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Abstract  

Using a triple probe situated above the racetrack and inside the magnetic trap of a magnetron, 

rotating spokes-like structures have been clearly identified in a single HiPIMS pulse as 

periodic modulations in the electron temperature Te, electron density ne, ion saturation current 

Iisat , floating potential Vf and plasma potential Vp. The spokes rotate in the E x B direction 

with a velocity of ~ 8.8 km/s. 

 

Defining the spoke shape from the footprint of ion current they deliver to flush mounted 

probes embedded in the target, each spoke can be characterised by a dense but cool leading 

edge (ne ~ 2.0 x 10
19

 m
-3

, Te ~ 2.1 eV) and relatively hotter but more rarefied trailing edge (ne 

~ 1 x 10
19

 m
-3

, Te ~ 3.9 eV). Measurements of Vp show a potential hump towards the rear of 

spoke, separated from regions of highest density, with plasma potentials up to 8 V more 

positive than the inter-spoke regions. Azimuthal electric fields of ~1kV/m associated with 

these structures are calculated.   

 

Transforming the triple probe time-traces to functions of azimuthal angle  and assuming a 

Gaussian radial profile for the plasma parameters, 2D spatial maps of ne, Te , and Vp have 

been constructed as well as the target ion current density Jp from the embedded probes. The 

phase relationship between Te, Vp and ne can be clearly seen using this representation with ne 

leading Te and Vp with a phase shift between them of ~ 50
o
. Regions of maximum ion current 

to the target delivered by individual spokes coincide with the overlap of regions of high ne 

and Te measured above the target at a height of 15 mm. Ions created at elevated positions 
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above the target in the observed dense region will take several micro-seconds to reach the 

target so contributing the target ion current in following spokes.  

 

 

1. Introduction 

 

As a relatively new physical vapour deposition technique, high power impulse magnetron 

sputtering (HiPIMS) has the potential to deliver engineering quality thin films and coatings 

[1], characterised by deposition fluxes composed of a large proportion of ionized sputtered 

metals (up to 90 % in some cases) [2]. This is achieved through low duty pulsing (a few %) 

but with high peak target power densities, up to 10 kW cm
-2

, giving rise to dense plasmas 

with high ionisation states of the sputtered material [3]. 

 

These pulsed magnetized plasmas, with typical on and off-times of 10’s and 1000’s of s 

respectively, are highly dynamical in nature with spatially and temporally varying electron 

densities ne and temperatures Te. The former ne can vary 10
19

 m
-3

 near the target in the on-

time [1] to below 10
15

 m
-3

 in the off-time, with Te (of beam like electrons) peaking close to 

100 eV in an initial on-time burst and falling to 0.5 eV in the afterglow [4]. As with all forms 

of magnetron sputtering, the structure of plasma is largely determined by the looped magnetic 

topology which gives rise to mutually perpendicular electric and magnetic fields above the 

region of maximum target sputtering [5]. This region, were magnetic field lines intercept the 

target twice, is known as the magnetic trap, and is characterised by a substantial closed loop 

E x B (Hall) electron drift current [6]. 

 

One phenomenon of current interest to physicists and technologists studying HiPIMS is 

plasma self-organization. Coherent plasma structures, often called spokes, can be observed to 

sit above the target and circulate at speeds of several kms
-1

 around the Hall drift channel (as 

discussed in reference [7]). They rotate ostensibly in the E x B direction, however sometimes 

in the counter direction, particularly at low powers [8]. Since the first report of spokes in 

HiPIMS in 2011 [9], subsequent studies have revealed that spokes are common to all 

magnetrons (not just HiPIMS), for instance in magnetrons operating in DC [8], [10], [11]. 

The pattern of spokes can broadly be placed in three regimes: Coherent (fixed frequency and 

mode number), chaotic (random timings between spokes) or non-existent (either quiescent 
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conditions or one unified spoke). The observable spoke regime depends mainly on the 

working pressure and the instantaneous discharge power density [12], [13]. In some cases, 

particularly in HiPIMS, coherent patterns of spokes have been seen to evolve through 

merging and splitting events [14], [15] during a pulse. Therefore, in general there is no 

precise pulse-to-pulse repeatability in the timing of spokes (their azimuthal phase) or their 

precise shape.  

 

Spokes are not only seen in magnetron devices but also in other discharges characterised by 

strong closed-path E x B drifts, including Hall thrusters [16], and homo-polar plasmas [17].  

However, spokes may be of particular important in HiPIMS, as they have been linked to the 

generation of anomalously high ion energies [18], [19], with ramifications for thin film 

growth. It is argued that they may also eject ions in radial directions, so reducing the coating 

flux towards the substrate [20]. 

 

To observe spokes and to understand their structure and behaviour a number of diagnostic 

techniques have been used on HiPIMS plasmas. Non-perturbing optical techniques have been 

employed which allow a full view of the cathode and effectively a “photograph” of the 

spokes: these include fast 2-D ICCD images of the broadband emission [13], [15], [21], 

spectrally filtered 2-D images [22], a photo-multiplier tube (PMT) view via optical slits [23] 

and laser-induced fluorescence (LIF) imaging [22]. Spokes have also been identified optically 

using single [24] and multiple optical fibres [25]. Streak cameras have been used to view 

spokes side-on so revealing the existence flares (interpreted as electron jets) which emanate 

from the top of the spoke travelling upwards in columns [21], [26]. Other non-perturbing 

studies to detect the presence of spokes include monitoring of the changes in the external 

discharge current-voltage characteristics [13], [27], the use remotely situation mass energy 

analysers to detect spoke-generated high energy ions [18], [28], including measurements 

made at right angles to the target [19] and angularly resolved measurements [20]. In addition, 

non-perturbing flush mounted embedded probes in the target have been developed to measure 

the current individual spokes deliver to the target [12], [15]. Although invaluable in providing 

information of spoke structure, many of the optical imaging techniques do not yield 

quantitative information about the spoke parameters. Some of these techniques have been 

combined however to good effect such, as the use of fast 2D ICCD imaging and target probes 

[15].  
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One of the workhorse diagnostic tools used on low-pressure plasma is the electrical 

(Langmuir) probe. Although perturbing to the plasma, they can yield local values of the 

plasma electron density (ne), electron temperature Te, floating potential Vf and plasma 

potential Vp and in some cases the electron velocity distribution function fe(v). Electrical 

probes have used to detect the presence of spokes in a number of recent HiPIMS studies, 

including the use of single cylindrical Langmuir probes to identify spokes in the floating 

potential Vf  [29] and the ion saturation current Iisat [30]. An array of radially separated planar 

(single) probes placed around the target was used to detect variations in Vf [14].  Single 

planar probes were used to detect changes in Iisat and Vf, fluctuations [23] and also in the 

electron saturation Iesat [19]. Emissive probes have deployed to observe the time-modulation 

in the plasma potential Vp [21], and a double flat probes to observe, Vf and Iisat oscillations 

[31]. Other useful measurement techniques include the use of magnetic sensor probes to 

identify the presence of spokes and their effect on the magnetic topology [32]. An emissive 

probe and a single probe has been used in conjunction to determine with great effect the 

plasma potential Vp and electric field structure inside spokes in a low power DC magnetron 

[11]. 

 

Although fast (real time) measurements of Iisat and Vf are possible with a Langmuir probe, the 

lack of pulse-to-pulse repeatability in the timing and structure of spokes in HiPIMS 

discharges makes acquiring full probe characteristics over a number of periods problematic. 

This may be one reason why the plasma parameters (i.e. ne and Te) associated with spokes 

has yet to be determined. In addition, to avoid perturbation of the discharge, probes have been 

placed mostly at remote positions, outside the magnetic trap, where only the influence of 

spokes on the bulk plasma is detected rather than probing the spokes themselves. 

 

To measure ne and Te within a single spoke using a Langmuir probe, would require a fast 

voltage sweep. With typical spoke velocities of ~10
4
 ms

-1
 [7] and azimuthal extensions of a 

few centimetres (e.g. see [15]) full sweep and data collection frequencies of 100 kHz or faster 

would be needed to resolve detail with in a spoke. Such single probe systems have been 

employed to observe plasma parameter instabilities and fluctuations in fusion device edge 

regions [33] but are not routinely available in most HiPIMS laboratories.  

 

One solution is to use a triple probe, which under certain assumptions can yield directly 

measurements of the basic plasma parameters (Vf, Te and the ion saturation current Iisat) with 
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excellent time-resolution. A simple calculation using the Iisat and Te time-traces can provide 

the electron density ne. Similarly, Te and Vf can be used to calculate the plasma potential Vp.  

 

The triple technique was originally proposed by Chen and Sekiguchi in 1965 [34] and first 

tested on a magnetized diode air plasma discharge. Since then the diagnostic, which can 

provide sub-microsecond time-resolution, has been used extensively on a wide range of 

relatively dense plasmas from tokamak edge plasmas [35], to pulsed magnetrons [36] and 

HiPIMS plasmas [37]–[40]. Interesting in [40] it was reported that time-traces of ne and Te 

made on the centre line of the discharge showed coherent modulations in these parameters 

with periods of 20 - 50 s, equivalent to frequencies of 50 - 20 kHz respectively. Although no 

explicit investigation of spokes was made in that study, these modulations are not 

inconsistent with typical spoke frequencies seen elsewhere. The fluctuations in Te and ne 

were close to being in anti-phase; however observations were not discussed in relation to 

spokes. 

 

Here we use a triple probe to diagnose the plasma inside the magnetic trap, directly above the 

racetrack, namely in a region where we expect spokes to pass or at least have a significant 

effect on the plasma there. To do this, we must assume the electron energy distribution 

function (eedf) in the region of measurement is a Maxwellian distribution, with a 

characteristic temperature Te. This assumption is largely supported by a body of experimental 

work undertaken on dc and pulsed-dc magnetrons which shows the eedf is usually well fitted 

by a Maxwellian  in the vicinity of the cathode (inside the magnetic trap region) and by a bi-

Maxwellian further away from it [41]–[43]. In dense HiPIMS plasmas (ne > 5 x 10
18

 m
-3

) with 

long on-times (> 10’s of microseconds) there is sufficient time for the eedf’s of electrons in 

the magnetic trap to reach a steady state configuration, as discussed by Gallian et al [44] in a 

kinetic modelling study of a HiPIMS plasma operating with an aluminium target. Energetic 

secondary electrons liberated from the cathode will Maxwellianize in that region, in a few 

10’s of nanoseconds. The predictions for the eedf in Ref [44] show that inside the magnetic 

trap, the vast majority of electrons do relax to form a cold Maxwellian distribution, however 

with a hot tail of electrons emerging for electron energies above ~30 eV. This energetic 

group, originating from the interaction of sheath-accelerated secondary electrons with heavy 

gas and metal species is four orders of magnitude smaller than the main group. At these low 

concentrations, such beam-like energetic electrons in the eedf will not affect a typical 
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Langmuir probe characteristic [45]. We are therefore confident that our assumption of a 

Maxwellian eefd in the dense plasma of the magnetic trap is a good one, and that any small 

non-Maxwellian character would be essentially undetectable in the triple probe analysis. 

 

Here, the magnetron is operated in conditions known to produce coherent spokes [12] and 

measurements are taken over a single HiPIMS discharge pulse, in which the spoke mode 

number m changes smoothly from m = 5 to m = 3.   

 

2. Experimental arrangement 

2.1 The magnetron system and power supply 

 

The magnetron used in this study was a circular unbalanced type, equipped with a 75 mm 

diameter niobium target of 5.53 mm thickness and purity 99.95%. It was situated at one end 

and facing the centre of an aluminium chamber of internal diameter 270 mm and length 300 

mm. The basic experimental system is also described in reference [12] and is shown 

schematically in figure 1a.  

 

The system was pumped down to a base pressure of 10
-4

 Pa using a turbo-molecular pump 

(Edwards EXT75DC) backed by a rotatory pump (Edwards E2E28). In operation, the system 

was back-filled with argon gas through a MKS 1179A mass flow controller at flow rates 

between 10 – 50 sccm to achieve chamber pressure from 0.33 - 1.7 Pa, measured using a 

capacitance manometer pressure gauge (MKS 628A). 

 

An in-house built HiPIMS power supply [46] was used to deliver a 200 s voltage pulse at a 

repetition rate of 1 Hz, with energy per pulse of 6.8 J. To allow operation at this low 

frequency, a DC simmer source was used, providing a DC voltage to the cathode of about -

200 V.  

 

The vacuum magnetic field strength in the region above the target was measured on the 

bench top using a GM07 Gauss-meter (Hirst Magnetics). The magnetic field configuration 

and position of the triple probe used in the study are shown in figure 3. The magnetic field 

strength at target surface at the centre of the racetrack (determined to be a radius of 21.5 ± 0.5 

mm) was measured to be 498 G. 
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2.2 Embedded target probes 

 

To determine the current delivered to the target by individual spokes as they rotate, a system 

of flush mounted probes was developed as described in detail in [12], [15]. The target probes 

consisted of three 2 mm wide and 35 mm long niobium strips (and of the same purity as the 

target). These were push-fitted into three corresponding radial slots of width 2.14 mm cut in 

the target to form a flush surface, with 10 mm of each probe protruding over the edge of the 

magnetron circumference. This was to allow ease of electrical connection. It was assumed 

that negligible ion current was drawn to this protruding region compared to that received over 

the target and therefore the effective area of  probes was taken to be 2 mm x 25 mm = 50 

mm
2
. To electrically insulate the strip probes from the target the strips were covered on three 

sides by a polyimide tape of thickness of 0.07 ± 0.01 mm.  This thickness defined the gap 

between the probe and the target. The three strip probes were separated azimuthally from 

each other by an angle θ = 25
o
, as shown in figure 1b.   

 

To measure the current provided to the target by individual spokes as they pass over the 

strips, each strip was connected to the power supply as shown in figure 1c ensuring each 

maintained the same potential as the rest of the target.  Their individual current contributions 

were measured using by a set of three Pearson current probes (Model 2877 with 1 V/A), with 

currents from strip probes 1 (- 25
o
 orientation) and 3 (+25

o
 orientation) being displayed on 

oscilloscope 1 (Tektronix DPO 4034) and the current from strip 2 (0
o
 orientation) displayed 

on oscilloscope 2 (Tektronix DPO 3034).  The total discharge current Id was measured using 

model 3972 (0.1V/A) Pearson current probe and the discharge voltage Vd measured with a 

voltage probe (Tektronix P5100). The values were displayed on oscilloscope 1.  Both 

oscilloscopes were synchronized and triggered by a voltage signal from the HiPIMS power 

supply.  
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Figure 1. Schematic diagrams of a) the magnetron discharge and triple probe situated in the 

chamber, b) the strip probe and slotted target arrangement and c) the strip probe current and 

triple probe voltage measurement arrangement. 

 

 

2.3 Triple probe theory 

 

In the normal triple probe configuration three equal sized probe tips (shown as P1, P2, P3 in 

figure 2) are used simultaneously to sample a small volume of plasma (or at least see 

nominally the same plasma). It is necessary that the tips are separated sufficiently so that the 

ion sheaths adjacent to their surfaces do not overlap. Typically triple probes are operated in 

the so called voltage mode, but can also be used in current mode [47]. Two of the probes (P1 

and P3) are biased relative to each other (by voltage V13) forming essentially a double probe 

configuration [48] with one of the probes (here P3) biased well into ion saturation region (of a 

single probe characteristic). The remaining probe (P2) is left to obtain the local floating 
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potential Vf, drawing no current. To ensure the current I3 drawn to P3 is in the ion saturation 

region, we must choose V13 > kTe/e (i.e. > the voltage equivalent of the electron temperature). 

 

  

 

 

Figure 2. A schematic diagram of the triple probe arrangement for voltage mode analysis 

 

Assuming a Maxwellian distribution of electron energies in the plasma with temperature Te, 

the current I (Vb) drawn to a probe at bias Vb, in the transition region between ion and 

electron saturation regions (Vb < Vp), can be derived from the equations given in [48] to be;  

 

 𝐼(𝑉𝑏) = 𝐼𝑖𝑠𝑎𝑡  (1 − exp (
𝑒(𝑉𝑏−𝑉𝑓)

𝑘𝑇𝑒
))  (1) 

 

where Vf is the floating potential and Iisat  is ion saturation current. K is the Boltzmann 

constant and e the electronic charge. Given a thin, collisionless sheath with free-fall ions Iisat  

= 0.61eniAeff (kTe/ mi)
1/2

 , where ni is the positive ion density, mi is the ionic mass, e is the 

electronic charge and Aeff is the effective area of the probe [34].  

 

Following an analysis in [34], the probe currents to the three tips (namely I1, I2 and I3 

expressed in the form stated in equation 1) can be readily combined to yield the relationship: 

 

𝐼1−𝐼2

𝐼1−𝐼3
=

1−exp(−𝑒𝑉12/𝑘𝑇𝑒)

1−exp(−𝑒𝑉13/𝑘𝑇𝑒)
       (2) 
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Where V12 = V1 – V2 and V13= V1 – V3. Current continuity gives, - I1 = I3 and the floating 

condition of probe P2 ensures I2 = 0. These conditions reduce the left hand side of equation 2 

to ½. For a sufficiently large bias V13 >> kTe/e equation 2 becomes: 

 

𝑉12 =  𝐿𝑜𝑔𝑒(2)𝑘𝑇𝑒/e  (3) 

 

Inspection of equation 3 reveals that the electron temperature Te can be obtained directly 

from the measurement of the difference between the floating potential V2 (= Vf) of probe P2 

and the potential V1 on probe P1.  

 

In the absence of negative ions, the ion density ni and electron density ne are assumed to be 

equal and can be found from measurement of the ion saturation current (as stated above), 

namely ne = Iisat  / 0.61eAeff (kTe/ mi)
1/2

 . Following the analysis in [34] we have:  

 

𝑛𝑒 =  
1

0.61𝑒𝐴𝑒𝑓𝑓√𝑘𝑇𝑒/𝑚𝑖  
[

𝐼1

𝑒𝑥𝑝 [
𝑒𝑉12

𝑘𝑇𝑒
] − 1

] 

 

and in the limit V13 >> kTe/e  we have that eV12 /kTe ~ Ln(2) yielding the simple form; 

 

𝑛𝑒 =  
𝐼1

0.61 𝑒𝐴𝑒𝑓𝑓√𝑘𝑇𝑒/𝑚𝑖  
       (4) 

 

Voltages V1, V2, Vf  and current I1 can be captured and displayed on a digital oscilloscope, 

yielding after some simple manipulation time-resolved quantities of ne(t), Te(t) and Vf (t) as 

well as an approximate value for the plasma potential Vp(t) as described later in section 3. 

 

2.4 The triple probe arrangement 

 

The triple probe consisted of three tungsten tips of length 5 mm and diameter 0.08 mm with 

the tips arranged in straight line and attached to a ceramic stem, as represented in figure 1a. 

The tips were separated from each other by 1 mm. The triple probe was positioned directly 

above the central strip probe at a height of 15 mm above the target, with a line between the 
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tips oriented radially (parallel to the strip probe direction). At this position, it was assumed 

the probe would directly intercept the spokes or the region just above them, but not unduly 

perturb the discharge.  In this configuration the probe tips intercepted the same radial 

magnetic field lines. The magnetic field strength at the end of the probe tips was 100 Gauss, 

with no more than a 20 G variation over the full length of the tips. At this position, the 

electron Larmor radius was estimated to be approximately rLe  0.45 mm, calculated using 

reference [49], assuming an electron temperature of kTe/e = 3.5 eV. This length is of the 

order of the tip interspacing (d = 1 mm), but with the gyro-motion of electrons ostensibly 

parallel to the tips and not across them.  

 

The extension of the ion sheaths adjacent to the probes is characterised by the electron Debye 

length λDe. Assuming electron densities in the range ne = 10
18

 - 10
19

 m
-3

 (justified as shown is 

section 3) we have a range of λDe = 14 m to 4.5 m respectively [49].  This is considerably 

less than d.  At operating (argon) pressures of a few Pascal, the electron-neutral mean free 

path λe-mfp ~ a few cm’s and ion-neutral mean free path λi-mfp ~ mm’s [50], so we can assume 

the ion sheaths to be collisionless as well as the region between tips. Comparing these 

important scale lengths we have λDe < d < λi-mfp, λe-mfp, necessary conditions for validity of the 

triple probe method [34].   

 

The maximum dimension presented to the plasma by the entire triple probe tip arrangement 

and therefore the passing spokes is 2.26 mm (given by 2 x 1 mm interspacing, 3 x 0.08 mm 

tip thickness and 2 x 0.01 mm sheath extensions). This defines the radial spatial-resolution of 

the probe system. Azimuthally the spatial resolution is 0.1 mm. 2D images obtained using 

fast cameras, show spokes to have radial widths of about a 1 cm [15], [51], so we argue that 

the three tips simultaneously sample the same plasma region within a spoke (or at least the 

plasma directly above it). Spokes are observed generally to rotate as a solid body form. 
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Figure 3. A 2D plot of the distribution of measured magnetic field strengths and their 

directions. The position of the triple probe inside the magnetic trap region is also shown. The 

probe tips are aligned with radial magnetic field lines and 15 mm from the target surface. 

The boundary enclosing the magnetic trap regions is shown as a solid red line.  

 

The response time  of the ion sheaths adjacent to the tips (and hence the fastest possible 

response time of the probe system) can be found from a calculation of the inverse ion plasma 

frequency (ωpi
-1

). Assuming electron densities as stated above, ωpi
 
lies between 2.1 x 10

8
 s

-1
 

and = 6.6 x10
8
 s

-1
 [49] giving   = ~ 4.7 – 1.5 ns. However, the time-resolution of the triple 

probe was set by the frequency response of the entire probe circuit. Ignoring the small sheath 

capacitance at the probe tips, the time-resolution res was calculated from the product of the 

cable stray capacitance to ground Cstray and the dc sheath resistance Rs as described in Ref 

[52]. Using a Fluke digital multimeter, Cstray was measured to be 190 pf, for the combined 1.5 

m long coaxial cable, probe assembly and feedthrough system up to the oscilloscope. The 

maximum sheath resistance Rs was estimated to be 42 , calculated using Rs = kTe/eIisat in 

accordance with Ref [52] with kTe/e = 3.9 eV and Iisat = 0.09 A, taken from our measured 

data (as shown later in section 3). This gives a time-resolution res ~ 10
-8

 s, sufficient to 

resolve spoke structures passing a fix point on time scales ~ 1 μs.  

 

The triple probe tip potentials were measured using three Tektronix TPP0201 voltage probes 

(each with a 200 MHz bandwidth) connected to either oscilloscopes 1 (400 MHz bandwidth) 

or 2 (300 MHz bandwidth) via a resistance of 10 MΩ to the system unified ground.  The 

probe current I1, used to calculate ne, was measured using a Tektronix TCP0030A (120 MHz 
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bandwidth) connected to oscilloscope 1. A floating voltage of 38 V was maintained between 

two of the probe tips (given as P1 and P3 in figure 2) using three lead acid batteries, each 

capable of providing 0.8 Amp hours.   

 

 

 

 

       

 

Figure 4).The discharge current and voltage time-traces for a 200 μs pulse. The operating 

pressure was 1 Pa for a pulse of energy of 6.8 J. Two selected periods are highlighted (by 

green rectangles) correspond to times with a mode number of m = 5 and m = 3. The average 

power and current during those periods is shown in the figure.  
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Figure 5) A plot of all three strip probe currents Ip, Ip+25
o
 and Ip-25

o
 during the HiPIMS pulse 

shown in figure 4. The highlighted periods correspond to times with a mode number of m = 5 

and m = 3. The tilted parallelograms reveal the phase shifts in the signals between probes, 

used to calculate the spoke velocities. An arbitrary displacement in the strip probe current 

plots has been introduced to allow all three to be clearly seen. 

 

3. Results and Discussion 

 

In this study, we chose only one set of operating conditions to work at, namely an argon 

pressure of 1 Pa, a 200 s plasma on-time, a 1 Hz frequency and a pulse energy of 6.8 J. This 

set of conditions was known to provide coherent spokes [12]. Figure 4 shows the discharge 

voltage Vd and current Id time-traces over a period encompassing all of the pulse on-time. 

The average on-time target power density was 0.75 kWcm
-2

. The vertical green rectangles 
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represent times when the spoke patterns show mode numbers of m = 5 and m = 3 

respectively. From here on in, we chose to concentrate on these intervals, namely t = 94 to 

110 μs and t = 172 to 189 μs into the pulse, where spokes are coherent and there is no 

merging or splitting events. The simultaneously recorded target currents Ip for the three 

embedded target strip probes are shown in figure 5. The widths of the green strips in the 

figures 4 and 5 represent a full spoke rotation period for the two modes. Clearly, strong 

oscillations in Ip can be seen which we attribute to the presence of coherent spokes as 

previously reported and discuss in length in [12] and confirmed by simultaneous 2D imaging 

in [15]. The phase shift in Ip between the azimuthally separated strip probes, as revealed in 

figure 5 by the tilt in the green parallelograms, allows the spoke velocities vsp to be calculated 

at different times during the pulse. During the highlighted m = 5 period vsp = 8.81 km s
-1

 

while for m = 3 we have vsp = 8.39 for km s
-1

. The spokes rotate in the E x B direction. There 

is no discernible signature of spokes in the total discharge current Id (see figure 4) as 

expected.  

 

Figure 6 shows the time-traces for the triple and strip probe acquired parameters ne, Te, Iisat, 

Ip, Vf and plasma potential Vp over most of on-time of the chosen HiPIMS pulse. The time 

trace of Ip was taken from the central strip situated directly below the triple probe. The 

plasma potential Vp was estimated using Vf and Te according to simple sheath theory [53] to 

be:  

 

𝑉𝑝 = 𝑉𝑓 +
𝑘𝑇𝑒

2𝑒
Log𝑒 [

𝑚𝑖

2𝜋𝑚𝑒
] + 

𝑘𝑇𝑒

2
       (5) 

            

where me is the electron mass. Assuming mi for argon ions, we have Vp ~ Vf + 5kTe/e. The 

Loge term in equation 5 is insensitive to mi so our approximate expression for Vp is good 

even if niobium ions are the dominant species in the probe vicinity. There are strong and 

coherent oscillations in the measured quantities. This can be seen by calculating the mean 

ratio of the full peak-to-peak amplitudes of the oscillation to the minimum values in the 

troughs for each case. For the m = 5 interval, we have ne/ne ~ 25 %, Te/Te ~ 36 %, Iisat/ 

Iisat ~ 42 %,  Vf/Vf  18 %, Vp/Vp  120 % and  Ip/Ip  31 %, while for the m = 3 mode 

interval these ratios are ne/ne  62 %, Te/Te  51 %, Iisat/ Iisat ~ 42 %,  Vf/Vf  26 %, 

Vp/Vp  190 % and  Ip/Ip ~ 49%. It is evident that these ratios are somewhat larger in the 

latter case than the former. This indicates that in our measurements at least stronger, better-
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formed spokes exist at the lower mode number, more clearly delineated from the background. 

For increasing mode numbers the inter-spoke distances must reduce and it seems reasonable 

to think that there may be a smearing out of plasma parameter structures and a decrease in the 

local maxima relative to the background as spokes start to effectively overlap each other with 

close proximities. It has not been possible to obtain triple probe data in the off-time of the 

pulse, since the low plasma density conditions lead to larger overlapping sheaths at the probe 

tips and the conditions for validity of the method described in section 2.4 are not met.    

 

Features in the Ip data are smooth and well defined since Ip signals are obtained directly at the 

target. These signals are robust as the strip probe area is large and it is also non-perturbing to 

the spokes. By contrast, the triple probe obtained values of Te, ne and Vp have been derived 

from time-traces in Iisat and Vf, themselves measured directly inside the active region of the 

spokes (where it is highly dynamical in nature), and so perturbing to the spokes.  

Nevertheless, time-traces in these plasma parameters, as shown in figure 6 are coherent and 

well-formed.  

 

From the highlighted sections of the Ip time-traces in figure 6 we can see that as a spoke 

travels across the strip probe, the target current rises from a base level to a maximum and 

then falls again as it passes. Close inspection of the figure reveals however, that the leading 

edge of the spoke rises more slowly than trailing edge, consistent with previous observations 

made using the strip probe but with an aluminium target [12]. This slow rising and fast 

decreasing profile, which is characteristic of a wedged shaped spoke, is very clearly 

identified later in paper (in figure 9 which shows an expanded view of the m = 3 mode data). 

In addition, we see that the peaks in Ip are sharp while the troughs are rounded.  

 

Inspection of Ip and Iisat in figure 6 shows that the peaks in ion current to the target occur 

during times of peak ion current to the triple probe, however the time-profiles of the later are 

very much broader. The minima in these quantities are concurrent and we infer that these 

quantities are essentially in-phase. By contrast, the peak values in Te and ne are not 

concurrent (there is a phase-shift) but do lie with the envelop defined by the board flat top of 

the Iisat profile as one would expect since Iisat  ( ne Te
1/2

 ) is a convolution of ne and Te. The 

time traces of the probe measured parameters also have somewhat inverted structures 

compared to Ip with sharp troughs and rounded peaks.  



17 
 

 

Despite the phase shifts, all the probe-determined parameters are coherent and correlated to 

modulations in Ip which gives us confidence that we are observing spokes directly or at least 

their immediate influence. In a recent article we showed that Ip matches well the distribution 

in optical intensities of the spokes as obtained with a fast camera [15].  

 

Given Ip as our reference, we see that peaks in ne are occurring towards the front of the spoke, 

while the highest values of Te are seen at the rear, or even partially into the region between 

spokes. This appears as a phase shift between ne and Te of about 50
o
; such phase shifts (and 

larger) between these parameters were also reported in a HiPIMS plasma using a triple probe 

but not attributed to spokes [40]. For the  m = 3 mode the highest electron densities (up to ne 

~2.1 x 10
19

 m
-3

) coincide with low electron temperatures (Te ~2.1 eV), while peak values in 

Te (~3.9 eV) are in regions of comparatively low electron density (ne ~1.2 x 10
19

 m
-3

) towards 

the rear of the spoke. Similar structures are seen with the m = 5 mode, however with a 

reduced magnitude in the parameter range.    

 

The electron density time-traces reveal that at an elevated position, ne rises quickly at the 

front of the spoke and decays more slowly towards the rear, in reverse to that seen in Ip 

(which is known to define the typical spoke shape). The ne profiles in some spokes have 

something of a flattish top, particularly for m = 3. 

 

The largest values in ne and Ip are spatially separated (they appear towards the front and rear 

of the spoke respectively). Ions created at rest in the dense plasma region, some 15 mm above 

the target, will free-fall through the cathode pre-sheath and sheath to the target while the 

spoke itself and the following spokes are advancing around the racetrack.  

 

The calculated Vp time-traces show that the maximum positive plasma potentials (up to + 9 

V) occur at the rear of the spoke as defined by the Ip time-trace and are displaced from the 

leading ne peaks. The minima in Vp (~ 0 V) are situated between spokes. In previous emissive 

probe studies in HiPIMS plasma [54], the time-averaged plasma potential Vp values in the 

near target pre-sheath were measured to be close to ground potential, or even a few 10’s of 

volts more negative than ground. In those studies, the positive potentials associated with any 

spokes present in the discharge were not resolved.  
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In a detailed study using simultaneously emissive and single probes, large potential 

differences, up to 70 V, within spokes were observed in a low-power DC magnetron [11] 

with spokes rotating in the -E x B direction. The fastest rise in potential (from a negative 

value between spokes to a value close to ground) was seen at the leading edge of the spokes. 

In that article it was argued that the spatial distribution of the ion density within the spoke 

region should match well the spatial distribution of electron energies, but also the highest 

(most positive) plasma potentials. Here, we do not see such a coincidence of ne and Vp. This 

may be due to the very different nature of our HiPIMS plasma compared to the very low-

power (< 30 W) DC magnetron used in [11]. With high instantaneous powers (35kW), 

strong rarefaction of the background argon gas may occur in our discharge leading to high 

concentrations of sputtered niobium atoms and ions (in multiple charge states) [14], [23], [55] 

within the dense plasma region. An increase in the number of energy loss in-elastic collisions 

between electrons and metal species would reduce the local electron temperature, where we 

measure the electron density to be at its highest. Since the triple probe measurements are 

made only at one height (15 mm) above the target, we do not have information on ne and Te 

at the point of maximum sputtering, i.e. where Ip is a maximum. 

 

The strong correlation in the triple probe measurements of the plasma parameters at a height 

of 15 mm from the target and the Ip time-traces reassures us that we are indeed sampling the 

spokes, or at least a region of perturbed plasma, just above spokes but co-rotating with them. 

This region could contain electron flares, (tilted jets of electrons) which have been seen 

emanating from the top of spokes using slide-on views with a streak camera  [21], [26]. These 

flares have elongations of up to 20 mm above the spokes with spokes themselves having 

typical heights of up to 5 mm.  

 

In this study, the ne time-traces (figure 6) do reveal some micro-oscillations (frequencies of ~ 

5 x 10
6
 Hz) during the peak (semi-plateaux) regions. This may just be instrumental noise, 

however since the oscillations seem less prevalent at times between spokes, it may indicate 

the presence of features in the plasma such as plasma flares (electron jets) emanating from 

the top of spokes [26] or oscillations in the azimuthal electric field driven by modified two-

stream instabilities [56]. The lack of fidelity in the measurements does not allow us to draw 

any firm conclusions here. In terms of observing narrow-columned plasma flares, it does 

seem unlikely however that all three probe tips could see the same event simultaneously.  In 
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the recent DC magnetron study of spoke potentials [11], the spoke structures were observed 

at heights well above 25 mm from the target, however no evidence of flares in the Vp data 

was presented.  

 

 

Figure 6. Time traces of strip probe current Ip, the triple probe measurements of ion 

saturation current Iisat, electron temperature Te, electron density ne, floating potential Vf and 

plasma potential Vp during a single HiPIMS pulse. The green rectangles indicate m = 5 and 

m = 3 modes respectively. The m = 3 interval data is shown in more detail later in section 3 

(in figure 9) but re-plotted as a function of azimuthal angle. 
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The time-dependent data highlighted in figure 6 can be re-plotted as a function of azimuthal 

angle to produce a “snap-shot” image of the spoke plasma parameters which is pleasing to the 

eye and resembles typical 2-D ICCD optical images of spokes. In this way, phase shifts 

between the quantities become very apparent. To do this however, we must make an 

assumption about the radial plasma parameter profiles since the data was collected at only 

one radial position (of width 2.26 mm). 

 

The triple probe determined parameters of Te, ne and Vp and the target probe current density 

Jp   (ratio of Ip and the strip probe wetting area 50 mm
2
) are chosen to be represented in this 

from for the stable m = 5 and m = 3 regions shown in figure 6.  

 

We assume a complete period of spoke rotation has a rigid body structure and transform time 

t to the azimuthal coordinate , using  = t, where  = 2/T is the spoke angular frequency. 

T is the spoke period. To provide radial coordinates (missing in the data) we assume the 

chosen parameters have a Gaussian radial distribution that peaks at the positions of the triple 

probe, namely at r0 (= 21.5 mm), so for instance for the electron temperature Te we have: 

  

 𝑇𝑒(𝑟, 𝜃) = 𝑇𝑒(𝜃)𝑒𝑥𝑝 − [
𝑟−𝑟0

𝐿
]

2

  

 

where L (= 10 mm) is an assumed mean radial width of the spokes (as used in [12]). The 

assumption of a Gaussian radial profile fits well observations from previous studies [57]. In 

the case of the strip probe current density Jp (), which is obtained from Ip over the narrow 

strip from the magnetron centre to the outer edge, we ensure that the integral of the 

constructed function Jp(θ, r) over the entire cathode gives the measured discharge current, 

namely:   

  

∬ 𝐽𝑝(𝜃, 𝑟)𝑟 𝑑𝜃 𝑑𝑟 = 𝐴 ∬ 𝐽𝑝(𝜃) 𝑒𝑥𝑝 − [
𝑟−𝑟0

𝐿
]

2

𝑟 𝑑𝜃 𝑑𝑟 = 𝐼𝑑
2𝜋, 𝑅

0,0

2𝜋, 𝑅

0,0
 . 

  

where A is a scaling constant. Performing the integral yields, in the particular cases chosen 

here, scaling constants of A = 1.69 of m = 3 and A = 1.57 for m = 5.   

 

The resultant snap-shot images are shown in figures 7 and 8 for the m = 5 and m = 3 intervals 

respectively. Although of a partially assumed form they do provide realistic distributions, 
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somewhat similar to 2-D optical images of spokes. The wedge shape associated with spokes 

can be clearly seen in the target current data Jp, as previously observed using the strip probe 

method [12] and numerous optical studies, for example [15], [23]. One should bear in mind 

that the plasma parameter distributions shown refer only to a plane of height 15 mm above 

the target (with spatially averaged values over a 5 mm region defined by the tip lengths). For 

both mode cases (m = 5 and m = 3) the spoke as defined by their Ip footprint are evenly 

spaced.  

 

To show better the phase relationship between all the measured parameters in the m = 3 

interval, we have chosen to re-cast the time-dependent data in that section of figure 6 to be a 

function of the azimuthal coordinate . These plots are shown in figure 9 together with the 

reconstructed 2D images for Vp, ne, Te and Jp. Please note Ip in figure 6 has been converted to 

Jp. In this way, features in the 1-D data and the 2-D images, such as the peaks and troughs in 

the rotating structures, can be easily related to each other using the shown construction lines. 

In addition, to show better this phase relationship between the structure of intrinsic plasma 

parameters (ne , Te and Vp), contour plots of ne and Te and ni and Vp have been overlaid on the 

Jp distribution for the m = 3 case, see figures 10a and b respectively.  

 

Only 3 contour lines are shown for the triple probe determined parameters, to avoid crowding 

the image. The spatial splitting between ne and Te is thrown into sharp relief (in figure 10a), 

with the intersection of these parameters coinciding with the peak in Jp, (and as can be seen in 

the raw data in figure 9 or in Ip if one refers back to the data in figure 6). 

 

The ion current collected by the triple probe is governed by the Bohm criterion, with Jisat  

ne Te
1/2

 where ne and Te are the local values at a height of 15 mm above the target.  By 

contrast the measured strip probe current Ip will have contributions from ions created at 

different heights in the spoke plasma, with a range of arrival times. If the high density leading 

edge seen at a height of 15 mm was present in a column all the way down to the foot of the 

spoke, then the slowly rising leading edge of Ip would not be observed, but instead a steep 

edge instead. Our observations therefore indicate that spokes may become denser with height 

at the leading edge.  
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There is however a correlation between the triple probe-measured current Iisat and the strip 

probe measured ion current Ip (or Jp) as shown in figures 6 (and 9), with peaks and troughs in 

both quantities being reasonably well aligned. The regions of high Iisat indicate positions at 15 

mm height where the plasma is both relatively hot and dense (i.e. an overlap in Te and ne 

contours in figure 10a). It seems reasonable to assume that these conditions persist all the 

way down to the bottom of the spoke, so providing a peak in Ip measured on the target at 

about the same azimuthal location. 

 

Similar displacements in ne and Vp around the azimuth are seen in figure 10b. The most 

positive potentials are clearly evident at the rear of the spoke, where Te is greatest. Using the 

data in figure 6 (and shown in more detail in figure 9) it is possible to determine the 

azimuthal electric field structure E within the spokes. Inspection of Vp does show Vp rising 

more slowly at the front of the spoke and falling quickly towards the rear, implying the 

largest electric field E are at the rear. The azimuthal electric field given as E = dVp/rd = 

1/vsp  x  dVp/dt is calculated to be ~ 0.5 x 10
3
 Vm

-1
 and ~1 x 10

3
 Vm

-1
 at these positions 

respectively, somewhat similar in value to the low kVm
-1

 field strengths measured (with 

greater fidelity than our method) at a height of 15 mm above the target for spokes in a DC 

magnetron [11]. These regions of positive potential (the humps) evident at the rear of the 

spokes in figures 7, 8 and 10b will act to push positive ions created there out radially but also 

towards the leading and trailing edges of the spoke. Electrons, including those circling in the 

E x B direction, will be accelerated across these fields, heating the local electron population, 

leading to elevated Te values. Such processes, associated with spoke potential hump double 

layers are discussed with clarity and detail in reference [11]. 

 

The wedge-shaped profile in the target current Ip and current density Jp seen in figures 6 and 

9 respectively, with a slow build-up in the leading edge and a rapid decrease in the trailing 

edge, may be a consequence of this electron heating. Since the E x B drift speeds are greater 

than the spoke speeds, Hall drifting electrons must enter the spoke at the rear. Once heated in 

the spoke they continue their motion around the racetrack, losing energy through inelastic 

collisions with heavy species as they travel. The resultant tapered profile in Jp simply reflects 

the spatial distribution of the electron-energy dependent ion creation rate ahead of the spoke. 

For experiments in which spokes rotate in the –E x B direction, this tapered feature will be 

observed at the rear of the spoke [11]. 
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Our triple probe measurements at a fixed location above the target reinforce the idea that 

spokes are an advancing region of intense ionization characterised by positive space 

potentials, relative to the surrounding regions. The triple probe detects locally a high density 

region at the front of the spoke well in advance of the build-up of ion current from the spoke 

to the target (i.e. the maximum in Ip lags the maximum in ne).  

 

Ions that constitute this target current Ip will travel a comparatively long distance from their 

origin in dense plasma (high up in the spoke structure) to the target. The typical transit time  

for ions (moving with say the ion acoustic speed) to travel down distance h from the dense 

plasma to the cathode target sheath edge is given as  = h/ (kTe/mi)
1/2

. For kTe/e ~ 2.5 eV and 

h = 15 mm, such a transit time would be  ~ 6 s (equivalent to an azimuthal rotation of  = 

134
o
), enough time for the spoke to have advanced ~48 mm around the racetrack. Therefore, 

ions arriving to the target from different heights (up to 15 mm) in the leading edge will be 

smeared out inside following spokes, contributing to their Ip signature and not the spoke they 

were created in.  
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Figure 7. Constructed 2D images of a) the target ion current density Jp, b) the electron 

density ne, c) the plasma potential Vp and d) the electron temperature Te. The data was 

collected over one period during the chosen m = 5 interval (t = 94 to 110 μs). The triple 

probe measurements in b), c) and d) show the plasma parameters in the z = 15 mm plane 

above the target.  

 

 

Figure 8. As figure 6 but for the m = 3 mode (t = 172 to 189 μs).  
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Figure 9. The strip probe current density at the centre of the racetrack Jp (derived from Ip) 

and the triple probe measurements of ion saturation current Iisat, temperature Te, electron 

density ne, floating Vf and plasma potential Vp plotted as a function of azimuthal angle as 

well as chosen 2-D images during the m = 3 interval. The plot is made from a transform of 

the data shown in figure 6. 
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Figures 10 a) Three contour lines for the electron density ne and temperature Te overlaid on 

a colour map of the target current distribution Jp and b) three contour lines for ne and the 

plasma potential Vp overlaid over the same colour map. The data is a re-plot for that shown 

in figure 8 for the chosen m = 3 mode interval of the HiPIMS pulse. 

 

4. Conclusions 

 

Using a combination of a triple probe and embedded target probes, the temporal evolution of 

the plasma parameters associated with rotating spokes in a HiPIMS plasma has been 

investigated. The electron density ne, electron temperature Te, plasma Vp and floating Vf 

potentials across a single cut plane 15 mm above the racetrack have been determined, a 

position where the triple probe intersects or is in close proximity to the spokes. The target 

probes show the spokes rotate in the E x B direction displaying coherent m = 5 and m = 3 

modes within a single HiPIMS pulse. 
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With spoke shapes defined by their ion current density footprint Jp to the target, spokes were 

found to have higher electron densities and lower electron temperatures at their front (ne ~ 2.0 

x 10
19

 m
-3

, Te ~ 2.1 eV) but lower electron densities and higher electron temperatures at their 

rear (ne ~ 1 x 10
19

 m
-3

, Te ~ 3.9 eV). Typically, the amplitude of the modulation in the ne and 

Te due to passing spokes was up to about 50 % of their mean values between spokes. A 

calculation of Vp based on Vf and Te measurements show that here spokes have a positive 

potential hump of up to +9 V relative to the inter-spoke region. However these regions are 

spatially separated from the region of maximum ne, with the potential humps towards the rear 

of the spoke. Azimuthal electric fields of 1kV/m are associated with these double layer 

structures. 

   

From knowledge of the spoke velocity and mode number, time-traces of Te, ne, Vp and Jp 

have been transformed into functions of azimuthal angle allowing 2D spatial snap shot 

representations of the parameters to be made, assuming a radial profile. In this way we can 

see well that regions of maximum ion current to the target from individual spokes coincides 

with the overlap of high ne and Te regions measured above the target (at a height of 15 mm).  

 

The triple probe measurements indicate that spokes have a complex structure with 

considerable electron densities (2 x 10
19

 m
-3

) even at elevated positions above the target: Ions 

created in these regions will take about 6 µs to reach the target in which time the spoke will 

have advanced several cm’s around the racetrack.  

 

The usefulness of the triple probe method to diagnose spokes in HiPIMS plasmas is well 

demonstrated and more detailed studies including spatially resolved (radial and axial) 

measurements are planned.  
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