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ABSTRACT 

 

4D-PET reconstruction has the potential to significantly increase 

the signal-to-noise ratio in dynamic PET by fitting smooth 

temporal functions during the reconstruction. However, the optimal 

choice of temporal function remains an open question. A 4D-PET 

reconstruction algorithm using adaptive-knot cubic B-splines is 

proposed. Using realistic Monte-Carlo simulated data from a 

digital patient phantom representing an [18-F]-FMISO-PET scan 

of a non-small cell lung cancer patient, this method was compared 

to a spectral model based 4D-PET reconstruction and the 

conventional MLEM and MAP algorithms. Within the entire 

patient region the proposed algorithm produced the best bias-noise 

trade-off, while within the tumor region the spline- and spectral 

model-based reconstructions gave comparable results. 

 

Index Terms— B-splines, Dynamic PET, Expectation 

Maximization, NSCLC, Regularization 

 

1. INTRODUCTION 

 

Iterative 4D positron emission tomography (PET) reconstruction 

improves the signal to noise ratio in dynamic-PET image 

sequences by fitting temporally smooth functions to the time-

activity curve (TAC) of each image voxel during the 

reconstruction. In most cancer imaging studies, many different 

tissues are present in the field of view of the scanner, leading to a 

wide range of TAC shapes. Bias from poorly fitted regions can 

spatially propagate to well modeled regions during the 

reconstruction [1], meaning that highly flexible temporal functions 

are required. The optimal choice of temporal function for 4D-PET 

reconstruction in situations with a large range of tissues remains an 

open question in the field. 

Linear kinetic models represent TACs of given voxels as linear 

combinations of pre-defined basis functions,  

𝑥𝑗𝑚(𝜽𝒋) = ∑ 𝐵𝑘𝑚𝜃𝑗𝑘
𝑛𝑘
𝑘=1 ,         (1) 

where 𝑥𝑗𝑚 is the radioactivity concentration of voxel j in time 

frame m, 𝑛𝑘 is the total number of basis functions, 𝜃𝑗𝑘 is the 

weighting factor of basis function k in frame m, 𝐵𝑘𝑚, and 𝜽𝒋 is a 

vector containing all parameter values in voxel j. Since the basis 

functions are continuous in time, the value for a given time frame 

is calculated by averaging these functions across the time frame. 

Linear kinetic models allow a wide range of TAC shapes to be 

fitted, given an appropriate choice of basis functions, making them 

an appropriate choice for 4D-PET reconstruction.  

In situations with a wide range of tissues present in the image, 

the spectral model is commonly used [1, 2]. This is based on the 

general solution to the compartment model equations, which model 

each TAC as a tissue response function (a weighted sum of 

exponential decays) convolved with the arterial input function 

(AIF). In the spectral model, the basis functions are calculated by 

defining a range of exponential decay functions (by varying the 

decay constants) and convolving them with the measured AIF.  

Another linear model with the potential to fit a wide range of 

TACs are B-spline functions. These are defined on a knot vector  
𝝉 = {𝜏0, 𝜏1, … , 𝜏𝑁+𝑝}, where the knots are listed in ascending 

order, and are calculated using the Cox-de Boor recurrence 

relations [3]. Spline functions of order p (linear combinations of B-

splines) and their derivatives up to order p - 1 are continuous at the 

knots. A notable B-spline based 4D-PET reconstruction framework 

was proposed by Nichols et. al. [4], with knots placed along equal 

arc-lengths of the head curve (a temporal histogram of all list-

mode data). While B-spline fits do not directly yield any 

physiologically relevant information, images produced with spline-

based 4D-PET reconstruction are likely to contain less noise 

without a substantial increase in the bias. Fitting compartment 

models to tumor TACs obtained from images reconstructed using 

such methods may therefore yield improved kinetic parameter 

estimates, compared with conventional reconstruction algorithms.  

In this work a 4D-PET reconstruction algorithm using 

adaptive-knot cubic B-splines is proposed. This differs from the 

methodology developed in [4] by using the nested-EM framework 

of Wang and Qi [5], which accelerates the convergence rate of 4D-

PET reconstruction. Furthermore, the proposed method uses a 

theoretically-driven adaptive knot placement algorithm to optimize 

the knot vector for each voxel TAC, rather than using the same 

knot sequence for all voxels, as was done in [4]. This method is 

compared to both conventional image reconstruction algorithms 

and 4D-PET reconstruction with the spectral model. 

 

2. 4D-PET RECONSTRUCTION WITH LINEAR KINETIC 

MODELS 

 

The expected number of photon counts detected by detector pair i 

in frame m, 〈𝑦𝑖𝑚〉, is defined as  

〈𝑦𝑖𝑚(𝜽)〉 = ∑ ∑ 𝑃𝑖𝑗
𝑛𝑘
𝑘=1 𝐵𝑘𝑚𝜃𝑗𝑘 + 𝜀𝑖𝑚

𝑛𝑗

𝑗=1 ,                   (2) 

where 𝑛𝑗  is the total number of voxels, 𝜀𝑖𝑚 is the number of 

erroneously measured counts (random coincidences and scattered 

photons) and 𝑃𝑖𝑗 are the elements of an 𝑛𝑖 × 𝑛𝑗  matrix P, called the 

system matrix, where 𝑛𝑖 is the number of detector pairs. These 

components represent the probability of a photon pair originating 

from voxel j being detected by detector pair i.  

The counts yim can be accurately modelled as independent 

Poisson-distributed variables. The Poisson log-likelihood function 
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of the scanner data, 𝐿(𝒚|𝜽), shows the log of the probability that a 

given estimate of the parameters could have generated the 

measured count data: 

     𝐿(𝜽|𝒚) = ∑ ∑ 𝑦𝑖𝑚 ln(〈𝑦𝑖𝑚(𝜽)〉 )
𝑛𝑖
𝑖=1

𝑛𝑚
𝑚=1 − 〈𝑦𝑖𝑚(𝜽)〉,             (3) 

where 𝑛𝑚 is the number of time frames. The parameters can then 

be calculated by maximizing 𝐿(𝜽|𝒚). In this work, this was done 

using the iterative nested-EM reconstruction algorithm [5]. 

In this approach intermediate images �̂�𝑗𝑚
𝑛+1 (where n is the 

iteration number) are first obtained using the image update 

equation for the maximum-likelihood expectation maximization 

(MLEM) reconstruction algorithm, which is widely used in 

conventional 3D-PET reconstruction. The parameters are then 

fitted using 𝑛𝑙 iterations of 

  𝜃𝑗𝑘
𝑛,𝑙+1 =

𝜃𝑗𝑘
𝑛,𝑙

∑ 𝐵𝑚𝑘𝑚

∑ 𝐵𝑚𝑘𝑚

𝑥𝑗𝑚
𝑛+1

𝑥𝑗𝑚(𝜽𝒋
𝒏,𝒍)

,    l=1, ..., 𝑛𝑙,                (4) 

where 𝜃𝑗𝑘
𝑛+1 = 𝜃𝑗𝑘

𝑛,𝑛𝑙+1
, and  𝒙(𝜽𝒏+𝟏) is used as the image estimate 

for the next iteration. 

In order to incorporate spatial regularization into the 

reconstruction, a modified objective function, Φ(𝜽|𝒚), can also be 

used, 

Φ(𝜽|𝒚) = 𝐿(𝜽|𝒚) − 𝛽𝑈(𝒙(𝜽)),                   (5) 

where 𝛽 is a tunable parameter controlling the trade-off between 

resolution loss and noise suppression and  𝑈(𝒙(𝜽)) is a concave 

function that is designed to penalize rough images, 

𝑈(𝒙) =
1

4
∑ ∑ 𝑤𝑗𝑘𝜓(𝑥𝑗 − 𝑥𝑘)𝑘∈𝒩𝑗𝑗 ,             (6) 

where 𝒩𝑗  is the set of nearest neighbours of voxel j and  𝑤𝑗𝑘  is a 

weighting factor equal to the normalized inverse distance between 

voxels j and k. In this work the Lange function [6],  

𝜓(𝜉) = 𝛿 (
|𝜉|

𝛿
− ln (1 +

|𝜉|

𝛿
) ),         (7) 

was used, where 𝛿 is an additional smoothing parameter. This 

function allows a good level of noise suppression in fairly uniform 

regions, while also preserving edges better than the more widely 

used quadratic function, 𝜓(𝜉) = 𝜉2 [6]. 

Reconstruction algorithms designed to maximize (5) are 

generally referred to as penalized-likelihood or maximum a 

posteriori (MAP) algorithms. Spatial noise suppression can be 

incorporated into the nested-EM framework by performing the 

image update step with the 3D-MAP algorithm. Such an approach 

is referred to in this work as a nested-MAP algorithm. 

 

3. ADAPTIVE-KNOT PLACEMENT ALGORITHM 

 

Although spline functions with closely spaced knots are highly 

flexible, their use can lead to over-fitting of the data. We propose 

an adaptive-knot placement algorithm, based on the shape of the 

TAC to be fitted, which allows TACs to be accurately fitted with 

spline functions, using fewer basis functions than if the knots were 

uniformly spaced. 

For a spline of order p, defined on the interval [a, b], the first 

and last knots are usually repeated with multiplicity p, such that 

𝜏0 = … = 𝜏𝑝−1 = 𝑎 and 𝜏𝑁+1 = … = 𝜏𝑁+𝑝 = 𝑏, to allow for 

discontinuities at the beginning and end of the curve. What remains 

is to choose the internal knots. 

For a given function 𝑓(𝑡) and the set of all splines of order p 

with m internal knots, �̃�𝑝,𝑚, the distance operator is defined as  

 dist(𝑓, �̃�𝑝,𝑚): = min{‖𝑓 − 𝑠‖: 𝑠 𝜖 �̃�𝑝,𝑚},                     (8) 

where ‖𝑓 − 𝑠‖ = max𝑎≤𝑡≤𝑏 |𝑓(𝑡) − 𝑠(𝑡)|  is the maximum 

difference between spline s and f. Theorem XII.5 of [3] shows that 

for a p times differentiable function 𝑓(𝑡), 

 dist(𝑓, �̃�𝑝,𝑚) ≤ 𝛺𝑝𝑚−𝑝 (∫ |
𝑏

𝑎
𝑓(𝑝)(𝑡)|

1

𝑝𝑑𝑡)
𝑝

,       (9) 

where 𝛺𝑝 is a constant depending only on p and  𝑓(𝑝)(𝑡) is the pth 

order derivative of 𝑓. Choosing the m internal knots such that 

 ∫ |
𝜏𝑖+1

𝜏𝑖
𝑓(𝑝)(𝑡)|

1

𝑝𝑑𝑡 =
1

𝑚
∫ |

𝑏

𝑎
𝑓(𝑝)(𝑡)|

1

𝑝𝑑𝑡,                     (10) 

therefore gives an approximation error of order 𝑚−𝑝, for noise free 

data. For noisy data adding more than a certain number of knots 

results in over-fitting, and therefore a worse description of the data.  

Calculating the knots for dynamic-PET data using (10) requires 

function derivatives to be estimated from discrete, noisy data 

points. We have used a Savitzky-Golay filter [7] (with weighed 

data points) to suppress noise amplification when calculating the 

derivatives.  

In this methodology a subset of k (an odd number) adjacent 

data points {ti, xi}, with ti and xi  being the independent variable 

and noisy data points respectively, are fitted with a low degree 

polynomial of degree q, using weighted least squares. In dynamic-

PET the weighting factor for time frame m is commonly defined as  

  𝑤𝑚 =
1

𝜎𝑚
2  =

∆𝑇𝑚𝑒−𝜆𝑡𝑚

𝑥𝑚
,                                 (11) 

where 𝜎𝑚
2  is the variance, ∆𝑇𝑚 is the duration of frame m, with 

mid-time tm,  𝜆 is the decay constant of the radioisotope.  

A change of variable, 𝑧 = 𝑡 − 𝑡𝑐 (where 𝑡𝑐 is the ti value for 

the central data point in the subset) is made, prior to the fitting of 

the polynomial 𝑋(𝑧), 

𝑋(𝑧) = 𝑎1 + 𝑎2𝑧 + ⋯ + 𝑎𝑞𝑧𝑞−1.      (12) 

For cubic (order 4) splines, the 4th order derivative is required in 

order to use (10) to place the knots, meaning 𝑋(𝑧) must be quartic 

or higher (q ≥ 5). The value of the Nth derivative at the central data-

point (i.e 𝑧 = 0) of this subset is given by 𝑎𝑁+1. This process is 

used to calculate the derivatives at each of the data points.  

This method does not allow the derivative of the first and last 
𝑘−1

2
 points to be calculated as they will never fall into the centre of 

a subset of k adjacent points. This can be accounted for by adding, 

in reverse order, copies of the first  
𝑘−1

2
 points at the beginning and 

the last 
𝑘−1

2
 points at the end, as recommended in [7]. 

The knot placement algorithm (for a fixed number of knots) 

used in this work is summarized by the four steps below.   

1. Place four repeated knots at the beginning and end of each 

TAC.  

2. Identify the point where the TAC initially begins to rise and 

place 4 repeated knots there (to handle the discontinuity). 

3. Calculate the 4th derivative of all points after the initial rise 

using the Savitzky-Golay method (k=11, q=5). 

4. Place the remaining knots according to (10). 

In the cubic B-spline-based 4D-PET reconstruction algorithm 

proposed in [4] the knots are placed along equal arc lengths of the 

TAC, which is approximately equivalent to using (10) with p = 2. 

According to (9) this is suboptimal for cubic B-splines.   

 

4. METHODS 

 

4.1 Digital Phantom and Data Generation 

 

The 4D-XCAT2 digital phantom [8] was used to simulate a non-

small cell lung cancer (NSCLC) patient, injected with the [18-F]-

FMISO hypoxia tracer, using time activity curves (TACs) obtained 

from a clinical dynamic FMISO-PET image of a NSCLC patient, 

with voxel dimensions 3.1×3.1×2.0 mm. Spherical regions of 

interest (ROIs) with a diameter of 3 cm were drawn in healthy lung 



and liver tissue, and the spine. A further ROI was defined in the 

central part of the descending aorta for five consecutive PET axial 

slices, and the TAC from this region was used to represent the AIF. 

Additional ROIs were drawn in three separate regions believed to 

contain normoxic, hypoxic and necrotic tumor tissue. 

The noisy TACs obtained from the ‘healthy tissue’ ROIs were 

fitted with adaptive-knot cubic B-splines, the AIF was fitted using 

the three exponential model of Feng et. al. [9] and the tumor TACs 

were fitted with a 3-compartment 5-parameter (3C5K) 

compartment model. These fitted curves were then binned into the 

following time-frame sequence: [1x30 s, 6x5 s, 6x20 s, 7x60 s, 

10x120 s, 3x300 s], and two additional 600 s frames 2 and 4 hours 

post-injection. These were taken to be the ‘ground truth’ TACs, 

and are shown in figure 1, along with images of the final time 

frame of the phantom.  

The PET-SORTEO Monte-Carlo simulator [10] was used to 

generate PET sinograms representative of those obtained using an 

mMR PET-MR scanner (Siemens Healthcare) [11] for each time 

frame of the image sequence, including effects of scattered 

photons, random co-incidences and attenuation. 50 noise 

realizations of dynamic-PET sinogram data were simulated from 

the phantom. Since the aim of the current study is to evaluate the 

effectiveness of noise suppression using the proposed 4D-PET 

framework, as a simplifying assumption no patient motion was 

simulated. 

 
 

4.2 Reconstruction Algorithms  

 

An attenuation correction sinogram was calculated by forward-

projecting an attenuation map of the patient phantom. A 

normalization correction sinogram was generated by performing a 

20 minute simulated scan of a uniform cylindrical phantom with 

PET-SORTEO. The attenuation and normalization corrections 

were modelled as part of the system matrix. Random co-incidences 

were estimated using a delayed co-incidence window, and 

scattered photons were estimated with the single scatter simulation 

algorithm [12], using the attenuation map.  

Images were reconstructed using both MLEM and MAP, in 

order to allow the 4D-PET reconstructions to be compared to more 

conventional reconstruction algorithms. 4D-PET reconstructions 

were performed using the nested-MAP algorithm with both 

adaptive-knot splines and the spectral model.  

Voxel-specific knots were calculated on images reconstructed 

with the MAP algorithm, using the adaptive knot algorithm 

described in section 3. 11 free knots were used (not including the 4 

repeated knots placed at the beginning and end of each TAC). This 

number was determined by fitting adaptive knot splines to 

simulated tumor TACs and input functions, derived from fits to 

real patient TACs. 11 knots minimized the Akaike information 

criterion (AIC) for the input functions (the fastest varying 

functions) while not leading to significant increases in the RMS 

error when fitting tumor TACs.  

Another cubic B-spline based nested-MAP reconstruction was 

performed, using one knot sequence for all voxels, obtained by 

placing 11 knots on the head-curve using the algorithm described 

in section 3. Since the current version of PET-SORTEO is unable 

to produce list-mode data, an approximation to the head curve was 

calculated by summing the events in each sinogram time frame.  

For the spectral model-based reconstruction, 100 basis 

functions were used. The exponential decay constants were 

logarithmically spaced between values of the half-life decay and 

0.01 s-1. The input function was estimated by drawing a large ROI 

in the left-ventricle region of the MAP images and fitting the TAC 

from this region with the three exponential Feng function [9].  

A further idealized spectral-model based nested-MAP 

reconstruction was performed by firstly fitting the spectral basis 

functions to the ground truth image, and removing any non-

contributing basis functions from a given voxel. This represents the 

‘best possible’ optimization method one could apply to the spectral 

model in order to avoid over-fitting the data by using fewer basis 

functions. While this method could not be used practically, it 

allows the proposed spline-based reconstruction algorithm to be 

compared to both an un-optimized and a ‘perfectly’ optimized 

spectral model. 

Each algorithm was run for 30 iterations, and the nested-MAP 

algorithms each used 30 sub-iterations, to ensure convergence.  

 

4.3 Image Quality Metrics 

 

At every iteration of each reconstruction method, images of the 

bias, Δ, and the weighted standard deviation, 𝜎𝑤, were calculated:  

    ∆i=
1

𝑇𝑠𝑐𝑎𝑛
∫ (

𝑡

0
𝑥�̅� − 𝑥𝑖

𝑡𝑟𝑢𝑒)𝑑𝑡 ≈
1

𝑇𝑠𝑐𝑎𝑛

∑ ∆𝑇𝑚(�̅�𝑖𝑚 − 𝑥𝑖𝑚
𝑡𝑟𝑢𝑒)𝑚 , (13) 

𝜎𝑤𝑖
𝑚 =  (

𝜎𝑚,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 ∆𝑇𝑚

𝑥𝑖𝑚
𝑡𝑟𝑢𝑒 )

1

2
,                            (14) 

where 𝑥�̅� is the mean value of all 50 repeats in voxel i, 𝑥𝑖
𝑡𝑟𝑢𝑒 is the 

true value of voxel i, ∆𝑇𝑚 is the time frame duration of frame m,  

𝑇𝑠𝑐𝑎𝑛 is the scan duration and 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2  is the measured variance 

of all 50 repeats. 𝜎𝑤𝑖
𝑚  was averaged over all time frames to get 𝜎𝑤𝑖.  

 

5. RESULTS AND DISCUSSION 

 

Plots of bias versus 𝜎𝑤, averaged over both the whole-patient and 

the tumor region, are shown in figure 2. TACs for a single noise 

realization of both the entire hypoxic tumor ROI and a single voxel 

at the center of the tumor are plotted for the best performing 

conventional reconstruction algorithm (MAP) and the nested-MAP 

algorithms with splines (using voxel-specific knots) and optimized 

spectra in figure 3. 

The results in figure 2 show that all the nested-MAP 

reconstructions are less noisy than the conventional methods, 

though the un-optimized spectra are also considerably more biased. 

The MAP algorithm, which includes spatial regularization only, 

significantly outperforms the MLEM algorithm, which has no 

regularization. The nested-MAP reconstruction (using splines with 

voxel-specific knots) gives the best bias-noise trade-off in the 

(a) (b) 

Figure 1. (a,b) Fitted TACs used as ground-truth for the 

phantom generation, (c) axial and (d) coronal slices of the final 

phantom time frame.  
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whole patient region, while this and the optimized spectra give 

similar results in the tumor region. 

The results in figure 3 show both the spline- and optimized 

spectral model nested-MAP reconstructions produce similar TACs 

at the ROI level, and both significantly outperform the MAP 

algorithm, particularly in the earlier time frames. At the early time 

points, the optimized spectral model appears able to capture the 

shape of the tumor TAC better than the spline functions at the 

noisier single voxel level. It is important to note that the spectral 

basis functions were artificially optimized to represent the 'best 

possible' optimization, and that a more realistic optimization 

method may provide worse fits in practice.  

In our framework, 4D-PET reconstruction is used purely to 

suppress noise, with the kinetics analysis done post-reconstruction. 

An alternative 4D-PET framework designed to work in regions 

with many tissues present, proposed by Kotasidis et. al. [1], 

adaptively fits a 'primary' kinetic model of interest followed by a 

more flexible 'secondary' model to fit the residuals in regions 

where the primary model performs poorly. This limits the effects 

of bias propagation during the reconstruction while allowing 

kinetic parameters of interest to be directly obtained from the 

reconstruction. However, the accuracy of this method is strongly 

influenced by the choice of secondary model. The results in figure 

2 (a) suggest that adaptive-knot splines may be a superior choice of 

secondary model to the spectral model (used in [1]), due to the 

ability of the splines to fit all the TACs in the patient region with a 

lower overall bias without increasing the noise level. 

6. CONCLUSION AND FUTURE WORK 

 

Of all the methods tested, 4D-PET reconstruction with adaptive-

knot cubic B-splines (using voxel-specific knots) was shown to 

produce the best bias-noise trade-off in the entire patient region, 

and to provide comparable results to the optimized spectral model 

in the tumor region. The optimized spectral model captured the 

TAC shape best in the single voxel region, though this is possibly 

due in part to the artificial optimization method used.  

The accuracy of compartment model fits to TAC data from the 

methods used here, as well as the applicability of these methods to 

clinical datasets, will be investigated in future work.  
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Figure 2. Plots of bias vs 𝜎𝑤 at every iteration, averaged over (a) 

the entire patient region and (b) the tumor region. 𝜎𝑤 is expressed 

as a fraction of the best performing algorithm. 

(a) 

(b) 

Figure 3. Comparison of hypoxic tumor TACs (single noise 

realization) from (a) an ROI and (b) a single voxel. 

(a) (b) 


