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ABSTRACT (150/150 words) 

Despite scientific and clinical advances in the field of pharmacogenomics (PGx), application into 

routine care remains limited. Opportunely, several implementation studies and programmes have 

been initiated over recent years. This article presents an overview of these studies and identifies 

current research gaps. Importantly, one such gap is the undetermined collective clinical utility of 

implementing a panel of PGx-markers into routine care, because the evidence base is currently 

limited to specific, individual drug-gene pairs.  The Ubiquitous Pharmacogenomics Consortium (U-

PGx), which has been funded by the European Commission’s Horizon-2020 programme, aims to 

address this unmet need. In a prospective, block-randomized, controlled clinical study (PREPARE), 

pre-emptive genotyping of a panel of clinically relevant PGx-markers, for which guidelines are 

available, will be implemented across healthcare institutions in seven European countries. The 

impact on patient outcomes and cost-effectiveness will be investigated. The program is unique in its 

multi-center, multi-gene, multi-drug, multi-ethnic, and multi-healthcare system approach.  
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INTRODUCTION 

Pharmacogenomics in precision medicine 

Pharmacogenomics (PGx) informed prescribing is one of the first applications of genomics in 

medicine (1, 2). It promises to personalize medicine by using an individual’s genetic makeup, which 

predicts drug response, to guide optimal drug and dose selection (3, 4). This removes the traditional 

‘trial and error’ approach of drug prescribing, thereby promising safer, more effective and cost-

effective drug treatment (5, 6). The discrepancy between germline and somatic PGx is of importance 

with regard to PGx clinical implementation (7). Despite significant progress in the field of somatic 

precision medicine, it is outside the scope of this review. Several randomized controlled trials (RCTs) 

have provided gold-standard evidence for the clinical utility of single drug-gene PGx tests to: 1) guide 

dosing for warfarin, (8, 9), acenocoumarol, phencopromon (10), and thiopurines (11), and; 2) guide  

the drug selection of abacavir (12). Additionally, several prospective cohort studies have been 

performed indicating the clinical utility of single drug-gene PGx tests to guide drug selection of 

carbamazepine (13) and allopurinol (14). Many argue though that the perceived mandatory 

requirement for prospective evidence to support the clinical validity of a PGx test, prior to its 

implementation into routine care, is incongruous and excessive (15-18). The notion of “genetic 

exceptionalism” has been held responsible (19). Several recent studies estimate that 95% of the 

population carry at least one actionable genotype (20, 21). Since actionable PGx variants are 

ubiquitous and germline PGx results are life-long, we consider that quantifying the collective clinical 

utility of a panel of PGx-markers to be more relevant than providing evidence for individual drug-

gene pairs. This will, however, still require the systematic implementation of a pre-emptive PGx 

strategy across multiple drugs, genes and ethnicities, and the robust assessment of this 

interventions impacts on both individual patient care and healthcare service processes. It is our 

expectation that the generation of such evidence will support the population-wide implementation 

of pre-emptive PGx testing. 
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Barriers preventing PGx implementation  

There have been advances in PGx implementation, but significant barriers remain, including those 

preventing clinical implementation (22-26). The remaining hurdles include improving physician and 

pharmacist awareness and education about PGx (27, 28), the development of tools to implement 

PGx results into the workflow of physicians and pharmacists (29, 30) and the undecided 

reimbursement of PGx tests. Finally, and most importantly, evidence presenting the collective 

clinical utility of a panel of PGx-markers remains to be established. It is envisaged that surpassing 

these daunting barriers will provide the impetus for the widespread adoption of both the Dutch 

Pharmacogenomics Working Group (DPWG) guidelines (31, 32) and the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) guidelines (33-46), which will help to realise the potential of PGx. 

Current implementation projects are addressing these barriers 

Several of the documented hurdles obstructing the implementation of PGx are currently being 

addressed by various initiatives, both in the United States and the European Union. A compact 

overview of these initiatives is provided in the following sections. From this overview, both trends 

and remaining research gaps have been identified. Various initiatives attempt to increase physician 

and pharmacist knowledge of PGx, and a diverse range of tools have been developed to integrate 

PGx testing results into their workflow. A significant research gap which, however, remains unmet is 

the absence of evidence presenting the collective clinical utility of a panel of PGx-markers. The 

Ubiquitous Pharmacogenomics Consortium (U-PGx), therefore, aims to provide this evidence in a 

large-scale, multi-drug, multi-gene, multi-center, multi-ethnic, approach to PGx testing. 

The Ubiquitous Pharmacogenomics Consortium (U-PGx) 

The U-PGx Consortium is an established network of European experts equipped to address the 

remaining challenges and obstacles for clinical implementation of PGx into patient care (16). Funded 

by a 15 million Euro Horizon 2020 grant from the European Commission, the U-PGx Consortium aims 

to make actionable PGx data and effective treatment optimization accessible to every European 

citizen. The U-PGx consortium will investigate the impact on adverse event incidence and healthcare 
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costs following the widespread implementation of pre-emptive PGx testing using a panel of clinically 

relevant markers. As opposed to many other implementation initiatives, U-PGx will implement PGx 

through a pre-emptive panel strategy as opposed to implementing an individual drug-gene pair. For 

reasons stated above, this approach is designed to provide relevant evidence supporting the 

implementation of PGx in routine care. U-PGx uses a multifaceted approach consisting of four 

components to achieve this objective, as shown in Figure 1, and members of each component are 

mapped in Figure 2. The first component focuses on developing the enabling tools necessary to 

integrate PGx test results into the electronic health record (EHR) and clinical decision support system 

(CDSS), taking into account the differences in health care models, languages and laws across the EU. 

These enabling tools consist of information technology (IT) solutions, PGx testing infrastructure, 

educating healthcare professionals in PGx, and translating the existing DPWG guidelines, which were 

updated only in Dutch language, to six other local languages. This component will pave the way for 

the unobstructed operation of component two. This second component will implement pre-emptive 

genotyping of a panel of 50 variants in 13 pharmacogenes into clinical practice, in the context of a 

large prospective, international, block-randomised, controlled study (n=8,100). This study is called 

the PREPARE study (PREemptive Pharmacogenomic testing for prevention of Adverse drug 

REactions). Primarily the study aims to assess the impact of PGx implementation on adverse event 

incidence. Additional outcomes include cost-effectiveness, process indicators for implementation 

and provider adoption of PGx. A third component applies innovative methodologies such as next-

generation sequencing (NGS), pharmacokinetic modelling and systems pharmacology to discover 

additional variants associated with drug response and to elucidate drug-drug-gene interactions. The 

final, fourth, component will focus on ethical issues of the project and implications for PGx, and 

spearheads outreach and educational activities to influential stakeholders. In comparison to the US, 

projects within the EU likely encounter even more challenges to achieve implementation because of 

the multi-linguistic settings, different legal environments and heterogeneous healthcare systems of 



7 
 

EU countries. The specific approaches adopted by these components and the design of the PREPARE 

study are further elaborated in the following sections. 
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OVERVIEW OF CURRENT IMPLEMENTATION STUDIES  

Several implementation studies have been initiated in the United States since 2010. An overview of 

published initiatives is given in Table 1. Additional, unpublished, initiatives may exist outside the 

scope of this table. A subsection of these studies has previously been summarized elsewhere (20).  In 

the following sections the objectives and implementation strategies of these clinical implementation 

studies and programmes are summarized.  

Cleveland Clinic’s Personalized Medication Program  

The Cleveland Clinic established the Center for Personalized Healthcare in 2011, to incorporate 

unique patient characteristics, including genetics, into the medical decision making process. The 

center has developed two programs, one of which is the Personalized Medication Program. This 

program was launched in 2012 aims to identify drug-gene pairs ready for integration into clinical 

practise and developing the tools needed to implement into the clinical workflow. The program has 

currently implemented HLA-B*1502-abacavir and TPMT-thiopurines into the clinical workflow and 

aims to implement two additional drug-gene pairs per year. An oversight committee selected these 

drug-gene pairs. Alerts and custom rules have been developed in the EHR to provide clinicians with 

point-of-care PGx decision support. A clinical pharmacogenomics specialist provides support for both 

patients and clinicians who require help with understanding the PGx results. Future goals also 

include development of an algorithm which identifies patients who are at high-risk of receiving a 

drug for which pre-emptive genotyping would be useful .  

CLIPMERGE PGx 

As part of the eMERGE-PGx project, Icahn School of Medicine at Mount Sinai has initiated the 

CLIPMERGE PGx Project for implementing PGx testing into the EHR and CDSS by using a biobank 

derived cohort, from the BioMe Biobank. Patients enrolled in the biobank, who are likely to receive a 

drug with genetic interactions and receive primary care at Mount Sinai Internal Medicine Associates, 

are eligible for inclusion. 1,500 pilot patients are being pre-emptively genotyped for known variants 

associated with drug response. CLIPMERGE-PGx aims to provide valuable insight into the 
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mechanisms, tools and processes that will best support the use of PGx in clinical care. The 

investigators argue that before personalized medicine can be realized, tools and best practices to 

facilitate the delivery of PGx must be developed and evaluated so that the question of utility can be 

answered without the burden of a questionable process (48). As an initial result, a study among 

included physicians suggested they have a deficit in their familiarity and comfort in interpreting and 

using PGx (49). 

Electronic Medical Records and Genomics Network-Pharmacogenomics (eMERGE-PGx) 

The eMERGE-PGx is a partnership of the Electronic Medical Records and Genomics Network 

(eMERGE) (50) and the Pharmacogenomics Research Network (PGRN) (51, 52). eMERGE-PGx is a 

multi-center project which aims to implement targeted sequencing of 84 pharmacogenes and assess 

process and clinical outcomes of this implementation at ten academic medical centers across the 

United States. The goals of eMERGE-PGx are threefold: 1) to install a NGS sequencing platform to 

assess sequence variation in 9,000 patients likely to be prescribed a drug of interest in a one- to 

three-year timeframe across the ten clinical sites; 2) to integrate clinically validated genotypes into 

the EHR and CDSS and to measure the resulting clinical outcomes and assess the implementation 

process, and; 3) to develop a repository of variants of unknown significance linked to clinical 

phenotype data to expand PGx understanding (53).  

Implementing Genomics in Practice (IGNITE)  

IGNITE is a network of six sites and a coordinating center which aims to develop methods for, and 

evaluate the feasibility of, incorporating and individual patient’s genomic information into their 

clinical care. The network was established in 2013 and supports the development and investigation 

of genomic practice models which are integrated into electronic medical records to inform decision 

making at the point of care. Three of these sites focus on implementing PGx testing in clinical care: 

Indiana University (INGENIOUS), University of Florida (Personalized Medicine Program), Vanderbilt 

University (I3P) (54). 

INdiana GENomics Implementation: an Opportunity for the Under Served (INGENIOUS)  
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Indiana University School of Medicine and the Indiana University Institute of Personalized Medicine, 

in collaboration with the Eskenazi Health System, are conducting an NIH funded trial, which started 

recruitment in March 2015. INGENOUS implements pre-emptive PGx genotyping of a panel of 

pharmacogenes through a randomized clinical trial. INGENIOUS is prospectively enrolling a total of 

6,000 patients, with 2,000 patients assigned to the PGx testing arm and 4,000 to the control arm. 

Both arms will be followed for a year after being prescribed a targeted medication. Open Array 

genotyping will assess 43 variants in 14 genes known to affect the response of 28 drugs. Primary 

outcomes include adverse event incidence and annual healthcare cost. PGx results are integrated in 

the EHR and CDSS. Additionally, participating physicians are supported with provided consultations 

in using the PGx results in routine care (55, 56).  

Personalized Medicine Program  

The University of Florida and Shands Hospital launched the Personalized Medicine Program in 2011 

to ensure the clinical implementation of PGx-based prescribing. The pilot implementation project 

focussed on implementation of clopidogrel-CYP2C19 drug-gene pair and future plans include 

expansion to additional drug-gene pairs. The initiative developed a cost-effective PGx genotyping 

array (57). A specialized hospital regulatory body is responsible for regulating which clinically 

relevant PGx markers are migrated to the medical record and CDSS. As of March 2013, CYP2C19 

genotypes of 800 patients have been incorporated in their medical records (58). 

PG4KDS  

Through a research protocol St. Jude Children’s Research Hospital’s PG4KDS aims to selectively 

migrate PGx genotype tests into routine patient care so that results are available pre-emptively. 

Genotyping is performed using the DMET assay (59). The ultimate objective is to migrate all CPIC 

gene-drug pairs into the EHR, to facilitate PGx-based prescribing, and for it to ultimately become 

routine care. A PGx oversight committee evaluates whether drug-gene pairs are qualified for 

migration into the EHR. Interruptive pre-test alerts are fired when a drug linked to a drug-gene pair 

is prescribed, informing physicians that the patient does not yet have a documented genotype (29). 
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Post-test alerts are fired when the genotype is available in the patient’s EHR. Patients have the 

option to consent to individualized notification every time a new genetic test result is placed into 

their EHR. Additionally, educational efforts are focused at both patients and clinicians. As of August 

2013, 1,559 patients had been enrolled and four genes and 12 drugs have migrated to the EHR (60).  

Pharmacogenomics Research Network (PGRN) Translational Pharmacogenetics Program 

In 2011 the PGRN established the Translational Pharmacogenetics Program to assess 

implementation within six diverse health-care systems. The project’s aim is to assess the 

implementation of routine evidence-based pharmacogenetic testing .Each site will implement PGx 

testing of one or more drug-gene pairs, as per the CPIC guidelines, either through a clinical trial or 

through implementing into clinical practice. Implementation strategies include both through point-

of-care and pre-emptive models. Process metrics for implementation are tracked among all sites, to 

assess the effectiveness of implementation (52). 

Pharmacogenomics Resource for Enhanced Decisions in Care and Treatment (PREDICT) Project  

As part of the eMERGE-PGx project, Vanderbilt University has initiated the PREDICT Project. The aim 

is to develop the infrastructure and framework for incorporating PGx results into the EHR and 

making these available to healthcare professionals at the time of prescribing. Initially, the 

implementation focussed on CYP2C19 genotyping for patients receiving antiplatelet therapy after 

having undergone cardiovascular stent insertion. The enrolment focus is on groups of patients with 

anticipated cardiac catheterization with coronary artery stenting, but providers are not limited to 

enrolling patients within this therapeutic area (21). As of November 2013, 10,000 patients had been 

genotyped and several other drug-gene pairs have been implemented (61). 

Right Drug, Right Dose, Right Time (RIGHT)  

As part of the eMERGE-PGx project, Mayo Clinic has initiated the RIGHT Project. The aims the project 

is to develop best practice for integrating both PGx results and CDSS into the EHR to make PGx 

results available to prescribers pre-emptively at the point of care. As of July 2013, 1,013 Mayo Clinic 

Biobank participants were included in the study and four gene-drug pairs were approved for 
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implementation and several others were in under development for integration within the CDSS (20). 

Initially, patients were eligible for enrolment if they had a high risk of initiating statin therapy within 

three years, as this subset of patients would likely benefit from a PGx-driven intervention. These 

participants were identified through a multivariable prediction model (62). Pre-emptive PGx testing 

included targeted sequencing of 84 PGx genes and additional CYP2D6 genotyping because of 

technical difficulties with sequencing CYP2D6. As a interim result, challenges have been identified 

which require multi-disciplinary and multi-institutional efforts to make PGx guided drug and dose 

selection routine care. (63) 

The 1,200 Patients Project   

The University of Chicago has initiated the 1,200 Patients Project and aims to determine the 

feasibility and utility of incorporating pre-emptive PGx testing into clinical care. This observational 

study involves the implementation of novel genomic prescribing system (GPS) to deliver a patient-

specific interpretation of complex genomic data for a particular drug, distilled into a short summary 

(64). Outcomes of the study include, whether physicians take PGx information into consideration, 

and whether this results in altered prescribing patterns in patients at high risk for ADR or non-

response. Future aims include an examination of the impact of providing PGx results on prescribing 

decisions and patient outcomes (65). Following recruitment of 821 patients, initial results of the 

project demonstrate a high level of patient interest in PGx testing, and physician adoption and 

utilization of PGx information through the GPS (66). 
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CURRENT PGX IMPLEMENTATION STUDIES: TRENDS AND REMAINING RESEARCH GAPS  

From this overview, trends among initiatives and remaining knowledge gaps can be identified.  

Trends Across Clinical Implementation Studies 

Similarities across clinical implementation studies include: integrating the PGx test results into the 

EHR and CDSS at the point of care to guide healthcare providers in using results in patient care; 

implementation of the existing CPIC guidelines; implementing single drug-gene pairs one at a time 

and assessing their clinical utility; educating healthcare providers in PGx; and expanding the field of 

PGx by making use of NGS techniques. Individual initiatives have additionally addressed the utility of 

PGx in subpopulations such as paediatrics (60, 67) and polypharmacy (68, 69), where the impact of 

PGx may be greater.  

Remaining Knowledge Gaps 

Although many implementation studies are addressing the remaining barriers, important knowledge 

and research gaps remain. One remaining gap is demonstrating quantifiable patient and economic 

benefit from a PGx testing strategy that focuses, not on a single gene-drug pair, but rather on a 

panel of pharmacogenes across various therapeutic areas. This evidence could enable evidence-

based decision making to shape policy. Further PGx investigations are also required to deepen our 

understanding of drug response phenotype-genotype associations. This deeper understanding of 

PGx is urgently needed to increase the predictive accuracy, benefits and impact of PGx. An important 

additional area for attention is the design of implementation models that are transferable and 

feasible for institutes not as highly specialized as the early adopting sites featured in Table 1.  

The U-PGx Consortium was established to address these critical remaining research gaps in addition 

to observing the aforementioned state-of-the-art trends. The U-PGx consortium strives to provide 

evidence regarding the clinical utility of PGx testing using a panel of pharmacogenes, provide 

evidence of cost-effectiveness, and to expand the field of PGx by both NGS and systems 

pharmacology approaches. U-PGx is one of the few implementation studies assessing the combined 

clinical utility of multiple drug-gene pairs and is therefore strategy specific as opposed to drug-gene 



14 
 

pair specific. U-PGx is also the first to implement PGx across countries, and therefore across many 

ethnicities and healthcare systems. U-PGx is also not limited to implementing PGx in highly 

specialized institutions, and will therefore obtain different process metrics for implementation than 

early-adopting institutions, where providers may have more PGx know-how. U-PGx is also the first 

study implementing the DPWG guidelines as opposed to the CPIC guidelines. Similar to many 

implementation studies, U-PGx will integrate PGx results into the workflow of healthcare providers, 

aims to educate both physicians in pharmacists in PGx, and measure process metrics for 

implementation. 
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UBIQUITOUS PHARMACOGENOMICS CONSORTIUM (UPGx) 

Overcoming Implementation Barriers  

Enabling tools 

As of October 2016, a variety of enabling tools have been developed to facilitate implementation of 

PGx testing in a wide range of healthcare systems across the European Union. A detailed analysis of 

existing data management systems (both electronic and paper-based) at clinical sites has been 

conducted to guide the development of CDSS implementation strategies in U-PGx. To accommodate 

the widely varying capabilities and needs of data management systems at different implementation 

sites, a spectrum of complementary CDSS solutions were developed . Specifically, to make PGx data 

and CDSS available in health care systems where an EHR is unavailable, the “Safety-Code card” has 

been adopted (70). This card is part of a mobile-based CDSS called the Medication Safety Code (MSC) 

system that is independent of existing IT infrastructures, and enables quick retrieval of patient-

relevant PGx drug dosing guidelines (Figure 3). The MSC system does not require central patient 

data storage. Instead, the “Safety-Code card” contains a QR code that stores the patient’s encoded 

PGx results. It can be decoded and interpreted by common smartphones and other devices. After 

scanning the QR code, the medical professional is led to a website that provides drug dosing 

recommendations customized to the PGx profile of the patient. In the context of PREPARE, the MSC 

system is aimed to serve as an auxiliary tool to maximize the accessibility and sharing of PGx results 

within and between different health care settings and health care professionals. Patients will be 

asked to show their “Safety-Code card” to physicians and pharmacists who prescribe or dispense 

drugs to them during the follow-up period of the study. These physicians and pharmacists can thus 

use the patient’s PGx results to guide drug and dose selection. Concomitantly, patients will be asked 

to report prescriptions of additional newly started drugs to research nurses during the follow-up 

period.   
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Knowledge base curation and the automated translation of genetic data to associated phenotypes 

and recommendations will be handled by the Genetic Information Management Suite (GIMS) 

created by the U-PGx partner bio.logis Genetic Information Management (71). The GIMS Diagnostic 

Report Module holds the CE Mark according to according to EEC 93/42, EC 2007/47. The CE mark for 

a medical device not only certifies the product’s quality according to valid European guidelines but 

also confirms its fitness to be used for the intended medical purpose. The authorities responsible for 

monitoring the manufacturer’s compliance with the relevant European regulations are the German 

Institute of Medical Documentation and Information (DIMDI) as well as the Federal Institute for 

Drugs and Medical Devices (BfArM). In addition the Diagnostic Report Module has been certified as 

an “Internet medicine quality product” by the Federal Association for Internet Medicine (BiM). 

The Dutch Pharmacogenomics Working Group Guidelines 

In 2005, the Royal Dutch Pharmacists Association (KNMP) established the DPWG with the objective 

to develop pharmacogenetics-based therapeutic recommendations based on a systematic review of 

the literature. The DPWG consists of 14 members including clinical pharmacists, community 

pharmacists, general practitioners, physicians, clinical chemists, epidemiologists and a toxicologist. 

Currently, the database consists of 84 drug-gene combinations comprising 13 genes. DPWG 

guidelines are integrated in the “G-Standaard” (the Dutch national drug database) and are 

incorporated into all electronic systems for drug prescribing and dispensing in the Netherlands. As 

part of U-PGx, the DPWG guidelines (31, 32) have been translated into all local languages (from 

Dutch to English, German, Greek, Slovenian, Spanish and Italian) by certified professionals.  

Genotyping platform and variant selection 

The LGC Group SNPline™ platform will be deployed at all implementation sites, ensuring 

homogenous genotyping across the project. The SNPline platform is a flexible and scalable solution 

for PCR-based genotyping. It is comprising a workflow that enables the user to generate up to more 

than 1,000 ,000 data points per day. Additionally, it retains the flexibility to run individual repeats 
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without consuming arrays and producing far more data than needed. The variants included in the 

panel were selected systematically by pre-specified criteria. The criteria for variant selection are 

listed in Supplemental Table S1. The selection yielded 50 variants in 13 pharmacogenes. Variants 

included in the panel and their associated phenotypes are listed in Supplemental Table S2. 

Pharmacogenomics education 

Provider and patient education and support are crucial for successful implementation of PGx. E-

Learning programs will be prepared with the aim of developing an e-learning based knowledge 

platform for the participating countries and partners. This e-learning platform will be used to 

distribute the PGx knowledge required by physicians and pharmacists to make use of PGx in patient 

care. Using electronic education methods, lectures will cover the main themes that are regarded 

necessary for the use and implementation of PGx and will be offered to schools of medicine, schools 

of pharmacy and post-academics. These will cover the basics of PGx, drug metabolism, drug dosing, 

targeted therapies, regulation and guidelines for PGx diagnostics in drug development and 

pharmacovigilance, companion diagnostics, obligatory genetic tests, good genomic practice and PGx 

information in drug labels. The level of knowledge and opinion on PGx among physicians and 

pharmacists at the start and at the end of the project will be investigated through surveys. The aim 

is to assess the level of knowledge about PGx among healthcare professionals to identify knowledge 

gaps which may hinder the implementation of PGx testing in routine care. 

The PREPARE Study  

Overall study design 

PREPARE is an international prospective, multi-center, open, block-randomized, study. Figure 4 

illustrates the PREPARE study design. The PREPARE study [Clinicaltrials.gov Number – registration 

pending] will investigate the impact of pre-emptive genotyping of a panel of clinically relevant PGx-

markers on patient outcomes. It is unique in its multi-center, multi-gene, multi-drug, multi-ethnic, 

and multi-healthcare system approach. It is hypothesized that implementing PGx guided drug and 

dose selection will decrease clinically relevant ADRs by 30% (from 4% to 2.8%). Pre-emptive PGx 
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testing will be implemented in clinical sites across seven European countries (United Kingdom, The 

Netherlands, Austria, Greece, Slovenia, Italy and Spain). The PREPRARE protocol has been submitted 

for ethical approval, locally, in all seven countries. The study will be performed in accordance with 

the Helsinki Declaration of 1975 (as revised in 1983). The 36-month study is split into two 18-month 

blocks. The participating countries are randomized to start with either implementing PGx guided 

prescribing or with standard of care for the first block. After this 18-month block, the countries 

switch to implementing the opposite strategy and will recruit new patients (i.e. patients recruited 

into one of the arms cannot be re-recruited into the other arm). Both patients and research teams 

cannot be blinded; the PGx results will be used to guide drug and dose selection, and patients will 

receive their PGx results on a “Safety-Code card”.  In total, 8,100 patients will be recruited; 4,050 

patients in the intervention arm and 4,050 patients in the control arm. Each implementation site will 

concentrate on, but is not limited to, recruiting patients within a specific therapeutic area. 

Therapeutic areas include primary care, general medicine, cardiology, oncology, psychiatry, 

neurology, and transplantation. The PREPARE study schema is illustrated in Figure 5. 

Patient recruitment 

Adult patients who receive a first prescription for a drug listed in Table 2 (drugs for which a DPWG 

dosing recommendation is available), within routine care, will be identified and are eligible for 

inclusion. Inclusion and exclusion criteria are listed in Supplemental Table S3. This first drug that is 

included is referred to as the “index drug”. To ensure that there is a balanced patient and drug 

population among intervention and control arms, inclusion of any given index drug is limited to 10% 

in both the intervention (n=405) and control arms (n=405).  

Drug selection 

DPWG guidelines to guide dose and drug selection are available for more drugs than are included in 

the PREPARE study. Table 2 includes all drugs for which an actionable drug-gene interaction is 

present according to the DPWG recommendations with the exception of abacavir, omeprazole, 

esomeprazole, lansoprazole, pantoprazole, and rabeprazole. Abacavir is excluded because PGx-
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guided prescribing is mandatory in routine care. Proton pump inhibitors are excluded because the 

DPWG recommendations are only associated with differences in efficacy, rather than ADR 

frequency, amongst aberrant genotypes (where ultra-rapid metabolisers are recommended a higher 

dose to ensure sufficient blood levels for an efficacious pharmacotherapy). Oestrogen containing 

drugs will not serve as an index drug, but are incorporated into the study if newly started in a patient 

already recruited onto PREPARE during study follow (see below ‘subsequent drugs’).  

The PGx intervention 

A DNA sample is collected at recruitment for genotyping of a panel of 50 variants in 13 

pharmacogenes. The PGx results of patients in the study arm only will be used to guide drug and 

dose selection as per the DPWG guidelines. These results will be provided to the prescribing 

physician or dispensing pharmacist with a maximum turnover time of three-working days.  

Follow-up 

Follow-up by the research team will assess incident adverse drug events, (index) drug modifications, 

drug adherence, quality of life, costs, co-medication and attitudes towards PGx. Assessment of 

adverse drug reactions will be performed by the research team and will involve causality, severity 

and genotype correlation assessments. Incident adverse drug reactions collected by the research 

team will contribute to the primary composite endpoint (see primary composite endpoint). The 

research team will contact patients at four weeks, twelve weeks and at the end of the study arm by 

telephone (out patients) or in person (in patients). Various open questions will be posed to identify 

adverse events experienced by the patient, followed by a series of closed questions to identify 

specific adverse events associated with the drug of interest. 

In parallel, patient reported outcomes will be monitored through an established web-based platform 

developed by the Netherlands Pharmacovigilance Center Lareb, and will only be used as a secondary 

outcome. This web-based intensive monitoring system has been validated in several clinical trials as 

a feasible and accurate method for collecting adverse drug event data (72). This aspect of the study 

is important as patient reported adverse events may differ from those collected by the research 
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team (73). Reporting patients will provide assessments of severity and causality of their own adverse 

event. Patient reported severity will be measured by using a scale based on the Patient-Reported 

Outcome-Common Toxicity Criteria (PRO-CTCAE) (74).  

Subsequent prescriptions of drugs of interest 

Patients are requested to notify the research team every time they receive a prescription for one of 

the 43 drugs of interest (as listed in Table 2) during follow-up. These drugs are referred to as 

“subsequent drugs”. This will trigger an identical three-month follow-up, as for the index drug (as 

illustrated in Figure 5). Patients are requested to provide their (mock) “Safety-Code card” to 

physicians that manage them or dispensing pharmacists. Healthcare providers will have the ability to 

make use of the PGx results to guide drug and dose selection at the point of consultation; in the 

contrast to the index drug, where a thee working day lag-time is unavoidable. There is recognition 

for the fact that the research team is fully reliant on patient report of subsequent prescriptions, in 

order to trigger follow-up for this subsequent prescription. This could introduce selection bias. 

Therefore, incident adverse drug reactions resulting from subsequent prescriptions will only be used 

as a secondary outcome. 

Primary composite outcome 

All adverse events are monitored during follow-up by the research team are classified according to 

causality, severity and drug-genotype association. Causality will be classified using the Liverpool 

Causality Assessment Tool (75). Severity will be classified using the National Cancer Institute 

Common Toxicity Criteria for Adverse Events (NCI-CTCAE) scale. The drug-genotype association will 

be assessed using the DPWG guidelines (31, 32). To ensure homogenous assessment across all sites, 

the Netherlands Pharmacovigilance Center Lareb will blindly reassess a random selection of adverse 

drug events. Adverse drug events contributing to the composite primary endpoint are illustrated in 

Figure 6. All ADRs which contribute to the primary endpoint, contribute equally; regardless of their 

severity.  

Primary analysis 
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A gatekeeping analysis will be performed for the primary analysis only amongst patients who had an 

actionable drug-genotype combination for the index drug. This first analysis will compare the 

fraction of patients who experienced at least one clinically relevant ADRs within the 12-week follow-

up, attributable to the index drug, between the standard of care and the intervention arm. If this is 

statistically significant, a second analysis will be performed, including all patients in the study. This 

second analysis will compare the fraction of patients who experienced at least one clinically relevant 

ADR within the 12-week follow-up,  attributable to the index drug,, between the standard of care 

and the intervention arm. All sites will act as their own controls. The first analysis will quantify the 

absolute impact of PGx based prescribing on the frequency of clinically relevant ADRs, the second 

will quantify the impact of PGx intervention when it is implemented population-wide.  

Secondary Outcomes 

Drug efficacy is not an outcome measure in the PREPARE study. It is not anticipated that PGx guided 

prescribing will have a negative impact on drug efficacy. To provide evidence for this statement, two 

proxy-measures of efficacy will be collected. Firstly, the frequency of drug discontinuation due to 

lack of efficacy will be compared in the standard of care arm to the intervention arm. Secondly, 

routine index drug levels of patients who received a dose alteration as a result of an actionable 

drug/gene combination will be compared to the routine index drug levels of patients who did not 

receive a dose alteration. It is hypothesized that the drug exposures are similar in both arms, and 

that efficacy must therefore also be similar. Data on costs associated with ADRs will be collected to 

perform a country-specific cost-effectiveness analyses. Adherence to PGx guidelines will also be 

collected following every index drug and subsequent drug prescription within the PREPARE study. 

This will yield data on DPWG guideline adherence by both the health care professionals who recruit 

to the PREPARE study and the health care professionals outside the scope of the PREPARE study but 

who manage an episode of routine care for a participant during the study follow up period. The 

research team will contact health care professionals after they have received their patient’s PGx 

results to ask whether or not they complied with the DPWG recommendation. When health care 
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professionals do not comply with the recommendation, they are asked to report reasons for not 

doing so. Patient knowledge of and attitudes towards PGx will also collected at baseline and at the 

end of the study. 

A Step into the Future 

PGx is still an evolving discipline and will undoubtedly be further developed over the years to 

increase the applicability and subsequent impact of PGx on patient outcomes. Our incomplete 

understanding of the genetic impact on drug responses limits the benefits of PGx in clinical care; 

possibly up to 50% of ADRs may be predicted by common genetic determinants. Rare variants may 

also be associated with drug responses or ADRs; using NGS (76-79) and systems pharmacology 

approaches, we may be able to increase our understanding of the role of PGx and thereby 

potentially increase its benefits and impact. The U-PGx consortium will achieve this by using two 

approaches: 1) NGS techniques to identify rare variants that are associated with drug response in 

the extreme phenotype sub-study and 2) through a systems pharmacology approach, non-genetic 

determinants of drug response (such as gender, age, drug-drug interaction) will be integrated to 

create novel, powerful and practice-oriented models of personalized medicine in pharmacokinetic 

sub-studies. Inclusion and exclusion criteria for the sub-studies are listed in Supplemental Table S4.  

Extreme Phenotype Sub-Study 

Patients included in the PREPARE study who either 1) experience a serious ADR which is not 

expected on the basis of the pre-emptive PGx testing results in the PGx intervention arm, or 2) 

experience a serious ADR (already known to be associated with the drug in the DPWG guidelines) 

even though the patient has received an altered drug or dose selection as a result of an actionable 

genotype or 3) experience a serious ADR in the PGx control arm. These “extreme phenotype” 

patients will be flagged and contacted by the research nurse to obtain a blood sample, for drug level 

monitoring, at the time of the ADR for NGS sequencing and detection of plasma levels of the drug if 

interest including relevant metabolites. NGS sequencing will be performed to search for novel 
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variants associated with the extreme phenotype. To identify a possible genetic origin of the extreme 

phenotype, all patients included in the study will be asked to provide informed consent for NGS. This 

data will only be used anonymously for exploratory analysis and not be implemented in clinical care 

or returned to the patient, thereby no potential secondary genetic findings will be returned to the 

patients. Plasma samples of drugs of interest will be detected by previously established methods 

(e.g. HPLC, LC-MS/MS) to perform additionally phenotype (plasma level)-genotype correlation 

analysis.  

Pharmacokinetic Sub-Study 

Patients included in the study after a first prescription of voriconazole, metoprolol, simvastatin, 

atorvastatin, fluorouracil or capecitabine will be asked to provide additional blood samples (see 

Supplemental Table S5) to quantify levels of the parent drug and respective metabolites . Through a 

systems pharmacology approach, non-genetic determinants of drug response (such as gender, age, 

disease related factors, drug-drug interaction) will be integrated to create novel, powerful and 

practice-oriented models of personalized medicine. This work will strive toward assessing the 

relative contribution of PGx to variability in drug response by utilizing pharmacometric models that 

integrate PGx with other sources of variability. The models will describe the events from dose to 

drug response, thus including effects of PGx on pharmacokinetics and pharmacodynamics. 

Physiologically based pharmacokinetic models and(or population pharmacokinetic models will be 

utilised. Clinical endpoint data as well as clinically relevant drug-drug interactions will be extracted 

from PREPARE to be used for adjustment and qualification of model-based analyses.  
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CONCLUSIONS 

In conclusion, the U-PGx Consortium will implement pre-emptive PGx testing involving a panel of 

pharmacogenes into routine care to guide drug and dose selection for 43 drugs, through a multi-

center, block-randomized controlled study. PREPARE aims to assess the impact of implementation 

on ADR incidence and healthcare costs. In parallel, innovative approaches such as pharmacometric 

modelling, NGS and systems pharmacology will be used to expand our understanding of PGx and 

thereby increase its potential benefits and impact.  

We hypothesize successful PGx implementation could drastically decrease the incidence of ADRs and 

could increase the benefit: risk profile of pharmacotherapy. Currently, unacceptable levels of ADRs, 

poor adherence and ineffectiveness are associated with pharmacotherapies for many conditions. 

Each year, adverse drug events are responsible for 5% of hospitalizations, but crucially, PGx 

implementation has the potential to alleviate this. The impact of PGx testing will be maximized when 

implemented population-wide. Since actionable PGx variants are ubiquitous and the results of PGx 

testing are life-long, we foresee a future where everyone undergoes PGx testing. Physicians and 

pharmacists can use these results pre-emptively to optimize drug and dose selection throughout a 

patient’s lifetime. This could ultimately decrease (but not abolish) the incidence of ADRs and their 

associated healthcare service and societal burdens.  
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FIGURE LEGENDS 

Figure 1. An overview of the Ubiquitous Pharmacogenomics (U-PGx) Project. Firstly, tools to enable 
the integration of PGx results into the CDSS will be developed, the DPWG guidelines will be 
translated and participating physicians and pharmacists will be educated in understanding and 
applying PGx during prescription and dispensing. Following this, the PREPARE study will evaluate the 
impact of PGx implementation on clinical outcomes, cost effectiveness and implementation process 
metrics. The PREPARE study will provide data collection for innovative projects, which aim to expand 
our understanding of PGx though next-generation sequencing and a systems pharmacology 
approach. In parallel, the final component supports the ethical proceeding of the project and 
spearheads outreaching and educational activities to influential stakeholders. 

Figure 2. The established expert network of the Ubiquitous Pharmacogenomics (U-PGx) Consortium. 
The U-PGx Consortium consists of four components: 1) Enabling Tools, 2) The PREPARE Study, 3) A 
next step into the future, and 4) Dissemination, communication and ELSI (ethical, legal, and societal 
impact). The institutes listed below are members of the corresponding component.   
 
Table 1. An overview of current clinical implementation studies and programmes across the United 
States and Europe. 
 
Figure 3. The front (top) and back (bottom) of the “Safety-Code card”. This is a plastic card, akin to a 
credit card, carrying an individual’s pharmacogenomic information and a QR code which is 
connected to the individual’s personalized dosing recommendations as per the Dutch 
Pharmacogenomics Working Group. 
 
Figure 4. Timeline of the PREPARE study: in the first year all tools enabling pre-emptive PGx  testing 
(IT, genotyping technology, education, translation and sharing of guidelines) will be prepared and 
finalized. In years 2 to 4 the impact of pre-emptive PGx testing will be evaluated in the PREPARE 
study. Sites (countries where the study is performed) are block-randomized to either implement PGx 
guided prescribing or standard of care for an 18-month block. After this 18-month block, the 
opposite strategy will be implemented, with a new set of recruited patients. 4,050 new patients will 
be recruited in each block. Each site will function as its own control. In parallel, data will be collected 
for innovative projects, which aim to expand the understanding of pharmacogenomics though next-
generation sequencing and systems pharmacology approaches.  
 
Table 2. Actionable drug-gene pairs implemented in routine care in the PREPARE Study as per the 
Dutch Pharmacogenomics Working Group guidelines. 
 
Figure 5. Study logistics in the PREPARE study. Adult patients receiving a first prescription for one of 
the 42 included drugs will be identified and are eligible for inclusion. At recruitment a DNA sample is 
collected for genotyping of a panel of 50 variants in 13 pharmacogenes. The PGx results of patients 
in the intervention arm only will be used to guide drug and dose selection as per the DPWG 
guidelines. Patients in the intervention arm will receive a “Safety-Code card” containing their 
personal PGx results, which can be used by other physicians or pharmacists to guide subsequent 
prescriptions. Patients in the standard of care arm will receive a mock “Safety-Code card”, not 
containing any PGx results but listing the U-PGx eligible drugs. There are two consecutive 18-month 
blocks for recruitment of participants. In one block, participants will receive standard of care; in the 
other block, other participants will receive the PGx intervention. The order of these blocks is 
randomized at each study site. Following recruitment, all patients will be followed-up for three 
months, both by the research nurse (at baseline, 4 weeks and 12 weeks after initiating the index 
drug) and by an online patient reported outcomes survey (at two weeks and eight weeks). In 
addition, a final cross-sectional survey will be performed by the research nurse, at the end of the 
study arm. Follow-up will assess for incident adverse drug events, drug modifications, drug 
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adherence, quality of life, healthcare costs, co-medication and attitudes towards PGx. Assessment of 
adverse drug reactions will be performed by the research team and involves a causality, severity and 
genotype correlation assessment. Patients are requested to report if they newly start any of the 43 
drugs (including oestrogen containing drugs) of interest during follow-up in addition to the index 
drug. This will trigger an identical three month follow-up. 
 
Figure 6. The primary endpoint is the frequency of clinically relevant adverse drug reactions within 
three months of initiating the index drug. All incident adverse drug events will be assessed regarding 
causality (using the Liverpool Causality Assessment Tool), severity (using the NCI-CTCAE scale), and 
association to genotype (using the DPWG guidelines). Only adverse drug events defined as definitely, 
probably or possibly adverse drug reactions according to the Liverpool causality assessment tool, 
classified as severe (defined as NCI-CTCAE Grade 2,3,4 or 5), and associated with a drug-genotype 
pair contribute to the primary endpoint.  

 

 


