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Abstract 

Post-translational modification of proteins by ubiquitylation is increasingly recognised 

as a highly complex code that contributes to the regulation of diverse cellular 

processes. In humans, a family of almost one hundred deubiquitylase enzymes 

(DUBs) are assigned to six sub-families and many of these DUBs can remove 

ubiquitin from proteins to reverse signals. Roles for individual DUBs have been 

delineated within specific cellular processes, including many that are dysregulated in 

diseases, particularly cancer. As potentially druggable enzymes, disease-associated 

DUBs are of increasing interest as pharmaceutical targets. The biology, structure and 

regulation of DUBs have been extensively reviewed elsewhere, so here we focus 

specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. 

Over a quarter of all DUBs, representing four different families, have been shown to 

play roles either in the unidirectional progression of the cell cycle through specific 

checkpoints, or in the DNA damage response and repair pathways. We catalogue 

these roles and discuss specific examples. Centrosomes are the major microtubule 

nucleating centres within a cell, and play a key role in forming the bipolar mitotic 

spindle required to accurately divide genetic material between daughter cells during 

cell division. To enable this mitotic role, centrosomes undergo a complex replication 

cycle that is intimately linked to the cell division cycle. Here we also catalogue and 

discuss DUBs that have been linked to centrosome replication or function, including 

centrosome clustering, a mitotic survival strategy unique to cancer cells with 

supernumerary centrosomes. 

 

  



Reversible ubiquitylation 

The post-translational attachment of ubiquitin moieties to substrate proteins, termed 

ubiquitylation, involves the covalent conjugation of ubiquitin, most commonly to lysine 

(K) residues. In the simplest form, ubiquitylation is the addition of an ubiquitin 

monomer, termed monoubiquitylation. However, the ubiquitin signal can be highly 

complex and is linked to a plethora of cellular processes (1, 2). Polyubiquitin chains 

linked through K48 target proteins for proteasomal degradation. However, ubiquitin 

possesses seven lysine residues (K6, K11, K27, K29, K33, K48 and K63) enabling 

the formation of diverse polyubiquitin chains that may be homotypic or heterotypic in 

nature, and can have alternative functions, as comprehensively reviewed in (3). The 

world of ubiquitylation is multifaceted and each layer relies upon families of proteins 

to write, read or erase this ubiquitin code. The steps to write the ubiquitin code are 

highly conserved, relying on an E1 ubiquitin activating enzyme, an E2 ubiquitin 

conjugating enzyme and an E3 ubiquitin protein ligase with substrate specificity. As 

reviewed in (1), the human genome encodes two ubiquitin E1 enzymes, 

approximately forty E2 enzymes and more than six hundred E3 ligases, a clear 

depiction of the complexity involved in functional ubiquitylation. 

 

Ubiquitylation is a reversible post-translational modification, with removal of the 

ubiquitin signal catalysed by deubiquitylase enzymes (DUBs). The human genome 

encodes approximately one hundred DUBs, that we refer to here as the DUBome. 

These DUBs belong to six families: the ubiquitin specific protease (USP), ubiquitin C-

terminal hydrolase (UCH), ovarian tumour protease (OTU), Josephin (JOS), 

JAB1/MPN/MOV34 (JAMM) families (4), or the newly discovered motif-interacting 

with Ub (MIU)-containing novel DUB (MINDY) family (5). As reviewed in (4), whilst 

most DUB families are thiol proteases harbouring a catalytic triad, the JAMM 

metalloproteases require a zinc ion to facilitate ubiquitin chain removal. As editors of 

ubiquitin signalling, DUBs are regulators of varied essential cellular processes, 

notably many have been assigned roles in DNA damage repair and cell cycle 

progression. As these processes are often dysregulated in cancer, DUBs, as 

potentially druggable enzymes, have quickly become the focus of several 

pharmaceutical companies vying to develop new cancer therapies. 

 

The cell division cycle 

The cell cycle coordinates cellular events to duplicate the genetic material and divide 

the cellular contents to create two identical daughter cells. The cycle comprises four 

stages. After division, cells undergo an initial growth phase (G1), followed by the 



replication of the genome (S-phase). A second growth phase (G2) prepares the cell 

for division and assembles cytoskeletal structures, before the genetic material 

divides between the daughter cells during mitosis (M). The unidirectional progression 

through these cell cycle phases is dependent upon the periodic activation and 

inactivation of substrate proteins by kinases (including CDKs and PLKs) and 

ubiquitin-mediated degradation of key effectors by E3 ligases (including the APC/C 

and SCF complexes). Accordingly, cell cycle effectors are regulated through protein-

protein interactions, phosphorylation-dependent activation and ubiquitylation-

dependent degradation, all working in concert to achieve an exquisite level of control 

throughout the cycle (6). Once initiated, the cell cycle can be viewed as a series of 

autonomic cellular events that cascade until the eventual division into two daughter 

cells. However, checkpoints are inherent in the system, to temporarily halt the cell 

cycle if conditions are unfavourable. Many DUBs have direct or indirect roles during 

the cell cycle (7-9).  We discuss here selected examples of those regulating cell 

cycle progression and checkpoint maintenance, as summarised in Figure 1. 

 

DUBs and the G1 restriction point 

Upon entering G1, cells are not committed to a subsequent round of cell division, as 

entry into the cell cycle requires sufficient mitogenic signalling to overcome a 

restriction point in late G1. Rb, the mediator of this restriction point, inhibits the E2F 

transcription factor during G1 (10). Upon CDK4/6 activation by the G1-cyclin CCND 

and then by CCNE, Rb is increasingly phosphorylated. This results in progression 

through the restriction point as hyperphosphorylated Rb dissociates from E2F, 

causing the transcription of S-phase genes (importantly CCNE and CCNA) (11). In 

addition to phosphorylation, Rb is regulated by ubiquitylation, being a target of the E3 

ligase MDM2 (12, 13) which promotes its proteasomal degradation (14). The DUB 

USP7 directly antagonises MDM2-mediated polyubiquitylation of Rb, stalling the cell 

cycle in G1 (15). USP7 is not the only DUB that may govern the restriction point, the 

tumour suppressor BAP1 also indirectly regulates the activity of E2F, via the 

deubiquitylation of HCF-1, an important transcriptional co-regulator at E2F promoter 

sites (16, 17). CYLD, another well-established tumour suppressor, plays a protective 

role during G1 via the transcription factor BCL-3. CYLD deubiquitylates BCL-3 

inhibiting its nuclear translocation and so decreases the transcription of BCL-3 target 

genes including CCND (18). CYLD therefore indirectly decreases CCND levels 

preventing cells from passing through the restriction point. During G1, the APC/C 

polyubiquitylates the S-phase cyclin CCNA, targeting it for degradation in order to 

prevent the cell from entering S-phase. The DUB USP37 directly regulates S-phase 



entry through antagonising activity of the APC/CCDH1 in G1 by removing polyubiquitin 

chains to stabilise CCNA (19). 

 

DUBs and DNA damage checkpoints  

Key to successful cell division is maintaining the integrity of the genome during DNA 

replication in S-phase, and this is monitored by a number of quality control 

mechanisms. If DNA becomes damaged, checkpoints stall the cell cycle and activate 

DNA damage repair (DDR) pathways. This response revolves around p53, which is 

stabilised and activated by DNA damage checkpoint signalling following a range of 

genotoxic insults. Under normal conditions, p53 is continuously synthesized but 

maintained at a low level by MDM2 polyubiquitylation targeting p53 for proteasomal 

degradation (20). Under genotoxic stress, these regulatory mechanisms are 

reversed, to allow p53 to stall the cell cycle to enable repair or trigger apoptosis. At 

sites of DNA damage, sensors (e.g. 53BP1) facilitate the activation of DNA damage 

kinases (notably ATM and CHK2) resulting in p53 phosphorylation. This abolishes 

the interaction between p53 and MDM2, increasing p53 levels and inducing 

transcription of p53 target genes (21), as well as activating transcription-independent 

roles of p53 in many of the major DDR pathways (22).  

 

Given the integral role of p53 in cell cycle fate, it is perhaps unsurprising that many 

DUBs have been highlighted as direct or indirect p53 regulators, including USP2a, 

USP5, USP7 (HAUSP), USP10, USP11, USP28, OTUB1 and OTUD5. USP7, a 

predominantly nuclear DUB, was the first to be associated with the p53-dependent 

DDR via directly antagonising MDM2 polyubiquitylation of p53 (23). However, USP7 

also directly deubiquitylates the auto-polyubiquitylated MDM2, stabilising the E3 

ligase as well as its substrate (24). Although this may seem counterintuitive, USP7 

exhibits a preference for MDM2 over p53 in unstressed cells ensuring p53 levels are 

maintained at a low level. Upon DNA damage, USP7 is dephosphorylated by PPM1G 

reducing activity towards MDM2, leading to increased auto-polyubiquitylation and 

degradation of MDM2, and the subsequent accumulation of p53 (25).  

 

Other DUBs, including USP10, USP11 and OTUD5, also directly interact with, 

deubiquitylate and stabilise p53. Interestingly USP10, a predominantly cytoplasmic 

DUB, is involved in homeostasis of cytoplasmic p53 in unstressed cells, but following 

DNA damage a fraction of USP10 can translocate into the nucleus where it 

contributes to p53 activation (26). As described for USP7, other DUBs indirectly 

control p53 levels via MDM2. For example, USP2a negatively regulates p53 levels 



through the stabilisation of MDM2, whilst exhibiting no deubiquitylating activity 

towards p53 directly (27). OTUB1, another cytoplasmic DUB, can directly interact 

with p53, but predominantly stabilises p53 indirectly in the cytoplasm, through a non-

catalytic mechanism.  OTUB1 does this by binding and supressing polyubiquitylation 

through the MDM2 associated E2 enzyme UbcH5 (28). In contrast, USP28 was 

shown to interact with and stabilise both the damage sensor 53BP1 and the 

checkpoint kinase CHK2, that activate p53 under genotoxic conditions (29). USP5 

uses perhaps the most indirect mechanism to stabilise p53 without physically 

interacting with components of the p53-MDM2 axis. It primarily disassembles 

unanchored polyubiquitin chains, and loss of USP5 results in accumulation of these 

chains that compete with ubiquitylated p53, but not MDM2, for proteasome 

recognition and degradation so that p53 is selectively stabilised (30).  

 

In addition, many DUBs have also been associated with executing specific DDR 

pathways (8).  For example, USP1 can support repair through both the Fanconi 

anaemia and translesion repair pathways (31). An RNAi-based study has linked 

USP3 with double-strand DNA break repair; USP3 directly interacts with and 

removes monoubiquitylation from histones H2A and H2B, and possibly other DDR 

effectors, to coordinate DNA repair (32). Some DUBs exhibit a more global effect on 

DDR pathways, for example one screen revealed that UCHL5 was recruited to sites 

of DNA damage in addition to being involved in double-strand break resection (33). 

 

DUBs with roles in mitotic progression and cytokinesis 

Following replication of the genome, and assuming checkpoints are satisfied in G2, 

the cell enters mitosis, where the newly replicated sister chromatids must be divided 

into each daughter cell. To achieve this, the cell passes through a sequence of 

distinct mitotic phases: prophase, metaphase, anaphase, telophase and cytokinesis 

(Figure 1). Prior to mitosis, the mitotic kinase CDK1 is held in an inactivate state by 

WEE1 phosphorylation, until SCFβTrCP-mediated ubiquitylation and degradation of 

WEE1 triggers mitotic entry; USP50 can repress mitotic entry through stabilising 

WEE1 (34).  Subsequently, USP7 can indirectly regulate the levels of Aurora A, a 

kinase required for correct maturation of the bipolar mitotic spindle, by stabilising 

CHFR, an E3 ligase that targets Aurora A for degradation (35).  

 

USP44 was one of the first DUBs to be linked to mitotic progression, with a role in 

metaphase-anaphase transition (36). Anaphase entry is stimulated by the APC/C 

and results in the separation of sister chromatids. To ensure the correct chromosome 



complement is distributed to each daughter cell, the spindle assembly checkpoint 

(SAC) monitors attachment of each chromosome pair to opposite poles of the mitotic 

spindle. Anaphase is arrested until the SAC is satisfied, preventing premature and 

inaccurate division of genomic content. Three key proteins, MAD2, BUBR1 and 

BUB3, comprise the mitotic checkpoint complex (MCC) (37). The MCC sequesters 

the APC/C activator CDC20 at unattached chromosomes, thus inhibiting the APC/C 

until chromosomes are correctly attached (37). Once the SAC is satisfied, CDC20 is 

ubiquitylated and subsequently dissociates from the MCC to activate the APC/C (38). 

USP44 plays a protective role at the SAC, directly antagonising CDC20 

ubiquitylation, and so promoting MCC inhibition of the APC/C (36). Once the SAC is 

satisfied, USP44 dephosphorylation decreases its activity towards CDC20, initiating 

mitotic exit through APC/C activation (39). 

 

USP44 is not the only DUB that contributes to regulation of the SAC, for example 

USP39 and USP9X are also essential for the correct alignment of chromosomes at 

the mitotic spindle and their accurate division during anaphase. The mitotic kinase 

Aurora B is a key regulator of the attachment of sister chromatids to microtubules in 

the mitotic spindle.  It exists in a complex with Survivin, the ubiquitylation status of 

which mediates interaction of the complex with chromosomes (40). Depletion of 

USP39 results in decreased transcription and consequently lower levels of Aurora B 

kinase in cycling cells (41), whilst USP9X-mediated deubiquitylation of Survivin is 

required for dissociation from the chromosomes once correctly aligned (42). Another 

DUB, USP4, plays an indirect role in the SAC through regulating correct splicing of 

mRNA transcripts, including for the mitotic checkpoint kinase BUB1 (43).  

 

The DUB CYLD plays roles during both metaphase and cytokinesis. CYLD directly 

interacts with the catalytic domain of HDAC6, inhibiting alpha-tubulin deacetylation 

and therefore indirectly increasing the stability of microtubules. This governance of 

microtubule stability by CYLD plays a role in spindle orientation during metaphase 

(44) and regulates the rate of cytokinesis (45). Lastly, USP8 and AMSH, two DUBs 

that are usually recruited to endosomes, have an important role in cytokinesis. The 

scission of the two daughter cells requires components of the ESCRT machinery 

including VAMP8, which co-localises with, and is deubiquitylated by, both USP8 and 

AMSH during cytokinesis (46). 

 

 

 



The centrosome cycle 

Centrosomes are cytoplasmic organelles which act as the dominant microtubule-

organizing centres (MTOCs) in animal cells. During the cell cycle, centrosomes 

determine spatial arrangement of the microtubule arrays to influence cell shape, 

polarity, motility and organization of the mitotic spindle (47, 48). The core 

components are two centrioles, small barrel-shaped organelles that are embedded in 

pericentriolar material (PCM). Each centriole consists of nine microtubule triplets 

arranged in a highly conserved rotational symmetry, imparted by SAS-6 during 

centriole assembly (49, 50). The PCM is a dense protein matrix composed of various 

proteins and exhibiting a high level of spatial organization, its major function is 

recruitment of gamma-tubulin complexes which are essential for microtubule 

nucleation (51, 52). 

 

Centrosome replication is strictly coordinated with cell cycle progression (Figure 2). 

Duplication of the single G1 centrosome begins at the G1/S transition and is 

completed during S-phase so that two centrosomes are present in G2. These 

facilitate bipolar spindle formation at metaphase and are then segregated, one into 

each daughter cell, during cytokinesis (53, 54). Key to centrosome replication is 

centriole duplication, as the pre-existing mother centriole duplicates itself to form a 

daughter centriole. The kinase PLK4 and two SCF ubiquitin E3 ligases ensure that 

only a single replication event normally occurs. SCFFBXW5 ubiquitylates SAS-6 to 

target it for proteasomal degradation, preventing centriole over-duplication. SCFFBXW5 

activity is limited by PLK4 to prevent premature SAS-6 degradation. Following G1/S 

transition, PLK4 homodimerises and trans-autophosphorylates, signalling recruitment 

of SCFβTrCP which ubiquitylates and degrades PLK4. Decreased PLK4 levels restore 

SCFFBXW5 activity and block re-duplication (49, 55-58). Once duplicated, the daughter 

centriole elongates during S-phase and G2. This process is controlled by several 

genes including the multifunctional centriolar protein CP110, which becomes 

ubiquitylated by SCFcyclinF during G2 and mitosis. Centrosomes then undergo a 

maturation process which requires recruitment of PCM.  Finally, the centrosomes 

separate during G2, through KIF11 kinesin activity, which also facilitates bipolar 

spindle formation during mitosis (49, 59, 60).   

 

Many human cells also display cilia in a cell cycle-dependent manner. During G1 (or 

G0 in terminally-differentiated cells) centrosomes migrate to the cell cortex, where the 

mother centriole matures into a basal body which acts as a template for cilia 

elongation. During S-phase, both mother and daughter centrioles undergo 



duplication as normal. Then, prior to mitosis, cilia disassemble and the centrioles 

migrate back to the cell interior, ready to act as spindle poles during mitosis (61). 

 

Various cell division errors, such as centrosome over-duplication, cytokinesis failure, 

or cell fusion can cause centrosome amplification, which is observed in many human 

cancers. The notion that, in addition to acting as MTOCs, centrosomes may function 

as signalling hubs (62) suggests one way in which amplification of centrosomes may 

benefit cancer cells.  However, supernumerary centrosomes may cause multipolar 

spindle formation, impaired cell division, aneuploidy and genomic instability (63, 64). 

If uncorrected, multipolar spindles can lead to multipolar cell division and massive 

aneuploidy, which is usually lethal for the cell. Some cancer cells use mechanisms 

such as centrosome inactivation or centrosome loss to avoid multipolar divisions 

(65). However, centrosome clustering is probably the most common response in 

cancer cells; this enables aggregation of additional centrosomes into two groups to 

form a pseudo-bipolar spindle and allow the cell to undergo bipolar cell division (66, 

67). Ubiquitylation is increasingly recognised as a key regulator of centrosome 

biology (68), and our current knowledge of the role for DUBs in specific aspects of 

the centrosome cycle is summarised in Figure 2. 

 

DUBs regulating centrosome duplication and elongation during S/G2 

During S-phase centrosomes must be duplicated exactly once. A number of the key 

proteins involved in centrosome duplication are ubiquitylated and therefore also open 

to regulation by deubiquitylation; the balance between these processes is imperative 

for precise duplication. For example, CP110 levels are normally tightly controlled 

during G2 and mitosis through ubiquitylation by SCFcyclinF, leading to CP110 

degradation (69). Countering this, USP33 localises to centrioles during S-phase and 

G2/M where it can deubiquitylate and stabilise CP110. Overexpression of either 

CP110 (70) or USP33 (71) leads to centrosome amplification. Similarly, appropriate 

expression of CEP131, a centriolar satellite protein, is required for accurate 

centrosome duplication (72). Affinity purification and mass spectrometry identified 

USP9X as a CEP131 interactor (73); USP9X localizes to centrosomes in a cell cycle-

dependent manner, most strikingly during S-phase and G2. USP9X gain-of-function 

leads to CEP131 deubiquitylation, stabilization and centrosome amplification (73). In 

addition, overexpression of a third DUB, USP1, is also linked with centrosome 

amplification. Although the mechanism remains unclear, USP1 may act in part 

through increasing expression of ID1 (74), a fraction of which localises to the 

centrosome, as ID1 overexpression can induce centrosome amplification (75). 



 

DUBs affecting centrosome maturation, separation and mitotic spindle 

organisation during G2 and mitosis 

BRCA1/BARD1-dependent ubiquitylation of gamma-tubulin plays a key role in the 

regulation of centrosome duplication and microtubule nucleation, with BRCA1 loss 

resulting in centrosome amplification (76, 77). An siRNA screen for DUBs that affect 

levels of ubiquitylated gamma-tubulin identified BAP1 and UCHL1 as candidates 

(78). Whilst UCHL1 interacts with gamma-tubulin in G1, the BAP1 interaction is 

largely confined to mitosis, suggesting these two DUBs regulate gamma-tubulin in a 

cell cycle-dependent manner (78). BAP1 removes ubiquitin from gamma-tubulin, and 

mitotic defects in cells with low BAP1 levels are rescued by expression of BAP1 but 

not a catalytically inactive mutant. Whilst the mechanism remains to be fully 

elucidated, it seems deubiquitylation of gamma-tubulin by BAP1 during mitosis 

allows proper spindle organisation and function (78). CEP192 is a centrosomal 

protein with roles in maturation of centrosomes at the onset of mitosis and 

organization of the mitotic microtubule landscape. Mass spectrometry identified the 

deubiquitylase CYLD as a CEP192 interactor and CYLD co-depletion restores 

spindle assembly defects in CEP192-depleted cells (79).  

 

In addition to its well described role in the spindle-assembly checkpoint (36), USP44 

also independently affects mitotic geometry by regulating centrosome separation and 

positioning (80). USP44 interacts with CETN2 and, although the targets of USP44 at 

the centrosome remain to be elucidated, catalytically-inactive or CETN2-binding 

mutants of USP44 fail to rescue centrosome positioning defects. USP7 also plays a 

role in maintaining the correct number of centrosomes in a cell. It interacts with and 

stabilises centrosomal PLK1-phosphorylated 53BP1 at mitosis (81). Depletion of 

53BP1 results in lower levels of p53 and CENPF which is required for proper 

centrosome separation and spindle formation. Cells lacking 53BP1 accumulate 

supernumerary centrosomes, not through de novo amplification but rather due to 

failure of cytokinesis in cells with incorrect centrosome and spindle positioning and 

chromosomal missegregation. In contrast, USP37 depletion indirectly results in 

centrosome fragmentation, and hence multipolar spindle formation, through 

ubiquitylation and degradation of WAPL, a regulator of sister chromatid resolution 

and spindle tension (82). Notably, three recent papers have revealed a novel 

checkpoint, the mitotic surveillance pathway, that can detect centrosome loss or 

prolonged mitosis and results in cell cycle arrest (83-85). The signalling pathway 



involves 53BP1 and the deubiquitylase USP28 acting in a complex to deubiquitylate 

and stabilise p53, which in turn controls cell fate. 

 

DUBs involved in centrosome clustering during cancer cell mitosis 

Centrosome clustering is a mechanism that cancer cells containing supernumerary 

centrosomes commonly use to gather amplified centrosomes into two poles during 

mitosis, allowing for bipolar division and cancer cell proliferation (86). Inhibition of 

centrosome clustering is an attractive, cancer specific, therapeutic intervention. Two 

genome-wide screens have identified proteins required for centrosome clustering in 

Drosophila or human cells (87, 88). Analysis of the Drosophila dataset reveals 

prominence of proteins involved in ubiquitylation and the proteasomal pathway, 

including two DUBs, the Drosophila orthologues of human USP8 and USP31 (87). 

The screen in human cells also identified USP54 (88), a DUB that is predicted to be 

catalytically inactive (89). However, neither the ubiquitylation process nor these 

DUBs were investigated further in either study. In relation to its role in stabilising 

CP110 described above, USP33 may also indirectly affect centrosome clustering. 

Inhibition of CDK2 prevents CP110 phosphorylation that is required for centrosome 

clustering activity (90, 91) and combining CDK2 inhibition with USP33 depletion has 

a co-operative effect on CP110, driving anaphase catastrophe via multipolar spindle 

formation (91). In addition, the functional overlap of other DUBs with centrosome 

regulation makes it likely there are further DUBs involved in this process. For 

example, a functional SAC is required for effective centrosome clustering (87) and, 

as discussed above, several DUBs including USP4, USP9X, USP39 and USP44 are 

required for SAC activity (36, 41-43). 

 

DUBs involved in ciliogenesis during G0/G1 

A number of DUBs have been found to be required for the formation of primary cilia 

during G0/G1 phase of the cell cycle, a process termed ciliogenesis. Firstly, the DUB 

CYLD is recruited to centrosomes and the basal body of cilia via its interaction with 

CAP350, where it has to be present and catalytically active to promote docking of 

basal bodies at the plasma membrane and hence ciliogenesis (92). A concurrent 

study also demonstrated that CYLD is required for docking of basal bodies at the 

plasma membrane and identified that this can, at least in part, be explained by its 

ability to deubiquitylate CEP70. Deubiquitylation of CEP70 allows it to interact with 

gamma-tubulin at the centrosome to mediate ciliogenesis (93). In addition, CYLD 

inactivates HDAC6, which modulates cilia length (93). Secondly, via an independent 

mechanism to its roles in centrosome duplication, USP9X also regulates ciliogenesis 



(94). During G0/G1, USP9X is recruited to the centrosome where it deubiquitylates 

and stabilises NPHP5, a positive regulator of ciliogenesis, so favouring cilia 

formation. However, at G2/M USP9X becomes cytoplasmic, allowing degradation of 

NPHP5 and loss of cilia.  Lastly, a survey of DUB subcellular localisation found that 

USP21 localised to centrosomes and microtubules (95). USP21 is required for 

effective microtubule regrowth from centrosomes, neurite outgrowth, generation of 

the primary cilium (95), and hedgehog signalling (96). 

 

Conclusions, future challenges and outlook 

Here we highlight specific roles for many different DUBs in controlling critical aspects 

of cell cycle progression, p53 homeostasis and DNA damage repair, as well as 

centrosome biology. To date, at least 30% of the DUBome has been associated with 

these processes, with predominant representation from the USP and UCH families. 

In addition to these roles, it is evident that many other DUBs regulate cellular 

processes during specific cell cycle phases.  One example is the role of USP15 in 

regulating the transcriptional repressor REST. Like many transcription factors, REST 

is rapidly degraded at G2/M prior to cell division, however as it represses cellular 

differentiation genes it must be reconstituted in G1.  REST degradation is triggered by 

phosphorylation-dependent SCFβTrCP ubiquitylation (97, 98), and whilst this is 

reported to be antagonised by USP7 in neural progenitors (99), in cycling cells 

mitotic REST degradation appears to be unopposed. However, as cells exit mitosis, 

USP15 acts to deubiquitylate newly synthesized REST and rapidly rescue its 

expression levels (100). Considering phase-specific roles such as this greatly 

expands the involvement of the DUBome in cell cycle biology. 

 

This review aims to capture the current state of the field of DUB cell cycle research, 

but many outstanding questions remain. Whilst certain DUBs have very distinct roles, 

others like CYLD, USP9X and USP7, play multiple roles at various phases of both 

the cell and centrosome cycles.  Often we do not yet know how the function of a 

particular DUB is restricted to a cell cycle phase, or directed towards a specific 

target, to achieve precise temporal regulation of cell cycle effectors.  Indeed, 

although transcriptomics suggest USP1 is the only DUB that is periodically 

transcribed during the cell cycle (101), proteomics reveals periodic phosphorylation 

of several DUBs (102), but we at present lack a clear profile of regulated protein 

expression and activity for the DUBome during the cell cycle.   

 



Although certain DUBs, OTUB1 being a notable example (28), play important roles 

through scaffolding interactions independent of their catalytic activity, most DUBs 

have catalytic functions.  As highlighted in a recent review (103), unrestricted 

enzymatic activity of the DUBs would be hazardous for cells, and we are now 

beginning to appreciate the multi-layered mechanisms by which their activity can be 

controlled and directed.  These include internal regulatory domains within some 

DUBs, interaction with allosteric regulators, incorporation into macromolecular 

complexes, and post-translational modifications.  Relevant examples for stabilisation 

of p53 in response to genotoxic stress include phosphorylation-dependent nuclear 

localization of USP10 (26) and modulation of USP7 activity towards MDM2 (25). 

Intriguingly, allosteric activation of USP7 by GMPS that stabilizes alignment of the 

catalytic site can also direct USP7 activity towards p53 under genotoxic stress (104, 

105).  These findings begin to rationalise the physiological roles of a DUB that is 

capable of stabilising both p53 and the E3 ligase MDM2, which targets p53 for 

degradation.  

 

Another open question is why for certain processes, most notably in p53 regulation, 

there appears to be huge redundancy with multiple DUBs playing similar roles. One 

potential explanation is the ability of different DUBs to regulate p53 by different 

mechanisms and in different cellular compartments, as described above for USP7, 

USP10 and OTUB1.  This may help ensure fine control of p53 activation in response 

to genotoxic stress.  Critical roles for many DUBs have also been described in 

regulating the sharp and irreversible signalling decisions that are made at the G1 

restriction point and the SAC. In both cases, a picture is emerging where DUBs 

contribute to a regulatory network, and each key component of the cascade is 

controlled by a specific DUB. 

 

There is emerging interest in the role of the DUBome in centrosome biology, which 

less well studied than in the cell cycle..  As a distinct organelle, it is easier to 

visualise how temporal roles for DUBs may be regulated, with some DUBs such as 

USP33 (71), USP9X (73) and BAP1 (78) already known to be recruited to the 

centrosome in a cell cycle-dependent manner.  Where DUBs have been associated 

with the centrosome cycle, their mechanistic roles are often not yet well elucidated.  

For example, screens suggest that USP8 and USP31 may be linked to the 

centrosome clustering in Drosophila (87) and USP54 in human cells (88).  However, 

their centrosome-associated targets remain unknown, and no mechanism of action 

for these DUBs in regulating centrosome clustering has yet been suggested.  It will 



be interesting to see whether DUBs predicted from screens and in model organisms 

do play significant roles in centrosome clustering in human cancer cells.  Lastly, in 

addition to acting as MTOCs, centrosomes have recently also been established as 

signalling hubs (62). Many of the studies on DUBs at centrosomes we have 

discussed focus on their roles in duplicating and regulating the centrosome structure, 

and on their functions in nucleating microtubules. In future it is likely that new roles 

for DUBs will be discovered in centrosome-based signalling pathways. 
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Figure Legends 

 

Figure 1. DUBs associated with the cell cycle. 

The cell cycle is schematically represented, highlighting key checkpoints and the 

individual stages of mitosis.  DUBs with specific roles are indicated in the appropriate 

phases: solid colouring shows membership of the DUB families, and coloured edges 

illustrate the major cell cycle function.  SAC: spindle assembly checkpoint. 

 

Figure 2. DUBs associated with the centrosome cycle. 

The cell cycle is schematically represented, highlighting the key stages of 

centrosome replication and function.  DUBs with specific roles are indicated in the 

appropriate phases: solid colouring shows membership of the DUB families, and 

coloured edges illustrate the major function in the centrosome cycle. 
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