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Abstract. We study here the dynamics and stability of Probabilistic Population Processes, via the differential
equations approach. We provide a quite general model following the work of Kurtz [20] for aproximating discrete
processes with continuous differential equations. We show that it includes the model of Angluin et. al. [1], in the
case of very large populations. We require that the long-term behavior of the family of increasingly large discrete
processes is a good aproximation to the long-term behavior of the continuous process, i.e., we exclude population
protocols that are extremely unstable such as parity-dependent decision processes. For the general model we give a
sufficient condition for stability that can be checked in polynomial time. We also study two interesting subcases: (a)
protocols whose specifications (in our terms) are configuration independent. We show that they are always stable
and that their eventual subpopulation percentages are actually a Markov Chain stationary distribution. (b) protocols
that have dynamics resembling virus spread. We show that their dynamics are actually similar to the well-known
Replicator Dynamics of Evolutionary Games. We also provide a sufficient condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new types of systems will appear, designed or
emerged, of massive scale, expansive and permeating their environment, of very heterogeneous
nature, and operating in a constantly changing networked environment. Such systems are expected
to operate even beyond the complete understanding and control of their designers, developers, and
users. Although they will be perpetually adapting to a constantly changing environment, they will
have to meet their clearly-defined objectives and provide guarantees about certain aspects of their
own behavior.

We expect that most such systems will have the form of a very large society of networked
artefacts. Each such artefact will be unimpressive: small, with limited sensing, signal processing,
and communication capabilities, and usually of limited energy. Yet by cooperation, they will be
organized in large societies to accomplish tasks that are difficult or beyond the capabilities of
todays conventional centralized systems. These systems or societies should have particular ways to
achieve an appropriate level of organization and integration. This organization should be achieved
seamlessly and with appropriate levels of flexibility, in order to be able to achieve their global goals
and objectives.

Angluin et al. [1, 2] introduced the notion of a computation by a population protocol to model
such distributed systems in which individual agents are extremely limited and can be represented
as finite state machines. In their model, finite-state, and complex behavior of the system as a whole
emerges from the rules governing pairwise interaction of the agents. The computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents move around
and information can be exchanged between two agents whenever they come into contact with each
? A previous version of some aspects of this work has appeared as a brief announcement in DISC 2008 [9]



other. The goal is to ensure that every agent can eventually output the value that is to be computed
(assuming a fairness condition on the sequence of interactions that occur).

In [1] they also proposed a natural probabilistic variation of the standard population protocol
model, in which finite-state agents interact in pairs under the control of an adversary scheduler.
In this variant, interactions that occurs between pairs of agents are chosen uniformly at random
(i.e., by employing a random scheduler). We call the protocols of [1] by the term “Probabilistic
Population Processes” (PPP). In [3] they presented fast algorithms for performing computations
in this variation and showed how to use the notion of a leader in order to efficiently compute semi-
linear predicates and in order to simulate efficiently LOGSPACE Turing Machines. [12] studied
the acquisition and propagation of knowledge in the probabilistic model of random interactions
between all paris in a population (conjugating automata). A particular form of probabilistic pop-
ulation dynamics that is based on “baptising” the other member of the interaction was recently
studied in [11]. The topic of population protocols has been studied recently towards establishing
a broader understanding of the effects of local memory [22, 8], distrinct identiers [14], failures [4]
and existence of leader [6].

A notable set of recent works has studied (distributed) computation in worst-case dynamic
networks in which the topology may change arbitrarily from round to round (see e.g. [19, 23]).
Another interesting direction assumes random network dynamicity and the interest is on determin-
ing “good” properties of the dynamic network that hold with high probability and on designing
protocols for distributed tasks [10, 5]. For introductory texts cf. [7, 21, 26].

In this work we characterize the dynamics of population protocols by examining the rate of
growth of the states of the agents as the protocol evolves. We imagine here a continuoum of agents.
By the law of large numbers, one can model the undelaying aggregate stochastic process as a
deterministic flow system. Our main proposal here is to exploit the powerful tools of continuous
nonlinear dynamics in order to examine questions (such as stability) of such protocols. The use of
differential equations to model the dynamics of distributed interactions has been briefly used in the
past for task allocation in robot networks [13].

Such an approach was first suggested by the seminal work of Kurtz [20]. That approach ap-
proximates the behavior of a system of discrete dynamics with a system of differential equations in
the limit. This also relates to Wormald’s Lemma [28], taking into careful consideration the timing
of the conversion of the discrete to a continuous analog. Here is a brief description of Wormald’s
Lemma: Given a stochastic process in which tokens of type 1, 2, 3, etc. interact with a probability
that is a continuous function of their concentrations x1 overn, x2

n
, etc. (where xi counts the number

of tokens of type i), resulting in an increase or decrease of each xi by some constant determined
by the particular interaction that occurs, then in the limit as we increase n (where n is the size of
the population) while rescaling time as t/n we obtain a continuous process defined in terms of dif-
ferential equations where the derivative of the x vector with respect to time is given by the sum of
the various increments multiplied by their probabilities. Wormald’s Lemma says that for any fixed
time t/n, the distance between the discrete concentrations xi/n and the corresponding component
of the solution to the differential equation is o(1) with high probability.

We first provide a very general model for population protocol continuous dynamics. This model
(Switching Population Processes – SPP) includes the probabilistic population protocols (PPP) of
[1] as a special case, when the population is infinite and the time is continuous.

We show a sufficient condition for stability of SPP that can be checked in polynomial time.
We also examine two subclasses of SPP:



– The Markovian Population Processes (MAP). In these protocols, their specifications are config-
uration independent. In this very practical case, we show that MAP are always stable and their
unique population mix at stability is exacly the steady-state distribution of a Markov Chain.

– The Linear Viral Processes (LVP). They are probabilistic protocols motivated by the “random
pairing” of [1]. However, agents review their current state at a higher rate when they have
weak “immunity”. We view this as a general model for the dynamics of viruses spread in the
population. We show that LVP are equivalent to the well-known “Replicator Dynamics” of
Evolutionary Game Theory. We also give a sufficient condition for stability of LVP, based on
potentials.

2 The General Model (Switching Probabilistic Processes – SPP)

The network is modeled as a complete graphG where vertices represent nodes and edges represent
communication links between nodes. We use the letter n to denote |V |, the number of nodes in the
network. Each node is capable of executing an “agent” (or process) which consists of the following
components:

– K, a finite set of states. We use the letter k to denote |K|.
– X , a nonempty subset of K, known as the inital states or start states.

We consider a large population of n agents. Let q ∈ K be a state of the agent and let nq the
number of agents that are on the given state p. Then the total population size is n =

∑k
i=1 ni. The

proportion of agents that are at state q is xq =
nq

n
. We call xq the density of q. In the sequel q = qi,

where i ∈ {1, 2, . . . , k}.
A state assignment of a system is defined to be an assignment of a state to each agent in

the system. A configuration C is a map from the population to states, giving the current state of
every agent. The population state density then, at time t, can be described via a vector x(t) =
(x1(t), . . . , xk(t)). Here xi(t) = ni

n
, i = 1 . . . k.

In the sequel we assume that n → ∞. We are interested, thus, in the evolution of x(t) as time
goes on. We use a different model (compared to [1]) for describing a protocol P . We imagine that
all agents in the population are infinitely lived and that they interact forever. Each agent sticks to
some state in K for some time interval, and now and then reviews her state. This depends on x(t)
and may result to a change of state of the agent. Based on this concept, a switching population
protocol consists of the following two basic elements (specifications):

1. A specification of the time rate at which agents in the population review their state. This rate
may depend on the current, “local”, performance of the agent’s state and also on the configura-
tion x(t).

2. A specification of the switching probabilities of a reviewing agent. The probability that an
agent, currently in state qi at a review time, will switch to state qj is in general a function
pij (x(t)), where pi (x) = (pi1 (x) , . . . , pik (x)) is the resulting distribution over the set K of
states in the protocol.

In a large, finite, population n, we assume that the review times of an agent are the “birth times”
of a Poisson process of rate λi (x). At each such time, the agent i selects a new state according to
pi (x). We assume that all such Poisson processes are independent. Then, the aggregate of review



times in the sub-population of agents in state qi is itself a Poisson process of birth rate xiλi (x). As
in the probabilistic model of [1] we assume that state switches are independent random variables
accross agents. Then, the rate of the (aggregate) Poisson process of switches from state qi to state
qj in the whole population is just xi(t)λi (x(t)) pij (x(t)).

When n → ∞, we can model the aggregate stochastic processes as deterministic flows (see,
e.g., [24, 25, 28]). The outflow from state qi is

∑
j 6=i xjλj (x) pij (x). Then, the rate of change of

xi(t) (i.e. dxi(t)
dt

or ẋi(t)) is just

ẋi =
∑
j∈K

xjpji (x)λj (x) − λi (x)xi (1)

for i = 1, . . . , k.
We assume here that both λi (x) and pij (x) are Lipschitz continuous functions in an open

domain Σ containing the simplex ∆ where

∆ =

{
(xi, . . . , xk) :

K∑
i=1

xi = 1 , xi ≥ 0 , ∀i
}

By the theorem of Picard-Linderlöf (see, e.g., [16] for a proof), Eq. 1 has a unique solution for
any initial state x(0) in ∆ and such a solution trajectory x(t) is continuous and never leaves ∆.

2.1 SPP includes the probabilistic population protocols

We now show that our model of Switching Probabilistic Processes (SPP) is more general than the
model of [1] in the sense that it can be used to define the Probabilistic Population Processes (PPP).
We do this by showing the following:

Theorem 1. The continuous time dynamics of PPP (when n → ∞) are a special case of the
dynamics of SPP.

Proof. According to [1], the discrete-time dynamics of a Probabilistic Population Protocol (PPP)
are given by a finite set of rules, R of the form

(p, q) 7→ (p′, q′)

where p, q, p′, q′ ∈ K (K = {q1, . . . , qk}) together with a set A of n agents and an (irreflexive)
relation E ⊆ A× A.

Intruitively, a (u, v) ∈ E means that u, v are able to interact. [1] assumes further thatE consists
of all ordered pairs of distinct elements from A.

A population configuration in [1] is a mapping C : A 7→ K (K is the set of states). Let C and
C ′ be population configurations, and u, v be two distinct agents. [1] says that C can go to C ′ in one
discrete step (denoted C e7→ C ′) via an encounter e = (u, v) if

(C(u), C(v)) 7→ (C ′(u), C ′(v))

is a rule in R. This means that the state C(u) of u switches to C ′(u) and also C(v) switches to
C ′(v).

The execution of the system is defined to be a sequenceC0, C1, C2, . . . of configurations (where
C0 is the initial configuration) such that for each i, Ci 7→ Ci+1. An execution is fair if for any Ci



and Cj , such that Ci 7→ Cj and Ci occurs infinitely often in the execution, Cj also occurs infinitely
often in the execution.

In the probabilistic version of the above, [1] further states that e (the ordered pair to interact)
is chosen at random, independently and uniformly from all ordered pairs corresponding to edges e
in A× A ([1] calls it the model of Conjugating Automata, inspired also by [12]).

Let us now assume that n → ∞ and let xi = limn→∞
ni

n
be the population fraction at state

qi ∈ K at a particular configuration C, at time t. Consider the rule ρ in R

(qr, qm) 7→ (qi, qj)

Without loss of generality we assume in the sequel that r 6= m and i 6= j in such rules ρ in R. By
the uniformity and randomness, the probability that such an e, that follows from rule ρ, is selected
(as the encounter), is just xr(t)xm(t). Let Ai be the set of all (r,m) that are the left part of a rule ρ:

(qr, qm) 7→ (qi, qj)

or (qr, qm) 7→ (qj, qi)

Let Bi be the set of (r,m) that are the left part of a rule ρ′:

(qr, qm) 7→ (qr′ , qm′)

with r = i or m = i. Without loss of generality let r = i in ρ′. By considering a small interval ∆t
and taking limits as ∆t→ 0, due to fairness we get ∀i:

ẋi =
∑

(r,m)∈Ai

xr(t)xm(t) − xi(t)
∑

(i,m)∈Bi

xm(t) (2)

The above set of equations describe the continuous dynamics of PPP.
Now, consider our SPP dynamics and Eq. 1. Set λi (x) =

∑
xm(t), with m ranging over all

rules
(qr, qm) 7→ (qr′ , qm′)

with r = i, and all rules
(qm, qr) 7→ (qr′ , qm′)

with r = i (i.e., over all rules in Bi).
Also, set pmi = pri = 0, if r,m do not belong in any tuple of Ai.
Finally set

pri =
1

λr

∑
m∈C(r,i)

xm(t)

where C(r, i) is the set of indices m in the second argument of the left part of rules in Ai (i.e.
(qr, qm) 7→ (qr′ , qm′) with r′ = i or m′ = i).

Then our system of Eq. 1 (the SPP dynamics) becomes the system of Eq. 3 (the PPP dy-
namics). Thus the PPP dynamics are a special case of the SPP dynamics in the continuous time
setting. ut



Here is an example of the reduction described above. Let the rules R in PPP be

(q1, q2) 7→ (q3, q2)

(q3, q1) 7→ (q1, q2)

(q2, q3) 7→ (q2, q1)

This gives the continuous PPP dynamics:

ẋ1 = x1x3 + x2x3 − x1 (x2 + x3)

ẋ2 = x1x3 + x1x2 + x2x3 − x2 (x1 + x3)

ẋ3 = x1x2 − x3 (x1 + x2)

We then set

λ1 = x2 + x3

λ2 = x1 + x3

λ3 = x1 + x2

and
p21 =

x3

x1+x3
p11 =

x3

x2+x3
p31 = 0

p12 =
x3

x2+x3
p22 =

x1

x1+x3
p32 =

x2

x1+x2

p13 =
x2

x2+x3
p23 = p33 = 0

and this results in our SPP dynamics, namely:

ẋ1 = x1λ1p11 + x2λ2p21 + x3λ3p31 − x1λ1

ẋ2 = x1λ1p12 + x2λ2p22 + x3λ3p32 − x2λ2

ẋ3 = x1λ1p13 + x2λ2p23 + x3λ3p33 − x3λ3

3 Stability of nonlinear dynamic systems: a sufficient condition for
decidability.

Let us consider a dynamic system

ẋi = fi (x) , i = 1, . . . , k

that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points). Let x∗ be a solution of the system {fi (x∗) = 0, i = 1, . . . , k} which
we call a fixed point of the system.

By making a Taylor expansion around x∗ we obtain a linear approximation to the dynamics:

ẋi =
∑(

xj − x∗j
) dfi
dxj

(x∗)



Setting ξi = xi − x∗i we get

ξ̇i =
∑

ξj
dfi
dxj

(x∗)

which is a Linear System with a fixed point at the origin, i.e., ξ̇ = Lξ where the matrix L has
constant components Lij = dfi

dxj
(x∗). L is called the Jacobian Matrix. Then, by the theorem of

[15] we have

Corollary 1. If the fixed point x∗ is hyperbolic (i.e., all eigenvalues of L∗ have a non-zero real
part) then the topology of the dynamics of the nonlinear system around x∗ is the same as the
topology of a x∗ in the Linear system.

In fact, let each eigenvalue of L be φ = a+ iω.

Corollary 2. Let a 6= 0, ∀φ eigenvalues of L. Then

(a) If a < 0, ∀φ then x(t) approaches the fixed point x∗ as t→∞.
(b) If there exists a φ with a > 0 then x(t) diverges from the fixed point x∗ along the direction of

the corresponding eigenvector. That is, the fixed point x∗ is unstable.

Thus we get our main result of the system:

Theorem 2. If all fixed points x∗ of our population dynamics of Eq. 1 are hyperbolic, then we can
decide stability of the population protocol, around x∗, in polynomial time in the description of the
protocol.

Corollary 3. If all fixed points of PPP are hyperbolic, then the stability of PPP can be decided
in polynomial time.

4 Switching Population Processes with specifications independent of the
configuration

We now consider the special case of Eq. 1 where λi (x) = λi ∀i and where pij (x) = pij (specifi-
cations independent of the configuration x(t)). Then the basic system of Eq. 1 of the dynamics of
the population becomes:

ẋi =
∑
j∈K

xjλjpji − λixi i = 1 . . . k (3)

We call such protocols by the term “Markovian Population Processes” (MAP).
Let qij = λipij for all i, j, when i 6= j and when j = i let qii = λi(pii − 1). Then Eq. 3 in fact

becomes
dxi(t)

dt
= qiixi(t) +

∑
j 6=i

qkixk(t) (4)

Note that
∑

i∈K xi(t) = 1. But this is, in fact, the basic equation of the limiting-state probabilities
of a Markov Chain of k states with qij being the (continuous time) rates of change (see, e.g., [18],
pp. 53–55).



When all λij , i 6= j are non zero then the Markov Chain of Eq. 4 is irreducible and homo-
geneous. Then the limits limt→∞ xi(t) always exist and are independent of the initial state. The
limiting distribution is given uniquely as the solution of the following equations:

qjjxj +
∑
k 6=j

qkjxk = 0

So, we get our second major result:

Theorem 3 (Markovian Population Processes – MAP). Let the specifications {λj, pij} indepen-
dent of the configuration x(t). Let also λjpij 6= 0, ∀i, j where i 6= j. Then the Population Protocol
is stable. It always has a limiting unique configuration {xi i = 1 . . . k} independent of the ini-
tial configuration x(0), which is exactly the steady-state distribution of an ergodic, homogeneous
Markov Chain of k states.

5 A special case of Random pairing population protocols
(Linear Viral Processes – LVP)

Now, let us assume that all reviewing agents adopt the state of “the first man they meet in the
street”. This is clearly the case when the reviewing agent draws a pairing agent at random from the
population (according to the uniform probability distribution across agents) and adopts the state
of the so sampled agent. This is similar to the case of the protocols of [1] where the rules are
(qi, qk) 7→ (qm, qr) with r,m ∈ {i, j}. Formally then

pij (x) = xj ∀i, j ∈ K, ∀x(t)

Now Eq. 4 becomes
ẋi =

∑
j∈K

xjxiλj(x) − λi(x)xi

i.e.

ẋi =

∑
j∈K

xjλj(x)− λi(x)

 · xi (5)

We now propose a “linear” model in order to capture the immunity that an agent has against
other agents in the population. We postulate that agents immunity depend on their states. So all
agents at state state experience the same immunity. One can imagine immunity to be a measure of
the degree of protection of agents when they interact. So, when an agent in state qi interacts with
an agent in state qj we measure the immunity of the (qi, qj) pair by an integer aij and we require
here that aij = aji (we assume symmetric interactions). It is then natural to assume that agents
in state qi will wish to review their state more often when their immunity is low. In particular
we assume here that any agent in state qi has a review rate λi (x) that is linearly decreasing in
the average immunity of the agent in state qi. This is the simplest possible model. The formal
definitions follow:

Definition 2 (Immunity of a state). Let A = {aij} be a symmetric matrix of integers. The immu-
nity of an agent in state qi is ti (x) = ai1x1 + . . .+ aikxk.



Definition 3 (Average immunity of a population protocol, in a particular configuration). Let
A be a symmetric matrix of integers. The average immunity of the population, in configuration
{xi}, is: t (x) =

∑
i∈K xiti (x).

Definition 4 (Linear Viral Processes – LVP). The Linear Viral Processes are switching popula-
tion protocols with review rates of agents

λi (x) = γ − δti (x)

where γ, δ ∈ <, δ > 0 and also γ/δ ≥ ti (x), ∀x+∆, ∀i.

Now Eq. 5 becomes
ẋi = δ (ti (x)− t (x))xi (6)

Note, now, that this equation is a constant rescaling of the popular “replicator dynamics” of Evo-
lutionary Game Theory (see, e.g., [27]).

Definition 5. The general Lotka-Volterra equation for k types of a population is of the form

ẋi = xi

ri + k∑
j=1

aijxj

 i = 1 . . . k

where ri, aij are constant.

By the equivalence of the Replicator Dynamics with the Lotka-Volterra systems we then get:

Theorem 4. The dynamics of the linear viral protocols are equivalent to the Lotka-Volterra dy-
namics.

We can then give an alternative sufficient condition for the (asymptotic) stability of the Linear Viral
Processes.

Theorem 5. Let x∗ be a fixed point of Eq. 6, i.e., ti (x) = t (x) is satisfied for x = x∗. If∑k
i=1 x

∗
i ti (x) > t (x) for any x in a region around x∗, then x∗ is asymptotically stable.

In order to prove our theorem, we first consider the relative entropy of x and x∗ as

E(x) = −
k∑

i=1

x∗i ln

(
xi
x∗i

)
(7)

Clearly E(x∗) = 0. Then we need to prove the following claim:

Claim. E(x) ≥ E(x∗), ∀x

Proof. From Jensen’s inequality it folds:

exp (f(x)) ≥ f(expx)

where exp() is the expectation, x a random variable and f a convex function. Thus Eq. 7 becomes

E(x) ≥ − ln

(
k∑

i=1

x∗i
xi
x∗i

)
≥ − ln

(
k∑

i=1

xi

)
= − ln 1 = 0



ut

Proof. Based on Claim 5 we can prove Theorem 5 as follows:

dE (x(t))

dt
=

k∑
i=1

dE

dxi
ẋi

=−
k∑

i=1

x∗i
xi
ẋi

=−
k∑

i=1

δ (ti (x)− t (x))x∗i (due to Eq. 6)

=−δ
[

k∑
i=1

x∗ (ti(x)− t (x))
]

< 0 by assumption

Thus, in a region around x∗, dE
dt
< 0. Then E is a (strict) Lyapounov function (see, e.g., [17], pp.

18–19) and thus x∗ is stable asymptotically. ut

6 Conclusions

The population protocol model of Angluin et. al. [1] consists of a (large) population of finite-state
agents that interact in pairs. Each interaction updates the state of both participants according to
a transition function based on the pair of the participants’ previous states. A natural probabilistic
model, proposed in [1], assumes each interaction to occur between a pair of agents chosen uni-
formly at random. We call the protocols of [1] by the term “Probabilistic Population Processes”
(PPP). [12] studied the acquisition and propagation of knowledge in the probabilistic model of
random interactions between all paris in a population (conjugating automata). Curiously, the dif-
ferential equation approach for such protocols was not proposed till now.

We imagine here a continuoum of agents. By the law of large numbers, one can model the
underlying aggregate stochastic process as a deterministic flow system. Our main proposal here is
to exploit the powerful tools of continuous nonlinear dynamics in order to examine questions (such
as stability) of such protocols.

We have extended the class of [1] by defining a general model of “Switching Population Pro-
cesses” (SPP). We then examined stability for this general model and two important subclasses.
Our main point is that one can study stability and population dynamics of protocols, via nonlinear
differential equations that describe quite accurately the (discrete) population protocol dynamics
when the population is very large. The “differential equations” approach was indicated in the past
for the analysis of evolution of algorithms with Random Inputs, by [25, 24, 28]. Our approach pro-
vides a sufficient condition for stability of PPP of [1] that can be checked in polynomial time.
It also gives a more general way to specify population protocols, that reveals interesting classes.
A potential problem with this approach is that the long-term behavior of the continuous process
may not be a good approximation to the long-term behavior of the family of increasingly large
discrete processes it is supposed to describe in some cases. For example, it is not hard to construct
a population process that converges with high probability to a configuration in which all tokens
say EVEN if the number of 1 bits in the original population is even and ODD otherwise (this is a



consequence of the LOGSPACE computation results of Angluin et al. [1] reference in the paper).
No continuous limit can distinguish between these odd and even initial configurations, since we
can approach any given limit concentration arbitrarily using only odd or even initial configurations.
This is not a problem for Wormald’s Lemma [28] (the time needed to distinguish between odd and
even grows faster than n, so any for any fixed time t/n, the behavior of the discrete process doesn’t
depend much on parity yet), and it’s not a problem for the earlier work of Kurtz [20] (which uses
similar time scaling), but it should be a problem here, since the goal of the paper seems to be to
describe the behavior of very large probabilistic population protocols. In the cases studied in this
paper, this is not a problem, because the paper implicitly makes the same scaling assumption as
this previous work, which makes everything interesting happen at a time pushed off into the infinite
future. This limits the applicability of the results to finite processes. However such highly unstable
protocols have limited usage and can be analysed with other techniques.
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