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Abstract In this work, we consider a solution of

automata (or nodes) that move passively in a well-

mixed solution without being capable of controlling

their movement. Nodes can cooperate by interacting

in pairs and every such interaction may result in an

update of their local states. Additionally, the nodes

may also choose to connect to each other in order to

start forming some required structure. Such nodes can

be thought of as small programmable pieces of matter,

like tiny nanorobots or programmable molecules. The

model that we introduce here is a more applied ver-

sion of Network Constructors, imposing physical (or ge-

ometric) constraints on the connections that the nodes

are allowed to form. Each node can connect to other

nodes only via a very limited number of local ports.

Connections are always made at unit distance and
are perpendicular to connections of neighboring ports,

which makes the model capable of forming 2D or 3D

shapes. We provide direct constructors for some basic

shape construction problems, like spanning line, span-

ning square, and self-replication. We then develop new

techniques for determining the computational and con-

structive capabilities of our model. One of the main nov-

elties of our approach is that of exploiting the assump-

tions that the system is well-mixed and has a unique
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leader, in order to give terminating protocols that are

correct with high probability. This allows us to develop

terminating subroutines that can be sequentially com-

posed to form larger modular protocols. One of our main

results is a terminating protocol counting the size n of

the system with high probability. We then use this pro-

tocol as a subroutine in order to develop our univer-

sal constructors, establishing that it is possible for the

nodes to become self-organized with high probability into

arbitrarily complex shapes while still detecting termina-

tion of the construction.

Keywords distributed network construction · pro-

grammable matter · shape formation · well-mixed

solution · homogeneous population · distributed proto-

col · interacting automata · fairness · random schedule ·
structure formation · self-organization · self-replication

1 Introduction

Recent research in distributed computing theory and

practice is taking its first timid steps on the pioneering

endeavor of investigating the possible relationships of

distributed computing systems to physical and biologi-

cal systems. The first main motivation for this is the

fact that a wide range of physical and biological sys-

tems are governed by underlying laws that are essen-

tially algorithmic. The second is that the higher-level

physical or behavioral properties of such systems are

usually the outcome of the coexistence, which may in-

clude both cooperation and competition, and constant

interaction of very large numbers of relatively simple

distributed entities respecting such laws. This effort, to

the extent that its perspective allows, is expected to

promote our understanding of the algorithmic aspects
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of our (distributed) natural world and to develop inno-

vative artificial systems inspired by them.

Ulam’s and von Neuman’s Cellular Automata (cf.,

e.g., [Sch11]), essentially a distributed grid network of

automata, have been used as models for self-replication,

for modeling several physical systems (e.g., neural

activity, bacterial growth, pattern formation in na-

ture), and for understanding emergence, complexity,

and self-organization issues. In the young area of DNA

self-assembly (starting with the works of Adleman

[Adl94] and Winfree [Win98]), it has been already

demonstrated that it is possible to (algorithmically)

fold long, single-stranded DNA molecules into arbi-

trary nanoscale 2-dimensional shapes and patterns. Re-

cently, an interesting theoretical model was proposed,

the Nubot model, for studying the complexity of self-

assembled structures with active molecular components

[WCG+13]. This model is “inspired by biology’s fantas-

tic ability to assemble biomolecules that form systems

with complicated structure and dynamics, from molec-

ular motors that walk on rigid tracks and proteins that

dynamically alter the structure of the cell during mito-

sis, to embryonic development where large-scale com-

plicated organisms efficiently grow from a single cell”.

Population Protocols of Angluin et al. [AAD+06] were

originally motivated by highly dynamic networks of

simple sensor nodes that cannot control their mobil-

ity. It was soon realized that their probabilistic ver-

sion is formally equivalent to a restricted version of

stochastic chemical reaction networks (CRNs), which

model chemistry in a well-mixed solution (see, e.g.,

[SCWB08]). Moreover, the Network Constructors ex-

tension of population protocols [MS14], showed that a

population of finite-automata that interact randomly

like molecules in a well-mixed solution and that can

establish bonds with each other according to the rules

of a common small protocol, can construct arbitrar-

ily complex stable networks [MS14]. Also recently a

system was reported that demonstrates programmable

self-assembly of complex 2-dimensional shapes with a

thousand-robot swarm, called the Kilobot [RCN14].

This was enabled by creating small, cheap, and sim-

ple “autonomous robots designed to operate in large

groups and to cooperate through local interactions and

by developing a collective algorithm for shape forma-

tion that is highly robust to the variability and error

characteristic of large-scale decentralized systems”.

1.1 Our Approach

We imagine here a “solution” of automata (also called

nodes or processes throughout the paper), a setting

similar to that of Population Protocols and Network

Constructors. Due to its highly restricted computa-

tional nature and its very local perspective, each in-

dividual automaton can practically achieve nothing on

its own. However, when many of them cooperate, each

contributing its meager computational capabilities, im-

pressive global outcomes become feasible. This is, for

example, the case in the Kilobot system, where each in-

dividual robot is a remarkably simple artifact that can

perform only primitive locomotion via a simple vibra-

tion mechanism. Still, when a thousand of them work

together, their global dynamics and outcome resemble

the complex functions of living organisms. From our

perspective, cooperation involves the capability of the

nodes to communicate by interacting in pairs and to

bind to each other in an algorithmically controlled way.

In particular, during an interaction, the nodes can up-

date their local states according to a small common

program that is stored in their memories and may also

choose to connect to each other in order to start forming

some required structure. Later on, if needed, they may

choose to drop their connection, e.g., for rearrangement

purposes. We may think of such nodes as small pro-

grammable pieces of matter. For example, they could

be tiny nanorobots or programmable molecules (e.g.,

DNA strands). Naturally, such elementary entities are

not (yet) expected to be equipped with some internal

mobility mechanism. Still, it is reasonable to expect

that they could be part of some dynamic environment,

like a boiling liquid or the human circulatory system,

providing an external (to the nodes) interaction mech-

anism, which motivates the idea of regarding such sys-

tems as a solution of programmable entities. We model

such an environment by imagining an adversary sched-

uler operating in discrete steps and selecting in every

step a pair of nodes to interact with each other.

Our main focus in this work, building upon the find-

ings of [MS14], is to further investigate the coopera-

tive structure formation capabilities of such systems.

Our first main goal is to introduce a more realistic and

more applicable version of network constructors by ad-

justing some of the abstract parameters of the model

of [MS14]. In particular, we introduce some physical

(or geometric) constraints on the connections that the

processes are allowed to form. In the network construc-

tors model of [MS14], there were no such imposed re-

strictions, in the sense that, at any given step, any two

processes were candidates for an interaction, indepen-

dently of their relative positioning in the existing struc-

ture/network. For example, even two nodes hidden in

the middle of distinct dense components could interact

and, additionally, there was no constraint on the num-

ber of active connections that a node could form (could

be up to the order of the system). This was very con-
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venient for studying the capability of such systems to

self-organize into abstract networks and it helped show

that arbitrarily complex networks are in principle con-

structible. On the other hand, this is not expected to be

the actual mechanism of at least the first potential im-

plementations. First implementations will most prob-

ably be characterized by physical and geometric con-

straints. To capture this in our model, we assume that

each device can connect to other devices only via a very

limited (finite and independent of the size of the sys-

tem) number of ports, usually four or six, which implies

that, at any given time, a device has only a bounded

number of neighbors. Moreover, we further restrict the

connections to be always made at unit distance and to

be perpendicular to connections of neighboring ports.

Though such a model can no longer form abstract net-

works, it may still be capable of forming very practical

2-dimensional or 3-dimensional shapes. This is also in

agreement with natural systems, where the complexity

and physical properties of a system are rarely the result

of an unrestricted interconnection between entities.

It can be immediately observed that the universal

constructors of [MS14] do not apply in this case. In

particular, those constructors cannot be adopted in or-

der to characterize the constructive power of the model

considered here. The reason is that they work by ar-

ranging the nodes in a long line and then exploiting

the fact that connections are elastic, allowing any pair

of nodes of the line to interact independently of the

distance between them. In contrast, no elasticity is al-

lowed in the more local model considered here, where

a long line can still be formed but only adjacent nodes

of the line are allowed to interact with each other. As a

result, we have to develop new techniques for determin-

ing the computational and constructive capabilities of

our model. The other main novelty of our approach con-

cerns our attempt to overcome the inability of such sys-

tems to detect termination due to their limited global

knowledge and their limited computational resources.

For example, it can be easily shown that determinis-

tic termination of population protocols can fail even in

determining whether there is a single a in an input as-

signment, mainly because the nodes do not know and

cannot store in their memories neither the size of the

network nor some upper bound on the time it takes

to meet (or to influence or to be influenced by) every

other node. To overcome the storage issue, we exploit

the ability of nodes to self-assemble into larger struc-

tures that can then be used as distributed memories of

any desired length. Moreover, we exploit the common

(and natural in several cases) assumption that the sys-

tem is well-mixed, meaning that, at any given time, all

permissible pairs of node-ports have an equal probabil-

ity to interact, in order to give terminating protocols

that are correct with high probability. This is crucial not

only because it allows to improve eventual stabilization

to eventual termination but, most importantly, because

it allows to develop terminating subroutines that can

be sequentially composed to form larger modular pro-

tocols. Such protocols are more efficient, more natu-

ral, and more amenable to clear proofs of correctness,

compared to existing protocols that are based on com-

posing all subroutines in parallel and “sequentializing”

them eventually by perpetual reinitializations. To the

best of our knowledge, [MS15] is the only work that

has considered this issue but with totally different and

more deterministic assumptions. Several other papers

[AAD+06,AAE08,MS14] have already exploited a uni-

form random interaction model, but in all cases it has

been used to analyze the expected time to convergence

of stabilizing protocols and not for maximizing the cor-

rectness probability of terminating protocols, as we do

here.

In Section 2, we discuss further related literature.

Section 3 formally defines the model under considera-

tion and brings together all definitions and basic facts

that are used throughout the paper. In Section 4, we

provide direct (stabilizing) constructors for some basic

shape construction problems. Section 5 introduces our

technique for counting the size n of the system with

high probability. The result of that section (i.e., The-

orem 1) is of particular importance as it underlies all

sequential composition arguments that follow in the pa-

per. In particular, the protocol of Section 5 is then used

as a subroutine in our universal constructors, establish-

ing that it is possible to construct with high probability

arbitrarily complex shapes (and patterns) by terminat-

ing protocols. These universality results are discussed

in Section 6. Finally, in Section 7 we conclude and give

further research directions that are opened by our work.

2 Further Related Work

Population Protocols. Our model for shape con-

struction is strongly inspired by the Population Pro-

tocol model [AAD+06] and the Mediated Population

Protocol model [MCS11a]. In the former, connections

do not have states. States on the connections were

first introduced in the latter. The main difference to

our model is that in those models the focus was on the

computation of functions of some input values and not

on network construction. Another important difference

is that we allow the edges to choose between only two

possible states which was not the case in [MCS11a].

Interestingly, when operating under a uniform random
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scheduler, population protocols are formally equiv-

alent to a restricted version of stochastic chemical

reaction networks (CRNs) which model chemistry in

a well-mixed solution (see, e.g., [SCWB08]). “CRNs

are widely used to describe information processing

occurring in natural cellular regulatory networks,

and with upcoming advances in synthetic biology,

CRNs are a promising programming language for the

design of artificial molecular control circuitry” [CDS14,

Dot14]. However, CRNs and population protocols can

only capture the dynamics of molecular counts and

not of structure formation. Our model then may also

be viewed as an extension of population protocols and

CRNs aiming to capture the stable structures that may

occur in a well-mixed solution. From this perspective,

our goal is to determine what stable structures can

result in such systems (natural or artificial), how fast,

and under what conditions (e.g., by what underlying

codes/reaction-rules). Most computability issues in

the area of population protocols have now been re-

solved. Finite-state processes on a complete interaction

network, i.e., one in which every pair of processes

may interact, (and several variations) compute the

semilinear predicates [AAER07]. Semilinearity persists

up to o(log log n) local space but not more than this

[CMN+11]. If, additionally, the connections between

processes can hold a state from a finite domain (note

that this is a stronger requirement than the on/off that

the present work assumes) then the computational

power dramatically increases to the commutative

subclass of NSPACE(n2) [MCS11a]. Other important

works include [GR09] which equipped the nodes of

population protocols with unique identifiers (abbrevi-

ated “uids” or “ids” throughout) and [BBCK10] which

introduced a (weak) notion of speed of the nodes that

allowed the design of fast converging protocols with

only weak requirements. For introductory texts see

[AR09,MCS11b].

Algorithmic Self-Assembly. There are already sev-

eral models trying to capture the self-assembly capa-

bility of natural processes with the purpose of engi-

neering systems and developing algorithms inspired by

such processes. The research area of “algorithmic self-

assembly” belongs to the field of “molecular comput-

ing”. The latter was initiated by Adleman [Adl94], who

designed interacting DNA molecules to solve an in-

stance of the Hamiltonian path problem. The model

that has guided the study in algorithmic self-assembly

is the Abstract Tile Assembly Model (aTAM) [Win98,

RW00] and variations.

Recently, the Nubot model was proposed

[WCG+13], which was another important influ-

ence for our work. That model aims at “motivating

engineering of molecular structures that have com-

plicated active dynamics of the kind seen in living

biomolecular systems”. It tries to “capture the in-

terplay between molecular structure and dynamics”.

“Simple molecular components form assemblies that

can grow” (exponentially fast, by successive doublings)

“and shrink, and individual components undergo state

changes and move relative to each other”. The main

result of [WCG+13] was that any computable shape of

size ≤ n× n can be built in time polylogarithmic in n,

plus roughly the time needed to simulate a TM that

computes whether or not a given pixel is in the final

shape. One of the main differences between Nubot and

our model is that in the former the nodes are equipped

with an active actuation mechanism (see also [CXW15]

for another study of active self-assembly). This means

that nodes (representing monomers there) are capable

of firing transition rules that apart from changing

their state can also change their relative position to

neighboring nodes. This core characteristic brings the

Nubot model closer to reconfigurable robotics (see,

e.g., [ABD+13]) and active programmable matter

(see, e.g., [DDG+14,MSS17]) models. In contrast,

reconfiguration in our model is passive, meaning that

all mobility is controlled by the environment and

the nodes can only “decide” whether to connect or

disconnect whenever they are given the opportunity to

interact.

Another type of self-assembly model that is close

to the model studied in this paper, is the model of

signal passing tiles [PPS+14,HPR15]. Their main

similarities are that signal-passing tiles are also passive

and they can control connection and disconnection

(via glues) as in our model. Still there are some

important differences that set our model apart from

the signal-passing tiles model. The most crucial one, is

that in signal-passing tiles (and in the vast majority of

algorithmic self-assembly models) there is an unlimited

supply of tiles and any global parameter of the target

configuration, such as its size n, must be somehow

explicitly encoded in advance (as input), e.g., by

assigning to each tile a number of glues that depends

on n or, as in [CXW15], by starting from an initial line

of length log n. In contrast, in our model n is always

the number of nodes in the system, their number

remaining unmodified throughout the execution, and,

additionally, the nodes do not know n in advance and

have to coordinate in order to compute it and become

capable of constructing a sufficiently large shape (i.e.,

one that depends on the size of the system). Other

important differences are the existence of various

types of glues in signal-passing tile assembly and also
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temperature and strength parameters that determine

stability of a configuration, whereas in our model

stability only depends on the local states of nodes and

their position in the configuration. See [Dot12] for an

introductory text to algorithmic self-assembly.

Distributed Network Construction. To the best

of our knowledge, classical distributed computing

has not considered the problem of constructing an

actual communication network from scratch. From the

seminal work of Angluin [Ang80] that initiated the

theoretical study of distributed computing systems up

to now, the focus has been more on assuming a given

communication topology and constructing a virtual

network over it, e.g., a spanning tree for the purpose

of fast dissemination of information. Moreover, these

models assume most of the time unique identities,

unbounded memories, and message-passing communi-

cation. Additionally, a process always communicates

with its neighboring processes (see [Lyn96,AW04] for

all the details). An exception is the area of geomet-

ric pattern formation by mobile robots (cf. [SY99,

DFSY15] and references therein). A great difference,

though, to our model is that in mobile robotics the

computational entities have complete control over

their mobility and thus over their future interactions.

That is, the goal of a protocol is to result in a de-

sired interaction pattern while in our model the goal

of a protocol is to construct a structure while oper-

ating under a totally unpredictable interaction pattern.

Programmable Matter. Programmable matter refers

to any type of matter that can algorithmically change
its physical properties (see, e.g., [GCM05,MS17]).

There is a recent growing interest in the theory and

algorithms for programmable matter systems. The net-

work constructors model [MS14] and its geometric vari-

ant studied in this paper, may be viewed as models

for programmable matter operating in a dynamic envi-

ronment. The Amoebot model, a programmable mat-

ter model inspired by the behavior of amoeba, was

proposed in [DGRS13,DDG+14] (see also [DGR+16,

DLFS+17] for some more recent studies). Another very

recent study considered spherical programmable matter

modules that can rotate or slide relative to neighbor-

ing modules [MSS17], trying to capture transformation

mechanisms that are feasible by current technology. As

already mentioned above, the core characteristic that

distinguishes the present model is the fact that all dy-

namicity is passive and the only actuation controlled

by the program is the activation/deactivation of con-

nections whenever some adversarially controlled condi-

tions are met.

3 The Model

The system consists of a population V of n distributed

processes (finite-state machines), called nodes when

clear from context. Every node has a bounded num-

ber of ports which it uses to interact with other nodes.

In the 2-dimensional (2D) case, there are four ports

py, px, p−y, and p−x, which for notational convenience

are usually denoted u, r, d, and l, respectively (for up,

right, down, and left, respectively). Similarly, in the 3-

dimensional (3D) case there are 6 ports py, pz, px, p−y,

p−z, and p−x (see Figure 1). Throughout this work, we

denote by j̄ the port “opposite” to port j, that is, if

j ≡ pi then j̄ ≡ p−i. Neighboring ports are perpendic-

ular to each other, forming local axes. For example, in

the 2-dimensional case, u ⊥ r, r ⊥ d, d ⊥ l, and l ⊥ u.

An important remark is that the above coordinates are

only for local purposes and do not necessarily represent

the actual orientation of a node in the system. A node

may be arbitrarily rotated so that, for example, its x

local coordinate is aligned with the y global coordinate

of the system or it is not aligned with any global co-

ordinate. Nodes may interact in pairs, whenever a port

of one node w is at unit distance and in straight line

(w.r.t. to the local axes) from the port of another node

v. For example, it could be the case that, at some point

during execution, the axis of the u port of w becomes

aligned with the axis of the l port of another node v and

the distance between them is one unit. Then w and v in-

teract and, apart from updating their local states, they

can also activate the connection between their corre-

sponding ports. In a future pairwise interaction, they

can again deactivate the connection if required.

Definition 1 A 2D (or 3D) protocol is defined by a

4-tuple (Q, q0, Qout, δ), where Q is a finite set of node-

states, q0 ∈ Q is the initial node-state, Qout ⊆ Q is

the set of output node-states, and δ : (Q × P ) × (Q ×
P )×{0, 1} → Q×Q×{0, 1} is the transition function,

where P = {u, r, d, l} (P = {py, pz, px, p−y, p−z, p−x},
respectively, for the 3D case) is the set of ports and

{0, 1} is the set of edge-states. When required, also a

special initial leader-state L0 ∈ Q may be defined.

If δ((a, p1), (b, p2), c) = (a′, b′, c′), we call

(a, p1), (b, p2), c → (a′, b′, c′) a transition (or rule).

A transition (a, p1), (b, p2), c → (a′, b′, c′) is called

effective if a 6= a′ or b 6= b′ or c 6= c′ and ineffective

otherwise. When we present the transition function of

a protocol we only present the effective transitions.

Let E = {{(v1, p1), (v2, p2)} : v1 6= v2 ∈
V and p1, p2 ∈ P} be the set of all unordered pairs

of node-ports (cf. [MS14] for more details on unordered
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Fig. 1 The top figure depicts the 2D version of the model.
Each node has four ports and consecutive ports are perpen-
dicular to each other. Two nodes are interacting, the left one
via its px port and the right one via its p−x port. The in-
teraction can occur because the distance between the nodes
is unit and the corresponding ports are totally aligned (in a
straight line). The bottom figure depicts the 3D version of
the model. The only difference is an extra z dimension.

interactions). 1 A configuration C is a pair (CV , CE),

where CV : V → Q specifies the state of each node

and CE : E → {0, 1} specifies the state of every possi-

ble pair of node-ports (i.e., of every edge). In particular,

an edge in state 0 is called inactive and an edge in state

1 is called active. The initial configuration is always the

one in which all nodes are in state q0 (apart possibly

from a unique leader in state L0) and all edges are in-

active. Execution of the protocol proceeds in discrete

steps. In every step, a pair of node-ports (v1, p1)(v2, p2)

is selected by an adversary scheduler and these nodes

interact via the corresponding ports and update their

states and the state of the edge joining them according

to the transition function δ.

Every configuration C defines a set of shapes

G[A(C)], where A(C) = C−1
E [1]; i.e., the network in-

duced by the active edges of C. Observe that not all

possible A(C) are valid given our geometric restrictions,

that connections are made at unit distance and are

perpendicular whenever they correspond to consecutive

ports of a node. For example, if (v1, r)(v2, l) ∈ A(C)

then (v1, l)(v2, r) /∈ A(C). In general, A(C) is valid

if any connected component defined by it (when ar-

ranged according to the geometric constraints) is a sub-

network of the 2D grid network with unit distances. A

valid A(Ct−1) also restricts the possible selections of the

scheduler at step t ≥ 1. In particular, (v1, p1)(v2, p2) ∈
E can be selected for interaction (or is permitted) at

1 To simplify notation, an unordered pair {a, b} will typi-
cally be denoted by ab.

step t iff A(Ct−1) ∪ {(v1, p1)(v2, p2)} is valid. Observe

that any edge that is active before step t is trivially

permitted at step t. From now on, we call a 2D (3D)

shape any connected subnetwork of the 2D (3D) grid

network with unit distances.

Throughout the paper we restrict attention to con-

figurations C in which A(C) is valid. We write C → C ′

if C ′ is reachable in one step from C (meaning via a

single interaction that is permitted on C). We say that

C ′ is reachable from C and write C  C ′, if there is

a sequence of configurations C = C0, C1, . . . , Ct = C ′,
such that Ci → Ci+1 for all i, 0 ≤ i < t. An exe-

cution is a finite or infinite sequence of configurations

C0, C1, C2, . . ., where C0 is the initial configuration and

Ci → Ci+1, for all i ≥ 0. We only consider fair execu-

tions, so we require that for every pair of configurations

C and C ′ such that C → C ′, if C occurs infinitely of-

ten in the execution then so does C ′. In most cases,

we assume that interactions are chosen by a uniform

random scheduler which in every step selects indepen-

dently and uniformly at random one of the permitted

interactions. The uniform random scheduler is fair with

probability 1. In this work, with high probability (ab-

breviated “w.h.p.” throughout) means with probability

at least 1− 1/nc for some constant c ≥ 1.

We define the output of a configuration C as the

set of shapes Gout(C) = (Vs, Es) where Vs = {u ∈ V :

CV (u) ∈ Qout} and Es = A(C)∩{(v1, p1)(v2, p2) : v1 6=
v2 ∈ Vs and p1, p2 ∈ P}. In words, the output shapes of

a configuration consist of those nodes that are in output

states and those edges between them that are active.

Throughout this work, we are interested in obtaining

a single shape as the final output of the protocol (see,

for an example, the black nodes and the connections

between them in Figure 7(d) on page 21). As already

mentioned, our main focus will be on terminating pro-

tocols. In this case, we assume a set Qhalt such that

Qout ⊆ Qhalt ⊆ Q and, for all qhalt ∈ Qhalt, every rule

containing qhalt is ineffective. In contrast, in stabilizing

protocols there is no Qhalt and states in Qout may have

effective interactions which we guarantee (by design)

to cease eventually resulting in the stabilization of the

final shape.

Definition 2 We say that an execution of a protocol

on n processes constructs (stably constructs) a shape G,

if it terminates (stabilizes, resp.) with output G.

Every 2D shape G has a unique minimum 2D rect-

angle RG enclosing it. RG is a shape with its nodes

labeled from {0, 1}. The nodes of G are labeled 1, the

nodes in V (RG) \ V (G) are labeled 0, and all edges

are active. It is like filling G with additional nodes and

edges to make it a rectangle (in fact, this process can be
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carried out by a protocol). The dimensions of RG are

defined by hG, which is the horizontal distance between

a leftmost node and a rightmost node of the shape (x-

dimension), and vG, which is the vertical distance be-

tween a highest and a lowest node of the shape (y-

dimension). Let also max dimG := max{hG, vG} and

min dimG := min{hG, vG}. Then RG can be extended

by max dimG −min dimG extra rows or columns, de-

pending on which of its dimensions is smaller, to yield

a max dimG ×max dimG square SG enclosing G (we

mean here a {0, 1}-node-labeled square, as above, in

which G can be identified). Observe, that such a square

is not unique. For example, if G is a horizontal line of

length d (i.e., hG = d and vG = 1) then it is already

equal to RG and has to be extended by d − 1 rows to

become SG. These rows can be placed in d distinct ways

relative to G, but all these squares have the same size

max dimG ×max dimG denoted by |SG|.
A 2D (3D) shape language L is a subset of the set of

all possible 2D (3D) shapes. We restrict our attention

here to shape languages that contain a unique shape for

each possible maximum dimension of the shape. In this

case, it is equivalent, and more convenient, to translate

L to a language of labeled squares. In particular, we

define in this work a shape language L by providing for

every d ≥ 1 a single d × d square with its nodes la-

beled from {0, 1}. 2 Such a square may also be defined

by a d2-sequence Sd = (s0, s1, . . . , sd2−1) of bits or pix-

els, where sj ∈ {0, 1} corresponds to the j-th node as

follows: We assume that the pixels are indexed in a “zig-

zag” fashion, beginning from the bottom left corner of

the square, moving to the right until the bottom right

corner is encountered, then one step up, then to the left

until the node above the bottom left corner is encoun-
tered, then one step up again, then right, and so on (see

the directed path in Figure 7(b) on page 21). The shape

Gd defined by Sd, called the shape of Sd, is the one in-

duced by the nodes of the square that are labeled 1 and

throughout this work we assume that max dimGd
= d.

For simulation purposes, we also need to intro-

duce appropriate shape-constructing Turing Machines

(TMs). We now describe such a TM M : M ’s goal is to

construct a shape on the pixels of a
√
n × √n square,

which are indexed in the zig-zag way described above.

M takes as input an integer i ∈ {0, 1, . . . , n−1} and the

size n or the dimension
√
n of the square (all in binary)

and decides whether pixel i should belong or not to the

final shape, i.e., if it should be on or off, respectively.

2 Observe that we have intentionally restricted attention
to unary languages as we want to focus on deterministic con-
struction, in the sense that for any given “input-size” (here d)
we want the population to always produce the same output
shape.

3 Moreover, in accordance to our definition of a shape,

the construction of the TM, consisting of the pixels that

M accepts (as on) and the active connections between

them, should be connected (i.e., it should be a single

shape).

Definition 3 We say that a shape language L =

(S1, S2, S3, . . .) is TM-computable or TM-constructible

in space f(d), if there exists a TM M (as defined above)

such that, for every d ≥ 1, when M is executed on the

pixels of a d× d square results in Sd (in particular, on

input (i, d), where 0 ≤ i ≤ d2−1, M gives output Sd[i]),

by using space O(f(d)) in every execution. 4

Definition 4 We say that a protocol A constructs a

shape language L with useful space g(n) ≤ n, if g(n)

is the greatest function for which: (i) for all n, every

execution of A on n processes constructs a shape G ∈
L 5 of order 6 at least g(n) (provided that such a G

exists) and, additionally, (ii) for all G ∈ L there is an

execution of A on n processes, for some n satisfying

|V (G)| ≥ g(n), that constructs G. 7 Equivalently, we

say that A constructs L with waste n− g(n).

4 Some Basic Constructions

We give in this section protocols for two very basic

shape construction problems, the spanning line prob-

lem and the spanning square (or
√
n × √n square)

3 If the TM is not provided with the size of the square,
then it can only compute uniform/symmetric shapes that are
independent of n. Such a shape could for example be one
that has every even pixel on and every odd pixel off. But such
shapes rarely satisfy the connectivity condition. For example,
it is not clear how to activate all the leftmost pixels of the
square by a uniform TM, because such a TM should somehow
guess that pixel 2

√
n−1 should be accepted without knowing

n and given that all pixels in [1, 2
√
n − 2] must be rejected.

So, it seems more natural to consider TMs that apart from
the pixel index are also provided with n or

√
n (if the latter

is more convenient) in binary. Now, it is straightforward how
to resolve the acceptance of only the leftmost pixels of the
square. The TM every time accepts the input-pixel i iff i =
2k
√
n − 1, for some k ≥ 1, or i = 2k

√
n, for some k ≥ 0.

Observe that 2k
√
n can always be computed because the TM

is also provided with
√
n in its input.

4 We should mention that part of the ideas related to the
pixel-encoding and the TM operating on pixels have been
inspired by similar constructions of Woods et al. [WCG+13].
5 G is the shape of a labeled square S ∈ L in case L is

defined in terms of such squares.
6 By “order” of a shape, we mean the number of nodes of

the shape.
7 By “greatest function” g(n), we mean that for all func-

tions f(n) that satisfy the above properties and all n, it holds
that g(n) ≥ f(n). Intuitively, g(n) is a complete description
of the guaranteed size of the shapes that A constructs; in
practice, it is often sufficient to characterize g(n) asymptoti-
cally.
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problem. In both problems, for any number of nodes n,

the n nodes must end up organized in a desired shape

from a given shape-language. In the spanning line prob-

lem, the nodes must end up with an active line that is

spanning and straight and in the spanning square prob-

lem the nodes must end up with an active square-grid

spanning the population. These constructions not only

serve as first expositions of the model in action, but are

also very useful because they organize the nodes in a

way that is convenient for TM simulations that exploit

the whole distributed memory as a tape. Keep in mind

that the protocols of this section are stabilizing (that

is, eventually the output shape stops changing) and not

terminating. Our technique that allows for terminating

constructions will be introduced in Section 5.

4.1 Global Line

We begin by presenting a protocol for the spanning line

problem. Assume that there is initially a unique leader

in state Lr (we typically use capital ‘L’ for the states

of a leader to distinguish from the left port ‘l’) and

all other nodes are in state q0. A protocol that con-

structs a spanning line is described by the effective rules

(Li, i), (q0, j), 0 → (q1, Lj̄ , 1) for all i, j ∈ {u, r, d, l},
where j̄ denotes the port opposite to port j. In words,

initially the leader (i.e., Lr) waits to meet a q0 via its

right port. Assume that it meets port j of a q0. Then

the connection between them becomes activated and

the leader takes the place of the q0, leaving behind a

q1. Moreover, the new leader is now in state Lj̄ indicat-

ing that it is now waiting to expand the line towards the

port that is opposite to the one that is already active,

which guarantees that a straight line will be formed.

We could even have a simplified version of the form

(L, r), (q0, l), 0 → (q1, L, 1). This is a little slower, be-

cause now an effective interaction, and a resulting ex-

pansion of the line, only occurs when the r port of the

leader meets the l port of a q0.

4.2
√
n×√n Square

We now give two protocols for the spanning square

problem. We assume for simplicity that the square root

of n is integer. We again assume that there is a pre-

elected unique leader, which is initially in state Lu and

all other nodes are in state q0. The code of our first

protocol for the spanning square problem is given in

Protocol 1.

We now describe the idea that Protocol 1 imple-

ments. The protocol first constructs a 2 × 2 square.

When it is done, the leader is at the bottom right corner

Protocol 1 Square

Q = {Lu, Lr, Ld, Ll, q0, q1}, L0 = Lu (i.e., the initial
leader-state is in this case Lu)
δ:

// an Li-leader will move one step in the i direction,

// adding one node to the perimeter of the square;

// then it will try to change direction, clockwise

(Lu, u), (q0, d), 0→ (q1, Lr, 1)

(Lr, r), (q0, l), 0→ (q1, Ld, 1)

(Ld, d), (q0, u), 0→ (q1, Ll, 1)

(Ll, l), (q0, r), 0→ (q1, Lu, 1)

// changing of direction cannot succeed as long as the

// leader has not managed to go beyond the boundary

// of the square; the leader restores its previous direction

(Lu, u), (q1, d), 0→ (Ll, q1, 1)

(Lr, r), (q1, l), 0→ (Lu, q1, 1)

(Ld, d), (q1, u), 0→ (Lr, q1, 1)

(Ll, l), (q1, r), 0→ (Ld, q1, 1)

// All transitions that do not appear have no effect

and is in state Ld. This can only cause the attachment

of a free q0 from below, via rule (Ld, d), (q0, u), 0 →
(q1, Ll, 1). When this occurs, the leader moves on the

new node, updates its state to Ll, and tries to move

to the left. This will occur by the attachment of

another free node from the left this time, via rule

(Ll, l), (q0, r), 0 → (q1, Lu, 1). When this occurs, the

leader moves on the new node, updates its state to

Lu, and tries to move up. But this time the up move-

ment cannot succeed because the leader is below the

bottom left corner of the square. Instead, the leader

activates the connection with that corner, via rule

(Lu, u), (q1, d), 0 → (Ll, q1, 1), and tries to move an-

other step left. When it succeeds, it tries to move up

again, which can now occur, via rule (Lu, u), (q0, d), 0→
(q1, Lr, 1), because the leader has moved outside the left

boundary of the 2× 2 square. In general, whenever the

leader is at the left (the up, right, and down cases are

symmetric) of the already constructed square it tries to

move to the right in order to walk above the square. If

it does not succeed, it is because it has not yet moved

over the upper boundary, so it activates the edge to

the right, takes another step up and then tries again to

move to the right. In this way, the leader always grows

the square perimetrically and in the clockwise direction,

i.e., following a spiral trajectory in the grid.

We next use turning marks to simplify and speed

up the turning process. The unique leader begins in

state L2
d. Now, instead of always trying to turn, the

leader turns only when it meets special marks left by
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Fig. 2 The first two phases of Protocol 2. Gray nodes in-
dicate the starting point of each phase. Edge labels indicate
the order by which the square grew during the phase. The
nodes labeled Lend are the points at which each of the phases
ends. The unlabeled solid edges of Phase 2 indicate the shape
that pre-existed from Phase 1. The nodes attached at “times”
1, 3, 5, 7 of Phase 1 and 11, 15, 19, 23 of Phase 2 are the turning
marks that will be exploited for easier turning by the leader
in the subsequent phase. Dotted edges are edges that have
not be activated yet but will for sure be activated eventually
resulting in a more “rigid” structure.

the previous phase near the corners of the square. When

it meets such a mark, the leader introduces the new

corner and a new mark adjacent to that corner to be

found during the next phase, and then makes a turn

(see Figure 2). A difference to the previous protocol

is that now several of the nodes of the new perimeter

may remain disconnected for a while from their internal

neighbors (i.e., those belonging to the internal perime-

ter constructed in the previous phase). However, rules

of the form (q1, i), (q1, ī), 0→ (q1, q1, 1) guarantee that

these nodes eventually become connected. A disadvan-

tage of this approach is that the structure may be less

“rigid” than the previous one as long as several (q1, q1)

connections are not yet established. The protocol is for-

mally presented in Protocol 2.

A drawback of Protocol 2 is that the construction is

never a true square but rather a square with four pro-

truding turning marks (so, we here need
√
n− 4 to be

integer for a complete such construction). An alterna-

tive that circumvents this is the following. The leader

constructs the perimeter of the present phase by walk-

ing on the perimeter drawn by the previous phase. For

example, while walking up the left border of the square

it attaches nodes to the left of the border, thus con-

structing a new left border. In this way, the leader just

needs to find a special state on the corner of the pre-

vious phase (or the absence of the corner) in order to

determine that turning is required.

Finally, though the constructions in this section

were based on a pre-elected unique leader, we should

mention that this assumption is not necessary for solv-

Protocol 2 Square2

Q = ({Li, L1
i , L

2
i , L

3
i , L

4
i : i ∈ {u, r, d, l}} \ {L1

l }) ∪
{Lend, q0, q1}, L0 = L2

d
δ:

// adding the turning marks of the 2× 2 square

(L2
d, d), (q0, u), 0→ (L1

u, q1, 1)

(L2
l , l), (q0, r), 0→ (L1

r, q1, 1)

(L2
u, u), (q0, d), 0→ (L1

d, q1, 1)

(L2
r, r), (q0, l), 0→ (Lend, q1, 1)

// constructing the 2× 2 square

(L1
u, u), (q0, d), 0→ (q1, L

2
l , 1)

(L1
r, r), (q0, l), 0→ (q1, L

2
u, 1)

(L1
d, d), (q0, u), 0→ (q1, L

2
r, 1)

// end of the present phase at the bottom right corner

(Lend, d), (q0, u), 0→ (q1, Ll, 1)

// trying to grow the square perimetrically, Li either

// suceeds and continues to be Li or meets a turning

// mark and becomes L3
i

(Ll, l), (q0, r), 0→ (q1, Ll, 1)

(Ll, l), (q1, r), 0→ (q1, L
3
l , 1)

(Lu, u), (q0, d), 0→ (q1, Lu, 1)

(Lu, u), (q1, d), 0→ (q1, L
3
u, 1)

(Lr, r), (q0, l), 0→ (q1, Lr, 1)

(Lr, r), (q1, l), 0→ (q1, L
3
r, 1)

(Ld, d), (q0, u), 0→ (q1, Ld, 1)

(Ld, d), (q1, u), 0→ (q1, L
3
d, 1)

// adding a new turning mark to the present corner

(L3
l , l), (q0, r), 0→ (q1, L

4
d, 1)

(L3
u, u), (q0, d), 0→ (q1, L

4
l , 1)

(L3
r, r), (q0, l), 0→ (q1, L

4
u, 1)

(L3
d, d), (q0, u), 0→ (q1, L

4
r, 1)

(L4
d, d), (q0, u), 0→ (Lu, q1, 1)

(L4
l , l), (q0, r), 0→ (Lr, q1, 1)

(L4
u, u), (q0, d), 0→ (Ld, q1, 1)

(L4
r, r), (q0, l), 0→ (Lend, q1, 1)

// activating missing internal edges of the square

(q1, i), (q1, ī), 0→ (q1, q1, 1), for all i ∈ {u, r, d, l},
where ī denotes the opposite port of i

(Lu, r), (q1, l), 0→ (Lu, q1, 1)

(Lr, d), (q1, u), 0→ (Lr, q1, 1)

(Ld, l), (q1, r), 0→ (Ld, q1, 1)

(Ll, u), (q1, d), 0→ (Ll, q1, 1)

ing the above problems. However, the protocols that do

not require a leader are more complicated and do not

serve as good first expositions of the model.
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5 Probabilistic Counting

In this section, we consider the problem of counting n.

In particular, we assume a uniform random scheduler

and we want to give protocols that always terminate

but still w.h.p. count n correctly. The importance of

such protocols is further supported by the fact that we

cannot guarantee anything much better than this. In

particular, observe that if we require a population pro-

tocol to always terminate and additionally to always

be correct, then we immediately obtain an impossibil-

ity result. It is easy to see this by imagining a system

in which a unique leader interacts with the other nodes

(there are no interactions between non-leaders and no

connections are ever activated). Any fair execution s1 of

a protocol in a population of size n in which the leader

outputs n and terminates can appear as an “unfair”

prefix of a fair execution s′ = s1s2 on a population of

size n′ > n. This is a contradiction because in s′ the

leader must again terminate and output n even though

n′ 6= n. The main reason is that |s1| is finite and inde-

pendent of n; it only depends on the maximum “depth”

of a chain of rules of the protocol leading to termina-

tion. This implies that in s′ the leader terminates before

interacting with all other nodes.

In Section 5.1, we present a population protocol

with a pre-elected unique leader, that solves w.h.p. the

counting problem and always terminates. To the best

of our knowledge, this is the first protocol of this sort in

the relevant literature. All probabilistic protocols that

have appeared so far, like those in [AAD+06,AAE08],

are not terminating but stabilizing and the high prob-

ability arguments concern their time to convergence.

Additionally, this protocol is crucial because all of our

generic constructors, that are developed in Section 6,

are terminating by assuming knowledge of n (stored dis-

tributedly on a line of length log n). They obtain access

to this knowledge w.h.p. by executing the counting pro-

tocol as a subroutine. Finally, knowing n w.h.p. allows

to develop protocols that exploit sequential composition

of (terminating) subroutines, which makes them much

more natural and easy to describe than the protocols

in which all subroutines are executed in parallel and

perpetual reinitializations is the only means of guaran-

teeing eventual correctness (the latter is the case, e.g.,

in [GR09,MCS11a,MS14], but not in [MS15] which was

the first extension to allow for sequential composition

based on some non-probabilistic assumptions). Then in

Section 5.2 we comment on the possibility of dropping

the unique leader assumption and leave this as an inter-

esting open problem. Finally, in Section 5.3 we establish

that if the nodes have unique ids then it is possible to

solve the problem without a unique leader.

5.1 Fast Probabilistic Counting With a Leader

Keep in mind that in order to simplify the discussion,

a sort of population protocol is presented here. So,

there are no ports, no geometry, and no activa-

tions/deactivations of connections. In every step, a

uniform random scheduler selects equiprobably one of

the n(n − 1)/2 possible node pairs, and the selected

nodes interact and update their states according to

the transition function. The only difference from the

classical population protocols is that a distinguished

pre-elected leader node has unbounded local memory

(of the order of n). In Section 6.1, we will adjust the

protocol to make it work in our model, using constant

memory on every node, including the leader.

Counting-Upper-Bound Protocol: There is ini-

tially a unique leader l and all other nodes are in state

q0. Assume that l has two n-counters in its memory,

initially both set to 0. So, the state of l is denoted as

l(r0, r1), where r0 is the value of the first counter and

r1 the value of the second counter, 0 ≤ r0, r1 ≤ n. The

rules that capture the core operations of the protocol

are of the form

(l(r0, r1), q0)→ (l(r0 + 1, r1), q1), if r1 < r0

(l(r0, r1), q1)→ (l(r0, r1 + 1), q2), if r1 < r0 and

(l(r0, r1), ·)→ (halt, ·) if r0 = r1.

It is worth reminding that, for the time being, we have

disregarded edge-states and, therefore, the rules of the

protocol only specify how the states of the nodes are up-

dated. Observe that r0 counts the number of q0s in the

population while r1 counts the number of q1s. Initially,

there are n − 1 q0s and no q1s. Whenever l interacts
with a q0, r0 increases by 1 and the q0 is converted to

q1. Whenever l interacts with a q1, r1 increases by 1 and

the q1 is converted to q2. The process terminates when

r0 = r1 for the first time. We also give to r0 an initial

head start of b, where b can be any desired constant. So,

initially we have r0 = b, r1 = 0 and i = #q0 = n−b−1,

j = #q1 = b (this can be easily implemented in the

protocol by having the leader convert b q0s to q1s as a

preprocessing step).

So, in Counting-Upper-Bound we have two compet-

ing processes, one counting q0s and the other counting

q1s, the first one begins with an initial head start of

b and the game ends when the second catches up the

first. We now prove that when this occurs the leader

will almost surely have already counted at least half of

the nodes.

Theorem 1 The above protocol halts in every execu-

tion. Moreover, when this occurs, w.h.p. it holds that

r0 ≥ n/2.
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Proof Recall that the scheduler is a uniform random

one, which, in every step, selects independently and uni-

formly at random one of the n(n− 1)/2 possible inter-

actions. Recall also that the random variable i denotes

the number of q0s and j denotes the number of q1s in

the current configuration, where initially i = n− b− 1

and j = b. Observe also that all the following hold:

j = r0−r1, r0 ≥ r1, because every conversion of a q1 to

q2 must have been first counted by r0 as a conversion

of a q0 to q1, r1 = (n− 1)− (i+ j), and r0 + r1 is equal

to the number of effective interactions (see Figure 3).

We focus only on the effective interactions (we also

disregard the halting interaction), which are always in-

teractions between l and q0 or q1. Given that we have

an effective interaction, the probability that it is an

(l, q0) is pij = i/(i + j) and the probability that it is

an (l, q1) is qij = 1 − pij = j/(i + j). This random

process may be viewed as a random walk (r.w.) on a

line with n + 1 positions 0, 1, . . . , n where a particle

begins from position b and there is an absorbing bar-

rier at 0 and a reflecting barrier at n. The position of

the particle corresponds to the difference r0 − r1 of the

two counters which is equal to j. Observe now that if

j ≥ n/2 then r0 − r1 ≥ n/2 ⇒ r0 ≥ n/2, so it suf-

fices to consider a second absorbing barrier at n/2. The

particle moves forward (i.e., to the right) with proba-

bility pij and backward with probability qij (see Figure

4). This is a “difficult” random walk because the transi-

tion probabilities not only depend on the position j but

also on the sum i+j which decreases in time. In partic-

ular, the sum decreases whenever an (l, q1) interaction

occurs, in which case a q1 becomes q2. That is, when-

ever the random walk returns to some position j of the

line, its transition probabilities have changed (because

every leaving and returning involves at least on step to

the left, which decreases the sum). Observe also that,

in our case, the duration of the random walk can be at

most n−b, in the sense that if the particle has not been

absorbed after n − b steps then we have success. The

reason for this is that n− b effective interactions imply

that r0 + r1 = n, but as r0 ≥ r1, we have r0 ≥ n/2.

In fact, r0 ≥ n/2 ⇔ j + r1 ≥ n/2. We are interested

in upper bounding P[failure] = P[reach 0 before r0 ≥
n/2 holds], which is in turn upper bounded by the prob-

ability of reaching 0 before reaching n/2 and before

n − b effective interactions have occurred (this is true

because, in the latter event, we have disregarded some

winning conditions like, for example, guaranteed win-

ning in (n/2) + r1 effective interactions, in which case

we have winning in only (n/2)+r1 effective interactions

and j having become at most (n/2)− r1). It suffices to

bound the probability of reaching 0 before n effective

interactions have occurred.

0 b n/2

qij = 1− pij pij

j

Fig. 4 A random walk modeling of the probabilistic pro-
cess that the Counting-Upper-Bound protocol implements. A
particle begins from position b. The position j of the parti-
cle corresponds to the difference between r0 and r1. Forward
movement corresponds to an increment of r0 and backward
movement corresponds to an increment of r1. Absorption at
0 corresponds to r1 becoming equal to r0 and thus to termi-
nation (and to failure if this occurs before r0 ≥ n/2 holds).
Absorption at n/2 corresponds to r0 becoming at least n/2
(before being absorbed at 0) and thus to success.

Thus, we have r0 +r1 ≤ n but r1 ≤ r0 ⇒ 2r1 ≤ r0 +

r1, thus 2r1 ≤ n⇒ r1 ≤ n/2⇒ (n−1)−(i+j) ≤ n/2⇒
i+ j ≥ (n/2)− 1. And if we set n′ = (n/2)− 1 we have

i+ j ≥ n′. Moreover, observe that when r0 + r1 = n+ 1

we have n+1 = r0 +r1 ≤ 2r0 ⇒ r0 ≥ n/2. In summary,

during the first n effective interactions, it holds that

i + j ≥ n′ = (n/2) − 1 and when interaction n + 1

occurs it holds that r0 ≥ n/2, that is, if the process is

still alive after time n, then r0 has managed to count up

to n/2 and the protocol has succeeded. Now, i+ j ≥ n′
implies that pij ≥ (n′−j)/n′ and qij ≤ j/n′ so that now

the probabilities only depend on the position j. This

new walk is the well-studied Ehrenfest random walk

coming from the theory of brownian motion [EEA07]

and by results in [Kac47] it is immediate to obtain that

its recurrence time is exponential in n, thus, we do not

expect the walk to return to 0 and fail in only n effective

steps. In the sequel, we turn this into the desired high

probability argument. 8

8 Imagine gas molecules that move about randomly in a
container which is divided into two halves symmetrically by
a partition. A hole is made in the partition to allow the
exchange of molecules between the subcontainers. Suppose
there are n molecules in the container. Think of the parti-
tions as two urns, I and II, containing balls labeled 1 through
n. Molecular motion can be modeled by choosing a number
between 1 and n at random and moving the corresponding
ball from the urn it is presently in to the other. This is a
historically important physical model, known as the Ehren-
fest model of diffusion, introduced in [EEA07] in the early
days of statistical mechanics to study thermodynamic equi-
librium. So, the probability of failure of our counting proto-
col is asymptotically equivalent to the probability that urn I
becomes empty in the first n steps assuming that it initially
contains b balls. This walk has been studied by Kac in [Kac47]
who, among other things, proved that the mean recurrence
time is ((R + k)!(R − k)!/(2R)!)22R ([Kac47], page 386). If
we set k = −R so that the initial position is R+ k = 0, then
this evaluates to 22R = 2n/2, because 2R is the total length
of the line. This shows that, even if we begin from position 0
instead of b, the recurrence time is expected to be huge and
we do not expect the walk to return to 0 and fail in only n
effective steps.
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Fig. 3 A configuration of the system (excluding the leader). The number of q0s remaining is denoted by i. The number of q1s
introduced so far is denoted by j. The value of the counter r1 is equal to the number of q1s encountered so far by the leader,
which is in turn equal to the number of q2s introduced. The value of the counter r0 is equal to the number of q0s encountered,
which is equal to the number of q1s and q2s introduced.

We will reduce the Ehrenfest walk to one in which

the probabilities do not depend on j. We first further

restrict our walk, this time to the prefix [0, b] of the

line. In this part, it holds that j ≤ b which implies

that pij ≥ (n′ − b)/n′ and qij ≤ b/n′. Now we set

pij = p = (n′ − b)/n′ and qij = q = b/n′. Observe that

this may only increase the probability of failure, so the

probability of failure of the new walk is an upper bound

on the probability of failure of our original walk. Recall

that initially the particle is on position b. Imagine now

an absorbing barrier at 0 and another one at b. When-

ever the r.w. is on b− 1 it will either return to b before

reaching 0 or it will reach 0 (and fail) before returning

to b. So, we now have a r.w. with b+ 1 positions, where

positions 0 and b are absorbing and due to symmetry

it is equivalent to assume that the particle begins from

position 1, moves forward with probability p′ = q, back-

ward with probability q′ = p, and it fails at b. Thus, it is

equivalent to bound P[reach b before 0 (when beginning

from position 1)]. This is the probability of winning in

the classical ruin problem analyzed, e.g., in [Fel68] page

345. If we set x = q′/p′ = p/q = (n′−b)/b we have that:

P[reach b before 0] = 1− xb − x
xb − 1

=
x− 1

xb − 1

≤ x

xb − 1
≈ 1

xb−1

≈ 1

nb−1
.

Thus, whenever the original walk is on b − 1, the

probability of reaching 0 before reaching b again, is at

most 1/nb−1. Now assume that we repeat the above

walk n times, i.e., we place the particle on b−1, play the

game, then if it returns to b we put again the particle

on b − 1 and play the game again, and so on. From

Boole-Bonferroni inequality, we have that:

P[fail at least once] ≤
n∑

m=1

P[fail at repetition m]

≤
n∑

m=1

1

nb−1
=

n

nb−1

=
1

nb−2
.

In summary, even if the protocol was restricted to

disregard counter differences that are greater than b,

still with probability at least 1 − 1/nc (for constant

c = b−2) the protocol has not terminated after at least

n effective interactions, which in turn implies that the

leader has counted at least half of the nodes. ut
Remark 1 For the Counting-Upper-Bound protocol to

terminate, it suffices for the leader to meet every other

node twice. This takes twice the expected time of a meet

everybody (cf. [MS14]), thus the expected running time

of Counting-Upper-Bound is O(n2 log n) (interactions).

Remark 2 When the Counting-Upper-Bound protocol

terminates, w.h.p. the leader knows an r0 which is be-

tween n/2 and n. So any subsequent routine can use

directly this estimation and pay in an a priori waste

which is at most half of the population. In practice,

this estimation is expected to be much closer to n than

to n/2 (in all of our experiments for up to 1000 nodes,

the estimation was always close to (9/10)n and usually

higher). On the other hand, if we want to determine

the exact value of n and have no a priori waste then

we can have the leader wait an additional large polyno-

mial (in r0) number of steps, to ensure that the leader

has met every other node w.h.p. (observe, e.g., that

the last unvisited node requires an expected number of

Θ(n2) steps to be visited).
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5.2 On Dropping the Leader Assumption

An immediate question is whether the unique leader

assumption of Theorem 1 can be dropped. Though we

have not yet managed resolve this issue, we will describe

a possible strategy for proving that this is not possible.

In any case, we leave this as a challenging open problem.

The strategy would aim at showing that any proto-

col in which all nodes begin from the same state, may

have some node terminate with (at least) constant prob-

ability, having participated in only a constant number

of interactions. This would then imply that with con-

stant probability the protocol terminates without hav-

ing estimated any non-constant function of n. In the

sequel, we describe this potential strategy in more de-

tail.

Nodes again have a set of states Q and we also as-

sume that they have unbounded private local memo-

ries. These memories are for internal purposes only and

their contents are not communicated to other nodes.

For example, a node u could maintain |Q| counters,

each counting the number of times the corresponding

state has been encountered so far by u. We focus on

protocols that always terminate (i.e for every n ≥ n0,

for some finite n0) and we want them to compute some-

thing w.h.p., e.g., the node that first terminates to know

an upper bound on n w.h.p.. Let now A be a protocol

as above. To establish the aforementioned impossibility,

it would be sufficient to prove that, as n grows, there

is (at least) a constant probability that some node ter-

minates having interacted only a constant number of

times.

First of all, observe that a protocol, apart from the

usual transition function δ : Q × Q → Q × Q that

updates the communicating states, has also a function

γ : Q×S → S that updates the internal memory based

on the encountered states. We focus on deterministic γ

and, in this case, the internal state from S after k inter-

actions only depends on the observed sequence Qk of

encountered states (because the initial state q0 is always

the same for all nodes). Every protocol A that always

terminates, essentially defines a property LA ⊆ Q∗ con-

sisting of those observed sequences that make a node

terminate (the remaining sequences do not cause termi-

nation). Moreover, as the protocol does not know n, an

s0 ∈ LA of minimum length has length that is indepen-

dent of n (it could only be a function of |Q|). Observe

that for every population size n, if s0 is observed by

some node u as a prefix of its interaction pattern (i.e.,

in its first |s0| interactions) then u terminates while

having participated in only |s0| interactions, which is a

constant number independent of n. So, for an impos-

sibility of dropping the leader it suffices to prove that,

for every n � n0 and every such fixed s0, there is (at

least) a constant probability that some node observes

s0. This could be further broken down into proving the

following set of arguments, provided that n� n0:

1. With constant probability a configuration is

reached, in which every state q ∈ Q has multiplicity

Θ(n) (that is, appears on Θ(n) distinct nodes). 9

2. With constant probability the multiplicities of all

states remain Θ(n) for Θ(n) steps.

3. While (2) holds, with constant probability one of the

Θ(n) nodes, let it be u, whose state is q0, interacts

|s0| times.

If the above were true, then it would follow that

u may observe s0 with constant probability, in which

case u will terminate having interacted only a con-

stant (i.e., |s0|) number of times. The reason for this

is that in its ith interaction, for all 1 ≤ i ≤ |s0|, u ob-

serves the ith state of s0, let it be qi, with probability

(#qi in the population)/Θ(n). As, by (2), the numera-

tor is also Θ(n), for all qi ∈ Q, the resulting probability

is constant.

5.3 Counting Without a Leader but With UIDs

We now assume that nodes have unique ids from a uni-

verse U and that initially they do not know the ids of

other nodes nor n. The goal is again to count n w.h.p..

All nodes execute the same program and no node can

initially act as a unique leader, because nodes do not

know which ids from U are actually present in the sys-

tem. Nodes have unbounded memory but we try to

minimize it, e.g., if possible, store only up to a con-

stant number of other nodes’ ids. We show that under

these assumptions, the counting problem can be solved

without the necessity of a unique leader.

The idea is to have the node umax with the maxi-

mum id in the system to perform the same process as

the unique leader in the protocol with no ids of The-

orem 1. However, as initially all nodes have to behave

as if they were the maximum, we must also ensure that

umax is not affected and that no other node ever termi-

nates (with sufficiently large probability) early, giving

as output a wrong count.

Informal description: Every node u has a unique

id idu and tries to simulate the behavior of the unique

leader of the protocol of Theorem 1. In particular,

whenever it meets another node for the first time it

wants to mark it once and the second time it meets that

node it wants to mark it twice, recording the number

9 This seems to already follow from a result in [Dot14], and,
actually, not only with constant probability that we require
here, but w.h.p..
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of first-meetings and second-meetings in two local coun-

ters. The problem is that now many nodes may want to

mark the same node. One idea, of course, could be to

have a node remember all the nodes that have marked

it so far but we want to avoid this because it requires

a lot of memory and communication. Instead, we al-

low a node to only remember a single other node’s id

at a time. Every node tries initially to increase its first-

meetings counter to b so that it creates an initial b head

start of this counter w.r.t. the other. Every node that

succeeds starts executing its main process. The main

idea is that whenever a node u interacts with another

node whose id is greater than idu or that has been

marked by an id greater than idu, u becomes deacti-

vated and stops counting. This guarantees that only

umax will forever remain active. Moreover, every node

u always remembers the maximum id that has marked

it so far, so that the probabilistic counting process of

a node u can only be affected by nodes with id greater

than idu and as a result no one can affect the counting

process of umax. Protocol 3 puts all these together for-

mally and Theorem 2 shows that this process correctly

simulates the counting process of Theorem 1, thus pro-

viding w.h.p. an upper bound on n.

Theorem 2 When a node u in Protocol 3 halts, w.h.p.

it holds that u = umax and that 2 · count1u ≥ n.

Proof We first show that umax simulates the probabilis-

tic process of the unique leader l of Theorem 1. Recall

that in the protocol of Theorem 1, all other nodes are

initially q0 and when l meets a q0 it makes it q1 and

when it meets a q1 it makes it q2, every time counting

in the corresponding counter. First, observe that umax

is never deactivated, i.e., activeumax
= 1 forever, be-

cause it never interacts with a greater id nor with a

node that belongs to a greater id than its own. It suf-

fices to show that when umax meets a node for the first

time it marks it once (simulating a q0 to q1 conversion),

when it meets a node for the second time it marks it

twice (simulating a q1 to q2 conversion), and that no

other node can ever alter the nodes marked by umax.

When umax interacts with a node v for the first time,

then either belongsv =⊥ or ⊥6= belongsv < max id. So,

in this case it marks v once by setting markedv ← 1,

belongsv ← max id, and records this by increasing

count1umax
by one. From now on, no other active node

w 6= umax can ever affect the state of v, because for ev-

ery such w it holds that idw < belongsv = max id

and the only effect in this case is the deactivation

of w. The second time that umax interacts with v,

it still holds that belongsv = idumax
(= max id) and

markedv = 1, and umax marks v for a second time by

setting markedv ← 2 and records this by increment-

ing count2umax by one. Again, v still belongs to max id

and no other node can ever affect its state. We conclude

that if we were only interested in umax’s output then,

by Theorem 1, this would w.h.p. be an upper bound on

n.

However, observe that not only umax but also the

other nodes execute a similar process and it could be

the case that one of them terminates early (and be-

fore umax) giving as output a wrong count. We now

show that this is not the case. Take any node w with

idw < max id. Observe that if there were no nodes with

id greater than idw then w would simply execute the

process described for umax. However, in the presence

such nodes, some nodes may be marked by a greater

id before w counts them and others may be marked af-

ter w has counted them once but before counting them

twice. Still, we shall show that none of these increases

the probability of early termination of w (where ter-

mination of w occurs when count1w = count2w first

becomes satisfied). Consider the partition of V \ {w}
into the sets Sw,0, Sw,1, and Sw,2 of nodes which w

has not marked yet, has marked once, and has marked

twice, respectively. The counting process of w can only

be affected when a node v in any of these sets is marked

by an id greater than idw: (i) If v ∈ Sw,2 then w has

already counted v both in count1w and count2w, there-

fore marking v does not affect w’s counting at all. (ii)

If v ∈ Sw,1 then v is a node that has been counted

in count1w but not yet in count2w. Marking v in this

case does not speed up termination, as it only decreases

the probability of count2w to increase (and recall that

count2w is always trying to catch up count1w). (iii) If

v ∈ Sw,0 then marking v indeed slows down the rate

of grow of count1w b, because a node that could con-

tribute to count1w and has not been counted yet is no

longer available. However, notice that every such v will

from now on forever satisfy belongsv > idw, because

belongsv can only increase, therefore every interaction

of w with such a v will result in the deactivation of

w. This implies that the “success” events of w (those

corresponding to a count1w increment) have now been

partitioned into count1w increment events and w deac-

tivation events. So, if w ever fails to increment count1w
due to an interference of some u with idu > idw on some

v ∈ Sw,0, the effect is the deactivation of w, which pre-

vents w from continuing with unfavorable probabilities.

In other words, the only event that could negatively af-

fect w’s counting, deactivates w and, in this case, w

cannot terminate early any more. ut
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Protocol 3 Counting with UIDs

Require: Every node u has a unique id idu and maintains a (belongs,marked) pair, a (count1, count2) pair, and a variable
active, where belongs ∈ U ∪ {⊥} initially ⊥, marked ∈ {0, 1, 2} initially 0, count1, count2 ∈ N≥0 initially count1 =
count2 = 0 and active ∈ {0, 1} initially 1. All nodes know a predetermined constant b > 0. The following is the code for
every interaction of u, v with idu > idv.

1: if activev = 1 then
2: activev ← 0
3: end if
4: if activeu = 1 then
5: if belongsv =⊥ or ⊥6= belongsv < idu then
6: belongsv ← idu
7: markedv ← 1
8: count1u ← count1u + 1
9: end if

10: if ⊥6= belongsv > idu then
11: activeu ← 0
12: end if
13: if belongsv = idu and markedv = 1 and count1u ≥ b then
14: markedv ← 2
15: count2u ← count2u + 1
16: if count1u = count2u then
17: u halts and outputs 2 · count1u

18: end if
19: end if
20: end if

6 Generic Constructors

In this section, we give a characterization for the class

of constructible 2D shape languages. In particular, we

establish that shape constructing TMs (defined in Sec-

tion 3), can be simulated by our model and therefore we

can realize their output-shape in the actual distributed

system. To this end, we begin in Section 6.1 by adapt-

ing the Counting-Upper-Bound protocol of Section 5

to work in our model. The result is, again w.h.p., a

line of length Θ(log n) with a unique leader, contain-

ing n in binary. Then, in Section 6.2 the leader exploits
its knowledge of n to construct a

√
n × √n square. In

the sequel (Section 6.3), it simulates the TM on the

square n distinct times, one for each pixel of the square.

Each time, the input provided to the TM is the index

of the pixel and
√
n, both in binary. Each simulation

decides whether the corresponding pixel should be on

or off. When all simulations have completed, the leader

releases in the solution, in a systematic way, the con-

nected shape consisting of the on pixels and the active

edges between them. The connections of all other (off )

pixels become deactivated and the corresponding nodes

become free (isolated) nodes in the solution.

6.1 Storing the Count on a Line

We begin by adapting the Counting-Upper-Bound

protocol of Theorem 1 to work in our model. In

particular, the obtained protocol does not require the

leader to have large local memory. Instead, it stores

the r0 and r1 counters distributedly throughout the

execution and when the protocol terminates the final

correct count is stored in binary on an active line of

length log n.

Counting-on-a-Line Protocol: The probabilistic

process that is being executed is essentially the same

as that of the Counting-Upper-Bound protocol. Again

the protocol assumes a unique leader that forever con-

trols the process. A difference now is that every node

has four ports (in the 2D case). The leader operates as

a TM that stores the r0 and r1 counters in binary, in a

distributed tape that it controls. The ith cell of the tape

has three components, one storing the ith bit of r0, the

other storing the ith bit of r1, and the third one storing

the ith bit of an r2 counter that will be discussed in the

sequel. We say that the tape is full, if the bits of all r0

components of the tape are set to 1. The tape of the

TM is the active line that the leader has formed so far,

each node in the line implementing one cell of the tape.

Initially the tape consists of a single cell, stored in the

memory of the unique leader node.

As in Counting-Upper-Bound, the leader first tries

to obtain an initial advantage of b for the r0 counter. To

achieve the advantage, the leader does not count the q1s

that it interacts with until it holds that r0 ≥ b. Observe

that the initial length of the tape is not sufficient for

storing the binary representation of b. 10 In the sequel,

10 Of course, b is constant so, in principle, it could be stored
on a single node, however we prefer to keep the description
as uniform as possible.
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together with the other operations of the protocol, we

also describe how the leader handles such overflows.

Whenever it meets the left port of a q0 from its right

port, if its tape is not full yet, it switches the q0 to q1,

leaving it free to move in the solution, and increases the

r0 counter by one. To increase the counter, it freezes the

probabilistic process (that is, during freezing it ignores

all interactions with free nodes), and starts moving on

its tape, which is a distributed line attached to its left

port. After incrementing the counter, the leader keeps

track of whether the tape is now full and then it moves

back to the right endpoint of the line to unfreeze and

continue the probabilistic process.

On the other hand, if the tape is full, it binds the

encountered q0 to its right by activating the connection

between them (thus increasing the length of the tape by

one), then it reorganizes the tape, it again increases r0

by one, and finally moves back to the right endpoint to

continue the probabilistic process. This time, the leader

also records that it has bound a q0 that should have

been converted to q1. This debt is also stored on the

tape in another counter r2. Whenever the leader meets

a q2, if r2 ≥ 1, it converts q2 to q1 and decreases r2 by

one. So, q2s may be viewed as a deposit that is used

to pay back the debt. In this manner, the q0s that are

used to form the tape of the leader are not immediately

converted to q1 when first counted. Instead, the miss-

ing q1s are introduced at a later time, one after every

interaction of the leader with a q2, and all of them will

be introduced eventually, when a sufficient number of

q2s will become available.

Finally, whenever the leader interacts with the left

port of a q1 from its right port, it freezes, increases

the r1 counter by one (observe that r0 ≥ r1 always

holds, so the length of the tape is always sufficient for

r1 increments), and checks whether r0 = r1. If equality

holds, the leader terminates, otherwise it moves back

to the right endpoint and continues the process.

Correctness is captured by the following lemma.

Lemma 1 Counting-on-a-Line protocol terminates in

every execution. Moreover, when the leader terminates,

w.h.p. it has formed an active line of length log n con-

taining n in binary in the r0 components of the nodes

of the line (each node storing one bit).

Proof We begin by showing that the probabilistic pro-

cess of the Counting-Upper-Bound protocol is not nega-

tively affected in the Counting-on-a-Line protocol. This

implies that the high probability argument of Theorem

1 holds also for Counting-on-a-Line (in fact it is im-

proved).

First of all, observe that the four ports of the nodes

introduce more choices for the scheduler in every step.

However, these new choices, if treated uniformly, result

in the same multiplicative factor for both the “positive”

(an (l, q0) interaction) and the “negative” (an (l, q1) in-

teraction) events, so the probabilities of the process are

not affected at all by this. Moreover, neither the debt

affects the process. The reason is that the only essential

difference w.r.t. to the process is that the conversion of

some counted q0s to the corresponding q1s is delayed.

But this only decreases the probability of early termi-

nation and thus of failure.

It remains to show that not even a single q1 remains

forever as debt, because, otherwise, some executions of

the protocol would not terminate. The reason is that

the protocol cannot terminate before converting all the

q1s plus the debt to q2. To this end, observe that the

line of the leader has always length blg r0c+1, thus r2 ≤
blg r0c, because the debt is always at most the length

of the line excluding the initial leader. So, at least r0−
blg r0c nodes have been successfully converted from q0

to q1 which implies that there is an eventual deposit of

at least r0−blg r0c nodes in state q2. These q2s are not

immediately available, but they will for sure become

available in the future, because every interaction of the

leader with a q1 results in a q2. Finally, observe that

r0 − blg r0c ≥ blg r0c holds for all r0 ≥ 1 (to see this,

simply rewrite it as r0/2 ≥ blg r0c). Thus, r0−blg r0c ≥
r2, which means that the eventual deposit is not smaller

than the debt, so the protocol eventually pays back its

debt and terminates. ut

6.2 Constructing a
√
n×√n Square

We now show how to organize the nodes into a

spanning square, i.e., a
√
n × √n one. As we did

in Section 4.2, we again assume for simplicity that√
n is integer. Observe that now the leader has n

stored in its line. The present construction exploits

this knowledge and this makes it essentially different

than the constructions of Section 4.2. Moreover,

knowledge of n allows the protocol to terminate

after constructing the square and to know that the

square has been successfully constructed, a fact that

was not the case in the stabilizing constructions of

Section 4.2. The following protocol assumes that

the guarantee of Lemma 1 is provided somehow and

based on this assumption we will show that it works

correctly in every execution (this is in contrast to the

high probability argument of Lemma 1). This means

that given the guarantee, the protocol that constructs

the square is always correct. Of course, if we take

the composition of Counting-on-a-Line that provides

the guarantee and the protocol that constructs the

square based on the guarantee, the resulting protocol
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is again correct w.h.p., however we still allow the

possibility that some other deterministic (even cen-

tralized) preprocessing provides the required guarantee.

Square-Knowing-n Protocol: The initial leader L

first computes
√
n on its line by any plausible algo-

rithm (observe that the available space for computing

the square root is exponential in the binary representa-

tion of n, which is the input to the algorithm, because,

if needed, the leader can expand its line up to length n).

In principle, it is not necessary to use additional space,

because the leader can execute one after the other the

multiplications 1 · 1, 2 · 2, 3 · 3, . . . in binary until the

result becomes equal to n. Each of these operations can

be executed in the initial log n space of the line of the

leader. The time needed, though exponential in the bi-

nary representation of n, is still linear in the population

size n. Now that the leader also knows
√
n, it expands

its line to the right by attaching free nodes to make its

length
√
n. Then it exploits the down ports to create a

replica of its line. The replica has also length
√
n and

has its own leader but in a distinguished state Ls. This

new line plays the role of a seed that starts creating

other self-replicating lines of length
√
n. In particular,

the seed attaches free nodes to its down ports, until all

positions below the line are filled by nodes and addi-

tionally all horizontal connections between those nodes

are activated. Then it introduces a leader Lr to one

endpoint of the replica and starts deactivating the ver-

tical connections to release the new line of length
√
n.

These lines with Lr leaders are totally self-replicating,

meaning that their children also begin in state Lr. The

initial leader L waits until the up ports of a non-seed

replica r become totally aligned with the down ports

of the square segment that has been constructed so far.

So, initially it waits until a replica becomes attached

to the lower side of its own line. When this occurs, it

activates all intermediate vertical connections to make

the construction rigid and increments a row-counter by

one (initially 0) and moves to the new lowest row. If at

the time of attachment r was in the middle of an in-

complete replication, then there will be nodes attached

to the down ports of r. L releases all these nodes, by

deactivating the active connections of r to them, and

then waits for another non-seed replica to arrive. When

the row-counter becomes equal to
√
n−1, the leader for

the first time accepts the attachment of the seed to its

construction and when the seed is successfully attached

the leader terminates. This completes the construction

of the
√
n × √n square. See Figures 5 and 6 for illus-

trations.

The reason for attaching the seed last, and in par-

ticular when no further free nodes have remained, is

that otherwise self-replication could possibly cease in

some executions. Observe also that we have allowed

the L-leader to accept the attachment of a replica to

the square segment even though the replica may be in

the middle of an incomplete replication. This is impor-

tant in order to avoid reaching a point at which some

free lines are in the middle of incomplete replications

but there are no further free nodes for any of them to

complete. For a simple example, consider the seed and

a replica r and
√
n free nodes (all other nodes have

been attached to the square segment). It is possible

that
√
n − 1 of the free nodes become attached to the

seed and the last free node becomes attached to r. We

have overcome this deadlock by allowing L to accept

the attachment of r to the square segment. When this

occurs, the free node will be released and eventually it

will be attached to the last free position below the seed.

Lt

Lt
s

(a)

(b)

(c)

original line

seed replica

i i′ i′ i′ i′ i i′ e′

e′i′i′i′i′i′

i′ i′ i′ i′ i′ i′ i′ e′

e′i′L6
si′i′i′i′i′e′

L′

L′

L1
s

i′ e′i′i′i′i′i′ i′

i′

e′i′i′i′i′i′
i′

Fig. 5 (a) Several free nodes have already been attached to
the original line. Some of them have already activated some
horizontal connections forming some segments of the replica.
(b) The leader (L′) of the original line remains blocked while
the leader (L6

s) of the replica has detected that the replica
is ready for detachment. It has already detached the three
rightmost nodes and keeps moving to the left until it reaches
the left endpoint and detaches the whole replica. (c) The seed
replica has been released in the solution. The leader (Lt) of
the original line has waken up and is restoring the nodes
of its line to their original states. When it finishes (that is,
when it will have traversed the whole line and have returned
to the left endpoint), it will go to state Lstart to start the
square formation process. Similarly, the leader (Lt

s) of the
seed replica is setting the nodes of its line to their normal i
and e states, so that they start accepting the attachment of
other nodes in order to create non-seed replicas.
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Lr

Ls
seed replica

replicas

L

Lr

Lr Lr

LrLr

free nodes

square segment

√
n

original line

Lr

Fig. 6 The seed at the top has created another replica which
has just been released in the solution. Below it, some addi-
tional replicas appear. One of them is in the middle of a
replication that has not completed yet. There are also several
nodes that are still free. At the bottom appears the square
segment that has been constructed so far. The original line
of the L-leader is the one at the top of the rectangle. The
other rows below it have been formed by replicas that have
been attached to the segment in previous steps. The L-leader
keeps waiting at the bottom left corner for new replicas to
arrive. One such has just arrived and will be attached to the
segment.

We now give, in Protocol 4, one of the possible codes

for the replication process of the original leader’s line

that creates the seed. The other replication processes,

i.e., of Ls to Lr and of Lr to Lr, are almost identical to

this one. Without loss of generality we assume that the

original leader’s line has state L on its left endpoint, e

on its right endpoint, and every other internal node of

the line is in state i. All other (free) nodes are in state

q0.

We additionally show that, in principle, the lines do

not need a leader in order to successfully self-replicate.

We give such a protocol which is “more parallel” and

has a much more concise description than the previous

one. We now assume that one line has e on both of its

endpoints and i on the internal nodes, and every (free)

node is in state q0. The code is presented in Protocol 5.

The protocol works as follows. Free nodes are attached

below the nodes of the original line. When a node is

attached below an internal node i both become i1 and

when a node is attached below an endpoint e, both be-

come e1. Moreover, adjacent nodes of the replica con-

nect to each other and every such connection increases

their index. In fact, their index counts their degree. An

internal node of the replica can detach from the original

line only when it has degree 3, that is, when, apart from

Protocol 4 Line-Replication

Q = {L,L′, Lj
s, Lt

s, L
t′

s , L
t′′

s , L
t, Lt′ , Lt′′ , Lstart, i, i′, e, e′},

j ∈ {1, 2, . . . , 7}
δ:

// attaching nodes below the original line

(L, d), (q0, u), 0→ (L′, L1
s, 1)

(i, d), (q0, u), 0→ (i′, i′, 1)

(e, d), (q0, u), 0→ (e′, e′, 1)

// connecting attached nodes with each other

// horizonally to form the replica line

(i′, r), (i′, l), 0→ (i′, i′, 1)

(i′, r), (e′, l), 0→ (i′, e′, 1)

// the leader of the replica starts moving along its line

// activating any missing connections on the way

(L1
s, r), (i

′, l), 0→ (e′, L2
s, 1)

(L2
s, r), (i

′, l), · → (i′, L2
s, 1)

// once it reaches the right endpoint it starts to detach

// the replica from the original line by dectivating one

// after the other all vertical connections while moving

// to the left

(L2
s, r), (e

′, l), · → (i′, L3
s, 1)

(L3
s, u), (e′, d), 1→ (L4

s, e
′, 0)

(i′, r), (L4
s, l), 1→ (L5

s, e
′, 1)

(L5
s, u), (i′, d), 1→ (L6

s, i
′, 0)

(i′, r), (L6
s, l), 1→ (L5

s, i
′, 1)

// once it reaches the left endpoint it deactivates the

// last remaining vertical connection and the replica is

// separated from the original line

(e′, r), (L6
s, l), 1→ (L7

s, i
′, 1)

(L7
s, u), (L′, d), 1→ (Lt

s, L
t, 0)

// the leaders of the two lines restore the local states

// of all nodes to their default values to enable further

// replications

(xt, r), (i′, l), 1→ (e′, xt
′
, 1), x ∈ {L,Ls}

(xt
′
, r), (i′, l), 1→ (i′, xt

′
, 1), x ∈ {L,Ls}

(xt
′
, r), (e′, l), 1→ (xt

′′
, e, 1), x ∈ {L,Ls}

(i′, r), (xt
′′
, l), 1→ (xt

′′
, i, 1), x ∈ {L,Ls}

(e′, r), (Lt′′

s , l), 1→ (Ls, i, 1)

(e′, r), (Lt′′ , l), 1→ (Lstart, i, 1)

its vertical connection, it has also already become con-

nected to both a left and a right neighbor on the replica.

On the other hand, an endpoint detaches when it has

a single internal neighbor. It follows that the replica

can only detach when its length (counted in number of

horizontal active connections) is equal to that of the

original line. To see this, assume that a shorter line de-
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taches at some point. Clearly, such a line must have

at least one endpoint that corresponds to an internal

node ij of the replica. But this node is an endpoint of

the shorter line, so its degree is less than 3, i.e., j < 3,

and we conclude that it cannot have detached.

Protocol 5 No-Leader-Line-Replication

Q = {q0, e, e1, i, i1, i2, i3}
δ:

(i, d), (q0, u), 0→ (i1, i1, 1)

(e, d), (q0, u), 0→ (e1, e1, 1)

(ij , r), (ik, l), 0→ (ij+1, ik+1, 1) for all j, k ∈ {1, 2}
(i1, r), (e1, l), 0→ (i2, e2, 1)

(i2, r), (e1, l), 0→ (i3, e2, 1)

(e1, r), (i1, l), 0→ (e2, i2, 1)

(e1, r), (i2, l), 0→ (e2, i3, 1)

(i3, u), (i1, d), 1→ (i, i, 0)

(e2, u), (e1, d), 1→ (e, e, 0)

Lemma 2 There is a protocol (described above) that

when executed on n nodes (for all n with integer
√
n)

w.h.p. constructs a
√
n×√n square and terminates.

Proof From Lemma 1, when the leader in Counting-

on-a-Line protocol terminates, w.h.p. it has formed an

active line of length log n containing n in binary in the

r0 components of the nodes of the line. Then the leader

computes
√
n on its line and expands its line to make

its length
√
n. Next the leader creates the seed replica

by executing the routine described in Protocol 4. The

seed replica keeps creating new self-replicating repli-

cas. All these replications are performed by a routine

essentially equivalent to Protocol 4. Every replica is a

line of length
√
n and will be eventually attached to

the square-segment to form another row of the square.

First observe that the seed may only be attached to the

square, when the square has already obtained
√
n − 1

rows. This implies that replications do not cease be-

fore the square has been successfully constructed. Ad-

ditionally, any non-seed replica r can be attached to the

square-segment (whenever the l leader is in the state of

waiting for new attachments) independently of whether

r is in the middle of an incomplete replication. The

reason is that attachment occurs via the up ports of r

while replication takes place via the down ports of r.

If this occurs, then the nodes of the incomplete repli-

cation are simply released as free nodes. So, assume

that there are k nodes that are either free or part of

an incomplete replication. We only have to prove that

as long as k ≥ √n then eventually another replica has

to be formed. If not, then for an infinite number of

steps it holds that k ≥ √n. Moreover, every non-seed

replica in a finite number of steps becomes attached

to the square-segment and releases any nodes of an in-

complete replication. Thus, in a finite number of steps,

every one of the k ≥ √n nodes is either free or part

of an incomplete replication of the seed. Clearly, given

that the seed does not cease self-replication and given

that there are enough nodes to fill the
√
n replication

positions of the seed, in a finite number of steps (due

to fairness) all these positions should have been filled

and a replica should have been created. Thus, the as-

sumption that no further replication occurs violates the

fairness condition. ut

6.3 Simulating a TM

We now assume as given (from the discussion of the pre-

vious section) a
√
n ×√n square with a unique leader

L at the bottom left corner. However, keep in mind

that, in principle, the simulation described here can be-

gin before the construction of the
√
n × √n square is

complete. The only difference in this case, is that the

two processes are executed in parallel and if at some

point the TM needs more space, it has to wait until

it becomes available. The square may be viewed as a

TM-tape of length n traversed by the leader in a “zig-

zag” fashion, first moving to the right until the bottom

right corner is encountered, then one step up, then to

the left until the node above the bottom left corner is

encountered, then one step up again, then right, and

so on. To simplify this process, we may assume that

a preprocessing has marked appropriately the turning

points (see Figure 7(b)). The tape will be used to sim-

ulate a TM M of the form described in the Section 3.

The n pixels of the square are numbered according to

the above zig-zag process beginning from the bottom

left node, each node corresponding to one pixel. The

space available to the TM is exponential in the binary

representation of the input (i, n) (or (i,
√
n)), because

i ≤ n − 1 and therefore the length of its binary rep-

resentation |i| = O(log n), thus |(i, n)| = O(log n), but

the available space is Θ(n) = Θ(2log n) = Ω(2|(i,n)|)
(still it is linear in the size of the whole shape to be

constructed).

The protocol invokes n distinct simulations of M ,

one for each of the pixels i ∈ {0, 1, . . . , n−1} beginning

from i = 0 and every time incrementing i by one. The

leader maintains the current value of i in binary, in a

pixel-counter pixel stored in the O(log n) leftmost cells
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of the tape. 11 Recall that the leader knows n from the

procedures of the previous sections. So, we may assume

that the tape also holds in advance n and
√
n in bi-

nary (again in the leftmost cells). Initially pixel = 0

and the leader marks the 0th node, that is, the bottom

left corner of the square. Then it simulates M on input

(pixel,
√
n). When M decides, if its decision is accept,

the leader marks the node corresponding to pixel as on,

otherwise it marks it as off. Then the leader increments

pixel by one, marks the node corresponding to the new

value of pixel (which is the next node on the tape),

clears the tape from residues of the previous simula-

tion, invokes another simulation of M on the new value

of pixel, and marks the corresponding node as on or

off according to M ’s decision. The process stops when

pixel = n, in which case no further simulation is exe-

cuted. Alternatively, the leader can detect termination

by exploiting the fact that the last pixel to be exam-

ined is the one corresponding to the upper left or right

corner of the square (depending on whether
√
n is even

or odd), which can be detected.

When the above procedure ends, the leader starts

walking the tape in the opposite direction until it

reaches the bottom left corner. In the way, it passes

a release signal to every node it goes through. A node

enters the release phase exactly when the leader departs

from that node, apart from the bottom left corner which

enters the release phase when the leader arrives. When

two nodes that are both in the release phase interact,

if at least one of them is off and their connection is ac-

tive, they deactivate the connection. Clearly, the only

nodes that will remain connected in the solution are the

on nodes forming the desired connected 2-dimensional

shape that M computes. If we additionally require the

leader to know when all deactivations have completed

and terminate, then we can either (i) have the leader

deactivate them itself while moving backwards, also en-

suring that it does not remain on a node that will be

released, or (ii) have the leader repeatedly explore the

final connected shape until it detects that all potential

deactivations have occurred.

The following theorem states the lower bound im-

plied by the construction described in this section.

Theorem 3 Let L = (S1, S2, . . .) be a connected 2D

shape language, such that L is TM-computable in space

d2. Then there is a protocol (described above) that

w.h.p. constructs L. In particular, for all d ≥ 1, when-

11 When we refer to the tape, we mean the line produced
by traversing the square in a zig-zag way beginning from the
bottom left node, as described above. So the “leftmost”, here,
corresponds to the leftmost nodes of the line, e.g., the left part
of the bottom row of the square, and should not be confused
with the nodes on the leftmost column of the square.

ever the protocol is executed on a population of size

n = d2, w.h.p. it constructs Sd and terminates. In the

worst case, when Gd (that is, the shape of Sd) is a line

of length d, the waste is (d− 1)d = O(d2) = O(n).

Proof We have to show that for every n = d2, when the

protocol is executed on d2 nodes constructs Gd. From

Lemma 2, we have a subroutine that terminates having

w.h.p. constructed a d× d square with a unique leader

on the bottom left node. Next, the leader can easily

organize the square into a tape of length d2 that has

d stored in binary in its leftmost cells. Moreover, L is

computable, so, by Definition 3, there is a TM M that

when executed on the pixels of a d×d square constructs

Sd. The protocol simulates M on the pixels of such a

d × d square thus the result is Sd, which is an on/off

labeled d × d square the on pixels of which form Gd.

To perform the simulation, the protocol just feeds M

with (i, d) = (0, d), (1, d), . . . , (d2 − 1, d), one at a time,

simulates M on input (i, d) in space Θ(d2), marks the

corresponding pixel as on or off according to M ’s deci-

sion, and moves on to the next input. When i = d2, the

square contains Gd and the leader releases Gd by one

of the terminating approaches described above and ter-

minates. Observe that, given the guarantees of Lemma

2, the procedure described here is always correct. So,

the probability of failure of the whole protocol is just

the probability of failure of the initial counting sub-

routine, thus the protocol succeeds w.h.p.. Finally, the

waste is always equal to the number of pixels of the

d × d square that are not part of Gd. Observe now

that the waste can never be more than (d − 1)d, be-

cause if it was at least (d− 1)d + 1 = d2 − d + 1, then

the size of Gd (i.e., the useful space) would be at most

d2 − (d2 − d + 1) = d − 1. But then, connectivity of

Gd implies that max dimGd
≤ d− 1, which contradicts

the assumption that max dimGd
= d. Thus, the worst

possible waste is indeed (d− 1)d = O(d2) = O(n). No-

tice that here the waste of the protocol is equal to the

waste of the simulated TM: the protocol just provides

the maximum square that fits in the population and

the TM determines which nodes will be part of the fi-

nal shape and which will be thrown away as waste. ut

Remark 3 It is worth mentioning that if the system de-

signer knew n in advance, then he/she could prepro-

gram the nodes to simulate a TM that constructs a

specific shape of size n, for example the TM correspond-

ing to the Kolmogorov complexity of the shape (which

is in turn the Kolmogorov complexity of the desired bi-

nary pixel sequence (s0, s1, . . . , sn−1)). However, in this

work we consider systems in which n is not known in

advance, so the natural approach is to preprogram the

nodes with a TM that can work for all n. The protocol
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Fig. 7 (a) The
√
n×
√
n square has just been constructed. (b) The virtual tape on the square. The arrows show the direction

in which the tape is traversed from left to right (opposite arrows for the opposite direction are not shown). The two endpoints
of the tape are marked as black here and the turning points are marked as gray. These facilitate the leader to detect and choose
the right action, e.g., turn left twice (equivalently, follow the up port and then the left port) when it arrives at the bottom
right corner and wishes to continue on the second row. The indices of the pixels that the procedure assumes follow the order
of the tape, that is, the first position of the tape corresponds to pixel 0, the second to pixel 1,..., the last position of the tape
to pixel n− 1. (c) The shape, which looks like a star, has been formed on the square. It consists of the pixels that the TM M
decided to be on, which are colored black here. All other white pixels are the off pixels. The simulations have completed and
the leader has just reached the upper right corner and now it starts releasing the shape. To improve visibility, the edges that
will eventually be deactivated appear as dotted here. (d) Releasing is almost complete. The leader has reached the bottom left
corner and has updated all nodes to the release phase. Any connection involving at least one off node (i.e., a white one) will
be eventually deactivated.

must first compute n (w.h.p.) and then simulate the

TM on input n to construct a shape of the appropriate

size. For example, it could be a TM constructing a star,

as in Figure 7(c), such that the size of the star grows

as n grows.

Remark 4 The above results can be immediately mod-

ified to refer to patterns instead of shapes. In fact, ob-

serve that the
√
n × √n square that has been labeled

by off and on by the TM is already such a (computed)

0/1 pattern. The generic idea to extend this is to keep

the same constructor as above and simulate TMs that

for every pixel output a color from a set of colors C.
Then the resulting square with its nodes labeled from

C is the desired computed pattern and no releasing is

required in this case.
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6.4 Parallelizing the Simulations

We now present two approaches for parallelizing the

simulations, instead of executing them sequentially one

after the other.

6.4.1 Approach 1

One approach is to construct a 2D shape in 3D space,

by using the 3D version of our model (that is, the one

with 6 ports). The idea is to construct a square as before

and have each node in the square to grow its own line

in the third dimension to carry out the TM simulation

for that node (see Figure 8).

d

d

k x
y

z

Fig. 8 The constructed d × d square lies in dimensions x
and y. We can think as its “bottom left” corner, its leftmost
node in the figure. Every internal intersection point of the
square is also a node, but we have not drawn these nodes
here to improve visibility. “Below” it, in dimension z, are the
d2 lines of length k each. The protocol executes a distinct
simulation of the TM on each of these lines. In particular, on
the line attached to pixel i, for all 0 ≤ i ≤ d2−1, the protocol
simulates the TM on input (i, d).

6.4.2 Approach 2

We now show how to achieve a similar parallelism while

avoiding the use of a third dimension. Now the unique

leader that knows n, instead of constructing a square,

constructs a spanning line of length d2, say in the x

dimension. This line corresponds to a linear expansion

of the pixels of the d × d square of the previous con-

struction. Moreover, the leader creates a seed of length

k − 1 as before, to partition the rest of the nodes into

lines of length k−1, this time in the y dimension. Each

such line will be attached below one of the nodes of the

x-line. As before, when all y-lines have been attached,

the leader initializes their memories with (i, d), where

i is the index of the corresponding pixel (the index of

each pixel is now its distance from the left endpoint

of the x-line, beginning from 0 and ending at d2 − 1).

Then all simulations of M are executed in parallel and

eventually each one of them sets its x-pixel to either

on or off. When all simulations have ended, the leader

releases the auxiliary memories (i.e., the y-lines) and

then partitions the x-line into consecutive segments of

length d by placing appropriate marks on the boundary

nodes (see Figure 9(a)). Each segment corresponds to a

row of the d×d square to be constructed. In particular,

segment i ≥ 1 counting from left corresponds to row i

(rows being counted bottom-up). Observe that, in the

way the pixels have been indexed, segment 2 should

match with its upper side the upper side of segment

1 (that is, segment 2 should rotate 180◦), segment 3

should match with its lower side the lower side of seg-

ment 2, and so on. In general, if i is even, segment i

should match with its upper side to the upper side of

segment i− 1 and, if i is odd, segment i should match

with its lower side the lower side of segment i− 1. The

leader marks appropriately the nodes of each segment

to make them aware of the orientation that they should

have in the square. Moreover, it assigns a unique key-

marking to each segment so that segment i can easily

and locally detect segment i − 1. In particular, if i is

odd, it marks nodes i and i − 1 of the segment count-

ing from left to right (for segment 1 it only marks the

leftmost node), and, if i is even, it marks nodes i and

i− 1 of the segment counting from right to left. In this

manner, given that segments respect the correct orien-

tation and provided that attachment is only performed

when their endpoints match, every segment i uniquely

matches to segment i − 1 because the first mark of i

is uniquely aligned with the second mark of i − 1 (see

Figure 9(b)). Then the leader releases all segments, one

after the other, and it remains on the last segment. The

segments are free to move in the solution until they

meet their counterpart, and when this occurs the two

segments bind together. Eventually, the d× d square is

constructed and every pixel is in the correct position

(the position corresponding to its index counting in a

zig zag fashion as in the previous sections). The leader

periodically walks on its component to detect when it

has become equal to the desired square. When this oc-

curs, it initiates as before the releasing phase to isolate

the final connected shape consisting of the on pixels.

Remark 5 In all the above constructions the unique

leader assumption can be dropped in the price of sac-

rificing termination. In this case, the constructions be-

come stabilizing by the reinitialization technique, as in

[MS14], but should be carefully rewritten.

7 Conclusions and Further Research

There are several interesting open problems related to

the findings of this work. A possible refinement of the
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Fig. 9 (a) As in Figure 8, d2 lines of length k− 1 each, are pendent below the d2 pixels. The difference now is that the pixels
have been arranged linearly in dimension x. So, the whole construction is now 2-dimensional. The pixels have been partitioned
into equal segments of length d each (see the black vertical delimiters). The numbers represent the indices of the segments
counted from left to right. The arrows leaving above or below the segments, indicate which side of the segment should look
“downwards” in the square that will be constructed. For example, segment 1 can remain as it is, while segment 2 has to be
rotated so that its upper side attaches to the upper side of segment 1. Every segment has been marked by a black and a gray
node placed at an appropriate position. (b) The segments have been released in the solution, and now they have to gather
together in order to form the square. Each segment knows the correct orientation, i.e., whether it should use its up or down
ports, and also it can detect its predecessor row by exploiting the marking. In particular, it attaches to a row if its black mark
is above the gray mark of the other row when their orientation is correct and their endpoints are totally aligned.

model could be a distinction between the speed of the

scheduler and the internal operation speed of a compo-

nent. For example, a connected component will operate

in synchronous rounds, where in each round a node ob-

serves its neighborhood and its own state and updates

its state based on what it sees. Nodes can of course

update also the state of their local connections and

we may assume that a connection is formed/dropped

if both nodes agree on the decision (another possibility

is to allow a link change state if at least one of the nodes

say so). This distinction between two different “times”,

though ignored so far in the literature, is very natu-

ral because a connected component should operate at a

different speed than it takes for the scheduler to bring

two nodes (e.g., of different components, or an isolated

node and a node of some component) into contact.

It would be also interesting to consider for the first

time a hybrid model combining active mobility (that is,

mobility controlled by the protocol) and passive mo-

bility (that is, mobility controlled by the environment

as in this paper). For example, it could be a combina-

tion of the Nubot model and the model presented in

this work. Another very intriguing problem is to give

a proof, or strong experimental evidence, of whether

the unique leader assumption is necessary for solving

counting w.h.p. (see Section 5.2). If true, it would im-

ply that there is no analogue of Theorem 1 if all pro-

cesses are identical. A possibility left open then would

be to achieve high probability counting with f(n) lead-

ers. There is also work to be done w.r.t. analyzing the

running times of our protocols and our generic con-

structors and proposing more efficient solutions. Also

it is not yet clear whether the protocol of Section 5.1

is the fastest possible nor that its success probability

or the upper bound on n that it guarantees cannot be

improved; a proof would be useful. Moreover, it is not

obvious what is the class of shapes and patterns that

the TMs considered here compute. Of course, it was suf-

ficient as a first step to draw the analogy to such TMs

because it helped us establish that our model is quite

powerful. However, still we would like to have a char-

acterization that gives some more insight to the actual

shapes and patterns that the model can construct.

It would be also important to develop models (e.g.,

variations of the one proposed here) that take other

real physical considerations into account. In this work,

we have restricted attention on some geometric con-

straints. Other properties of interest could be weight,

mass, strength of bonds, rigid and elastic structure, col-

lisions, and the interplay of these with the interaction

pattern and the protocol. Moreover, in real applica-

tions mere shape construction will not be sufficient.

Typically, we will desire to output a shape/structure

that optimizes some global property, like energy and

strength, or that achieves a desired behavior in the given

physical environment. The latter also indicates that the

construction and the environment that the construction

inhabits cannot be studied in isolation. Instead, the two

will constantly affect each other, the optimal output

will highly depend on the optimality that the environ-

ment allows and also the environment may highly and

continuously affect the construction process. The ca-

pability of the environment to affect the construction

process suggests many robustness issues. Imagine an en-

vironment that can at any given time break an active

link with some (small) probability (a similar question
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was also posed to the author during his talk at PODC

’14 by some attendee, who the author would like to

thank). Under such a perpetual setback no construc-

tion can ever stabilize. However, we may still be able to

have a construction that constantly exists in the popu-

lation by evolving and self-replicating.

In the same spirit, it would be interesting to develop

routines that can rapidly reconstruct broken parts.

For example, imagine that a shape has stabilized but

a part of it detaches, all the connections of the part

become deactivated, and all its nodes become free. Can

we detect and reconstruct the broken part efficiently

(and without resetting the whole population and

repeating the construction from the beginning)? What

knowledge about the whole shape should the nodes

have to be able to reconstruct missing parts of it?

Finally, it would be interesting to study in depth the

shape self-replication problem in our model in 2 and 3

dimensions (possibly by adjusting known techniques on

replication [ABD+10,KSZ15,CDD+17,HPR15]). Some

of our preliminary results, show that replication of 2D

shapes in two dimensions is possible by “squaring” the

original shape, then copying one column at a time,

and shifting the copy of the column to the right to

create a replica to the right of the original shape.

It is worth mentioning that several related problems

have been studied in the literature of algorithmic self-

assembly, so future work in distributed network/shape

construction will greatly benefit from taking into

account those developments, trying to adjust them

where not directly applicable, and from highlighting

the differences and similarities between the various

related models originating from different research areas.
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