
Independent Sets in
Restricted Line of Sight Networks

Pavan Sangha, Prudence W.H. Wong, and Michele Zito

Department of Computer Science, University of Liverpool, United Kingdom
{p.sangha2,michele,pwong}@liverpool.ac.uk

Abstract. Line of Sight (LoS) networks were designed to model wireless
networks in settings which may contain obstacles restricting visibility of
sensors. A graph G = (V,E) is a 2-dimensional LoS network if it can be
embedded in an n× k rectangular point set such that a pair of vertices
in E are adjacent if and only if the embedded vertices are placed on the
same row or column and are at a distance less than ω. We study the
Maximum Independent Set (MIS) problem in restricted LoS networks
where k is a constant. It has been shown in the unrestricted case when
n = k and n→∞ that the MIS problem is NP-hard when ω ≥ 2 is fixed
or when ω = O(n1−ε) grows as a function of n for fixed 0 < ε < 1. In this
paper we develop a dynamic programming (DP) algorithm which shows
that in the restricted case the MIS problem is solvable in polynomial
time for all ω. We then generalise the DP algorithm to solve three ad-
ditional problems which involve two versions of the Maximum Weighted
Independent Set (MWIS) problem and a scheduling problem which ex-
hibits LoS properties in one dimension. We use the initial DP algorithm
to develop an efficient polynomial time approximation scheme (EPTAS)
for the MIS problem in restricted LoS networks. This has important ap-
plications, as it provides a semi-online solution to a particular instance
of the scheduling problem. Finally we extend the EPTAS result to the
MWIS problem.

1 Introduction

LoS network. A wireless network typically consists of wireless devices that use
data connections to communicate wirelessly. Geometric graphs often provide a
good model for such networks with vertices representing wireless devices, and
edges representing communication between pairs of devices. Various types of
geometric graphs have been proposed to model wireless sensor networks. The
disk intersection model [5] is a commonly used one. Vertices are placed in some
physical space with the communication range for a vertex represented by a cir-
cle of some prescribed radius. Edges are formed between pairs of vertices whose
circles overlap. A benefit of this model is its ability to capture the constraint
of communication range restriction. This restriction implies that vertices should
be close in distance in order to communicate. Another constraint exhibited by
real world wireless networks are line of sight restrictions, often due to the pres-
ence of a large number of obstacles, like those often found in urban settings

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/131167313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Pavan Sangha, Prudence W.H. Wong and Michele Zito

for example. With this restriction vertices can only communicate if they are
both close in distance and also share a direct line of sight. While the presence
of obstacles can be difficult to model, it is clear that a good model of wireless
network should ideally incorporate both communication range restrictions and
line of sight restrictions. Frieze et al. [9] introduced the notion of random Line of
Sight networks to provide a model that incorporates both. Their work focused
on structural properties of the model focusing on connectivity. Since then con-
nectivity in higher dimensions, percolation and communication problems within
the same model have been studied [3, 6, 8].

For positive integers k and n let Zn,k = {(x, y) : x ∈ {1, . . . , n}, y ∈
{1, . . . , k}} denote the underlying point set. For two points p1 = (x1, y1), p2 =
(x2, y2) ∈ Zn,k, let d(p1, p2) = |x1 − x2| + |y1 − y2| denote the Manhatten dis-
tance between p1 and p2. The distance metric we use differs from the one used in
[9] which relies on the underlying point set being toroidal to ease calculations.
We say points p1 and p2 share a line of sight if x1 = x2 or y1 = y2. A graph
G = (V,E) is said to be a Line of Sight (LoS) network with parameters n, k
and ω if there exists an embedding fG : V → Zn,k such that {u, v} ∈ E if and
only if fG(u) and fG(v) share a line of sight and d(fG(u), fG(v)) < ω. We refer
to ω as the range parameter which is used to model the communication range
restriction. The range parameter can be a constant or grow monotonically as a
function of the parameters n or k.

MIS. We focus on the Maximum Independent Set (MIS) problem [7] in LoS
networks. The MIS in a graph can be seen as a measure of network dispersion and
independent sets share links with other important graph properties like vertex
covers [7]. For k × n line of sight networks, large independent sets could help
in covering scenarios like the following: “New York has many more streets than
avenues. On parade days the police may want to dominate all junctions by also
maximising presence”. In general graphs finding the largest independent set is
NP-hard [10] and even finding good approximation solutions are difficult [11].
For LoS networks in particular, if ω = 2 or n, it is not difficult to see that the
problem can be solved optimally. Sangha and Zito [12] showed on the other hand
for ω = O(n1−ε) where 0 < ε < 1 is fixed the problem is NP-hard. They also
provide approximation results, showing the problem admits a 2-approximation
for any ω and an efficient polynomial time approximation scheme (EPTAS) [4]
for constant ω.

Additional applications. The abstract problem we study also finds ap-
plication [2] in the following scheduling problems. Suppose an advertisement
company manages advertisements from some number of clients (cf. k) over a
long period of discrete time (cf. n). At any time advertisements of some subset
of clients are available to be aired but the company can only select a certain
number (cf. l) of them to advertise due to resource limitation. In addition some
“advertisement diversity” policy requires that advertisements from the same
client cannot be aired more than once in a given period of time (cf. ω). The goal
of the company is to schedule the airing of these advertisements satisfying the
constraints and maximise the number of advertisements aired (cf. MIS). This

Independent Sets in Restricted Line of Sight Networks 3

problem has one slight difference from the LoS problem in the sense that the
restriction with ω only applies on one dimension (the time dimension) but not
the other (the client dimension). Nevertheless, as to be showed later, the solution
we develop can be adapted to solve this problem.

Our contribution. In this paper we study the MIS problem on restricted
LoS networks. We focus on the restricted case that parameter k is a constant and
k < ω, in which case we show in Section 3 that the problem becomes polynomial
time solvable via a dynamic programming (DP) algorithm. We also show in Sec-
tion 4 that the DP algorithm can be extended to solve (i) the maximum weighted
independent set problem (MWIS) on restricted LoS networks, (ii) MWIS on LoS
networks with k > ω but both k and ω being constants, and (iii) the advertise-
ment scheduling problem mentioned above. We then in Section 5 apply the DP
algorithm to develop an EPTAS which improves the EPTAS in [12] by showing
that when k is restricted to being constant the algorithm no longer requires ω
to be constant. In addition we show that the EPTAS leads to a semi-online al-
gorithm [1] with performance ratio (1 + ε), which requires a look-ahead distance
dependent on ε. This gives a semi-online algorithm for the scheduling problem
in the case where k < ω and l = 1.

2 Problem Definitions and Preliminaries

The dynamic programming algorithm uses arrays consisting of 0, 1 elements. An
array of size x × y consists of x rows and y columns. We start by introducing
some notations.

– For any array A, a sub-array A[i..j] contains columns i, i+ 1, · · · , j.
– For any two arrays A1, A2 of size x × y, we say that A1 agrees with A2,

denoted by A1 ≤a A2, if A1[i, j] ≤ A2[i, j] for all 1 ≤ i ≤ x and 1 ≤ j ≤ y.
– For any array A, we denote by h(A) the “head” subarray of A containing all

but the last column of A; and t(A) the “tail” subarrary of A containing all
but the first column of A. That is, h(A) and t(A) have y − 1 columns if A
has y columns.

– A1 is said to be tail-aligned with A2 if t(A1) is the same as h(A2), i.e.,
t(A1) ≡ h(A2). In this case, we say A2 is head-aligned with A1.

– Let the column sum of an array A at column y be cs(A, y) =
∑
xA[x, y]

Given a LoS network G in Zn,k let array(G) satisfies array(G)[i, j] = 1 if
and only if location (i, j) ∈ Zn,k in the LoS embedding of G contains a vertex,
otherwise array(G)[i, j] = 0 Figure 1 provides an example. Given array(G) of size
k× p where ω ≤ p, an independent array I of array(G) is any array of size k× p
satisfying (i) I ≤a array(G) and (ii) I contains at most one 1 in each column and
for any row i and distinct columns j1, j2, if I[i, j1] = 1 and I[i, j2] = 1 it must
be the case that |j1 − j2| ≥ ω. We refer an independent array W specifically of
size k × ω as a “feasible array”. Since any feasible array has exactly ω columns
it contains at most one 1 per column but also at most one 1 per row. We denote
by F the set of all feasible of arrays of size k × ω.

4 Pavan Sangha, Prudence W.H. Wong and Michele Zito

Fig. 1. Figure (i) is a graph G and Figure (ii) is its LoS embedding in Z8,4 with ω = 4.
Figure (iii) represents the array layout of G and Figure(iv) is an independent array of
largest array sum, corresponding to the largest independent set in the graph G.

There is a clear connection between an independent array I of array(G) and
an independent set I of the LoS network G. More precisely given a set I ⊆ V
of a LoS network G = (V,E) embedded in Zn,k consider the array I satisfying
I[i, j] = 1 if and only if location (i, j) ∈ Zn,k contains a vertex in I. We observe
the following:

1. I is an independent set of G if and only if I is an independent array of the
array G.

2. |I| =
∑k
i=1

∑n
j=1 I[i, j].

We refer to the quantity
∑k
i=1

∑n
j=1 I[i, j] as the array sum of I which we

denote by as(I). Using the two observations above it follows that finding the
maximum independent set in a LoS network G embedded in Zn,k is equivalent
to finding the independent array of the array G with the largest array sum, we
refer to such an array as a largest independent array. In Section 3 we show how
our DP algorithm finds the largest independent array of array(G) by scanning
the feasible arrays of array(G).

3 Dynamic Programming

3.1 Algorithm

In this section we present a dynamic programming (DP) algorithm for finding
a largest independent array. For simplicity we refer to array(G) as G. It will be
clear from the context when referring to the LoS network G instead of the array
G. Given the array G of size k × n, for the purposes of the DP algorithm we
prepend G with ω columns consisting entirely of 0’s. We index these columns
from −(ω − 1), . . . , 0. Thus the input array G is of size k × (ω + n). The DP
algorithm works by sequentially computing the array sums of G[−(ω − 1)..j]
in G. The process keeps track of various sums MIS(j,W) depending on the
independent set choices in the right-most column of G[−(ω − 1)..j]. For j =
0, . . . , n let FG,j ⊆ F be the set of feasible arrays W satisfying W ≤a G[j −
ω + 1..j]. Note that in particular any independent array I of G[−(ω − 1)..j] for
1 ≤ j ≤ n satisfies I[j − ω + 1..j] ≡W for some W ∈ FG,j .

Algorithm 1 describes how to compute the array sum on an independent array
of G[−(ω− 1)..j] from information about G[−(ω− 1)..(j − 1)]. More specifically

Independent Sets in Restricted Line of Sight Networks 5

Algorithm 1 Computing the size of the largest independent array in G

1: Initialise: MIS(0,
#»
0) = 0, where

#»
0 is the k × ω array of all 0’s.

2: for j = 1, . . . , n do
3: for W ∈ F do
4: if W ∈ FG,j then
5: MIS(j,W) = maxW ′∈FG,j−1:t(W

′)≡h(W) MIS(j − 1,W ′) + cs(W,ω)
6: else
7: MIS(j,W) = 0
8: end if
9: end for

10: MIS(j) = maxW∈FG,j MIS(j,W)
11: end for

Fig. 2. Figure (i) shows the first 8 columns of an array G and the independent array
I ′ of G[1..8] has the largest array sum satisfying I ′[6..8] ≡ W ′. In Figure (ii) the
independent array I is the independent array of G[1..9] which has the largest array
sum satisfying I[7..9] ≡ W . Note t(W ′) ≡ h(W) and that I can be obtained from I ′

by appending the last column of W to I ′.

if W ∈ FG,j we try to extend the independent arrays in G[−(ω − 1)..(j − 1)]
to independent arrays in G[−(ω − 1)..j]. Let I ′ be an independent array in
G[−(ω − 1)..(j − 1)] such that I[(j − ω)..(j − 1)] ≡ W ′ for some W ′ ∈ FG,j−1
and t(W ′) ≡ h(W). By considering the next column of G, we extend I ′ to an
independent array I of G[−(ω− 1)..j] which satisfies I[j−ω+ 1..j] ≡W . There
are two cases for the sum cs(W,ω):

1. cs(W,ω) is 0 meaning that there is no entry in the last column of W . Then
as(I) = as(I ′) and hence the array sum for our independent set does not
increase;

2. cs(W,ω) is 1 meaning that we can increase the array sum of our independent
array by 1; note that since W is feasible, cs(W,ω) is at most 1.

The new independent array can be obtained by extending the one forG[−(ω−
1)..(j − 1)] by appending the ω-th column of W . Figure 2 shows an example.

3.2 Correctness

In this section we prove the correctness of Algorithm 1. We first prove in Lemma 1
that it is sufficient to consider FG,j and then the main result in Theorem 2.

6 Pavan Sangha, Prudence W.H. Wong and Michele Zito

Lemma 1. For j = 0, . . . , n − 1 for each W ′1 ∈ FG,j there exists W1 ∈ FG,j+1

such that t(W ′1) ≡ h(W1) and for each W2 ∈ FG,j+1 there exists W ′2 ∈ FG,j such
that t(W ′2) ≡ h(W2).

Proof. Take W ′1 ∈ FG,j and consider the simple feasible array W1 satisfying (i)
t(W ′1) ≡ h(W1) and (ii) the last column of W1 consists entirely of 0’s. Combining
(i) and (ii) with the fact that W ′1 ≤a G[j−ω+1..j] we conclude W1 ≤a G[j−ω+
2..j+1] and thus W1 ∈ FG,j+1. Similarly given W2 ∈ FG,j+1 consider the feasible
array W ′2 satisfying (i) t(W ′2) ≡ h(W2) and (ii) the first column consists entirely
of 0’s. Using similar reasoning to the first case we can conclude W ′2 ∈ FG,j . ut

Theorem 2. For 1 ≤ j ≤ n, MIS(j) computed by Algorithm 1 gives the size of
the maximum independent set in the graph G[j] induced by the vertices of the
first j columns in Zn,k.

Proof. Recall that MIS(j) = maxW∈FG,j
MIS(j,W) for all 1 ≤ j ≤ n and let

OPT(j) denote the size of the maximum independent set in the graph G[j]
induced by the vertices of the first j columns of Zn,k for all 1 ≤ j ≤ n. We
prove the theorem by induction on j. Firstly Lemma 1 proves that for each
W ∈ FG,j there exists W ′ such that maxW ′∈FG,j−1:t(W ′)≡h(W) MIS(j − 1,W ′) is
well defined. Next consider the case j = 0, since the first ω columns (indexed
from−(ω−1), . . . , 0) consist entirely of 0’s it implies that MIS(0) = 0. In addition
let

#»
0 ∈ F denote the feasible array consisting entirely 0’s then FG,0 = { #»

0 } and
consequently MIS(0) = MIS(0,

#»
0) = 0.

Base case: If cs(G[−(ω − 1)..1], 1) = 0 then OPT(1) = 0. FG,1 = { #»
0 } and

clearly MIS(1,
#»
0) = 0. Using the facts that (i) FG,0 = { #»

0 }, (ii) MIS(0,
#»
0) = 0,

(iii) cs(
#»
0 , ω) = 0 and (iv) t(

#»
0) = h(

#»
0) it follows that MIS(1,

#»
0) = MIS(0,

#»
0) +

cs(
#»
0 , ω). For all W 6∈ FG,1, MIS(1,W) = 0 as it must be the case that W ≤a

G[−(ω − 2)..1]. This means that MIS(1) = 0, which equals to OPT(1).
Otherwise cs(G[−(ω−1)..1], 1) > 0 meaning OPT(1) = 1. In this case FG,1 6=

{ #»
0 }. Thus there exists W ∈ FG,1 satisfying t(

#»
0) = h(W) and W 6= #»

0 , and thus
cs(W,ω) = 1. Since W it head-aligned with

#»
0 and contains a 1 in its final column

we conclude MIS(1,W) = 1. Finally since FG,0 = { #»
0 } and MIS(0,

#»
0) = 0

it follows that MIS(1,W) = MIS(0,
#»
0) + cs(W,ω). Again for all W 6∈ FG,1,

MIS(1,W) = 0. Then MIS(1) equals to 1, which equals OPT(1).
Inductive step: Suppose that the result holds for all columns of G indexed

from 1, . . . , j − 1, i.e., MIS(i) equals to OPT(i) for all 1 ≤ i < j. We show that
this implies MIS(j) equals to OPT(j). Assume on the contrary that there exists
an independent array I in G[−(ω− 1)..j] satisfying as(I) > MIS(j) and suppose
W ∗ ∈ FG,j satisfies W ∗ ≡ I[j − ω + 1..j]. Then as(I) > MIS(j) ≥ MIS(j,W ∗)
and thus

as(I) > maxW ′∈FG,j−1:t(W ′)≡h(W∗)MIS(j − 1,W ′) + cs(W ∗, ω). (1)

Consider the independent array I ′ in G[−(ω−1)..j−1] obtained by removing
the last column of I. Then it follows that as(I ′) = as(I)− cs(I, j). Furthermore
consider the simple feasible array W ′′ ∈ FG,j−1 satisfying I ′[j−ω..j− 1] ≡W ′′,

Independent Sets in Restricted Line of Sight Networks 7

then t(W ′′) ≡ h(W ∗). In addition cs(I, j) = cs(W ∗, ω) since the last column
of I is the same as the ωth column of W ∗. Thus as(I ′) = as(I) − cs(W ∗, ω),
substituting this into Inequality (1) we obtain

as(I ′) > maxW ′∈FG,j−1:t(W ′)≡h(W∗)MIS(j − 1,W ′).

Since I ′[j − 2 − ω..j − 1] ≡ W ′′ and W ′′ ∈ FG,j−1 satisfying t(W ′′) ≡ h(W ∗)
this is a contradiction to the optimality of max MIS(j − 1,W ′) for W ′ ∈ FG,j−1
satisfying t(W ′) ≡ h(W ∗). ut

3.3 Time Complexity

In this section we provide an upper bound on the worst case time complexity
of the DP algorithm. We describe how the use of n separate bipartite graphs
allow us to compute MIS(j) for 1 ≤ j ≤ n. Each bipartite graph consists of
two sets of feasible arrays namely those which agree with G[−(ω − 1)..(j − 1)]
and G[−(ω − 1)..j] respectively. Edges between classes represent pairs of arrays
which are tail-head aligned.

For an array G and 0 ≤ j ≤ n − 1 Bj = (FG,j ,FG,j+1, E) is a directed
bipartite graph to model the tail-head alignment of arrays with classes FG,j
and FG,j+1. For a pair of simple feasible arrays W ∈ FG,j and W ′ ∈ FG,j+1,
(W,W ′) ∈ E if and only if t(W) ≡ h(W ′).

For a directed graph G = (V,E) and vertex v ∈ V let N−(v) = {u ∈ V :
(u, v) ∈ E} and d−(u) = |N−(u)|. Similarly let N+(v) = {u ∈ V : (v, u) ∈ E}
and d+(u) = |N+(u)|. Let ∆+(G) = maxv∈V d

+(v) denote the maximum out-
degree of G. The bipartite graph Bj is used to compute MIS(j + 1,W) for each
W ∈ FG,j+1 by considering N−(W) and selecting the array W ′ ∈ N−(W) for
which MIS(j,W ′) is maximised.

An important piece of information required for the time complexity is to
obtain an upper bound on |FG,j | for all 0 ≤ j ≤ n. We do this by obtaining
an upper bound on |F|. We show that |F| = Θ(ωk) through the following two
observations. Firstly |F| ≤ (ω + 1)k since each simple feasible array contains at

most one 1 per row, or not contain a 1 at all. Secondly (ω)!
(ω−k)! ≤ |F| since there

are precisely ω(ω− 1)(ω− 2) · · · (ω− (k− 1)) simple feasible arrays with exactly
one 1 in each row. Thus |FG,j | = O(ωk). We make use of the following lemma
in the calculation of the worst case running time of the algorithm.

Lemma 3. For each Bj, the maximum out degree ∆+(Bj) ≤ k + 1

Proof. For each array in W ∈ FG,j there are at most k arrays W ′ ∈ FG,j+1

with a single 1 in the final column satisfying t(W) ≡ h(W ′) (one in each of the
k possible locations). Combining this with the array consisting of entirely 0’s in
its final column gives us a k + 1 possible feasible arrays. ut

Theorem 4. The worst case running time of the DP algorithm is O(nkωk).

8 Pavan Sangha, Prudence W.H. Wong and Michele Zito

Proof. For each W ∈ FG,j+1 using Algorithm 1 we obtain MIS(j + 1,W) by
comparing MIS(j,W ′) for each W ′ ∈ N−(W). Using Lemma 3 and the fact that
|FG,j | = O(ωk) it can be seen that there at most O(kωk) computations per
bipartite graph Bj . Finally given that there are n bipartite graphs Bj we obtain
a worst case running time of O(nkωk). ut

4 Extensions

In this section we extend our DP algorithm in Section 3 taking weight into
account and show how it provides solutions to the following three problems:
(i) The maximum weighted independent set problem for k < ω for constant k,
(ii) The maximum weighted independent set problem for k > ω for constant k
and ω, and (iii) A weighted version of the scheduling problem with parameter
1 ≤ l ≤ k for constant k.

Framework. W.l.o.g., we normalise the weight such that the minimum non-
zero weight is 1, in other words, G[i, j] = 0 or G[i, j] ≥ 1 for all [i, j]. Let W
be the set of all k × ω arrays with 0, 1 entries. A basis set F ⊆ W satisfies the
followings (i) { #»

0 } ∈ F , (ii) If W ∈ F then ∃W ′ ∈ F where t(W) ≡ h(W ′)
and the last column of W ′ is all 0’s and (iii) if W ∈ F then ∃W ′′ ∈ F where
t(W ′′) ≡ h(W) and the first column of W ′′ is all 0’s. We extend some notations
of Section 2 to account for the array generalisation. Given arrays G and I of the
same size I ≤a G if (i) G[i, j] = 0 ⇒ I[i, j] = 0 and (ii) 1 ≤ I[i, j] ≤ G[i, j] for
all G[i, j] 6= 0. Since I may contain values greater than 1 and W contains only
0, 1 we introduce an additional notion of equivalence, denoted by ≡a. Given an
array I of size k × ω, we say that I ≡a W provided I[i, j] = 0 if and only if
W [i, j] = 0.

We extend G to an array of size k × (ω + n) with columns indexed from
−(ω−1), . . . , n and the first ω columns consisting of entirely 0’s. Given a basis set
F let FG,j denote the set of feasible arraysW ∈ F satisfyingW ≤a G[j−ω+1..j].
The goal is to find an array I of maximum array sum satisfying I ≤a G and
I[j − ω + 1..j] ≡a W for some W ∈ FG,j for all 1 ≤ j ≤ n. It is important
to note that

#»
0 ∈ FG,j for all 1 ≤ j ≤ n and so the array of size k × (ω + n)

consisting entirely of 0’s satisfies the required conditions proving such an array
always exists. Let OPT(j) denote the array sum of the largest array satisfying
the conditions for G[−(ω − 1)..j] for all 1 ≤ j ≤ n. We are required to compute
OPT(n).

Algorithm 1 can be extended by modifying the main recurrence as follows:
F (0,

#»
0) = 0 and for each W ∈ F and 1 ≤ j ≤ n let

F (j,W) =

 max
W ′∈Fj−1:t(W ′)≡h(W)

F (j − 1,W ′) +W [ω]T ·G[j] if W ∈ FG,j ,

0 otherwise.

Note W [ω]T ·G[j] denotes the dot product of the ωth column of W and the
jth column of G. Let F (j) = maxW∈FG,j

F (j,W), we use the following theorem
to calculate OPT(n).

Independent Sets in Restricted Line of Sight Networks 9

In the full paper we prove that the recurrence and the associated dynamic
programming algorithm gives an optimal value.

Theorem 5. F (j) is equal to OPT(j) for all 1 ≤ j ≤ n.

We analyse the worst case running time of the algorithm in a similar way to
the case for the maximum independent set problem let Bj = (FG,j ,FG,j+1, E)
for 0 ≤ j ≤ n − 1. Let ∆+(Bj) denote the largest out-degree of an array in Bj
for 0 ≤ j ≤ n− 1 and let ∆+(F) = maxj(∆

+(Bj)). We then prove the following
lemma regarding the running time.

Lemma 6. The worst case running time of the generalised DP is O(n∆+(F)|F|).

Proof. Given Bj the number of computations required to compute F (j + 1,W)
for W ∈ Fj+1 is proportional to the in-degree d−(W). Thus the total number of
computations required for Bj is proportional to the number of edges which is at
most ∆+(F)|F|, since there are n bipartite graphs, the result follows. ut

Applications of the extension. We now show how we solve the three
problems introduced at the start of the section by choosing the basis set F
corresponding to the problem.

Weighted independent set. We consider the maximum weighted independent
set problem in LoS networks with k < ω, where each weight assigned to a vertex
has a value least 1. G[i, j] is the weight assigned to the vertex in location [i, j]
of the LoS embedding of G. Since this is just the weighted version our initial
problem we keep the same basis F which consists of all arrays with at most one
1 in each column and row.

Weighted independent set for larger k. We consider the maximum weighted
independent set problem in LoS networks with parameter k > ω where k ∈ N
is a constant. In this case an independent set I can have more than one 1 in a
column. In particular I satisfies that (i) for distinct columns j1, j2 if I[i, j1] = 1
and I[i, j2] = 1 then |j1 − j2| ≥ ω and (ii) for distinct rows i1, i2 if I[i1, j] = 1
and I[i2, j] = 1 then |i1 − i2| ≥ ω. Thus the basis set F represents the set of
k × ω arrays having at most one 1 per row and for each column the distance
between any pair of 1’s needs to be at least ω.

Weighted scheduling problem. We consider the scheduling problem where the
parameter 1 ≤ l ≤ k with the addition that prices charged have different weights
that are at least the value 1. Thus G[i, j] contains the price charged to client i
on day j. In this problem the basis set F is the set of all k × ω arrays which
consist of at most one 1 in each row and at most l, 1’s in each column.

We use Lemma 6 to calculate the worst-case running times are O(nkωk) for
the first problem, O(ntt(ω)(t+1)ω) for the second where t =

⌈
k
ω

⌉
, and O(nklωk)

for the third. Full details are provided in the full paper.

5 EPTAS

The DP algorithms in Sections 3 and 4 give optimal solutions to an offline
version of the MIS problem in LoS networks and scheduling problem where the

10 Pavan Sangha, Prudence W.H. Wong and Michele Zito

entire input is known in advance. This is unrealistic for example the duration
in the scheduling problem is large possibly spanning a year or more then it is
likely the input evolves over time. It is desirable to take a more online approach
with a good approximation performance. We improve the running time of the
EPTAS in [12] based on the DP algorithms, providing a solution which is semi-
online; in particular we assume we are allowed to observe the input up to a
certain “look-ahead” distance. We show how the look-ahead distance influences
the approximation ratio achieved.

Given a LoS network G, let Gj and Gj = G\Gj denote the induced subgraph
of G consisting of vertices which are embedded in the region with x-coordinates
from 1 to jω and from jω+1 to n, respectively. Let Ir be a maximum independent
set in Gr. We determine a value r∗ which is the “stopping point” of the overhead
distance necessary to achieve (1 + ε)-approximation. Precisely, we let r∗ be the
smallest integer such that |Ir∗+1| < (1+ε)|Ir∗ |. This means that for any 1 < r ≤
r∗, |Ir| ≥ (1 + ε)|Ir−1| (note that |Ir| ≤ kr due to the structural properties of a
LoS network embedding). We first show an upper bound on r∗ (proof is deferred
to the full paper).

Lemma 7. r∗ ≤
(

1+
√

1+4ln(1+ε)ln(k)

2ln(1+ε)

)2

To obtain a (1+ε)-approximation to the maximum independent set once r∗ is
obtained we remove Gr∗+1 from the graph G and apply the procedure iteratively
to the graph Gr∗+1. If I ′ is the independent set obtained from applying the
procedure to Gr∗+1 then we show that Ir∗ ∪ I ′ is a (1 + ε)-approximation to the
maximum independent set in G.

Lemma 8. Suppose that I ′ is a (1 + ε)-approximate independent set in Gr∗+1,
then I ≡ Ir∗ ∪ I ′ is (1 + ε)-approximate for G.

Proof. Recall that Ir∗+1 is the largest independent set in Gr∗+1, since |Ir∗+1| <
(1+ ε)|Ir∗ | it follows that Ir∗ is a (1+ ε)-approximate independent set on Gr∗+1.
Using the properties of LoS networks, for any vertex v ∈ Ir∗ the distance between
v and a neighbour u ∈ N(v) is at most ω. Thus the neighbourhood ∪v∈Ir∗N(v)
belongs to Gr∗+1 and we can conclude that Ir∗∪I ′ is an independent set in G. We
denote by α the independence number. Finally, α(G) ≤ α(Gr∗+1)+α(Gr∗+1)) ≤
(1 + ε)|Ir∗ |+ (1 + ε)|I ′| = (1 + ε)|Ir∗ ∪ I ′|, giving us the required result. ut

Suppose we define one iteration of the algorithm as the process of reaching
the first stopping point and second iteration as the next process of reaching the
second stopping point and so on. Given r∗ = O(ω) using Theorem 4 we can
deduce computing Ir using the DP algorithm has a worst case running time of
O(ωkωk). Since we repeat this calculation r∗ times in each iteration, the worst
case running time of an iteration is O(kωk+2). Finally since there are at most n
iterations the EPTAS has a worst case running time of O(nkωk+2).

We now turn our attention to the uses of the EPTAS for the scheduling
application in the case where k is constant, k < ω and l = 1, note under these

Independent Sets in Restricted Line of Sight Networks 11

restrictions the goal of the scheduling problem is equivalent to the MIS problem.
Suppose the advertisement company does not have a full schedule but would like
to start processing a schedule given some partial information. The EPTAS shows

a look-ahead distance of c1ω where c1 =

(
1+
√

1+4ln(1+ε)ln(k)

2ln(1+ε)

)2

is sufficient.

Once the we have computed the first stopping point r∗ we can process the
schedule up to r∗(ω+1) with a (1+ε)-approximation guarantee. We then repeat
this process when the next stopping point is computed and so on. A portion of
the schedule of length c1ω is sufficient to guarantee a stopping point is found.
Hence we say that the EPTAS uses a c1ω look-ahead distance.

Theorem 9. For any ε > 0, we have an EPTAS of time complexity O(nkωk+2)

provided we have a look-ahead of c1ω, where c1 =

(
1+
√

1+4ln(1+ε)ln(k)

2ln(1+ε)

)2

.

Extensions. Similar to Section 4, we show that with some small modifi-
cations our EPTAS can be used for the maximum weighted independent set
problem. We assume however that it is known a priori that there exists some
global parameter wmax > 1 which is constant such that for each vertex v in our
graph W (v) ≤ wmax.

Ir is defined as the largest weighted independent set in Gr. We define the
weight of Ir as W (Ir) =

∑
v∈Ir W (v). Then r∗ is defined as the smallest integer

such that W (Ir∗+1) < (1 + ε)W (Ir∗). I.e., for any 1 < r ≤ r∗, W (Ir) ≥ (1 +
ε)W (Ir−1) and W (Ir) ≤ krwmax. The proof of the following lemma follows from
Lemma 7 by setting k′ = kwmax.

Lemma 10. r∗ ≤
(

1+
√

1+4ln(1+ε)ln(k′)

2ln(1+ε)

)2

The proof of the following theorem is left for the full paper.

Theorem 11. Suppose that I ′ is a (1 + ε)-approximate weighted independent
set in Gr∗+1, then I ≡ Ir∗ ∪ I ′ is (1 + ε)-approximate for G.

6 Conclusions

In this paper we study the WMIS problem on restricted LoS networks where
parameter k is a constant, and propose a polynomial time dynamic programming
algorithm for the problem. We also use the DP algorithm to develop an EPTAS
that applies to a semi-online algorithm with performance ratio (1 + ε) and a
look-ahead distance dependent on ε, for any ε > 0.

For future work there are various avenues to explore. One immediate direction
is to study the LoS network with different ranges of various parameters. It is
interesting to determine the complexity of the problem (polynomial time solvable
or NP-hard) given different values of the parameters. We can also extend the
problem definition such that the distance restriction ω may take two different

12 Pavan Sangha, Prudence W.H. Wong and Michele Zito

values ω1 and ω2 for each of the two dimensions. Another direction is to study
other optmisation problems on LoS networks. Furthermore, we can explore other
scheduling problems with constraints that can modeled in a similar way as a LoS
network and adapt solutions to these scheduling problems.

References

1. Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-
2):3–26, 2003.

2. Richard Bellman, Augustine O Esogbue, and Ichiro Nabeshima. Mathematical
Aspects of Scheduling and Applications. Elsevier, 2014.

3. Béla Bollobás, Svante Janson, and Oliver Riordan. Line-of-sight percolation. Com-
binatorics, Probability and Computing, 18(1-2):83–106, 2009.

4. Marco Cesati and Luca Trevisan. On the efficiency of polynomial time approxi-
mation schemes. Information Processing Letters, 64(4):165–171, 1997.

5. Sung Nok Chiu, Dietrich Stoyan, Wilfrid S Kendall, and Joseph Mecke. Stochastic
geometry and its applications. John Wiley & Sons, 2013.

6. Artur Czumaj and Xin Wang. Communication problems in random line-of-sight
ad-hoc radio networks. In International Symposium on Stochastic Algorithms,
pages 70–81. Springer, 2007.

7. Reinhard Diestel. Graph theory. Springer, 2000.
8. Linda Farczadi and Luc Devroye. Connectivity for line-of-sight networks in higher

dimensions. Discrete Mathematics & Theoretical Computer Science, 15, 2013.
9. Alan Frieze, Jon Kleinberg, R Ravi, and Warren Debany. Line-of-sight networks.

Combinatorics, Probability and Computing, 18(1-2):145–163, 2009.
10. Michael R Gary and David S Johnson. Computers and intractability: A guide to

the theory of NP-completeness, 1979.
11. Johan H̊astad. Clique is hard to approximate within n1−ε. Electronic Colloquium

on Computational Complexity (ECCC), 4(38), 1997.
12. Pavan Sangha and Michele Zito. Finding large independent sets in line of sight

networks. In Algorithms and Discrete Applied Mathematics - Third International
Conference, CALDAM 2017, Sancoale, Goa, India, February 16-18, 2017, Proceed-
ings, pages 332–343, 2017.

