degCv
(M) −

degCv
(ωC(p1 + . . . + pn))

2
> 0

holds for all (C,p1, . . . , pn) ∈Mg,n and for all vertices v of ΓC . That such k exists follows

from the fact that ωπ(p1 + . . . + pn) is ample relative to Mg,n, from the fact that the

multidegree of a line bundle on Cg,n is the same for curves with the same dual graph,
and from the fact that the set of dual graphs Gg,n is finite.
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For simplicity, denote by m the total degree of M . For any integer e, the parameter
ψ ∈ V e

g,n defined by

(20) ψ(ΓC) ∶=
e

2d + 2m − (2g − 2 + n) ⋅ (2φ(ΓC) + 2 degC(M) − degC(ωπ(p1 + . . . + pn)))

has rational coefficients (because φ does), and so by Theorem 1 it is equal to deg(A)
for some rational line bundle A ∈ PicReleg,n(R). By taking e to be sufficiently divisible,
we can clear denominators so that A is an integral line bundle. Moreover, by possibly
replacing e with −e, we can assume that

e

2d + 2m − (2g − 2 + n) > 0

holds. Because Inequality (19) holds for all geometric points ofMg,n, we deduce that A

is ample relative to Mg,n.

For all (C,p1, . . . , pn) ∈Mg,n we have then φ(ΓC) = φ(A,M)(ΓC), where the latter is
defined by Formula (18), and this concludes our proof. �

By combining Corollary 4.3, [KP16, Proposition 3.30] (Simpson’s representability re-
sult [Sim94, Theorem 1.21] rewritten in our language) and [KP16, Lemma 3.33], we
deduce the following.

Corollary 4.4. Let φ ∈ V d
g,n be nondegenerate. Then J g,n(φ) is a k-smooth Deligne–

Mumford stack, and the forgetful morphism J g,n(φ)→Mg,n is representable, proper and
flat.

Following existing literature we will refer to J g,n(φ) as a fine φ-compactified universal

Jacobian. The authors expect that when φ is degenerate J g,n(φ) can naturally be given
the structure of an Artin stack.

Remark 4.5. Corollary 4.4 generalizes our previous [KP16, Corollary 3.35] by removing
the hypothesis n ≥ 1 and allowing for any degree d (not necessarily d = g − 1).

Moreover, Corollary 4.4 describes all proper extensions of φ-compactified universal
Jacobians from moduli of treelike curves (see Remark 3.11) to moduli of stable curves. In
[KP16] we have already observed ([KP16, Lemma 3.26, 3.32]) that when n ≥ 1, for every

nondegenerate ψ ∈ V TL
g,n there exists a nondegenerate φ ∈ V g−1

g,n such that q(φ) = ψ. For

each nondegenerate φ ∈ q−1(ψ) we have now constructed an extension of J g,n(ψ)→MTL
g,n

to J g,n(φ)→Mg,n.
We observed in Remark 3.11 that the preimage q−1(ψ) can be identified with Dg,n.

In (26) we will give explicit hyperplanes describing when a given element of Dg,n is
degenerate.

Remark 4.6. Esteves constructed in [Est01] the compactified Jacobian of a family of
reduced curves over a scheme. Building on his work, Melo constructed the corresponding
compactified universal Jacobians over Mg,n in [Mel16].

In their formalism, a compactified universal Jacobian in degree d is is defined in
terms of a (universal) d-polarization, which is defined to be a vector bundle E of rank
r and degree r(d + 1 − g) on the universal curve π∶Cg,n → Mg,n. We claim that, for
rank 1 torsion-free sheaves of degree d, the notion of E-(semi)stability of Esteves–Melo
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[Mel16, Definition 2.9] coincides with the notion of φ(E)-(semi)stability that we gave in
Definition 4.1 after posing

(21) φ(E) ∶= deg(E)
r

+ deg(ωπ)
2

∈ V d
g,n.

The claim follows immediately by observing that, because the total degree is fixed,
the lower bound for degC0

(F ) of [Mel16, Inequality 2.1] on all subcurves C0 of C is
equivalent to Inequality (17) involving degΓC0

(F ) on all proper subgraphs ΓC0 ⊂ ΓC . As

a consequence of our claim, when φ(E) is nondegenerate, J g,n(φ(E)) and Melo’s moduli

stack J E,ssg,n are isomorphic as Deligne–Mumford stacks over Mg,n.
Formula (21) shows that every d-polarization E can be translated into a φ-stability

condition. We deduce the converse as an easy consequence of Theorem 1. We only
discuss the case when g ≥ 2 (the remaining cases are similar and easier).

For a given φ′ ∈ V d
g,n, Theorem 1 implies that there exist L ∈ Pic0(Cg,n) and N ∋ e >> 0

such that

φ′ − φdcan =
deg(L)

e
.

Defining the d-polarization by

E ∶= ω⊗e(d+1−g)
π ⊗L⊗(2g−2) ⊕O⊕((2g−2)e−1)

we have that φ′ = φ(E), and this completes the proof of our claim.

5. The stability hyperplanes and polytopes

In this section we describe how φ-stability depends on φ. The stability space V d
g,n

naturally decomposes into stability polytopes defined by the property that two stability
parameters define the same set of stable sheaves if and only if they lie in a common
polytope. The main result is Theorem 2, which explicitly describes the hyperplanes that
define the stability polytopes in terms of the description of the stability space given in
Corollary 3.6. One consequence of this description is that every stability polytope in
V d
g,n is a product of a polytope in Cg,n and of a polytope in Dg,n. To begin, we recall

some notation from [KP16, Section 3.2].
We say that a subgraph Γ0 ⊂ Γ is elementary if both Γ0 and its complement Γc0 are

connected. (The vertex set of an elementary subgraph is an elementary cut in the sense
of [OS79, page 31].) We now define the combinatorial objects that control stability of
rank 1 torsion-free sheaves on a stable pointed curve whose dual graph is Γ.

Definition 5.1. Let Γ be a stable marked graph. To a subgraph Γ0 ⊂ Γ and an integer
k ∈ Z we associate the affine linear function `(Γ0, k)∶V d(Γ)→ R defined by

(22) `(Γ0, k)(φ) ∶= k − ∑
v∈Vert(Γ0)

φ(v) + #(Γ0 ∩ Γc0)
2

.

When Γ0 ⊂ Γ is an elementary subgraph we call the hyperplane

(23) H(Γ0, k) ∶= {φ ∈ V d(Γ); `(Γ0, k)(φ) = 0} ⊂ V d(Γ)
a stability hyperplane. (An element φ ∈ V d(Γ) is nondegenerate according to Definition
4.1 if and only if φ does not belong to any such hyperplane.)
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A stability polytope in V d(Γ) is defined to be a connected component of the comple-
ment of all stability hyperplanes in V d(Γ):

V d(Γ) − ⋃
Γ0⊂Γ elementary

k∈Z

{φ ∈ V d(Γ) ∶ `(Γ0, k)(φ) = 0.}

If φ0 ∈ V d(Γ) is nondegenerate, we write P(φ0) for the unique stability polytope in
V d(Γ) that contains φ0. By definition we have

(24) P(φ0) = {φ ∈ V d(Γ) ∶ `(Γ0, k)(φ) > 0 for all `(Γ0, k) s.t. `(Γ0, k)(φ0) > 0}.

The stability polytope P(φ0) is a rational bounded convex polytope because in Equa-
tion (24) only finitely many `(Γ0, k)’s are needed to define P(φ0).

Assume φ1, φ2 ∈ V (Γ) are nondegenerate. As a consequence of [KP16, Lemma 3.20] we
have that φ1-(semi)stability coincides with φ2-(semi)semistability if and only if P(φ1) =
P(φ2). (The fibers JC(φ1) and JC(φ2) of the moduli stacks J g,n(φ1) and J g,n(φ2) over

a geometric point (C,p1, . . . , pn) ∈Mg,n whose dual graph is Γ parameterize different
set of sheaves.) In [KP16, Example 3.21] we showed that this would no longer be true if
in Definition 5.1 the elementary condition for the subgraphs was dropped.

The simplest nontrivial examples of this stability decomposition occur when C consists
of two components.

Example 5.2. (φ-stability on generalized dollar sign curves). Suppose that C is a nodal
curve consisting of two smooth irreducible components of genus i and j connected by α
nodes. Its dual graph Γ(α, i, j) has two vertices of genus i and j connected by α edges.
The degree d stability space V d(Γ) is the line in the plane V (Γ) consisting of points
with coordinates summing to d. The stability hyperplanes in V d(Γ) are the points whose
coordinates are integers when α is even, and are the points whose coordinates are 1/2
plus an integer when α is odd, as follows from Definition 5.1. The stability polytopes
are segments. If φ belongs to the relative interior of one such segment, the number of
bidegrees of line bundles that are φ-stable equals α. The stable bidegrees are those that
are closest (in the obvious sense) to φ. If φ varies from the relative interior of a segment
to a wall, the stable bidegree furthest away from that wall becomes strictly semistable
as does the nearest unstable bidegree.

We now define the analogous objects for V d
g,n. Similarly to what we did in Definition

5.1 for a single stable graph Γ, we introduce stability hyperplanes in V d
g,n such that φ is

nondegenerate according to Definition 4.1 if and only if φ does not belong to one such
hyperplane.

Definition 5.3. For Γ a stable marked graph, Γ0 ⊂ Γ an elementary subgraph, and k ∈ Z
an integer, we call the subset

H(Γ,Γ0, k) ∶= {φ ∈ V d
g,n ∶ `(Γ0, k)(φ(Γ)) = 0}

of V d
g,n a stability hyperplane.
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A stability polytope in V d
g,n is defined to be a connected component of the complement

of all stability hyperplanes in V d
g,n, i.e. a connected component of

V d
g,n − ⋃

Γ stable graph
Γ0⊂Γ elementary

k∈Z

H(Γ,Γ0, k)

and the stability polytope decomposition of V d
g,n is defined to be the set of all stability

polytopes.
We define Pg,n to be the set of stability polytopes of V d

g,n for all d ∈ Z.

As it was the case for V d(Γ), the stability polytopes of V d
g,n are rational bounded

convex polytopes.
Note that in Definition 5.3 we are abusing the term “hyperplane”, as it may a priori

happen that H(Γ,Γ0, k) = V d
g,n or that H(Γ,Γ0, k) = ∅. In fact, this can only happen

when n = 0, and the examples of this phenomenon are discussed in Remark 5.9.
It follows from Lemma 3.8 that a stability parameter φ ∈ V d

g,n is uniquely determined
by its restriction to all loopless graphs with two vertices. We now prove analogous
statements about stability hyperplanes and polytopes.

Lemma 5.4. If H(Γ,Γ0, k) ⊂ V d
g,n is a stability hyperplane, then there exists a loopless

2-vertex stable graph Γ′ and an elementary subgraph Γ′0 ⊂ Γ′ such that H(Γ,Γ0, k) =
H(Γ′,Γ′0, k).
Proof. Consider a sequence of contractions from Γ that contracts Γ0 to a vertex w and
its complement Γc0 to a vertex wc, and then contracts all resulting loops. Call Γ′ the
resulting graph with two vertices w and wc. By inductively applying compatibility with
contractions, we find φ(Γ′)(w) = ∑v∈Γ0

φ(Γ)(v). This implies that H(Γ,Γ0, k) equals
H(Γ′,Γ′0, k). �

A restatement of the lemma is that φ-stability can be detected by generalized dollar
sign curves:

Corollary 5.5. Let F be a family of rank 1 torsion-free sheaves of degree d on the
universal curve Cg,n → Mg,n, and let φ ∈ V d

g,n. If the restriction of F to the locus
of curves with at most two smooth irreducible components is φ-(semi)stable, then F is
φ-(semi)stable.

As another corollary of Lemma 5.4, we obtain the following partial description of the
set of stability polytope decomposition of V d

g,n.

Corollary 5.6. Given a stability polytope P(Γ) ⊂ V d(Γ) for every loopless 2-vertex stable
graph Γ, there is at most one stability polytope P ⊂ V d

g,n such that the Γ-component of P
equals P(Γ) for all Γ.

Using the results of Section 3, we will now write down the stability hyperplanes in
V d
g,n that we defined in Definition 5.3. By Corollary 3.6, an element φ ∈ V d

g,n is uniquely

determined by its image under (pC ⊕ pD) ○ ρd, i.e. the projection to Cg,n ⊕Dg,n of the

difference φ − φdcan. We will describe the stability hyperplanes in V d
g,n as inverse images

via (pC ⊕ pD) ○ ρd of certain hyperplanes in Cg,n ⊕Dg,n.
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In order to define the stability hyperplanes of Cg,n, denote by (αi,S ,−αi,S) the com-
ponent ψ(Γ(i, S)) of each element ψ ∈ Cg,n. For each triple (i, S, k) with (i, S) as in
Section 2.3 and k ∈ Z, we define the hyperplane H(i, S, k) in Cg,n by the equations

(25) H(i, S, k) ∶=
⎧⎪⎪⎨⎪⎪⎩

αi,S = k − (2i−1)(d+1−g)
2g−2 when g ≥ 2

αi,S = k − 1
2 when g ≤ 1.

(These are the translations, depending on d, of the integer translates of the coordinate
hyperplanes).

When g ≥ 1, to define the stability hyperplanes of Dg,n, for each element ψ ∈ Dg,n

we denote by (xj ,−xj) the component ψ(Γj) for j = 1 + δ1,g, . . . , n. For each triple
(`, S, k) with 0 < ` ≤ 2g − 2 + δ1,g, S ⊆ [n] and k ∈ Z (excluding the “unstable” case
` = 2g − 2 + δ1,g, S = [n]), we define the hyperplane H(`, S, k) in Dg,n by the equation

(26) H(`, S, k) ∶= {x⃗ ∶ xS +
`(d + 1 − g − x[n])

2g − 2 + δ1,g
= k} .

The following explicit description of the stability polytope decomposition of each
degree d stability space follows from Corollary 5.6 and from a direct calculation.

Theorem 2. The stability hyperplanes of V d
g,n are the pullback via pC ○ ρd of the hyper-

planes in Cg,n defined in (25), and the pullback via pD ○ ρd of the hyperplanes in Dg,n

defined in (26).

Proof. By Lemma 5.4, all stability hyperplanes of V d
g,n are inverse images of the hy-

perplanes in V d(Γ) for each 2-vertex loopless graph Γ under the natural restriction
maps. Because of this, proving Theorem 2 is reduced to explicitly compute the values
φ(Γ) for all 2-vertices loopless graphs Γ in terms of d and of the translated components
(φ−φdcan)(Γ(i, S)) and (φ−φdcan)(Γj). (That these uniquely determine φ is the content of

Corollary 3.6). In order to compute the components (φ−φdcan)(Γ) we apply Lemma 3.7
to find the unique L ∈ PicRel0g,n(R) such that deg(L) = φ − φdcan, and then compute
deg(L)(Γ).

For a given φ ∈ V d
g,n, define ψ ∶= φ − φdcan, and assume that the latter is uniquely

determined by ψ(Γ(i, S)) = (αi,S ,−αi,S) and ψ(Γj) = (xj ,−xj). Then the component of
φ along Γ(i, S) equals

φ(Γ(i, S)) =
⎧⎪⎪⎨⎪⎪⎩

(αi,S + d
2g−2(2i − 1),−αi,S + d

2g−2(2g − 2i − 1)) when g ≥ 2

(αi,S + d,−αi,S − d) when g ≤ 1.

By Example 5.2 with α = 1, the stability hyperplanes on curves whose dual graph is
Γ(i, S) are obtained by equating the first component to 1/2 plus an arbitrary integer.
This gives the set of stability hyperplanes of Cg,n that we defined in (25).

For Γ = Γ(α, i, S) an arbitrary loopless graph with two vertices of genus i and g−α+1−i
and with markings S and Sc respectively, connected by α ≥ 2 edges, we now compute
the Γ component ψ(Γ). To do so, we apply Formulas (6), (7), (8) and (9) and invert the
corresponding matrix, to find out that ψ = deg(L) for L ∈ PicRel0g,n(R) defined by

(27) L ∶= ∑
(i,S)

⎛
⎝
αi,S +∑

j∈S

2i + 1 − 2g

2g − 2
xj +∑

j∉S

1 − 2i

2g − 2
xj

⎞
⎠
⋅C−

i,S +
n

∑
j=1

xj

2g − 2
⋅ Tj .
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Translating back by φdcan, the Γ component φ(Γ) equals:

(28) φ(Γ) = (xS +
2i − 2 + α

2g − 2
⋅ (d − x[n]), xSc + 2g − 2i − α

2g − 2
⋅ (d − x[n])) .

By Example 5.2, the stability hyperplanes on curves whose dual graph is Γ(α, i, S) are
obtained by equating to an integer k (resp. to a half-integer k + 1

2) each component of
(28) when α is even (resp. α is odd). Equation (26) for the hyperplanes of Dg,n is then
deduced by replacing ` ∶= 2i − 2 + α. �

Remark 5.7. When ` = 2g − 2 + δ1,g, the hyperplanes H(`, S, k) of Dg,n ≅ Rn−δ1,g ∋
(x1+δ1,g , . . . , xn) are independent of d, and have the form

H =H(`, S, k) =
⎧⎪⎪⎨⎪⎪⎩
∑
j∈Sc

xj = k
⎫⎪⎪⎬⎪⎪⎭
.

These hyperplanes, when k equals zero, are known in the literature as the resonance
hyperplanes, see [CJM11] and [SSV08]. For each d ∈ Z, the hyperplane arrangement of
Dg,n described by Equations (26) is therefore a refinement of the integer translates of
the resonance hyperplane arrangement. (These two arrangements are in fact equal when
g = 1).

Further, we observe that for any d ∈ Z, the map xi ↦ xi+(2g−2) respects the collection
of stability hyperplanes (26) of Dg,n. A fundamental domain for these translations is any
n − δ1,g dimensional cube of edge length (2g − 2), and the hyperplane arrangement (26)
naturally defines a hyperplane arrangement on the torus obtained by identifying the
opposite faces of the cube.

Remark 5.8. In studying the stability polytope decomposition of V d
g,n for all d ∈ Z, it

is enough to analyze the cases d = 0, . . . , g − 1. Indeed, tensoring with ωπ and possibly
mapping L↦ L−1 gives isomorphisms PicReldg,n(Z)→ PicRel2g−2±d

g,n (Z).
Further to that, we observe that for any (d1, . . . , dn) ∈ Zn, the affine endomorphism

V e
g,n → V

e+∑dj
g,n defined by φ ↦ φ + deg(d1Σ1 + . . . + dnΣn) respects the hyperplanes (25)

and (26). This fact will play an important role in the next section, for example in
Lemma 6.10.

In light of Remarks 5.7 and 5.8, in Figures 1 and 2 we give a picture of the 2-
dimensional stability spaces Dg,n when g ≤ 3.

Some important concluding remarks are in order.

Remark 5.9. Here we analyze more explicitly the content of Theorem 2 when n equals
zero. In this case we have Dd

g,0 ≅ {0}, and from Equation (26) we derive the condition
for the trivial vector space not to coincide with a hyperplane:

(29)
`(d + 1 − g)

2g − 2
∉ Z for all 0 < ` ≤ g − 1.

In other words, a fine φ-compactified universal Jacobian of degree d onMg exists if and
only if Condition (29) holds. It is elementary to check that Condition (29) is equivalent
to the condition that d + 1 − g and 2g − 2 have no nontrivial common divisors:

(30) gcd(d + 1 − g,2g − 2) = 1.
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Figure 1. The stability space D1,3 (any d) and the spaces D2,2 in degrees
d = 0,1 respectively.
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Figure 2. The stability spaces D3,2 in degrees d = 0,1,2 respectively.

Remark 5.10. Here we analyze when φdcan belongs to a stability hyperplane. We begin
by observing that this does not depend on the number n of marked points.

The projection of φdcan to Dg,n does not belong to a hyperplane if and only if Condi-

tion (29) is satisfied. The projection of φdcan to Cg,n belongs to a stability hyperplane if
and only if d(2i − 1) is an odd multiple of g − 1 for some 0 ≤ i ≤ g, a condition that is
included in Condition (29).

We deduce that the canonical parameter φdcan is in the interior of a stability polytope
of V d

g,n if and only if Equation (30) is satisfied.

The other extreme cases occur when φdcan is a vertex of the polytope decomposition of
V d
g,n. By the above description, this occurs if and only if d = g −1+ `(2g −2), the degrees

we have studied in [KP16].

Remark 5.11. The stacks J g,n(φ) are related to the compactified universal Jacobians
constructed by Caporaso [Cap94] and by Pandharipande [Pan96]. We will focus on
Pandharipande’s work as that work is closest to the present paper. Pandharipande con-

structed a scheme P
d
g together with a natural transformation from the functor of isomor-

phism classes of objects of J g,0(φcan) to P
d
g. Furthermore, the natural transformation

is universal among all morphisms from the functor of isomorphisms classes to k-schemes
[Pan96, Theorem 9.1.1]. Caporaso does not parameterize rank 1 torsion-free sheaves on
stable curves and instead parameterizes line bundles on certain semistable curves that
satisfy a condition on the multidegree (balancedness). Pandharipande constructed an
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isomorphism between P
d
g and Caporaso’s compactification [Pan96, Theorem 10.3.1], and

recently Esteves–Pacini have shown that this isomorphism is induced by an isomorphism
of the corresponding moduli functors [EP16, Theorem 6.3].

In Corollary 4.4, we showed that J g(φdcan) is a Deligne–Mumford stack when d +
1 − g is relatively prime to 2g − 2 (so that φdcan is nondegenerate; Remark 5.10). The

condition of φdcan-stability is the condition considered by Pandharipande, so P
d
g is the

coarse space (in the sense of [KM97]) of J g(φdcan)). Under the isomorphism constructed

by Pandharipande, P
d
g corresponds to the coarse space of the stack constructed by

Caporaso in [Cap08, Theorem 5.9], and Esteves–Pacini’s result produces an isomorphism
between Caporaso’s stack and J g(φdcan).

Esteves–Pacini’s result also produces a natural transformation J g,n(φdcan)→ J g,0(φdcan)
defined by taking the direct image under the stabilization map C → Cst. To show this
natural transformation is well-defined, it is sufficient to show that the direct image of
a family of φdcan-semistable rank 1 torsion-free sheaves of degree d is again a family of
φcan-semistable rank 1 torsion-free sheaves of degree d. This follows from [EP16]. In-
deed, a computation shows that every φdcan-semistable sheaf is admissible (in the sense
of [EP16, Section 3]) with respect to C → Cst (i.e. the total degree of a φdcan-semistable
sheaf on a rational chain is always −1, 0, or +1). We conclude from loc. cit. that the
direct image of a family of φdcan-semistable rank 1 torsion-free sheaves is a family of rank
1 torsion-free sheaves whose formation commutes with base change. For line bundles
this is [EP16, Theorem 3.1], and the general case can be deduced from the line bundle
case using [EP16, Proposition 5.2]. Finally, a computation of stability conditions shows
that the direct image is φdcan-semistable.

While the stability parameter φdcan ∈ V d
g,n may be degenerate, we can use it to relate

P
d
g to a J g,n(φ) that is a Deligne–Mumford stack as follows. If φε is a nondegenerate

stability parameter that is sufficiently close to φdcan (in the sense that φdcan ∈ P(φε)), then
every φε-stable sheaf is φdcan-semistable, so there is a tautological natural transformation
J g,n(φε) → J g,n(φdcan). The stack J g,n(φε) is Deligne–Mumford, and by composition,
we get a morphism

(31) J g,n(φε)→ P
d
g

that lifts the forgetful map Mg,n →Mg.

6. Applications

In this section we apply our earlier results in two ways. We study the problem of
extending the sections of the forgetful map J dg,n → Mg,n, and the problem of finding
different isomorphism classes of fine φ-compactified universal Jacobians.

For fixed integers (k, d1, . . . , dn) satisfying k(2g − 2) + d1 + . . . + dn = d, we define a
natural map σk,d⃗∶Mg,n → J dg,n by the rule

(32) σk,d⃗∶ (C/S,Σ1, . . . ,Σn)↦ ω⊗kπ ⊗OC(d1Σ1 + . . . + dnΣn).
This section is sometimes called an Abel–Jacobi section. These are the only rational
sections of the forgetful map J dg,n →Mg,n from the universal Jacobian of degree d to
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the moduli space of smooth pointed curves, by the following result, which motivates
Section 6.1.

Fact 2. (Strong Franchetta conjecture.) Every rational section of the forgetful map

J dg,n →Mg,n is of the form σk,d⃗ for some k and d⃗ as above. In particular, every rational

section extends to a regular section Mg,n → J dg,n.

Proof. When n ≥ 1 this is a well-known consequence of Fact 1, see [AC87, Section 4].
When n = 0 this was proven by Mestrano [Mes87] and then by Kouvidakis [Kou91,
Theorem 2]. �

Fact 2 implies the following result on birational maps of universal Jacobians, which
motivates Section 6.2.

Corollary 6.1. Let α∶J e1g,n ⇢ J e2g,n be a birational map that commutes with the forgetful
maps to Mg,n. Then there exist

(k, d1, . . . , dn) ∈ Zn+1 and t ∈ {0,1} with k(2g − 2) +∑dj = e2 − (−1)te1,

such that α is defined by the rule

(33) α∶L↦ L(−1)t ⊗ ω⊗kC ⊗OC(d1Σ1 + . . . + dnΣn).
In particular, α is an isomorphism.

Proof. The case n = 0 is due to Caporaso, see [BFV12, Theorem 7.2]. From now on in
this proof we assume n ≥ 1.

By applying a translation automorphism, it is enough to prove the claim when e1 =
e2 = 0, so α is a birational automorphism of J 0

g,n that commutes with the forgetful

map. In this case, consider the birational automorphism β of the generic Jacobian J0
C

that α induces. Because the locus of indeterminacy is covered by rational curves and
a Jacobian variety cannot contain any rational curve, β is in fact an automorphism of
J0
C . Furthermore, β must preserve the principal polarization because the Néron–Severi

group of J0
C is cyclic for a very general C by [BL92, Corollary 17.5.2] and because ΘC

is the unique generator of the Néron–Severi group of J0
C that is ample. We conclude

using a version of the Torelli theorem [Mil86, Theorem 12.1] that implies that β must
lie in the group generated by translations and the involution L ↦ L−1. By Fact 2, this
group is the group of automorphisms of the form (33) with k(2g − 2)+∑dj = 0. Since α
coincides with an automorphism of the form (33) on the generic fiber, it must be equal
to that automorphism. �

In Corollary 6.1 it is essential to assume that α commutes with the forgetful maps.
The problem of characterizing arbitrary birational maps J e1g,n ⇢ J e2g,n is harder than the
problem of classifying birational maps Mg,n ⇢Mg,n, and this second classification is
not available, even for g and n large.

6.1. Extensions of Abel–Jacobi sections. Motivated by Fact 2, we fix integers
(k, d1, . . . , dn) and apply the earlier results of this paper to analyze extensions of the
Abel–Jacobi section σk,d⃗ toMg,n. The main result is Corollary 6.7, in which we charac-

terize the nondegenerate φ’s such that the Abel–Jacobi section extends to a well-defined
morphism σk,d⃗∶Mg,n → J g,n(φ).
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Corollary 6.7 follows from the more general Proposition 6.4. That proposition de-
scribes the locus of indeterminacy of σk,d⃗∶Mg,n ⇢ J g,n(φ) as the closure of the locus of

pointed curves (C,p1, . . . , pn) with two smooth irreducible components meeting in least
two nodes such that ωkC ⊗OC(d1p1 + . . . + dnpn) fails to be φ(C,p1, . . . , pn)-stable. To

prove this result, we first observe that all nondegenerate φ ∈ V d
g,n that have the same

projection to Dg,n correspond to isomorphic moduli stacks J g,n(φ), so we can reduce to

the case where ωkC ⊗OC(d1p1 + . . .+ dnpn) is stable on all curves with at most one node.
The proof that the indeterminacy locus is not smaller than the one that we claimed
essentially follows from the fact that there exists a unique rank 1 torsion free sheaf that

extends to Cg,n the restriction of ωkC ⊗ OC(d1p1 + . . . + dnpn) to C≤1
g,n, defined as the

universal curve over M≤1
g,n (the moduli stack of stable curves with at most one node).

The problem of resolving the indeterminacy of the Abel–Jacobi sections was raised by
Grushevsky–Zakharov in [GZ14], and in Remark 6.8, we discuss how that work relates
to the present paper.

In analyzing the locus of indeterminacy, the following line bundles on the universal
curve play a fundamental role.

Definition 6.2. Let O(D) be the line bundle on the universal curve Cg,n defined by

O(D) ∶= ω⊗kπ ⊗O(d1Σ1 + . . . + dnΣn),
and let φk,d⃗ ∈ V d

g,n be its multidegree:

(34) φd⃗,k(Γ(i, S)) ∶= (dS + (1 − 2i)k, d − dS + (2i − 1)k), φd⃗,k(Γj) ∶= (dj , d − dj).

(By Corollary 3.6, Equation (34) defines a unique element of V d
g,n).

For φ ∈ V d
g,n nondegenerate, we define the following modification of O(D) (slightly

generalizing what we did for k = 0 in [KP16, Section 5]):

O(D(φ)) ∶= O(D)⊗O
⎛
⎝ ∑(i,S)

(−dS − k(2i − 1) + ⌊φ(Γ(i, S))(v) + 1

2
⌋) ⋅C−

i,S

⎞
⎠
,

where v is the first vertex of Γ(i, S) according to the convention we fixed in Section 2.3,
and C−

i,S is defined in Section 2.4.

The line bundle O(D(φ)) is defined so that its restriction to smooth pointed curves
equals the restriction of O(D), and its restriction to stable curves with at most one
node is φ-stable. Stability follows from the following proposition, which describes the
properties of O(D(φ)) that we will use next.

Proposition 6.3. The line bundle O(D(φ)) satisfies the following.

(1) The restriction O(D(φ))∣(C,pi) to a stable pointed curve (C,pi) with one node is
φ(Γ(C,pi))-stable.

(2) The restriction of O(D(φ)) to a stable pointed curve with two smooth components
and at least two nodes equals the restriction of O(D).

Proof. The proof of the first claim follows by computing the bidegrees. The second
claim follows from the fact that the line bundles O(C−

i,S) become trivial when they are
restricted to curves with two smooth irreducible components and at least two nodes. �
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We can now state and prove our first characterization of the indeterminacy locus of
the Abel–Jacobi section.

Proposition 6.4. Given a nondegenerate φ ∈ V d
g,n, the locus of indeterminacy of the

rational map σk,d⃗∶Mg,n ⇢ J g,n(φ) defined by (32) is the closure of the locus Z(φ) of

stable curves (C,p1, . . . , pn) with two smooth irreducible components separated by at least
two nodes, such that the restriction O(D)∣(C,pi) fails to be φ(Γ(C,pi))-stable.

Proof. We first rule out the case n = 0. Indeed, without marked points, the total degree
d of O(D) is forced to be a multiple of 2g − 2. However, as we observed in Remark 5.10,
a nondegenerate φ ∈ V d

g,0 only exists when gcd(d + 1 − g,2g − 2) = 1.

We can therefore assume n ≥ 1. With this hypothesis we know by [KP16, Lemma 3.39]
that there exists a tautological sheaf Ftau(φ) on J g,n(φ) ×Mg,n

Cg,n. Call σ̃k,d⃗ the map

Cg,n → J g,n(φ) ×Mg,n
Cg,n obtained by pulling back the section σk,d⃗∶Mg,n → J g,n(φ).

We extend σk,d⃗ by the rule

(C,pi)↦ O(D(φ))∣(C,pi).
This rule makes σk,d⃗ into a well-defined morphism (at least) over U(φ), defined as

the locus of curves (C,p1, . . . , pn) of Mg,n such that the restriction O(D(φ))∣(C,pi) is
φ(Γ(C,pi))-stable. Proposition 6.3 implies the inclusion

(35) U(φ) ⊆Mg,n ∖Z(φ).
To conclude, we need to show that the inclusion of (35) is an equality.

By definition of tautological sheaf and of σ̃k,d⃗, over U(φ) we have an isomorphism of

line bundles

(36) σ̃∗
k,d⃗

∣π−1(U(φ))(Ftau(φ)) ≅ O(D(φ))∣π−1(U(φ)).

Because U(φ) contains the locus of curves ofMg,n with at most one node, its complement

inMg,n has codimension at least 2. By Corollary 7.2 there exists at most one extension
of (36) to a family of rank 1 torsion-free sheaves.

We are now ready to prove the reverse inclusion of (35). Assuming (C,p1, . . . , pn) ∈
Mg,n ∖ Z(φ), we want to prove that (C,p1, . . . , pn) belongs to U(φ). By applying
the same contractions that appear in the proof of Lemma 5.4, we can assume that
(C,p1, . . . , pn) has two smooth irreducible components. By the above paragraph, Isomor-
phism (36) is valid at (C,p1, . . . , pn). Because Ftau(φ)∣(C,pi) is by definition φ(Γ(C,pi))-
stable, so is O(D(φ))∣(C,pi). By the second part of Proposition (6.3), we also have that
O(D)∣(C,pi) is φ(Γ(C,pi))-stable. This proves that (C,p1, . . . , pn) ∈ U(φ), which concludes
our proof. �

The proposition just proven reduces the problem of analyzing the locus of indetermi-
nacy of σk,d⃗ to the problem of describing those φ such that O(D) is φ-stable. The line

bundle O(D) is φ-stable for φ = φk,d⃗, but this stability parameter is degenerate (so there

is not an associated Deligne–Mumford stack). We will now identify the nondegenerate
parameters φ ∈ V d

g,n such that O(D) is φ-stable, and those φ for which the Abel–Jacobi

section σk,d⃗ extends to a regular section Mg,n → J g,n(φ).
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Definition 6.5. Define the polytope Q(φk,d⃗) in V d
g,n through the isomorphism of Corol-

lary 3.6 by the inequalities

(37) ∣φ(Γ)(v) − φk,d⃗(Γ)(v)∣ < α
2

for all graphs Γ with two vertices v and w of genus i and g − α + 1 − i connected by α
edges and S ⊂ [n] markings on the first vertex.

We remark that Q(φk,d⃗) is not a stability polytope in the sense of Definition 5.3.

Corollary 6.6. For φ ∈ V d
g,n nondegenerate, the line bundle O(D) is φ-stable if and only

if φ belongs to Q(φk,d⃗), the closure of the polytope Q(φk,d⃗).

Proof. This follows from Lemma 3.8 (stability can be checked on curves with two compo-
nents), Definition 4.1 (the definition of φ-stability) and the fact that, for a nondegenerate
parameter, a sheaf is semistable if and only if it is stable. �

Corollary 6.7. For φ ∈ V d
g,n nondegenerate, the morphism σk,d⃗ extends to a regular

section Mg,n → J g,n(φ) if and only if the projection of Q(φk,d⃗) to Dg,n contains the

projection of φ.

Proof. This follows formally from Proposition 6.4, Corollary 6.6, and Theorem 2. �

Concretely, this means that σk,d⃗ extends to a regular morphism on Mg,n if and only

if the Equation (37) is satisfied by φ for all loopless graphs Γ with 2 vertices and at least
α ≥ 2 edges.

We conclude this section by comparing the result just proven with the work of
Grushevsky–Zakharov in [GZ14].

Remark 6.8. For d⃗ satisfying ∑di = 0, Grushevsky–Zakharov describe the indetermi-
nacy of the Abel–Jacobi section σd⃗ ∶= σ0,d⃗ considered as a morphism into a stack X ′

g → A′g
they call Mumford’s partial compactification. This partial compactification is an exten-
sion of the universal family of principally polarized abelian varieties Xg → Ag that is
constructed so that the fiber over a point of A′g −Ag is an explicit compactification of a
semiabelian variety with 1-dimensional maximal torus called a rank 1 degeneration.

The Torelli map extends to a regular morphism Mt≤1
g → A′g out of the locus Mt≤1

g ⊆
Mg of curves whose generalized Jacobian has torus rank at most 1. The pullback of X ′

g

under the composition Mt≤1
g,n →M

t≤1
g → A′g is an extension of the universal Jacobian in

degree 0, so we can consider σd⃗ as a rational morphism into X ′
g. Grushevsky–Zakharov

explain that, for a general choice of d⃗, the locus of indeterminacy is the locus of stable
pointed curves with at least 2 nonseparating edges [GZ14, Example 6.1, 6.2].

Grushevsky–Zakharov’s description of the locus of indeterminacy of σd⃗∶M
t≤1
g,n ⇢ X ′

g is

similar to our description of the indeterminacy locus of σd⃗∶M
t≤1
g,n ⇢ J g,n(φ) in Propo-

sition 6.4, but the pullback of X ′
g to Mt≤1

g,n is not one of the moduli stacks J g,n(φ).
Indeed, for all nondegenerate φ, the compactified Jacobian JC(φ) of a stable pointed
curve C that is the union of two smooth curves meeting in two nodes has two irreducible
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components (corresponding to the two φ-stable multidegrees of line bundles, as can be
shown by a computation), but the analogous fiber XC of X ′

g → A′g is irreducible.

The pullback of X ′
g is, however, related to compactified Jacobians. Every extension

of J 0
g , or a nonempty open substack of J 0

g , maps rationally to X ′
g because the uni-

versal abelian variety Xg pullsback to J 0
g under the Torelli map. In particular, the

degree 0 Caporaso–Pandharipande family P
0
g (discussed in Remark 5.11) maps ratio-

nally P
0
g ⇢ X ′

g. The authors believe it is expected that this rational map restricts to

an isomorphism over the locus of automorphism-free curves in Mt≤1
g . For example, Ca-

poraso describes the fiber P
0
C of P

0
g → Mg over a curve with 2 nonseparating nodes

as a rank 1 degeneration in [Cap94, Figure 8], and on [Nam76, page 240], Namikawa
indicates a relation between families over A′g, and more generally toroidal compactifica-
tions of Ag, and Oda–Seshadri’s compactified Jacobians. A proof that the two families
are isomorphic does not, however, seem to be available, although Alexeev has proven a

parallel statement for P
g−1
g [Ale04, Corollary 5.4]. Note that it is necessary to restrict

to the automorphism-free locus for otherwise the families have different fibers: for a
smooth curve C, the relevant fiber of X ′

g is JC but the fiber of P 0
g is JC/Aut(C).

The work in this section illuminates the indeterminacy of σd⃗∶Mg,n ⇢ P
0
g, and hence of

σd⃗∶Mg,n ⇢ X ′
g assuming P

0
g ⇢ X ′

g has no indeterminacy over the locus of automorphism-

free curves. Recall from Remark 5.11 that, if φε ∈ V 0
g,n is nondegenerate and sufficiently

close to φcan, there is a morphism J g,n(φε) → P
0
g that extends the forgetful morphism

on generic fibers. Depending on the choice of d⃗, the rational section σd⃗∶Mg,n ⇢ J g,n(φε)
may or may not have indeterminacy. We have shown, however, that we can find a second
φ′ ∈ V 0

g,n such that σd⃗∶Mg,n → J g,n(φ′) has no indeterminacy. Thus we have resolved

the indeterminacy by passing from the pullback of P g to the birational stack J g,n(φ′).
6.2. Different fine compactified universal Jacobians. The goal of this section is to
enumerate the isomorphism classes of fine compactified universal Jacobians J g,n(φ) and,

in particular, show the existence of non-isomorphic J g,n(φ)’s. We do this exploiting the

natural action of a group P̃Rg,n (defined in Definition 6.9) on the set of stability polytopes

Pg,n. In Lemma 6.11 we prove that two compactified Jacobians J g,n(φ1) and J g,n(φ2)
are isomorphic overMg,n if and only if P(φ1) lies in the same orbit as P(φ2). We study
the property of this group action in Corollary 6.14, where we show that it fails to be
transitive except in few special cases. We immediately deduce that, except for the special
cases, for a given (g, n), there exists at least two J g,n(φ)’s that are not isomorphic over

Mg,n. This is Corollary 6.15, and in Corollary 6.16, we prove the stronger statement

that, provided Mg,n is of general type, there exist J g,n(φ)’s that are not isomorphic as

stacks (rather than as stacks over Mg,n).
The group acting on stability polytopes is the following one.

Definition 6.9. Let P̃Rg,n be the generalized dihedral group defined by the action

L↦ L(−1)t of t ∈ Z/2Z on PicRelg,n(Z). In other words, P̃Rg,n is the semi-direct product

P̃Rg,n ∶= (PicRelg,n(Z)) ⋊Z/2Z.
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The group P̃Rg,n acts on families of rank 1 torsion-free sheaves on families of stable
pointed curves by the rule

(38) ψ(L, t)∶F ↦ F (−1)t ⊗L.
(That F ↦ F−1 gives a well-defined map in families follows from Lemma 7.4 in Sec-

tion 7). Similarly, the group P̃Rg,n also acts on the stability space Vg,n by the affine
endomorphisms

(39) λ(L, t)∶φ↦ (−1)t ⋅ φ + deg(L).
The following key observation relates the two actions ψ and λ.

Lemma 6.10. Assume that F has degree d and that φ ∈ V d
g,n. Then F is φ-(semi)stable

if and only if ψ(L, t)(F ) is λ(L, t)(φ)-(semi)stable. In particular, when φ is nondegen-
erate, ψ(L, t) induces a well-defined isomorphism J g,n(φ)→ J g,n(λ(φ)) that commutes

with the forgetful maps to Mg,n.

Proof. The claim follows immediately from Definition 4.1 and Definition 4.2. �

In fact, all isomorphisms that commute with the forgetful maps are defined by Rule (38)

for a suitable choice of (L, t) ∈ P̃Rg,n, as we prove in the next lemma.

Lemma 6.11. Let φ1 ∈ V e1
g,n and φ2 ∈ V e2

g,n be nondegenerate, and assume α∶J g,n(φ1) →
J g,n(φ2) is a birational morphism that commutes with the forgetful maps toMg,n. Then

there exists (L, t) ∈ P̃Rg,n such that α = ψ(L, t).

Proof. By Corollary 6.1, the restriction of α to J e1g,n is an isomorphism given by

L↦ L(−1)t ⊗ ω⊗kπ ⊗OC(d1Σ1 + . . . + dnΣn)
for some (k, d1, . . . , dn) ∈ Zn+1 and t ∈ {0,1}. The latter can be extended to a well-

defined morphism J ≤1
g,n(φ1)→ J

≤1
g,n(φ2) (here J ≤1

g,n(φ) denotes the restriction of J g,n(φ)
toM≤1

g,n, the substack parameterizing curves with at most one node) by the rule ψ(L, t)
as defined by Equation (38). Here we have defined

L ∶= ω⊗kπ ⊗OC(d1Σ1 + . . . + dnΣn +∑ai,S ⋅C−
i,S)

for C−
i,S as defined in Section 2.4, and ai,S defined to be the componentwise approximation

to the nearest integer of the restriction of

φ2 − (−1)tφ1 − deg (ω⊗kπ + d1Σ1 + . . . + dnΣn)
to a general curve of ∆(i, S).

While it is a priori not clear that this ψ(L, t) extends to a morphism J g,n(φ1) →
J g,n(φ2), the argument in the above paragraph shows that the restriction of α to

J ≤1
g,n(φ1) coincides with ψ(L, t). To conclude, we need to prove that α and ψ(L, t)

coincide on J g,n(φ1).
When n ≥ 1, consider a tautological sheaf Ftau(φ2) on J g,n(φ2) ×Mg,n

Cg,n (which

exists by [KP16, Lemma 3.39]). The pullback via α × Id and via ψ × Id of Ftau(φ2)
coincide on the locus

(40) J g,n(φ1)≤1 ×M≤1
g,n
C≤1
g,n
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where the underlying curve has at most one node. Because the locus (40) is an open
substack of J g,n(φ)×Mg,n

Cg,n whose complement has codimension 2, by Lemma 7.3 and

Corollary 7.2 the two pullbacks must coincide everywhere. This implies that ψ(L, t)× Id
can be extended to coincide with α × Id everywhere, which implies that α = ψ(L, t) on
J g,n(φ1).

When n = 0 apply the same argument of the above paragraph after first passing to an
étale cover U → J g(φ) such that a tautological sheaf exists on U ×Mg

Cg. (To prove that

α× Id and ψ × Id coincide, it is enough to check that the same holds étale locally.) This
concludes the proof. �

Here is a corollary of Lemma 6.11 that gives a new significance to the stability polytope
decomposition of Dg,n (see Theorem 2 and, in particular, Equation (26)).

Corollary 6.12. Let φ1, φ2 ∈ V d
g,n be nondegenerate. Then there exists an isomorphism

(or, equivalently, a birational morphism) J g,n(φ1)→ J g,n(φ2) that extends the identity

on J dg,n and that commutes with the forgetful maps to Mg,n if and only if the projections
of the stability polytopes P(φ1) and P(φ2) to Dg,n coincide.

Proof. Combine Lemma 6.10 and Lemma 6.11. �

Each affine endomorphism λ(L, t) maps stability polytopes (from Definition 5.3) to

stability polytopes. Thus λ induces an action, that we will call µ, of P̃Rg,n on the set of

stability polytopes Pg,n. Lemma 6.11 reduces the problem of deciding whether J g,n(φ1)
and J g,n(φ2) admit an isomorphism overMg,n to studying when the stability polytope

P(φ1) lies in the same orbit of P(φ2) under the µ action of P̃Rg,n.

To study the transitivity of the action of P̃Rg,n on Pg,n, we now exhibit fundamental

domains for the λ-action of P̃Rg,n on ∐d∈Z V
d
g,n. A fundamental domain U is a subset of

∐d∈Z V
d
g,n that contains at least one point of each orbit of P̃Rg,n, and no two points in

the interior of U are equivalent. To state our result, we identify V 0
g,n with Cg,n ⊕Dg,n

by means of Corollary 3.6.

Lemma 6.13. A fundamental domain for the action of PicRelg,n(Z) by the restriction

of λ on ∐d∈Z V
d
g,n is given by

(1) any hypercube in Cg,n of edge length 1 when g = 0;

(2) the product of any hypercube in Cg,n of edge length 1 with ∐2g−3
d=1 D

(d)
g,n ∶ gcd(d +

1 − g,2g − 2) = 1} when g ≥ 2 and n = 0;
(3) the product of any hypercube in Cg,n of edge length 1 and of any hypercube in

Dg,n of edge length 2g − 2 + δ1,g when g, n ≥ 1.

In the proof we will use the free generators of the relative Picard group given in Fact 1.

Proof. A fundamental domain for the subgroup Wg,n is given by the product of any

hypercube in Cg,n of edge length 1 with ∐d∈ZD
(d)
g,n.

When g = 0 the claim follows, because the action of the subgroup PicRelg,n(Z) gener-

ated by a section on the collection of points ∐d∈ZD
(d)
0,n is transitive.

When g ≥ 1, a fundamental domain for the action of the subgroup generated by ωπ
(or by Σ1 when g = 1) on ∐d∈ZD

(d)
g,n is given by ∐2g−3

d=0 D
(d)
g,n.
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When n = 0 the set ∐2g−3
d=0 D

(d)
g,0 consists of isolated points, and by Remark 5.9 the

nondegenerate d’s are those that satisfy gcd(d + 1 − g,2g − 2) = 1.
When n ≥ 1 we are left to study the action of the free rank n − δ1,g abelian group

generated by the sections (that are distinct from Σ1 when g = 1). If Σ is any such

section, translation by deg(Σ) identifies D
(d)
g,n with D

(d+1)
g,n . Modulo ωπ (or modulo Σ1

when g = 1), translation by (2g − 2+ δ1,g) ⋅Σj identifies any point (x1+δ1,g , . . . , xn) ∈D
(0)
g,n

with (x1+δ1,g , . . . , xj + (2g − 2 + δ1,g), . . . , xn). This concludes the proof. �

The orbits of the µ-action of P̃Rg,n on Pg,n can be read off from the action of Z/2Z =
P̃Rg,n/PicRelg,n(Z) on the collection of polytopes in the fundamental domains that we
exhibited in Lemma 6.13.

Corollary 6.14. The action µ of P̃Rg,n on the set Pg,n of stability polytopes

(1) has finitely many orbits;
(2) is free if and only if g, n ≥ 2, or g = 1 and n ≥ 3;
(3) is transitive if and only if g = 0, or (g, n) belongs to

(41) {(1,1), (1,2), (1,3), (2,0), (2,1), (3,0), (4,0)}.

Proof. We apply Lemma 6.13 choosing the product of hypercubes to equal the union
of (closed) polytopes (that this can be done follows from the equations of the stability
hyperplanes of Theorem 2). This reduces our claims to studying the action of Z/2Z on
the set of polytopes in this fundamental domain. All three claims follow then from the
explicit description of the stability walls given in Theorem 2. �

Here is the main result of this section.

Corollary 6.15. For fixed (g, n), there exist finitely many isomorphism classes over
Mg,n of J g,n(φ) for all d ∈ Z and all nondegenerate φ ∈ V d

g,n. When g > 0 and (g, n) is
not one of the values in (41), there exist nondegenerate φ1 ∈ V e1

g,n and φ2 ∈ V e2
g,n such that

J g,n(φ1) is not isomorphic to J g,n(φ2) over Mg,n.

Proof. By Lemma 6.10 and Lemma 6.11, an isomorphism over Mg,n exists if and only

P(φ1) and P(φ2) belong to the same orbit of the µ-action of P̃Rg,n on Pg,n. The first
claim then follows from the first part of Corollary 6.14, and the second claim follows
from the third part of the same Corollary. �

When the coarse moduli scheme Mg,n is a variety of general type, we can deduce that

two φ-compactified universal Jacobans J g,n(φ1) and J g,n(φ2) as in Corollary 6.15 are

in fact non-isomorphic as Deligne–Mumford stacks (and not just over Mg,n). To prove
this, we will employ the following lemma, in which we exploit the birational uniqueness
of the Iitaka fibration, arguing similarly to [BFV12, Theorem 7.3].

Lemma 6.16. If the Kodaira dimension κ(Mg,n) equals 3g − 3 + n, any isomorphism

J g,n(φ1)→ J g,n(φ2) commutes with the forgetful map to Mg,n up to an automorphism
that permutes the marked points.
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Proof. We claim that the Kodaira dimension κ(Jg,n(φi)) equals 3g − 3 + n. In view of
Iitaka’s easy addition inequality ([Uen75, Theorem 6.12]), we have

κ(Jg,n(φi)) ≤ dim(Mg,n) + κ(π−1([C,pi]))
for a general curve (C,p1, . . . , pn) of Mg,n. The reverse inequality

κ(Jg,n(φi)) ≥ κ(Mg,n) + κ(π−1([C,pi])) for (C,p1, . . . , pn) general in Mg,n

follows from the Iitaka conjecture for abelian varieties (the main result of [Uen78]). Since
we are assuming that κ(Mg,n) = dim(Mg,n), the claim follows.

The forgetful morphism of coarse moduli schemes p∶Jg,n(φi) → Mg,n is an algebraic
fibration (i.e. it is surjective and with geometrically connected fibers) of normal varieties
with κ(Jg,n(φi)) = dim(Mg,n), and the Kodaira dimension of a general fiber of p equals
zero, so p is the Iitaka fibration by [Uen75, Theorem 6.11].

Since the Iitaka fibration is a birational invariant, any isomorphism α∶Jg,n(φ1) →
Jg,n(φ2) induces a birational map β such that the diagram

Jg,n(φ1)

��

α // Jg,n(φ2)

��
Mg,n

β // Mg,n

commutes. To conclude, it is enough to show that β extends to an automorphism of
Mg,n that lifts to an automorphism of J g,n(φi) for i = 1,2.

The birational map β induces a rational map Mg ⇢ Mg, which is the identity by

[BFV12, Lemma 7.4]. Therefore, if C is a general curve of Mg, the birational map
β induces an automorphism of the Fulton-MacPherson compactification C[n] of the
configuration space of n points on C (the fiber of [C] under the forgetful map). By
[Mas16, Proposition 4.11], the automorphism group of C[n] is the symmetric group
on n elements. We deduce that β is the automorphism of Mg,n induced by a certain

permutation of the marked points, and as such it lifts to an automorphism of J g,n(φi).
�

We conclude this section with the following corollary.

Corollary 6.17. When the pair (g, n) is such that Mg,n is of general type, there ex-

ist nondegenerate φ1 ∈ V e1
g,n and φ2 ∈ V e2

g,n such that J g,n(φ1) and J g,n(φ2) are non-
isomorphic.

Proof. It is well-known that when g = 0 and when (g, n) belongs to the set (41), the
moduli scheme Mg,n is uniruled, in particular it is not of general type. By combining
this observation with Corollary 6.15 and Lemma 6.16, we deduce the statement. �

Remark 6.18. We believe that the problem of determining all pairs (g, n) such that
Mg,n is of general type is still open. A well-known sufficient condition for Mg,n to be of
general type is that g ≥ 24. This was proven by Eisenbud-Harris-Mumford in [EH87] and
[HM82] when n = 0. For n > 0 this follows from loc. cit. and from the Iitaka conjecture
for curves fibrations, which was proven by Viehweg in [Vie77].
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7. Appendix: Properties of reflexive sheaves

Here we collect some results about reflexive sheaves that we use in Section 6. The
conditions Gn, Rn, and Sn we discuss are taken from [Har94]

Lemma 7.1. Let f ∶X → S be a family of curves over a regular Deligne–Mumford stack
S and F a family of torsion-free sheaves on X . If X satisfies conditions G1 and S2, then
F is reflexive.

Proof. By [Har94, Theorem 1.9], it is enough to show that F satisfies S2. In other
words, we need to show that if x ∈ X , then depthFx ≥ min(2,dimOX ,x). Given x, set
s ∶= f(x). By hypothesis, OS,s is regular so its maximal ideal ms is generated by a regular
sequence a1, . . . , ad of length d ∶= dimOS,s. The images f∗(a1), . . . , f∗(ad) ∈ OX,x are
regular on Fx by flatness, and the quotient module Fx/f∗(a1) ⋅ Fx + . . . + f∗(ad) ⋅ Fx is
torsion-free by hypothesis. Pick an element b ∈ OX,x that acts as a nonzero divisor on
this quotient module. Then f∗(a1), . . . , f∗(ad), b is a Fx-regular sequence, so depthFx ≥
d + 1 = dimOX ,x. �

Corollary 7.2. With the hypothesis of Lemma 7.1, if G is a second family of rank 1
torsion-free sheaves on X and Y ⊂ X is a closed substack of codimension ≥ 2 such that
F ∣X−Y is isomorphic to G∣X−Y , then F is isomorphic to G.

Proof. This is a special case of [Har94, Theorem 1.12]. (The result is stated for schemes,
and we deduce the statement for stacks by passing to an étale cover.) �

Lemma 7.3. For any nondegenerate φ ∈ V d
g,n, the fiber product J g,n(φ) ×Mg,n

Cg,n
satisfies G1 and S2.

Proof. We will prove the stronger result that the fiber product is Cohen–Macaulay and
satisfies R1. Certainly J (φ)×Mg,n

Cg,n is regular at every pair consisting of a line bundle

and a point that is not a node (since J g,n(φ) →Mg,n is smooth at a line bundle and

Cg,n → Mg,n is smooth at a point that is not a node). The locus of such pairs has
codimension 1, so we conclude that the fiber product satisfies R1.

To complete the proof, observe that the deformation theory argument in [KP16,
Lemma 3.33] shows the completed local ring of the fiber product is a power series ring
over a ring that is the completed tensor product of rings of the form k[[x, y, u, v]]/xy−uv
or k[[t]]. In particular, the completed local ring is a power series ring over a complete
intersection ring and hence is Cohen–Macaulay, i.e. satisfies Sd for all d. �

Finally we show that, on a nodal curve, the rule sending a rank 1 torsion-free sheaf F
to its dual F ∨ commutes with base change and hence defines a isomorphism J g,n(φ)→
J g,n(−φ).

Lemma 7.4. Let F be a family of rank 1 torsion-free sheaves on a family C → S of
nodal curves. Then the formulation of the dual F∨ ∶= Hom(F,OC) commutes with base
change. In other words, if T → S is a k-morphism, then the natural map

F∨ ⊗OCT
→ (F ⊗OCT

)∨

is an isomorphism.
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Proof. By [AK80, Theorem 1.10], it is enough to show that Ext1(Is,OXs) vanishes for
every point s ∈ S, and because Xs is Gorenstein, vanishing is a special case of [Har94,
Proposition 6.1]. �
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