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The paper provides an analysis of the voting method known as delegable proxy voting, or liquid

democracy. The analysis first positions liquid democracy within the theory of binary aggregation.

It then focuses on two issues of the system: the occurrence of delegation cycles; and the effect of

delegations on individual rationality when voting on logically interdependent propositions. It finally

points to proposals on how the system may be modified in order to address the above issues.

1 Introduction

Liquid democracy [3] is a form of group decision-making considered to lie between direct and represen-

tative democracy. It has been used and popularized by campaigns for democratic reforms (e.g., Make

Your Laws1 in the US) and parties (e.g., Demoex2 in Sweden, and Piratenpartei3 in Germany), which

used it to coordinate the behavior of party representatives in local as well as national assemblies. At its

heart is voting via a delegable proxy, also called transferable or transitive proxy. For each issue submitted

to vote, each agent can either cast its own vote, or it can delegate its vote to another agent—a proxy—and

that agent can delegate in turn to yet another agent, and so on. This differentiates liquid democracy from

standard proxy voting [20, 23], where proxies cannot delegate their vote further. Finally, the agents that

decided not to delegate their votes cast their ballots (e.g., under majority rule), but their votes now carry

a weight consisting of the number of all agents that, directly or indirectly, entrusted them with their vote.

Context Voting by delegable proxy was most probably first outlined in [10]. Analyses of standard

(non-delegable) proxy voting from a social choice-theoretic perspective—specifically through the theory

of spatial voting—have been put forth in [1] and [14]. To date, little work has focused directly on liquid

democracy: [17] provided an empirical study of voting behavior in liquid democracy based on election

data from the Liquid Feedback4 platform of the German Piratenpartei; and [22] studied how, in the

Liquid Feedback platform, issues to be submitted to vote are selected among user-generated proposals
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via proportional rankings.5 However, to the best of our knowledge, no work has so far studied voting by

delegable proxy as an aggregation rule in its own sake. We do this in the present paper, studying liquid

democracy from the perspective of binary aggregation [11, 13, 15, 12].

Outline The paper starts in Section 2 by introducing some preliminaries on the theory of binary ag-

gregation. This preliminary section presents also novel results on binary aggregation with abstentions,

which are needed for the analysis developed later in the paper. Section 3 introduces a simple model

of liquid democracy based on binary aggregation. Section 4 establishes formal relations between the

proposed model of liquid democracy and standard binary aggregation with abstentions. It studies the

issue of circular delegations, and the issue of individual (ir)rationality when voting takes place on logi-

cally interdependent issues. The section finally moves from the analysis provided to outline two variants

of delegable proxy, which: are more resilient against delegation cycles (Section 4.3); better preserve

individual rationality when voting on logically interdependent issues (Section 4.4). Section 5 concludes.

2 Binary Aggregation

The formalism of choice for the analysis presented in this paper is binary aggregation with abstentions

(see, for instance, [11]). This section is devoted to its introduction.

2.1 Opinions and Opinion Profiles

A binary aggregation structure (BA structure) is a tuple A = 〈N,P,γ〉 where:

• N = {1, . . . ,n} is a non-empty finite set individuals (|N|= n);

• P = {p1, . . . , pm} is a non-empty finite set of issues or propositions (|P|= m);

• γ ∈ L is an (integrity) constraint, where L is the propositional language constructed by closing

P under a functionally complete set of Boolean connectives (e.g., {¬,∧}).

A binary opinion is an assignment of acceptance/rejection values (or, truth values) to the set of issues

P. Allowing abstention amounts to considering incomplete opinions: an incomplete opinion is a partial

function from P to {0,1}. We will study it as a function O : P →{0,1,∗} thereby explicitly denoting the

undetermined value “∗” corresponding to abstention. Thus, O(p) = 0 (respectively, O(p) = 1) indicates

that opinion O rejects (respectively, accepts) the issue p. Syntactically, the two opinions correspond to

the truth of the literals p or ¬p. For p ∈ P we write ±p to denote one element from {p,¬p}, and ±P to

denote
⋃

p∈P {p,¬p}, which we will refer to as the agenda of A .

We say that the incomplete opinion of an agent i is consistent if the set of formulas {p | Oi(p) = 1}∪
{¬p | Oi(p) = 0}∪{γ} can be extended to a model of γ (in other words, if the set is satisfiable). Intu-

itively, the consistency of an incomplete opinion means that the integrity constraint is consistent with i’s

opinion on the issues she does not abstain about. We also say that an incomplete opinion is closed when-

ever the following is the case: if the set of propositional formulas {p | Oi(p) = 1}∪{¬p | Oi(p) = 0}∪
{γ} logically implies p (respectively, ¬p), then Oi(p) = 1 (respectively, Oi(p) = 0). That is, individual

opinions are closed under logical consequence or, in other words, agents cannot abstain on issues whose

acceptance or rejection is dictated by their expressed opinions on other issues. The set of incomplete

5Another, somewhat tangential work is [4], which focused on algorithmic aspects of a variant of liquid democracy, called

viscous democracy, with applications to recommender systems.
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opinions is denoted O∗ and the set of consistent and closed incomplete opinions O∗
c . We will often refer

to the latter simply as individual opinions, as they are the ones we focus on.

An opinion profile O = (O1, . . . ,On) records the opinion on the elements of P, of every individual

in N. Given a profile O the ith projection O is denoted Oi (i.e., the opinion of agent i in profile O). We

also denote by O(p) = {i ∈ N | Oi(p) = 1} the set of agents accepting issue p in profile O, by O(¬p) =
{i ∈ N | Oi(p) = 0} the set of agents rejecting p in O, and by O(±p) = O(p)∪O(¬p) the set of non-

abstaining agents in O. Sometimes we restrict the previous definitions to a coalition C ⊆N, so that OC(p)
(resp., OC(¬p)) denotes the set of agents in C that accept (resp., reject) p. Finally, we write O =−i O′ to

denote that the two profiles O and O′ are identical except, possibly, for the opinion of voter i.

2.2 Aggregators

An aggregator is a function F : (O∗
c )

N → O∗, from profiles of closed and consistent incomplete opinions

to incomplete opinions. The issue-by-issue strict majority rule (maj) accepts an issue if and only if the

majority of the non-abstaining voters accept that issue:

maj(O)(p) =











1 if |O(p)| > |O(¬p)|

0 if |O(¬p)|> |O(p)|

∗ otherwise

(1)

We will refer to this rule simply as ‘majority’. Majority can be thought of as a quota rule. Quota

rules in binary aggregation with abstentions are of the following form: accept when the proportion of

non-abstaining individuals who accept is above the acceptance-quota; reject when the proportion of

non-abstaining individuals who reject is above the rejection-quota; and abstain otherwise:6

Definition 1 (Quota rules). Let A be a BA structure. A quota rule (for A ) is defined as follows, for any

issue p ∈ P, and any opinion profile O ∈ (O∗
c )

N:

F(O)(p) =











1 if |O(p)| ≥ ⌈q1(p) · |O(±p)|⌉

0 if |O(¬p)| ≥ ⌈q0(p) · |O(±p)|⌉

∗ otherwise

(2)

where ⌈·⌉ is the cealing function. And, for x ∈ {0,1}, qx is a function qx : P → (0,1]∩Q assigning a

positive rational number smaller or equal to 1 to each issue, and such that, for each p ∈ P:

qx(p)> 1−q(1−x)(p). (3)

A quota rule is called: uniform if, for all pi, p j ∈ P, qx(pi) = qx(p j); it is called symmetric if, for all

p ∈ P, q1(p) = q0(p).

Notice that the definition excludes trivial quota.7 It should also be clear that, by the constraint in

(3), Definition 1 defines an aggregator of type (O∗
c )

N → O∗ as desired.8 Notice finally that if the rule is

symmetric, then (3) forces qx(p)> 1
2
, for any given p.

6There are several ways to think of quota rules with abstentions. Instead of a quota being a proportion of non-abstaining

agents, one could for instance define rules with absolute quotas instead: accept when at least n agents accept, independently of

how many agents do not abstain. In practice, voting rules with abstention are often a combination of those two ideas: accept an

issue if a big enough proportion of the population does not abstain, and if a big enough proportion of those accept it.
7Those are quotas with value 0 (always met) or > 1 (never met). Restricting to non-trivial quota is not essential but simplifies

our exposition.
8What needs to be avoided here is that both the acceptance and rejection quota are set so low as to make the rule output both

the acceptance and the rejection of the issue.
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Example 1. The majority rule (1) is a uniform and symmetric quota rule where q1 and q0 are set to meet

the equation ⌈q1(p) · |O(±p)|⌉ = ⌈q0(p) · |O(±p)|⌉ =
⌈

|O(±p)|+1

2

⌉

, for any issue p and profile O. This

is achieved by setting the quota as 1
2
< q1(p),q0(p)≤ 1

2
+ 1

|N| =
|N|+1

2|N| , for each issue p. More precisely

one should therefore consider maj as a class of quota rules yielding the same collective opinions.

Example 2. The uniform and symmetric unanimity rule is defined by setting q1 = q0 = 1. A uniform but

asymmetric variant of unanimity can be obtained by setting q1 = 1 and q0 =
1
|N| .

2.3 Properties of Agendas and Aggregators

Definition 2 (simple/evenly negatable agenda). An agenda ±P is said to be simple if there exists no set

X ⊆±P such that: |X | ≥ 3, and X is minimally γ-inconsistent, that is:

• X is inconsistent with γ

• For all Y ⊂ X, Y is consistent with γ (or, γ-consistent).

An agenda is said to be evenly negatable if there exists a minimal γ-inconsistent set X ⊆±P such that for

a set Y ⊆ X of even size, X\Y ∪{¬p | p ∈ Y} is γ-consistent. It is said to be path-connected if there exists

p1, . . . , pn ∈ ±P such that p1 |=
c p2, . . . , pn−1 |=

x pn where pi |=
c pi+1 (conditional entailment) denotes

that there exists X ⊆ ±P, which is γ-consistent with both pi and ¬pi+1, and such that {p}∪X ∪{γ}
logically implies pi+1.

We refer the reader to [15, Ch. 2] for a detailed exposition of the above rather technical conditions.

We provide just a simple illustrative example here.

Example 3. Let P = {p,q,r} and let γ = (p∧ q) → r. ±P is not simple. The set {p,q,¬r} ⊆ ±P is

inconsistent with γ , but none of its subsets is. Let now P = {p,q,r} and let γ = (r → q)∧ (q → p). In

this case, where issues are ordered by logical entailment, each minimally γ-inconsistent set is of size 2,

and the agenda is therefore simple. The trivial example of simple agenda is where γ =⊤, and the issues

are therefore logically independent.

We proceed by recalling some well-known properties of aggregators from the judgment and binary

aggregation literatures, adapted to the setting of aggregation with abstention:9

Definition 3. Let A be an aggregation structure. An aggregator F : (O∗
c )

N → O∗ is said to be:

unanimous iff for all p ∈ P, for all profiles O and all x ∈ {0,1,∗}: if for all i ∈ N,Oi(p) = x, then

F(O)(p) = x. I.e., if everybody agrees on a value, that value is the collective value.

anonymous iff for any bijection µ : N → N, F(O) = F(Oµ), where Oµ =
〈

Oµ(1), . . . ,Oµ(n)

〉

. I.e.,

permuting opinions among individuals does not affect the output of the aggregator.

p-oligarchic iff there exists C ⊆ N (the p-oligarchs) s.t. C 6= /0 and for any profile O, and any value

x ∈ {0,1}, F(O)(p) = x iff Oi(p) = x for all i ∈ C. I.e., there exists a group of agents whose

definite opinions always determine the group’s definite opinion on p. If F is p-oligarchic, with the

same oligarchs on all issues p ∈ P, then it is called oligarchic.

monotonic iff, for all p ∈ P and all i ∈ N: for any profiles O,O′, if O =−i O′: (i) if Oi(p) 6= 1 and

O′
i(p) ∈ {1,∗}, then: if F(O)(p) = 1, then F(O′)(p) = 1; and (ii) if Oi(p) 6= 0 and O′

i(p)∈ {0,∗},

then: if F(O)(p) = 0, then F(O′)(p) = 0. I.e., increasing support for a definite collective opinion

does not change that collective opinion.

9Such adaptation is, in many cases, non-trivial.
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independent iff, for all p ∈ P, for any profiles O,O′: if for all i ∈ N,Oi(p) = O′
i(p), then F(O)(p) =

F(O′)(p). I.e., the collective opinion on each issue is determined only by the individual opinions

on that issue.

neutral iff, for all p,q ∈ P, for any profile O: if for all i ∈ N, Oi(p) = Oi(q), then F(O)(p) = F(O)(q).
I.e., all issues are aggregated in the same manner.

responsive iff for all p ∈ P, there exist profiles O,O′ such that F(O)(p) = 1 and F(O′)(p) = 0. I.e., the

rule allows for an issue to be accepted for some profile, and rejected for some other.

unbiased iff for all p ∈ P, for any profiles O,O′ : if for all i ∈ N, Oi(p) = 1 iff O′
i(p) = 0 (we say that O′

is the “reversed” profile of O), then F(O)(p) = 1 iff F(O′)(p) = 0. I.e., reversing all and only the

individual opinions on p (from acceptance to rejection and from rejection to acceptance) results

in reversing the collective opinion on p.

rational iff for any profile O, F(O) is consistent and closed. I.e., the aggregator preserves the con-

straints on individual opinions.

Majority is unanimous, anonymous, monotonic, independent, neutral, responsive and unbiased, but

it is not rational in general, as witnessed by well-known judgment aggregation paradoxes (cf. [15]).

Finally, let us also define the following property. The undecisiveness of an aggregator F on issue p

for a given aggregation structure is defined as the number of profiles which result in collective abstention

on p, that is:

u(F)(p) = |{O ∈ O
∗
c | F(O)(p) = ∗}|. (4)

2.4 Some Results

Aggregation by majority is collectively rational under specific assumptions on the aggregation constraint:

Proposition 1. Let A be a BA structure with a simple agenda. Then maj is rational.

May’s theorem [19] famously shows that for preference aggregation, the majority rule is in fact the

only aggregator satisfying a specific set of desirable properties. A corresponding characterization of

the majority rule is given in standard judgment aggregation (without abstentions): when the agenda is

simple, the majority rule is the only aggregator which is rational, anonymous, monotonic and unbiased

[15, Th. 3.2]. We give below a novel characterization theorem, which takes into account the possibility

of abstentions both at the individual and at the collective level. To the best of our knowledge this is the

first result of this kind in the literature on judgment and binary aggregation with abstention.

We first prove the following lemma:

Lemma 1. Let F be a uniform and symmetric quota rule for a given A . The following holds: 1
2
< q1 =

q0 ≤
|N|+1

2|N| if and only if F = argminG u(G)(p), for all p ∈ P.

That is, the quota rule(s) corresponding to the majority rule (Example 1) is precisely the rule that

minimizes undecisiveness.

We can now state and prove the characterization result:

Theorem 1. Let F : (O∗
c )

N → O∗ be an aggregator for a given A . The following holds:

1. F is a quota rule if and only if it is anonymous, independent, monotonic, and responsive;

2. F is a uniform quota rule if and only if it is a neutral quota rule;
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3. F is a symmetric quota rule if and only if it is an unbiased quota rule;

4. F is the majority rule maj if and only if it is a uniform symmetric quota rule which minimizes

undecisiveness.

By the above theorem and Proposition 1, it follows that, on simple agendas, majority is the only

rational aggregator which is also responsive, anonymous, systematic and monotonic.

We conclude by recollecting a well-known impossibility result concerning binary aggregation with

abstentions:

Theorem 2 ([11, 9]). Let A be a BA structure whose agenda is path connected and evenly negatable.

Then if an aggregator F : (O∗
c )

N → O∗ is independent, unanimous and collectively rational, then it is

oligarchic.

3 Binary Liquid Democracy

In binary aggregation with delegable proxy, agents either express an acceptance/rejection opinion or

delegate the expression of such an opinion to another agent. The section models and studies this type of

voting as a form of binary aggregation function.

3.1 Proxy Opinions, Profiles and Delegation Graphs

Let a BA structure A be given and assume for now that γ =⊤, that is, all issues are logically independent.

An opinion O : P →{0,1}∪N is an assignment of either a truth value or another agent to each issue in P,

such that Oi(p) 6= i (that is, self-delegation is not an expressible opinion). We will later also require proxy

opinions to be individually rational, in a precise sense (Section 4.1). For simplicity we are assuming that

abstention is not a feasible opinion in proxy voting, but such assumption can be easily lifted in what

follows.

We call functions of the above kind proxy opinions to distinguish them from standard (binary) opin-

ions, and we denote by P the set of all proxy opinions, Pc the set of all individually rational proxy

opinions (as defined later in Section 4.1). Finally, PN denotes the set of all profiles of proxy opinions,

which we call, proxy profiles.

Each proxy profile O induces a delegation graph GO = 〈N,{Rp}p∈P
〉 where for i, j ∈ N:

iRp j ⇐⇒

{

Oi(p) = j if i 6= j ∈ N

Oi(p) ∈ {0,1} otherwise
(5)

The expression iRp j stands for “i delegates her vote to j on issue p”. Each Rp is a so-called functional

relation. It corresponds to the graph of an endomap on N. So we will sometimes refer to the endomap

rp : N → N of which Rp is the graph. Relations Rp have a very specific structure and can be thought of

as a set of (converging) trees whose roots all belong to cycles (possibly loops).

The weight of an agent i w.r.t. p in a delegation graph GO is given by its indegree with respect to R∗
p

(i.e., the reflexive and transitive closure of Rp):10 wO
i (p) =

∣

∣

{

j ∈ N | jR∗
pi
}
∣

∣. The weight of a coalition

C ⊆ N is defined naturally as wO
C (p) = ∑i∈C wO

i (p). This definition of weight makes sure that each

10 We recall that the reflexive transitive closure R∗ of a binary relation R ⊆ N2 is the smallest reflexive and transitive relation

that contains R.
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individual carries the same weight, independently of the structure of the delegation graph. Alternative

definitions of weight are of course possible.

For all p ∈ P, we consider the function gp : N →℘(N) defined as gp(i) =
{

j ∈ N | iR∗
p j and jRp j

}

.

The function associates to each agent i (for a given issue p), the (singleton consisting of the) last agent

reachable from i via a path of delegation on issue p, when it exists (and /0 otherwise). Slightly abusing

notation we will use gp(i) to denote an agent, that is, the guru of i over p when gp(i) 6= /0. If gp(i) = {i}
we call i a guru for p. Notice that gp(i) = {i} iff rp(i) = i, i.e., i is a guru of p iff it is a fixpoint of the

endomap rp.

If the delegation graph GO of a proxy profile O is such that, for some Rp, there exists no i ∈ N such

that i is a guru of p, we say that graph GO (and profile O) is void on p. Intuitively, a void profile is a

profile where no voter expresses an opinion, because every voter delegates her vote to somebody else.

Given a BA structure A , a proxy aggregation rule (or proxy aggregator) for A is a function pv :

PN → O∗ that maps every proxy profile to one collective incomplete opinion. As above, pv(O)(p)
denotes the outcome of the aggregation on issue p.

3.2 Proxy Aggregators

The most natural form of voting via delegable proxy is a proxy version of the majority rule we discussed

in Section 2:11

pvmaj(O)(p) =











1 if ∑i∈O(p) wO
i (p)> ∑i∈O(¬p) wO

i (p)

0 if ∑i∈O(¬p) wO
i (p)> ∑i∈O(p) wO

i (p)

∗ otherwise

(6)

Again, the notation O(p) (resp., O(¬p)) denotes the set of voters accepting (resp., rejecting) p in proxy

profile O. Intuitively, an issue is accepted by proxy majority in profile O if the sum of the weights

of the agents who accept p in O exceeds the majority quota, it is rejected if the sum of the weights

of the agents who reject p in O exceeds the majority quota, and it is undecided otherwise. Note that

∑i∈O(p) wO
i (p) = |{i ∈ N|Ogi

(p) = 1}| (and similarly for ¬p), that is, the sum of the weights of the gurus

accepting (rejecting) p is precisely the cardinality of the set of agents whose gurus accept (reject) p.

It should be clear that for any quota rule F : O∗
c →O∗ a proxy variant pvF of F can be defined via an

obvious adaptation of (6).

4 Analysis and Extensions

In this section we provide an analysis of liquid democracy by highlighting two issues—the failure of

rationality in ballots under delegable proxy voting, and the occurrence of delegation cycles—and by em-

bedding it in the theory of binary aggregation with abstentions presented in Section 2. We also advance

proposals for simple modifications of the delegable proxy voting method in order to address the issues

we identify.

11On the importance of majority decisions in the current implementation of liquid democracy by Liquid Feedback cf. [3,

p.106].
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4.1 Individual and Collective Rationality

In our discussion so far we have glossed over the issue of logically interdependent issues and collective

rationality. The reason is that under the delegative interpretation of liquid democracy developed in the

previous sections individual rationality itself appears to be a more debatable requirement than it normally

is in classical aggregation.

A proxy opinion Oi is individually rational if the set of formulas

{γ}∪
{

p ∈ P | Ogp(i)(p) = 1
}

∪
{

¬p ∈ P | Ogp(i)(p) = 0
}

(7)

is satisfiable (consistency), and if whenever (7) entails ±p, then ±p belongs to it (closure). That is, the

integrity constraint γ is consistent with i’s opinion on the issues she does not delegate on, and the opinions

of her gurus (if they exist), and those opinions, taken together, are closed under logical consequence.

The consistency and closure of (7) capture a highly idealized way of how delegation works: voters

are assumed to be able to check or monitor how their gurus are going to vote, and always modify their

delegations if an inconsistency arises. So the constraint appears highly unrealistic under a delegative

interpretation of liquid democracy. Aggregation via delegable proxy has at least the potential to represent

individual opinions as irrational (inconsistent and/or not logically closed).

The assumption of individual rationality for proxy opinions, however, is needed in order to establish

variants of known binary aggregation results for the case of liquid democracy, to which we turn now.

4.2 Embedding

Having defined individual rationality in the previous section, it is possible now to study embeddings from

proxy voting to standard aggregation, and vice versa.

Aggregation in liquid democracy—as conceived in [3]—should satisfy the principle that the opinion

of every voter, whether expressed directly or through proxy, should be given the same weight.12 In

other words, this principle suggests that aggregation via delegable proxy should actually be ‘blind’ for

the specific type of delegation graph arising. Making this more formal, we can think of the above

principle as suggesting that the only relevant content of a proxy profile is its translation into a standard

opinion profile (with abstentions) via a function t : P → O∗ defined as follows: for any i ∈ N and

p ∈ P, t(Oi(p)) = Ogp(i) if gp(i) 6= /0 (i.e., if i has a guru for p), and t(Oi(p)) = ∗ otherwise. Clearly,

if we assume proxy profiles to be individually rational, the translation will map proxy opinions into

individually rational (consistent and closed) incomplete opinions. By extension, we will denote by t(O)
the incomplete opinion profile resulting from translating the individual opinions of a proxy profile O.

The above discussion suggests the definition of the following property of proxy aggregators: a proxy

aggregator pv has the one man–one vote property (or is a one man–one vote aggregator) if and only if

pv = t ◦F for some aggregator F : O∗
c → O∗ (assuming the individual rationality of proxy profiles).13

The class of one man–one vote aggregators can therefore be studied simply as the concatenation t ◦F

where F is an aggregator for binary voting with abstentions, as depicted in Figure 1 (left).

12 “[. . . ] in fact every eligible voter has still exactly one vote [. . . ] unrestricted transitive delegations are an integral part of

Liquid Democracy. [. . . ] Unrestricted transitive delegations are treating delegating voters and direct voters equally, which is

most democratic and empowers those who could not organize themselves otherwise” [3, p.34-36]
13Not every proxy aggregator satisfies the one man–one vote property. By means of example, consider an aggregator that

uses the following notion of weight accrued by gurus in a delegation graph. The weight w(i) of i is ∑ j∈R∗(i)
1

ℓ(i, j)
where ℓ(i, j)

denotes the length of the delegation path linking j to i. This definition of weight is such that the contribution of voters decreases

as their distance from the guru increases. Aggregators of this type are studied in [4].
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O t(O)

F(t(O))

t

pvF F

O s(O)

pv(s(O))

pvFpv

s

Figure 1: Embeddings to and from binary aggregation.

Example 4. Proxy majority pvmaj (6) is a one man–one vote rule aggregator. It is easy to check that, for

any proxy profile O: pvmaj(O) =maj(t(O)).

It follows that for every proxy aggregator pvF = t ◦F the axiomatic machinery developed for standard

aggregators can be directly tapped into. Characterization results then extend effortlessly. In particular,

Theorem 1 implies the following:

Fact 1 (Characterization of proxy majority). A one man–one vote proxy aggregator pv = t ◦F for a

given A is proxy majority pvmaj iff F is anonymous, independent, monotonic, responsive, neutral and

minimizes undecisiveness.

The fact may well be considered as a theoretical argument in favor of the use of proxy majority in

aggregation with delegable proxy as currently done, for instance, in the Liquid Feedback platform.

Similarly, we can study an embedding of standard aggregation into voting with delegable proxy. For

example, we can define a function s : O∗
c → Pc from opinion profiles to individually rational proxy

profiles as follows. For a given opinion profile O, and issue p consider the set {i ∈ N | Oi(p) = ∗}
of individuals that abstain in O and take an enumeration σ : {i ∈ N | Oi(p) = ∗} → {1, . . . ,m} of its

elements, with m = |{i ∈ N | Oi(p) = ∗}|. The function is defined as follows: for any i ∈ N and p ∈ P,

s(Oi(p)) = Oi(p) if Oi(p) ∈ {0,1}, s(Oi(p)) = (σ(i) + 1) mod m, otherwise.14 A translation of this

type allows to think of standard aggregators F : O∗
c → O∗ as the concatenation s ◦ pv, for some proxy

aggregator pv, as in Figure 1 (right). The following impossibility result for aggregation with delegable

proxy voting can then be obtained as a direct consequence of Theorem 2:

Fact 2. Let A be such that its agenda is path connected and evenly negatable. For any proxy aggregator

pv, if s◦pv is independent, unanimous and collectively rational, then it is oligarchic.

4.2.1 Cycles and Abstentions

Proxy aggregators rely on the existence of gurus in the underlying delegation graphs. If the delegation

graph Rp on issue p contains no guru, then the aggregator has access to no information in terms of who

accepts and who rejects issue p. To avoid bias in favor of acceptance or rejection, such situations should

therefore result in an undecided collective opinion. That is for instance the case of pvmaj. However, such

situations may well be considered problematic, and the natural question arises therefore of how likely

they are, at least in principle.

Proposition 2. Let A be a BA structure where γ = ⊤ (i.e., issues are independent) and fix an issue p.

If each proxy profile is equally probable (impartial culture assumption), then the probability that a given

proxy profile O is such that t(O) is a profile in which every voter abstains tends to 1
e2 as n tends to infinity.

14Notice that since self-delegation (that is, Oi(p) = i) is not feasible in proxy opinions, this definition of s works for profiles

where, on each issue, either nobody abstains or at least two individuals abstain. Clearly, a dummy abstaining voter can then be

added in profiles where only one individual abstains.
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It follows that for unanimous and one man–one vote proxy aggregators, asymptotically, there is a

considerable chance that a profile results in collective abstention. Now contrast this with the probability

that all agents abstain on an issue when each voter either expresses a 1 or 0 opinion or abstains (that is, the

binary aggregation with abstentions setting studied earlier). In that case the probability that everybody

abstains, and therefore the profile is void, clearly tends to 0 as n tends to infinity.

Proposition 2 should obviously not be taken as a realistic estimate of the effect of cycles on collective

abstention, moreover concrete implementations of delegable proxy voting may be designed to detect and

resolve cycles (cf. [24, 17]). Ultimately, theoretical (e.g., game theoretic) models of delegation behavior

in voters or, ideally, election data should be used to assess whether delegation cycles ever lead large

parts of the electorate to effectively lose representation in the aggregation mechanism. Still, the link we

highlight between delegable proxy and collective abstention is, to the best of our knowledge, novel and

has escaped so far recognition within the liquid democracy literature.15

4.3 Delegable Proxy with Default Values

Motivated by the above analysis, we outline a simple modification of voting via delegable proxy, which

requires agents to always submit a substantive opinion on the issues, and at the same time indicate

a trustee. In this view, an opinion (called proxy opinion with default) is therefore a function Oi : P →
({0,1}×N) assigning to every issue an acceptance or rejection value and, at the same time, an individual,

which is to be considered the individual the vote is delegated to. Intuitively, each voter expresses an

opinion but accepts that opinion to be overruled by the opinion of the individual she entrusts. Note that

such individual may well be the voter herself (e.g., Oi(p) = (1, i)). We refer to profiles of such opinions

as proxy profiles with default.

Let CO(p) = {C ⊆ N |C is a Rp-cycle and |OC(p)|> |OC(¬p)|} denote the set of cycles of the del-

egation graph Rp such that among the agents in the cycle there exists a majority accepting p. The set

CO(¬p) is defined in the symmetric way. Now define proxy majority as an aggregator for profiles of

proxy opinions with default values:

pv′maj(O)(p) =











1 if ∑C∈CO(p) wO
C (p)> ∑C∈CO(¬p) wO

C (p)

0 if ∑C∈CO(¬p) wO
C (p)> ∑C∈CO(p) wO

C (p)

∗ otherwise

(8)

where, recall, wO
C (p) is the cumulative weight (w.r.t. Rp) of the agents in C. The intuition behind (8) is

to use each cycle, and not only loops (i.e., gurus), as sources of information for the proxy aggregator, by

attributing to the individuals in a cycle the majority default opinion present in that cycle.

15Delegation cycles are normally criticized for the wrong reason, that is, the fact that hey may be interpreted as to lead to an

infinite accrual of voting power: “The by far most discussed issue is the so-called circular delegation problem. What happens

if the transitive delegations lead to a cycle, e.g. Alice delegates to Bob, Bob delegates to Chris, and Chris delegates to Alice?

Would this lead to an infinite voting weight? Do we need to take special measures to prohibit such a situation? In fact, this is

a nonexistent problem: A cycle only exists as long as there is no activity in the cycle in which case the cycle has no effect. As

already explained [. . . ], as soon as somebody casts a vote, their (outgoing) delegation will be suspended. Therefore, the cycle

naturally disappears before it is used. In our example: If Alice and Chris decide to vote, then Alice will no longer delegate

to Bob, and Chris will no longer delegate to Alice [. . . ]. If only Alice decides to vote, then only Alice’s delegation to Bob is

suspended and Alice would use a voting weight of 3. In either case the cycle is automatically resolved and the total voting

weight used is 3.” [3, Section 2.4.1] Cf. [2]. We agree that the alleged accrual of infinite voting power is immaterial. However,

the fact that the occurrence of a cycle leads to the loss of representation of the voters in the cycle—and of those delegating to

them—does not seem to have yet been acknowledged.
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As one might intuitively expect, this is enough to break the link between delegation cycles and group

abstention we identified with Proposition 2. To state the following result we need to adapt the translation

function t for proxy profiles, to a translation function t ′ translating proxy profiles with default to opinion

profiles with abstentions: for any i∈N and p∈P, t ′(Oi(p)) =maj(OC)(p) where C is the cycle reachable

from i via Rp.

Proposition 3. Let A be a BA structure where γ =⊤ (i.e., issues are independent) and fix an issue p. If

each proxy profile with default is equally probable (impartial culture assumption), then the probability

that a given proxy profile with default O is such that t ′(O) is a profile in which every voter abstains tends

to 0 as n tends to infinity.

4.4 Individually Rational Delegable Proxy

Delegable proxy voting can also be studied from a different perspective. Imagine a group where, for each

issue p, each agent copies the binary—0 or 1—opinion of a unique trustee.16 Imagine that this group does

so repeatedly until all agents (possibly) reach a stable opinion. These new stable opinions can then be

aggregated as the ‘true’ opinions of the individuals in the group, for instance, via majority. The collective

opinion of a group of agents, who either express a binary opinion or delegate it to another agent, is (for

one man–one vote proxy aggregators) the same as the output obtained from a vote where each individual

has to express a binary opinion but gets there by copying the opinion of her trustee (possibly the agent

itself). In this perspective, aggregation via delegable proxy can be assimilated to a (stabilizing) process

of opinion formation on delegation graphs.

The above interpretation of liquid democracy is explicitly put forth in [3].17 Under this ‘vote-

copying’ interpretation, the constraint on individual rationality—consistency and closure of (7)—is,

arguably, more easily defendable: each agent will copy opinions coming from her trustees only if con-

sistency and closure are preserved.

4.4.1 Boolean DeGroot Processes

We briefly develop the above intuition, outlining an opinion diffusion model of delegable proxy which

preserves individual rationality in a natural way.18

Definition 4. Fix a BA structure A = 〈N,P,γ〉, a profile O∈
(

{0,1}P
)N

of γ-consistent binary opinions,

and a delegation graph G = 〈N,{Rp}p∈P
〉. Consider the stream O0,O1, . . . ,On, . . . of opinion profiles

recursively defined as follows:

• Base: O0 := O

16For simplicity, in this section we assume agents are therefore not allowed to abstain, although this is not a crucial assump-

tion for the development of our analysis.
17 “While one way to describe delegations is the transfer of voting weight to another person, you can alternatively think of

delegations as automated copying of the ballot of a trustee. While at assemblies with voting by a show of hands it is naturally

possible to copy the vote of other people, in Liquid Democracy this becomes an intended principle” [3, p. 22].
18As we will consider just binary opinions (without abstentions), the concept of individual rationality can be slightly simpli-

fied: requiring an opinion to be γ-consistent suffices as in the case of binary opinions without abstentions, consistency implies

closedness.
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• Step: for all i ∈ N, p ∈ P,

On+1
i (p) :=











On
Rp(i)

(p) if {γ}∪
{

p ∈ P | ORp(i)(p) = 1
}

∪
{

¬p ∈ P | ORp(i)(p) = 0
}

is consistent

On
i (p) otherwise

where Gp = 〈N,Rp〉.

When γ is set to ⊤, the above defines |P| independent binary processes, one for each issue p. Each of

such processes is a Boolean extremal case of a DeGroot stochastic process [8] where opinions are binary,

and each agent can trust one and at most one other agent. When the constraint γ is not a tautology, the

definition guarantees that at each step individual opinions remain consistent with γ . We call processes

defined by the above dynamics individually rational Boolean DeGroot processes (in short, BDPs).19

4.4.2 Stabilization

We say that the stream of opinion profiles O0,O1, . . . ,On, . . . stabilizes if there exists n ∈ N such that for

all m ∈ N, if m ≥ n, then Om = On. We call such profile the limit profile. A BDP that stabilizes can be

thought of as an opinion transformation function [18] fG : O → O turning an initial binary profile O into

a new binary profile f (O) equal to the limit profile. In this view, individually rational proxy aggregation

consists first in an opinion transformation, implemented through a BDP, and then the application of an

aggregator (e.g., maj) on the profile of transformed opinions f (O). A BDP that does not converge, can

similarly be thought of as mapping the initial profile to a profile involving some level of abstention, where

agents connected to some delegation cycle may not end up stabilizing and are therefore considered to

abstain. We conclude by establishing conditions for individually rational Boolean DeGroot processes to

stabilize.

Theorem 3. Fix a BA structure A = 〈N,P,γ〉, a profile O of consistent (w.r.t. γ) binary opinions, and

a delegation graph G. Then the following holds: if for all p ∈ P, for all C ⊆ N such that C is a cycle in

Gp, and all i, j ∈C: Oi(p) = O j(p), then the individually rational BDP (for O, G and γ) stabilizes in at

most k steps, where k = max{diam(Gp)|p ∈ P}.

When γ = ⊤, the opposite direction also holds, and one can obtain a characterization of the notion

of stabilization for BDPs based on properties of the initial opinion profile and of the delegation graph.

Theorem 4. Fix a BA structure A = 〈N,P,γ〉, a profile O of consistent (w.r.t. γ) binary opinions, and a

delegation graph G, and let γ =⊤. Then the following statements are equivalent:

1. The BDP (for O and G) stabilizes.

2. For all p ∈ P, there is no set of agents S ⊆ N such that: S is a cycle in Gp and there are two agents

i, j ∈ S such that Oi(p) 6= O j(p).

A special case of Theorem 4 is the case in which Gp contains no cycle of length ≥ 2. In such case, a

direct consequence of the theorem is that the process stabilizes from any profile. This is also a corollary

of a known stabilization result for DeGroot processes (cf. [16, p.233]).

19Other types of dynamics are of course possible. A recent systematic investigation of opinion diffusion on logically inter-

dependent issues is [5]. For a broader study of Boolean DeGroot processes in the context of models of binary opinion diffusion

on networks we refer the reader to [6].
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5 Conclusions

The paper has shown how delegable proxy voting (liquid democracy) can be understood as an aggregator

within the theory of binary aggregation with abstentions, for which we provided a novel characterization

theorem of issue-wise majority (Theorem 1). This has allowed us to clarify the impact of cyclical del-

egations on individual and collective abstentions (Proposition 2) and to suggest alternative aggregators

requiring individuals to reveal a default opinion, which can be shown to better behave in the presence

of delegation cycles (Proposition 3). Finally we showed how delegable proxy interferes with individual

rationality, a standard tenet of social choice theory. Also in this case we showed how liquid democ-

racy could be adjusted—in the form of a stabilizing diffusion process—in order to preserve individual

rationality (Theorem 3).

Proofs

Proof of Proposition 1. If the agenda ±P is simple, then all minimally inconsistent sets have cardinality

2, that is, are of the form {ϕ ,¬ψ} such that ϕ |= ¬ψ for ϕ ,ψ ∈ P. W.l.o.g. assume ϕ = pi and ψ = p j.

Suppose towards a contradiction that there exists a profile O such that maj(O) is inconsistent, that is,

maj(O)(pi) = maj(O)(p j) = 1, and ϕ |= ¬ψ . By the definition of maj (1) it follows that |O(pi)| >
|O(¬pi)| and |O(p j)| > |O(¬p j)|. Since pi |= ¬p j by assumption, and since individual opinions are

consistent and closed, |O(¬p j)| ≥ |O(pi)| and |O(¬pi)| ≥ |O(p j)|. From the fact that |O(pi)|> |O(¬pi)|
we can thus conclude that |O(¬p j)|> |O(p j)|. Contradiction.

Proof of Lemma 1. We establish the claim through a series of equivalences. Observe first of all that a

uniform and symmetric quota rule F is such that (a) F = argminG u(G)(p), for all p ∈ P if and only if,

(b) for any O ∈ O∗
c and p ∈ P, u(O)(p) = ∗ if and only if O(p) = O(¬p), that is, an even number of

voters vote and the group is split in half. Now, (b) is the case if and only if, (c) the quota of F are set in

such a way that ⌈q1(p)|O(±p)|⌉= ⌈q0(p)|O(±p)|⌉=
⌈

|O(±p)|+1

2

⌉

for any profile O and issue p. In turn

(c) is the case if and only if, (d) the quota of F are set as 1
2
< q1(p) = q0(p)≤ |N|+1

2|N| , which are the quota

defining maj (Example 1).

Proof of Theorem 1. Claim 1 Left-to-right: Easily checked. Right-to-left: Let F be an anonymous,

independent, monotonic, and responsive aggregator. By anonymity and independence, for any p ∈ P,

and any O ∈ O∗
c , the only information determining the value of F(O)(p) are the integers |O(p)| and

|O(¬p)|. By responsiveness, there exists a non-empty set of profiles S1 = {O ∈ O∗|F(O)(p) = 1}. Pick

O to be any profile in S1 with a minimal value of
|O(p)|
|O(±p)| and call this value q1. Now let O′ be any profile

such that O′ =−i O and
|O′(p)|
|O′(±p)| > q1. This implies that Oi(p) = 0 and O′

i(p) = 1. By monotonicity,

it follows that F(O′)(p) = 1. By iterating this argument a finite number of times we conclude that

whenever
|O(p)|
|O(±p)| ≥ q1, we have that F(O)(p) = 1. Given that q1 was defined as a minimal value, we

conclude also that if F(O)(p) = 1, then
O(p)

O(p±) ≥ q1. The argument for q0 is identical.

Claims 2 & 3 follow straightforwardly from the definitions of uniform quota rule (Definition 1) and

of neutrality (Definition 3) and, respectively, from the definitions of symmetric quota rules (Definition

1) and of unbiasedness (Definition 3) .

Claim 4 Left-to-right. Recall that maj is defined by quota 1
2
< q1 = q0 ≤

1
2
+ 1

|N| (Example 1). It is

clear that maj is uniform and symmetric. The claim then follows by Lemma 1. Right-to-left. By Lemma
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1 if an aggregator minimizes undecisiveness then its quota are set as 1
2
< q1 = q0 ≤

1
2
+ 1

|N| . These quota

define maj (Example 1).

Proof of Proposition 2. The claim amounts to computing the probability that a random proxy profile O

induces a delegation graph Rp that does not contain gurus (or equivalently, whose endomap rp : N → N

has no fixpoints) as n tends to infinity. Now, for each agent i, the number of possible opinions on a given

issue p (that is, functions O : {p} → {0,1} ∪N) is |(N\{i})∪{0,1} | = n+ 1 (recall i cannot express

“i” as an opinion). The number of opinions in which i is delegating her vote is n−1. So, the probability

that a random opinion of i about p is an opinion delegating i’s vote is n−1
n+1

. Hence the probability that

a random profile consists only of delegated votes (no gurus), for a fixed issue, is (n−1
n+1

)n. The claimed

value is then established through this series of equations:

lim
n→∞

(

n−1

n+1

)n

= lim
n→∞

(

n

n+2

)n

= lim
n→∞

(

1
n+2

n

)n

= lim
n→∞

(

1

1+ 2
n

)n

= lim
n→∞

(

1

(1+ 2
n
)n

)

=
1

limn→∞(1+
2
n
)n

=
1

e2

This completes the proof.

Proof of Proposition 3. The claim amounts to computing the probability that a random proxy profile

with default opinions O induces a delegation graph Rp (equivalently, an endomap rp : N → N) whose

cycles are all hung majorities, that is, whose cycles are all even and exactly half the agents in each cycle

accept p. As opinion with defaults consist of both a value x ∈ {0,1} and a trustee i ∈ N we can treat

the probability of each component as independent: the number of all possible proxy profiles with default

opinions is, therefore, 2n ·nn. First of all, recall that a delegation graph can be represented as a set of trees

whose roots are nodes in a cycle, that is, as trees whose roots are elements of a permutation of a subset

of N. The number of ways of arranging n elements in trees rooted on m elements (with m > n ≥ 1) is

given by the following recursive function (cf. [21]):

f (n,m) =

(

n

m

)

∑
0≤k≤n−m

mk f (n−m,k) (9)

with f (0,0) = 1 and f (n,0) = 0 for any n > 0. So the number nn of all possible delegation graphs equals

∑
1≤k≤n

f (n,k)k! (10)

that is, the number of ways of arranging n elements in trees rooted on a permutation of a subset of n

(recall that k! is the number of all possible permutations of k elements). Now to obtain the number of
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ways of arranging n elements in trees rooted on even cycles, each of which is a hung majority we adapt

(10) as follows. First we establish the number of delegation graphs (for a given issue) which contain only

even cycles, that is:

∑
k≤n and even

f (n,k)
k!

2k

(

k
k
2

)

(11)

If each addendum of the above expression is multiplied by 2k, that is the number of possible opinions on

p of k agents, one obtains the number of possible proxy profiles with default that determine a delegation

graph with only even cycles, with all the possible assignments of opinions x ∈ {0,1} for the agents in the

permutation on which the trees of the graph are rooted:

∑
k≤n and even

f (n,k)k!

(

k
k
2

)

(12)

We can then adapt (12) by restricting the subprofiles of opinions of the k agents to hung majorities (i.e.,
(

k
k
2

)

). We thus obtain the following value:

∑
k≤n and even

f (n,k)
k!

2k

(

k
k
2

)2

(13)

Under the impartial culture assumption, the probability of a proxy profile with default opinions to induce

only even cycles with hung majorities is therefore (13) divided by 2n ·nn. This quantity approaches 0 as

n tends to infinity.

Proof of Theorem 3. Assume that for all p ∈ P, for all S ⊆ N such that S is a cycle in Gp, for all i, j ∈ S:

Oi(p) = O j(p). Consider an arbitrary i ∈ N. Let ki(p) be the distance from i to the closest agent in a

cycle of Gp, and let ki denote max{ki(p)|p ∈ P}. We show that for any ki ∈ N, O
ki

i is an opinion which

will not change at any later stage (stable).

• If ki = 0: i is its only infuencer, therefore O0
i is stable by assumption.

• If ki = n+1: Assume (IH) that for all agents j such that k j = n, O
k j

j is stable. This implies that all

influencers of i are stable. There are two cases:

1. If {γ}∪
{

p ∈ P | ORp(i)(p) = 1
}

∪
{

¬p ∈ P | ORp(i)(p) = 0
}

is not consistent, then it will

never be, and therefore On
i is already stable.

2. If {γ}∪
{

p ∈ P | ORp(i)(p) = 1
}

∪
{

¬p ∈ P | ORp(i)(p) = 0
}

is consistent, then for each p,

On+1
i (p) = O

k j

j (p), and On+1
i is therefore (by IH) stable.

It follows that after k steps, with k = max{diam(Gp)|p ∈ P}, each agent’s opinion is stable, and the BDP

has therefore stabilized.

Proof of Theorem 4. 1)⇒ 2) We proceed by contraposition. Let p ∈ P, S ⊆ N be a cycle in Gp, i, j ∈ S,

and Oi(p) 6= O j(p). Let k be the length of the cycle and d be the distance from i to j. Then Oi(p) will

enter a loop of size k: for all x ∈N, Oxk
i (p) 6= Oxk+d

i (p). Therefore, the BDP does not stabilize. 2)⇒ 1)

Assume S ⊆ N be such that S is a cycle in Gp, and for all i, j ∈ S, Oi(p) = O j(p). Then, for all j ∈ S,

and all x ∈N, Ox
j(p) = Oi(p) and for all k ∈ N\S with distance d from to i, for all x ∈N, such that x ≥ d,

Ox
k(p) = Oi(p). Therefore, the BDP stabilizes.
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