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Abstract

This paper studies the limit behaviour of sums of the form

Tn(x) =
∑

1≤j≤n

ckj (x), (n = 1, 2, . . . )

where (cj(x))j≥1 is the sequence of partial quotients in the regular con-
tinued fraction expansion of the real number x and (kj)j≥1 is a strictly
increasing sequence of natural numbers. Of particular interest is the case
where for irrational α, the sequence (kjα)j≥1 is uniformly distributed
modulo one and (kj)j≥1 is good universal. It was observed by the second

author, for this class of sequences (kj)j≥1 that we have limn→∞
Tn(x)

n
=

+∞ almost everywhere with respect to Lebesgue measure. The case
kj = j (j = 1, 2, . . .) is classical and due to A. Ya. Khinchine. Build-
ing on work of H. Diamond, Khinchin, W. Philipp, L. Heinrich, J. Vaaler
and others, in the special case where kj = j (j = 1, 2, . . . , ) we examine
the asymptotic behaviour of the sequence (Tn(x))n≥1 in more detail.

.

1 Introduction

Let N = {1, 2, · · · } denote the set of natural numbers. For x ∈ (0, 1), let
x = [c1(x), c2(x), · · · ] denote its regular continued fraction expansion. Recall
that we say a sequence (xn)n≥1 is uniformly distributed modulo one if for each
interval I ⊆ [0, 1) of length |I| we have

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn ∈ I} = |I|.

Here for a finite set F we have used #F to denote its cardinality. Let (X,B, µ)
be a probability space and let T : X → X be a measurable map, that is also
measure-preserving. That is, given A ∈ B, we have µ(T−1A) = µ(A), where
T−1A denotes the set {x ∈ X : Tx ∈ A}. We call (X,B, µ, T ) a dynamical
system. We say a dynamical system (X,B, µ, T ) is ergodic if T−1A = A for
A ∈ B means that either µ(A) or µ(X\A) is 0. We say (kn)n≥0 is Lp good
universal if for each dynamical system (X,B, µ, T ) and for each f ∈ Lp(X,B, µ)
the limit

`T,f (x) = lim
N→∞

1

N

N−1∑
n=0

f(T knx),

exists µ almost everywhere.
For a real number y let [y] denote the largest integer not greater than y.

Also let {y} denote the fractional part of y i.e. y − [y]. We call

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/131166859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


G(x) =

{{
1
x

}
, if x ∈ (0, 1)

0 if x = 0.

the Gauss map. Let ρL denote Lebesgue measure on [0, 1). Set

ρG(A) = 1
log 2

∫
A

dx
1+x

for a ρL-measurable set A. We call ρG the Gauss measure.
LetM denote the Lebesgue σ- algebra on [0, 1). Applying good universality

to the dynamical sysyem ([0, 1),M, ρG, G), using the fact that

c1(x) = [
1

x
], ck+1(x) = ck(G(x)), (k = 1, 2, . . . )

for irrational x in [Nai3], developing ideas in [Doe] and [RN], the following is
proved.

Suppose that the function F : R≥0 → R is continuous and increasing and
that for some p ≥ 1 we have∫ 1

0

|F (c1(x))|p

x+ 1
dx <∞.

Suppose (i) for each irrational α that ({kjα})j≥1 is uniformly distributed modulo
one, and (ii) that (kj)≥1 is Lp good universal. For a finite set of non-negative
real numbers {a1, . . . , an} we let

MF,n(a1, . . . , an) = F−1
[
F (a1) + . . .+ F (an)

n

]
.

It is shown in [Nai3] that

lim
n→∞

MF,n(c1(x), . . . , cn(x)) = F−1
[

1

log 2

∫ 1

0

F (c1(x))

x+ 1
dx

]
almost everywhere with respect to Lebesgue measure. As a corollary it is de-
duced that if (kj)j≥1 satisfies (i) and (ii) and for (n = 1, 2, . . .) we set

Tn(x) =
∑

1≤j≤n

ckj (x), (1)

then

lim
n→∞

Tn(x)

n
= +∞,

almost everywhere with respect to Lebesgue measure.
Let

Sn(x) =
∑
j≤n

cj(x). (n = 1, 2, . . .)
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Evidently Sn(x) ≥ n for any irrational x ∈ (0, 1) as cj(x) ≥ 1 for any integer
j ≥ 1 and irrational x. One of the implications of [Khi1] is that

lim
n→∞

Sn(x)

n
= +∞,

almost everywhere with respect to Lebesgue measure. In fact H. G. Diamond
and J. D. Vaaler [DV, Corrollary 1] showed that, there exist θ ∈ [0, 1] and
n0(x) ∈ N such that

Sn(x) =
1 + o(1)

log 2
n log n+ θ max

1≤j≤n
cj(x),

if n > n0(x) almost everywhere with respect to Lebesgue measure. The pres-
ence of the term θmax1≤j≤n cj(x), here tells us an almost everywhere estimate
for Sn(x) is likely to be problematic. Another possibility is to preclude the
possibility that cj is too big. In this situation A. Ya. Khinchin [Khi2] showed
that if we let

bj(x) =

{
cj(x), if cj(x) < j(log j)4/3

0, otherwise,

then

lim
n→∞

b1(x) + . . .+ bn(x)

n
→ 1

log 2

in measure. The same result is not true almost everywhere. This is because
as also observed by Khinchin, if (dj)j≥1 is a sequence of positive real numbers,
then cj(x) > dj has finitely many solutions in j if and only if

∑∞
j=1 d

−1
j is finite

[Khi1]. This implies bj(x) > j log j log log j, holds for infinitely many j almost
everywhere . The following three theorems in the case kj = j (j = 1, 2, . . .)
are proved in [Phi1] , case kj = j for Theorem 1.2 is also proved in [Hei],
respectively. Notice that for zero density subsequences of N, for instance kj =
j2 (j = 1, 2, . . .), the theorems say something fundamentally new not following
from the results in [Phi1]. The methods are however adapted from those in
[Phi1]. As one of the referees of this paper has suggested, it is possible to obtain
our results by considering the ψ-mixing sequence of random variables (ckj )j≥1
rather than (cj)j≥1. We remark that another referee also suggests alternate
proofs of our results can be obtained by using the fact that every subsequence
of an almost i.i.d. sequence of random variables is exponentially ψ-mixing. See
section 2 for a definition of ψ-mixing. See Chapter 4 of [IK] and [GI] for further
background . Our results are of greatest interest in the presence of conditions
(i) and (ii) to the authors. Whether the result from [Nai3] is true in the absence
of conditions (i) and (ii) is unknown. See Section 7 for an extensive list of
examples of sequences that satisfy conditions (i) and (ii).

Theorem 1.1. Suppose (kj)j≥1 is a strictly increasing sequence of natural num-
bers and that Tn defined in (1). Suppose (τn)n≥1 ⊆ N satisfies the property that
τn

n
is non-decreasing as n→∞. Then
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limn→∞
Tn

τn
= 0 or lim supn→∞

Tn

τn
=∞

almost everywhere with respect to Lebesgue measure ρL depending on whether

∑∞
n=1

1

τn
<∞ .

or not.

We also have the following theorem.

Theorem 1.2. Let

γ = limn→∞(
∑
k≤n/ log 2 k log(1 + 1

k(k+2) )− log n).

Also let

f(t) = e−
π
2 |t|−it log |t|+iγt

be a complex valued function defined on R. Then for any probability measure ρ
on (0, 1) absolutely continuous with respect to ρL, the distribution functions of
the random variables

Tn
n/ log 2 − log n

converge to the distribution function of some random variable with characteristic
function f(t) as n→∞.

Remark 1.2.1. As a consequence of his mixing random variable techniques
L. Heinrich [Hei] obtained bounds on the rates of convergence in the case that
ρ = ρG when kj = j (j = 1, 2, . . .). One of the referees of this paper informs
us that the function f(t) in Theorem 2 is the characteristic function of a stable
random variable with characteristic exponent α = 1 and skewness parameter
β = 1. The parameter γ = −c − log log 2, where c is the Euler-Mascheroni
constant.

The final theorem deals with trimmed sums of the sequence {ckj , j ∈ N}. As
in [Phi1] for n ∈ N and 1 ≤ j ≤ n, define

τn,j = #{i : cki > ckj for 1 ≤ i ≤ n or cki = ckj for 1 ≤ i ≤ j}.

One can see that {τn,j : 1 ≤ j ≤ n} = {1, · · · , n}. For τn,j = k, let c
(k)
n = ckj .

Then c
(k)
n is a non-increasing finite sequence with respect to k for fixed n. That

is, we are re-arranging the sequence {ck1 , · · · , ckn} from large to small. Let
{pn, n ∈ N} and {ξn, n ∈ N} be two sequences of integers such that

limn→∞ pn =∞, ξn ≥ 7.

Also let IS be the indicator function of the set S. Then let

T ∗n = Tn − Σj<pnξnc
(j)
n I

[c
(j)
n >n/pn]

.
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We have

Theorem 1.3. Let

U(y) = 1√
2π

∫ y
−∞ e−

1
2 t

2

dt

be a function from R to R. Then for any probability measure ρ on (0, 1) ab-
solutely continuous with respect to ρL, the distribution functions of the random
variables

T∗
n

n (pn log 2)1/2 − ( pn
log 2 )1/2 log n

pn

converge to U(y) as n→∞.

Remark 1.3.1. As in proving [Phi2, Theorem 4], it can be seen that Theorem
1.3 follows if one can prove the result in the case for ρ = ρG. This is because
we can use strong stationarity and mixing properties to prove the result for
the measure ρG and the fact that ρ is absolutely continuous with respect to ρG
together with the fact that the density dρ

dρg
is bounded in L1 to deduce properties

of ρ from those of ρG.

2 Mixing

We refer to [GI] for general background on the various mixing concepts in this
section. Consider a sequence of random vectors {Yj : j ∈ N} defined on a
common probability space (Ω,M′, µ). Let

M′k,l = σ(Yj : k ≤ j ≤ l), 1 ≤ k < l ≤ ∞,

be the σ-algebra generated by the indicated sets of the random vectors. Define
the dependence coefficients of the sequence {Yj : j ∈ N+} to be:

φ(h) = supj∈N sup
{
|
µ(A ∩B)

µ(A)
− µ(B)| : A ∈M′1,j , B ∈M′j+h,∞, µ(A) > 0

}
for h ∈ N. The function φ(h) is non-decreasing and φ(1) ≤ 1. We say the
sequence of random vectors {Yj(x), j ∈ N+} is φ-mixing if limh→∞ φ(h) = 0.
Set

ψ(h) = supj∈N sup
{
|
µ(A ∩B)

µ(A)µ(B)
− 1| : A ∈M′1,j , B ∈M′j+h,∞, µ(A)µ(B) > 0

}
for h ∈ N. The function ψ(h) is non-decreasing and ψ(1) ≤ ∞. We say the
sequence of random vectors {Yj(x), j ∈ N+} is ψ-mixing if limh→∞ ψ(h) = 0.
Finally we set

ψ∗ = supj∈N sup
{ µ(A ∩B)

µ(A)µ(B)
: A ∈M′1,j , B ∈M′j+1,∞, µ(A)µ(B) > 0

}
.
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Obviously φ(h) ≤ ψ(h) and ψ∗ ≤ 1 + ψ(1).

Remark 2.0.1. Our proofs of Theorem 1.2 and 1.3 rely on mixing and J.
Samur’s results [Sam, Corollary 4.6, Corollary 5.10].

We now consider the case of partial quotients of continued fractions. For a
strictly increasing sequence {kj , j ∈ N} of natural numbers {Xj = ckj , j ∈ N} is
a sequence of random variables defined on the probability space ((0, 1),M, ρG),
where M is the σ-algebra of the ρL-measurable sets.

Let M∗1,j be the σ-algebra generated by the rank j fundamental intervals

{x ∈ (0, 1) : c1(x) = r1, · · · , cj(x) = rj}

for fixed ri ∈ N, 1 ≤ i ≤ j. Let M∗j+h,∞ be the σ-algebra generated by the sets

{x ∈ (0, 1) : cj+h(x) = rj+h, cj+h+1(x) = rj+h+1}

for fixed ri, h ∈ N, j + h ≤ i <∞. Let M1,j be the σ-algebra generated by the
sets

{x ∈ (0, 1) : ck1(x) = r1, · · · , ckj (x) = rj}

for fixed ri ∈ N, 1 ≤ i ≤ j. Let Mj+h,∞ be the σ-algebra generated by the sets

{x ∈ (0, 1) : ckj+h(x) = rj+h, ckj+h+1
(x) = rj+h+1, . . .}

for fixed ri, h ∈ N, j + h ≤ i <∞. It is easy to see that M1,j and Mj+h,∞ are
sub-algebras of M∗1,kj and M∗kj+h,∞.

From now on we specialise the symbols of φ(h), ψ(h), ψ∗ to our sequence
{Xj , j ∈ N}, that is,

φ(h) =

supj∈N sup
{
|
ρG(A ∩B)

ρG(A)
− ρG(B)| : A ∈M1,j , B ∈Mj+h,∞, ρG(A) > 0

}
for h ∈ N,

ψ(h) =

supj∈N sup
{
|
ρG(A ∩B)

ρG(A)ρG(B)
− 1| : A ∈M1,j , B ∈Mj+h,∞, ρG(A)ρG(B) > 0

}
for h ∈ N, and

ψ∗ = supj∈N sup
{ ρG(A ∩B)

ρG(A)ρG(B)
: A ∈M1,j , B ∈Mj+1,∞, ρG(A)ρG(B) > 0

}
.

A sequence of random vectors {Yj(x), j ∈ N} with joint distribution L is
said to be stationary if
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L(Y1, · · · , Yn) = L(Y1+k, · · · , Yn+k)

for any 1 ≤ n <∞, 1 ≤ k <∞. We refer to [VW, 1.3] by Aad W. van der Vaart
and Jon A. Wellner for a definition in terms of measures.

We will show that {Xj} is a φ-mixing sequence in Section 3. It is well known
that the sequence of random variables {cj , j ∈ N} is stationary as the Gauss
map G(x) is measure-preserving with respect to ρG. From this we can deduce
easily that the sequence {Xj , j ∈ N} is also stationary.

3 Some preliminary lemmas

For a sequence of positive integers j1, j2, · · · , jn, jn+1, let

Jn = {x ∈ (0, 1) : ci(x) = ji, 1 ≤ i ≤ n}

and let

Jn+1 = {x ∈ (0, 1) : ci(x) = ji, 1 ≤ i ≤ n+ 1}

be the fundamental intervals of of rank n and n+ 1 respectively. Let ρL(E) be
the Lebesgue measure of a measurable set E ⊂ (0, 1). Then as observed on line
(57) in [Khi1] we know that

1

3jn+1
≤
ρL(Jn+1)

ρL(Jn)
≤

2

j2n+1

. (2)

The following lemma generalises [Khi1, Theorem 30].

Lemma 3.1. For any strictly increasing sequence of integers kn ∈ N and any
sequence of positive integers τn ∈ N, n ∈ N, the system of inequalities

ckn(x) ≥ τn (3)

is satisfied by infinitely many n, for almost all real numbers x ∈ (0, 1), if∑∞
n=1

1

τn
= ∞. The same system of inequalities is satified for only finitely

many n for almost all real numbers in (0, 1) if
∑∞
n=1

1

τn
<∞.

The second assertion in Lemma 3.1 follows directly from second assertion of
[Khi1, Theorem 30] by applying [Khi1, Theorem 30] to the sequence

σj =

{
τn j = kn
j2 kn < j < kn+1

for any n, j ∈ N

with
∑∞
j=1

1

σj
<∞. Now we give a proof of the first assertion in Lemma 3.1.

Proof. Let
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Akn = {x ∈ (0, 1) : ckn+j < τn+j for any integer j ∈ N},

and let

Akn,l = {x ∈ (0, 1) : ckn+j
< τn+j for any integer 1 ≤ j ≤ l}

for fixed n, l ∈ N. Then
Akn = ∩∞l=1Akn,l (4)

for fixed n ∈ N. Let Jkn+l
⊂ Akn,l be an interval of rank kn+l. Let Jkn+l+1

=
Jkn+l

∩Akn,l+1. Note that Jkn+l+1
is not an interval. We claim that

ρL(Jkn+l+1
) < (1−

1

3(1 + τn+l+1)
)ρL(Jkn+l

). (5)

To show this, let

Jjkn+l+1
= {x ∈ Jkn+l

: ckn+l+1
(x) = j}

for fixed j ∈ N. Let Ijkn+l+1
⊂ Jjkn+l+1

be an interval of rank kn+l+1. Denote by

Ikn+l+1−1 the interval of rank kn+l+1 − 1 containing Ijkn+l+1
. There is one and

only one such rank kn+l+1 − 1 interval. Then by (2),

ρL(Ijkn+l+1
) >

1

3j2
ρL(Ikn+l+1−1). (6)

Summing inequality (6) over all rank kn+l+1 intervals Ijkn+l+1
⊂ Jjkn+l+1

gives

ρL(Jjkn+l+1
) >

1

3j2
ρL(Jkn+l

) (7)

for any j ∈ N, as any rank kn+l+1 − 1 interval in Jkn+l
contains one and only

one interval Ijkn+l+1
⊂ Jjkn+l+1

. Then

ρL(∪j≥τn+l+1
Jjkn+l+1

) >
1

3
ρL(Jkn+l

)
∑
j≥τn+l+1

1

j2
>

1

3
ρL(Jkn+l

)
∑∞
j=1

1

(τn+l+1 + j)2
>

1

3
ρL(Jkn+l

)
∫∞
τn+l+1+1

dy

y2
=

1

3(τn+l+1 + 1)
ρL(Jkn+l

).

So

ρL(Jkn+l+1
) = ρL(∪j<τn+l+1

Jjkn+l+1
) = ρL((∪∞j=1J

j
kn+l+1

)\(∪j≥τn+l+1
Jjkn+l+1

)) =

ρL(Jkn+l
\ (∪j≥τn+l+1

Jjkn+l+1
)) < (1−

1

3(τn+l+1 + 1)
)ρL(Jkn+l

),
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which shows our claim (5).
Now summing inequality (5) over all rank kn+l intervals Jkn+l

in Akn,l gives

ρL(Akn,l+1) < (1−
1

3(τn+l+1 + 1)
)ρL(Akn,l). (8)

By induction we have

ρL(Akn,l) < ρL(Akn,1)
∏l
i=2(1−

1

3(τn+i + 1)
).

If
∑∞
n=1

1

τn
=∞, then

∑∞
i=2

1

3(τn+i + 1)
=∞,

so ∏∞
i=2(1−

1

3(τn+i + 1)
) = 0.

Considering (4) we have ρL(Akn) = 0. Now let A = ∪∞n=1Akn . Therefore
ρL(A) = 0.

If x ∈ (0, 1) is a number such that (3) is only satisfied finitely many times,
then there must be some n ∈ N such that x ∈ Akn ⊂ A, so the first assertion of
the lemma is proved.

Lemma 3.2. For any sets A ∈M1,j , B ∈Mj+h,∞, we have

|ρG(A ∩B)− ρG(A)ρG(B)| ≤ ρG(A)ρG(B)λkj+h−kj ≤ ρG(A)ρG(B)λh

with λ < 0.8. That is, {Xj} is a stationary φ-mixing sequence with φ(1) < 0.8.
Moreover, ψ∗ <∞.

Proof. For the set A ∈M1,j , let

A(a1, a2, · · · , akj ) = A ∩ {x ∈ (0, 1) : cl(x) = al for 1 ≤ l ≤ kj}

for al ∈ N, 1 ≤ l ≤ kj and l /∈ {k1, k2, · · · , kj}. Obviously

A(a1, a2, · · · , · · · , akj ) ⊂ A

is a set in M∗1,kj . Then A can be partitioned into disjoint unions of finite
numbers of sets

A = ∪∞a1=1 ∪∞a2=1 · · · ∪∞akj=1 A(a1, a2, · · · , akj )

in M∗1,kj . Similarly, let

B(bkj+h , bkj+h+1, · · · ) = B ∩ {x ∈ (0, 1) : cl(x) = bl for j + h ≤ l <∞}.

Then B can be partitioned into disjoint unions of sets
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B = ∪∞bkj+h=1 ∪∞bkj+h+1=1 · · ·B(bkj+h , bkj+h+1, · · · )

inM∗kj+h,∞. In the sequel, for ease of expression, we simplify some notation on
indexation as one can easily understand the range of the indices. Then

|ρG(A ∩B)− ρG(A)ρG(B)|
= |ρG((∪∞a1=1,··· ,akj−1=1A(a1, · · · , akj−1)) ∩ (∪∞aj+h+1=1,···B(bkj+h+1, · · · )))

−ρG((∪∞a1=1,··· ,akj−1=1A(a1, · · · , akj−1))ρG((∪∞aj+h+1=1,···B(bkj+h+1, · · · ))|
= |ΣΣ · · · ρG(A(a1, · · · , akj−1) ∩B(bkj+h+1, · · · ))

−ΣΣ · · · ρG(A(a1, · · · , akj−1))ρG(B(bkj+h+1, · · · ))|
≤ ΣΣ · · · |ρG(A(a1, · · · , akj−1) ∩B(bkj+h+1, · · · ))

−ρG(A(a1, · · · , akj−1))ρG(B(bkj+h+1, · · · ))|
≤¬ ΣΣ · · · ρG(A(a1, · · · , akj−1))ρG(B(bkj+h+1, · · · ))λkj+h−kj
= ΣΣ · · · ρG(A(a1, · · · , akj−1))ΣΣ · · · ρG(B(bkj+h+1, · · · ))λkj+h−kj
= ρG(A)ρG(B)λkj+h−kj ,

with λ < 0.8. The inequality ¬ is obtained by applying [Phi1, Lemma 2.1].
Note that the difference between the indexation is kj+h − kj instead of h now.
So by the definition,

φ(h) = supj∈N+ sup
{
|
ρG(A ∩B)

ρG(A)
− ρG(B)| : A ∈M1,j , B ∈Mj+h,∞, ρG(A) >

0
}
≤ λh.

Then

Σ∞h=1φ(h)
1
2 ≤ Σ∞h=1λ

h
2 <∞

and

ψ∗ ≤ λ+ 1 <∞.

Remark 3.2.1. P. Billingsley [Bil, (4.28)] obtained that for A ∈ M∗1,j and
B ∈M∗j+h,∞, we have

|ρG(A ∩B)− ρG(A)ρG(B)| ≤ θρG(A)ρG(B)λh∗

with θ > 0 and 0 < λ∗ < 1. The sharper estimate λ∗ <
1
2 was given by P.

Szüsz,[Szu, (2.3)].

Lemma 3.3. For a large enough real number y and t > 0, we have

limy→+∞
ρG({x : ck1(x) > y})
ρG({x : ck1(x) > ty})

= t.
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Proof. We know that

ρG({x : c1(x) > y}) =
1

log 2
Σk>[y]

∫ 1
k

1
k+1

1

x+ 1
dx

=
1

log 2
log(

1

[y] + 1
+ 1)

=
1

log 2

1

[y] + 1
+ o(

1

y
)

=
1

log 2

1

y
+ o(

1

y
)

as y →∞. Similarly,

ρG({x : ck1(x) > ty}) =
1

log 2

1

ty
+O(

1

y
),

so

lim
y→+∞

ρG({x : c1(x) > y})
ρG({x : c1(x) > ty})

= t.

As {cj} is a stationary sequence, the lemma holds for ck1 .

4 Proof of Theorem 1.1

We first begin with some notation. For a random variable X, let E(X) denote its
expectation and let V ar(X) denote its variance. By Lemma 3.1, if Σn∈N

1
τn
<∞,

then ckn(x) > τn is satisfied by only finitely many n ∈ N for almost all x ∈ (0, 1).
Let

c∗n(x) = ckn(x)I[ckn (x)≤τn].

Then we have

Lemma 4.1. If Σj∈N
1
τj
<∞, the sequence

1
τn

Σnj=1(cj(x)∗ − E(c∗j (x)))→ 0 a.e.

as n→∞.

Proof. We have

E(c∗j (x)) =

∫
(0,1)

c∗j (x)

1 + x
dx

=

∫
(0,1)

ckj (x)

1 + x
I[ckj (x)≤τj ]dx

=

∫
(0,1)

c1(x)

1 + x
I[c1(x)≤τj ]dx

11



≤
∫
(0,1)

c1(x)I[c1(x)≤τj ]dx

≤ Σi≤τj i
1

i(i+ 1)
< log τj

for j large enough. Similar calculations show

E((c∗j (x))2) =
∫
(0,1)

(c∗j (x))
2

1+x dx < τj .

Then

Σj∈N
V ar(c∗j )

τ2j
= Σj∈N

E((c∗j )
2)− (E(c∗j ))

2

τ2j

≤ Σj∈N
τj + (log τj)

2

τ2j
<∞.

The last inequality holds because Σj∈N+
1
τj
<∞. Now the lemma follows by an

application of [IT, Theorem 1.1.15]. The first two assumptions of the theorem
are guaranteed by Lemma 3.2.

Now we prove Theorem 1.1.

Proof. We first deal with the first assertion. By assumption Σj
2j

τ2j
<∞, so

lim
j→∞

j · 2j

τ2j
= 0.

That is,

lim
n→∞

n log n

τn
= 0.

Then
1

τn
Σnj=1E(c∗j (x)) =

1

τn
Σnj=1

∫
(0,1)

c∗j (x)

1 + x
dx

<
1

τn
Σnj=1 log τj <

n log τn
τn

→ 0

as n→∞. Combining Lemma 4.1 this implies

limn→∞
Tn
τn

= 0 a.e.

as ckj (x) 6= c∗j (x) for only finitely many j ∈ N and almost all x ∈ (0, 1). This
shows the first assertion of the theorem.

For the second assertion, let M be a positive number. By Lemma 3.1, the
inequality

cn(x) ≥Mτn

are satisfied for infinitely many n ∈ N for almost all x ∈ (0, 1). Then

12



lim supn→∞
Tn(x)

τn
≥ lim supn→∞

cn(x)

τn
≥M

for almost all x ∈ (0, 1). As M can be arbitrarily large, this shows

lim supn→∞
Tn(x)

τn
=∞

for almost all x ∈ (0, 1).

5 Proof of Theorem 1.2

Proof. Combining Lemma 3.2 and 3.3, we know that our sequence of random
variables {Xn = ckn} satisfies the assumptions of [Sam, Corollary 5.10] with
l1 = 0, l2 = 1, α = 1. Proof of the theorem goes similarly to the proof of
Theorem 2 in [Phi1].

6 Proof of Theorem 1.3

In view of the proof of Theorem 3 in [Phi1], our strategy is to prove a subsequence-
version result of Lemma 4.1 in [Phi1] and Lemma 4.2 in [Phi1]. We first split
the sum Tn into two, depending on whether the terms in it exceed n/pn or do
not. For 1 ≤ j ≤ n, let

cj,+ = ckjI[ckj>n/pn], cj,− = ckjI[ckj≤n/pn],

and let
Tn,+ = Σj≤ncj,+, Tn,− = Σj≤ncj,−.

One can see that Tn = Tn,+ + Tn,−. First we show the following lemma.

Lemma 6.1. The sequence of random variables

T ∗n,+ = Tn,+ − Σj≤pnξnc
(j)
n I

[c
(j)
n >n/pn]

→ 0,

in distribution as n→∞.

Proof. Let Γn = {1, · · · , n}. Γn has
(
n
k

)
subsets such that each one contains a

total element of k ≤ n elements. Denote these
(
n
k

)
sets by Γjn,k, 1 ≤ j ≤

(
n
k

)
.

By Lemma 3.2, we have

ρG({x ∈ (0, 1) : cki(x) > n/pn, i ∈ Γjn,k}) ≤ (pn/n)k(1 + λ)k

for any 1 ≤ j ≤
(
n
k

)
. So

13



ρG({x ∈ (0, 1) : T ∗n,+(x) > 0})

= Σnk=pnξn+1Σ
(nk)
j=1 ρG({x ∈ (0, 1) : cki(x) > n/pn for i ∈ Γjn,k

and cki(x) ≤ n/pn for i ∈ Γn \ Γjn,k})
≤ Σnk=pnξn+1

(
n
k

)
(pn/n)k(1 + λ)k

≤ Σnk=pnξn+1
pkn
k! 1.8k.

The last sum tends to 0 as n→∞ as the tail of an exponential series.

Now we proceed to show that

Lemma 6.2. The distribution functions of the random variables

T ∗n,−
n

(pn log 2)
1/2 −

(
pn

log 2

)1/2

log
n

pn

converge to U(y) as n→∞.

Proof. This is a direct result by application of [Sam, Corollary 4.6] to our φ-
mixing triangular array

cn,j = ckj (V ar(Tn,−))−1/2

for j ≤ n. The four conditions (the last one is empty) of the corollary are
satisfied by our triangular array, as one can imitate similar calculations as in
proof of Lemma 4.1 of [Phi1] using our Lemma 3.2 and the fact that the sequence
{cj , j ∈ N} is stationary.

Now combining Lemma 6.1 and 6.2, Theorem 1.3 follows immediately.

7 Sequences satisfying conditions (i) and (ii)

The following is a list of sequences (kj)j≥1 that are Lp good universal for some
p ≥ 1, such that for each irrational α it is also true that the sequence (kjα)j≥1
is uniformly distributed modulo one.

1. kj = j (j = 1, 2, . . .). This is Birkhoff’s pointwise ergodic theorem.
2. kj = φ(j) (j = 1, 2, . . .), where φ is a polynomial mapping the natural

numbers to themselves [Bou] .
3. kj = φ(pj) (j = 1, 2, . . .), where φ is a polynomial mapping the natural

numbers to themselves and (pj)j≥1 is the sequence of rational primes [Nai1].
4. Set kj = [g(j)] (j = 1, . . .) where g : [1,∞) → [1,∞) is a differentiable

function whose derivative increases with its argument. Let An denote the cardi-
nality of the set {j : kj ≤ n}, and suppose for some function a : [1,∞)→ [1,∞)
increasing to infinity as its argument does, that we set

bM = sup
{z}∈[ 1

a(M)
, 12 )

∣∣∣∣∣∣
∑

j:aj≤M

e(zkj)

∣∣∣∣∣∣ .
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(Here e(x) = e2πix for real x.) Suppose also for some decreasing function c :
[1,∞)→ [1,∞) and some positive constant C > 0 that

bM +A[a(M)] + M
a(M)

AM
≤ Cc(M).

Then, if we have
∞∑
s=1

c(θs) <∞

for θ > 1 we say that k = (kn)∞n=1 satisfies conditions H.
Specific sequences of integers that satisfy conditions H include kn = [g(n)]

(n = 1, 2, . . .) where
I. g(x) = xω if ω > 1 and ω /∈ N.
II. g(x) = elog

γ x for γ ∈ (1, 32 ).
III. g(x) = P (x) = bkx

k+. . .+b1x+b0 for bk, . . . , b1 not all rational multiples
of the same real number.

IV. Hardy fields: By a Hardy field, we mean a closed subfield (under differ-
entiation) of the ring of germs at +∞ of continuous real-valued functions with
addition and multiplication taken to be pointwise. Let H denote the union of
all Hardy fields. Conditions for (an)∞n=1 = ([ψ(n)])∞n=1, where ψ ∈ H to sat-
isfy condition H are given by the hypotheses of Theorems 3.4, 3.5 and 3.8. in
[BKQW]. Note the term ergodic is used in this paper in place of the older term
Hartman uniformly distributed.

5. A random example: (i) Suppose S = (nk)∞n=1 ⊆ N is a strictly increasing
sequence of natural numbers. By identifying S with its characteristic function
IS , we may view it as a point in Λ = {0, 1}N, the set of maps from N to
{0, 1}. We may endow Λ with a probability measure by viewing it as a Cartesian
product Λ =

∏∞
n=1Xn where for each natural number n we have Xn = {0, 1},

and specify the probability πn on Xn by πn({1}) = qn, with 0 ≤ qn ≤ 1 and
πn({0}) = 1 − qn such that limn→∞ qnn = ∞. The desired probability
measure on Λ is the corresponding product measure π =

∏∞
n=1 πn. The

underlying σ-algebra β is that generated by the “cylinders”

{λ = (λn)∞n=1 ∈ Λ : λi1 = αi1 , . . . , λir = αir}

for all possible choices of i1, . . . , ir and αi1 , . . . , αir . Then almost any (kj)
∞
j=1

in Λ with respect to the measure π is Lp good universal for all p > 1[Bou].

6. Block L1 good universal sequences: If (kn)n≥1 = ∪∞k=1[dk, dk+ek] ordered
by absolute value for disjoint ([dk, dk + ek])k≥1 with dk−1 = O(ek) as k tends
to infinity. Note that if dk−1 = o(ek) the sequence (kn)∞n= is zero density [BL].

7. A random perturbation : Suppose (kj)j≥1 is L2-good universal and
(kjα)j≥1 is uniformly distributed modulo one for any non-integer α . Sup-
pose θ = {θn, n ≥ 1} denotes a sequence of N-valued independent, identically
distributed random variables with basic probability space (Ω,A,P), and a P-
complete σ-field A. We assume that there exist 0 < β < 1 and B > 1/β, such
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that
kj = O(ej

β

),

and we have
E(logB+ |θ1|) <∞.

Then (kj + θj(ω))j≥1 also satisfies conditions (i) and (ii) [NW].
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