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Abstract. Frequency Response Function (FRF) residues have been widely used to update Finite 

Element models. They are a kind of original measurement information and have the advantages 

of rich data and no extraction errors, etc. However, like other sensitivity-based methods, an 

FRF-based identification method also needs to face the ill-conditioning problem which is even 

more serious since the sensitivity of the FRF in the vicinity of a resonance is much greater than 

elsewhere. Furthermore, for a given frequency measurement, directly using a theoretical FRF at 

a frequency may lead to a huge difference between the theoretical FRF and the corresponding 

experimental FRF which finally results in larger effects of measurement errors and damping. 

Hence in the solution process, correct selection of the appropriate frequency to get the theoretical 

FRF in every iteration in the sensitivity-based approach is an effective way to improve the 

robustness of an FRF-based algorithm. A primary tool for right frequency selection based on the 

correlation of FRFs is the Frequency Domain Assurance Criterion. This paper presents a new 

frequency selection method which directly finds the frequency that minimizes the difference of 

the order of magnitude between the theoretical and experimental FRFs. A simulated truss 

structure is used to compare the performance of different frequency selection methods. For the 

sake of reality, it is assumed that not all the degrees of freedom (DoFs) are available for 

measurement. The minimum number of DoFs required in each approach to correctly update the 

analytical model is regarded as the right identification standard. 

1. Introduction 

Damage identification is an important tool that protects people from the loss of property and even life 

caused by structure failure. Methods based on changes in vibration characteristics of the structure have 
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attracted the attention of many researchers as they provide quantitative global damage assessment to 

complex structures [1-3]. Among them model updating techniques, which correct the finite element (FE) 

model by experimental data, have been developed extensively in recent decades [4-9]. 

The frequency-domain model updating method can be roughly divided into three categories based 

on different dynamic characteristics used: eigenvalue based, mode shapes based and FRF based 

methods. One of them, The FRF based model updating method, directly uses the measured FRF data 

to update the structure’s parameters. Imregun, et al. [10] proposed an early version of this method. Lin 

and Zhu [11] presented a method which employed measured response data under base excitation for 

model updating. Esfandiari, et al. [12] used the FRF data of the measured displacement, velocity or 

acceleration of the damaged structure to update the model. Kwon and Lin [13] developed a frequency 

selection method for efficient FRF based model updating. Garcia-Palencia and Santini-Bell [14] 

utilized a two-step algorithm to update the unknown mechanical properties and damping ratios of 

linear elastic damped structures.  

The main idea of these methods is to establish the equation of the residuals between analytical and 

experimental FRF data with the sensitivity matrix of updating parameters and uses the least-square 

method to solve the over-determined equation. The updated parameters that bring the theoretical 

response closest to the actual response are considered to be the actual parameters and the reduction in 

their initial state, if big enough, is considered to be the occurrence of damage. Using FRF data directly 

does not require thorny modal identification work and hence the results will not be affected by the 

errors it produces. Moreover, available test data are broadened to the whole frequency domain of 

interest beyond measured frequencies. The abundant information provided by the FRF data not only 

allows more parameters to be updated but also can be used to reduce the effects of noise by choosing 

more precise regions of FRF. Also the reliability of the updating results can be checked by using 

different combinations of the experimental data. 

However, there are some problems which the FRF based model updating methods have to face. The 

first is the incompleteness of the experimental data of FRF. Nearly all FRF based model updating 

methods require at least a complete row or column of the FRF matrix while it is inevitable that some 

DoFs cannot be measured in actual tests. To solve this problem Imregun used the 

analytically-generated FRFs for the unmeasured responses [10]. The reduction of the theoretical model 

and the expansion of the measured FRFs by dynamic reduction method [15] were also suggested. 

Similarly, Gang, et al. [16] proposed a new iteration formulation for the reduced model using pseudo 

master DoFs to improve the convergence of that technique. 

Besides, the magnitude of FRF date changes dramatically in the vicinity of a natural frequency 

while most FRF based model updating methods use the theoretical and experimental FRF data at the 

same frequency to establish the sensitivity equation without the control of the magnitude difference 

between them. If this difference is big, the test and modelling errors will be enlarged and the level of 

ill-conditioning of the sensitivity matrix will increase. To overcome this situation, Pascual [17, 18] 

presented the Frequency Domain Assurance Criterion (FDAC) to localize the right special theoretical 

frequency to be used by determining the frequency shift at all measured frequencies. Asma and 

Bouazzouni [19] selected the theoretical frequency at which the distance between theoretical and 

measured FRFs is shortest. Both methods use the residuals of theoretical and experimental FRFs at 



different frequencies. However, the distance between these relative frequencies is not easy to control. 

If the whole frequency domain of interest is searched, it is not only time-consuming but also easy to 

make bad selections when using these methods per se may select inappropriate frequency values 

(whose FRFs are required) that fit these criterions best. 

This paper presents a new frequency selection method which directly finds the theoretical frequency 

that minimizes the difference of the order of magnitude between the theoretical and experimental 

frequency responses in a certain range of measured frequencies. Since the frequency searching range is 

limited, it is not time-consuming to apply this frequency matching technique and the robustness of the 

algorithm is improved remarkably, as proved by a simulated truss structure. 

 

2. Basic Theory 

The essential purpose of the FRF based model updating method is to use the parameterized theoretical 

FRFs to approximate the measured ones. A brief description of the fundamental theory is given below 

which begins with a simple equation: 

        a x a x  H H H Hω ω ω ω   (1) 

where  aH ω and  xH ω are n n theoretical and experimental FRF matrices at frequency ω , 

respectively. Equation (1) can be rewritten as 
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Replacing  1
H ω by the dynamic stiffness matrix  Z ω  

        a x a x  H ZH H Hω ω ω ω   (3) 

where  

     2

x a j        Z Z Z M C Kω ω ω ω   (4) 

The basic assumption here is that the damage causes a reduction of the mass, damping and stiffness 

matrices of the model at element level. So the difference of the 3 global matrices can be expressed as 
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where
en is the number of updating elements, e
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are respective contributions of the ith 

clement to the global mass, damping and stiffness matrices and
mip ,

cip and
kip are the corresponding 

scalar multipliers representing the proportional changes from their values in the intact state and are 

also regarded as updating parameters. Substituting equations (5) and (4) into (3) and assuming only 

one column vector
x ( )h ω of the measured FRF matrix  xH ω is available, one obtains 
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where
m ( )S ω ,

c( )S ω and
k ( )S ω are the sensitivity matrices with

en submatrices arranged in a row and

mP ,
cP and

dP are the column vectors of the corresponding updating parameters. The ith submatrix of 

the 3 sensitivity matrices is calculated as 
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Equation (6) is the final form of most FRF based methods. However, as mentioned before, choosing 

good theoretical frequencies different from their counterparts can improve the robustness of the 

method. To achieve this, equation (6) and (7) are rebuilt where two different frequencies are 

considered:
aω as the analytical frequency and

xω as the experimental frequency. They turn into 
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and 
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where the additional item
a x( , )e ω ω comes from equation (4) representing the difference of theoretical 

dynamic stiffness matrices between the two frequencies 
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a x x a a a x x x a a a x x( , ) ( ) ( ) ( ) j( ) ( ) ( )     e H Mh H Chω ω ω ω ω ω ω ω ω ω   (10) 

By now the relationship between the difference of the FRFs and the updating parameters has been 

established. The next task is to find the best corresponding theoretical frequencies for every 

experimental frequency. A well-known method for doing this is the FDAC method [17] which matches 

the measured frequency with the theoretical frequency whose FDAC value is the greatest. The FDAC 

value can be regarded as the correlation of the two frequencies and its expression is 
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The experimental FRF can be considered as the shift of theoretical FRF caused by the change of the 



updating parameters. The key point of FDAC method is to find the corresponding theoretical 

frequency to the experimental one. However, this method requires searching for the whole frequency 

range, which is very time-consuming. 

Since the main idea of this method is to avoid a big difference of the theoretical and experimental 

FRFs, a new index is proposed to find the theoretical frequency with a minimum order of magnitude 

difference (MOMD) from the measured frequency and is expressed as: 
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where momdi
represents the degree of closeness of every pair of elements in the two vectors. 

momdi
 has different expressions to reduce the influence of anti-phase vector with the same 

modulus value. The closer its value is to 1, the smaller MOMD is. After calculating all the MOMD 

values in a certain interval around the measured frequencies, the one with smallest MOMD value is 

chosen as the theoretical frequency. By using the MOMD index, the robustness of the algorithm has 

been improved significantly, which is verified in the next section. For simplicity the FRF based model 

updating methods without and with different frequency matching techniques under comparison are 

referred to as the original method, the MOMD method and the FDAC method, respectively. 

To deal with the problem that in practice usually not all DoFs are measurable and incomplete 

measured data cannot be directly substituted into equations (8), (9) and (10), the dynamic reduction 

method is considered which generates the slave DoFs by the master DoFs if a harmonic excitation is 

applied in the master DoFs. The transformation is given as  
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where subscripts m and s stand for the master and slave DoFs, respectively, and displacement vector x

and mass, damping and stiffness matrices M , C and K  are divided into sub vectors and sub matrices 

relating to these DoFs. By suitably dividing the measured DoFs into the master DoFs and the slave 

DoFs, the theoretical model is reduced by  

 T T T

r d d r d d r d d,     ,       M T MT C T CT K T KT   (14) 

where 
rM ,

rC and
rK are the reduced mass, damping and stiffness matrices. 

It should be noted that the fewer the measured DoFs there are, the less information the 

experimental FRF data contains and the more model errors the theoretical model produces, which 



causes the updating procedure to diverge. Thus, the method which updates parameters correctly with 

fewer measured DoFs is considered to be more robust. 

 

3. Case study using simulated FRF data 

A six-bay truss structure with 25 rods of identical cross-section and 21 DoFs as shown in figure 1, 

adapted from [12], is used in simulation. The structure is modelled with 2D truss elements. The 

properties of the structure are Young’s modulus of 200GPa, mass density of 7800kg/𝑚3 and cross 

section area of 1800mm2. The DoFs are arranged in the order of the node numbers and for each node 

the horizontal displacement is placed ahead of the vertical displacement. 

In this study, two damage scenarios listed in Table 1 are considered to gauge the performance of the 

proposed method. Both damage scenarios are represented by the reduction factor of the mass and 

stiffness matrices of some elements and for the sake of simplicity, the ‘experimental’ FRF data from 

only the first column of the FRF matrices directly obtained by the finite element simulation, are used 

to update the original intact structure. 

 

Figure 1. Geometry of a truss model 

Table 1. Damage scenarios of the truss structure 

Scenario 1 Scenario 2 

Element no. M (%) K (%) Element no. M (%) K (%) 

7 15 20 7 50 70 

12 30 40 12 60 80 

21 25 32 21 40 60 

First, scenario 1 which represents a moderate damage case is used to get experimental FRF data 

without noise. Figure 2 shows the results of damage identification using both methods when all DoFs 

are measurable. It is clear that the FRF based model updating method is able to update so many 

parameters at the same time if enough and accurate test data are available. 

Scenario 1 is also used to compare the identification performance of the three methods. The 

minimum number of the required measurable DoFs (MD) is considered a criterion. For the sake of fair 

comparison, for both methods the measurable DoFs are removed gradually from the end of the DoF 

sequence and the experimental frequencies (whose FRFs are measured) are selected at a regular 

interval in the range of 0 to 900Hz controlled by the total number of measured frequency points, 

denoted by NF, which is from 20 to 60. Table 3 lists the results of this comparison which show that the 

MOMD method can get acceptable updating results using far fewer measured DoFs than the FDAC 
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and the original method. The FDAC method is slightly better than the Original method as it has more 

acceptable NFs with the same MD. But it takes the longest time to get the final solution of updating 

parameters. 

 

 

Figure 2. Actual and updating results for damage scenario 1 (top graph for mass and bottom graph for 

stiffness) 

Table 3. Updating limits of the three methods 

 

Method  

 

minimum of MD 

 

Acceptable NF 

Single operation 

time(s) 

(MD=15,NF=30) 

Original  8 21, 24, 32, 38, 40, 58 1.75 

MOMD 4 33, 59 4.26 

FDAC 8 20, 22, 28, 37, 40, 41, 

42, 44, 47, 48, 49, 57, 59 

83.86 

Secondly, scenario 2 which represents a more severe damage case than scenario 1 is used to 

compare the performance of the three methods in extreme circumstances. This time the experimental 

FRF data is contaminated by 1% white Gaussian noise which is introduced though function awgn in 

MATLAB. Other parameter values are the same as before. The numbers of measured DoFs are from 

12 to 18; and the corresponding numbers of acceptable NF, for which an acceptable result can be 

obtained by the three FRF-based methods are illustrated in figure 3. It is clear that for each number of 

measured DoFs the MOMD method is more likely to achieve convergence than the original method. 

This time the FDAC method performs poorly. A reasonable explanation of this phenomenon is that 

the severe locations of damage cause a large frequency shift and the big difference between theoretical 

and experimental frequencies may overwhelm the FRF residuals. That is why the MOMD method 



targets the theoretical frequency in the vicinity of the experimental frequency and thus has a better 

performance. 

 

 

Figure 3. Numbers of acceptable NF for the three methods with different numbers of measured DoFs 

 

Figure 4. Actual and updating results for damage scenario 2 with 3% white Gaussian noise polluted 

data (top graph for mass and bottom graph for stiffness) 

 

Then, the proportion of white Gaussian noise is increased to 3% to compare the noise robustness of 

the three methods. The MD and NF are set to 17 and 30 respectively, by which an acceptable updating 

results can be obtained by all methods. After enough iterations, the results are considered convergent 

solutions as shown in figure 4 which illustrates that although all methods are able to identify the 

damage, the MOMD method makes the best predictions.  

 

 



4. Conclusions  

In this paper, a new frequency matching technique is proposed which can be used for the FRF based 

model updating method. With a small additional amount of computational time, a best theoretical 

frequency whose FRF has the minimum order of magnitude difference (MOMD) from the 

experimental one is selected in the vicinity of the related experimental frequency. The results of the 

simulated truss structure show that the MOMD method makes a big improvement in the performance 

of convergence over conventional FRF-based identification method. 
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