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Abstract  23 

The recently described Double Locus Sequence Typing (DLST) typing scheme implemented to 24 

deeply characterize the genetic profiles of 52 resistant environmental Pseudomonas aeruginosa 25 

isolates deriving from aquatic habitats of Greece. DLST scheme was able not only to assign an 26 

already known allelic profile to the majority of the isolates but also to recognize two new ones 27 

(ms217-190, ms217-191) with high discriminatory power. A third locus (oprD) was also used for 28 

the molecular typing, which has been found to be fundamental for the phylogenetic analysis of 29 

environmental isolates given the resulted increased discrimination between the isolates. 30 

Additionally, the circulation of acquired resistant mechanisms in the aquatic habitats according 31 

to their genetic profiles was proved to be more extent. Hereby, we suggest that the combination 32 

of the DLST to oprD-typing can discriminate phenotypically and genetically related 33 

environmental P. aeruginosa isolates providing reliable phylogenetic analysis at a local level. 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Introduction 46 

In recently published studies Pseudomonas aeruginosa has been introduced as a potential 47 

reservoir of resistance genes in a variety of aquatic habitats such as swimming pools, water-48 

tanks, mains waters [1], freshwaters and waste-waters [2, 3]. The bacterium besides its intrinsic 49 

antimicrobial resistance due to low outer membrane permeability (oprD Loss), chromosomally 50 

encoded AmpC, as well as an extensive efflux pump system, holds a prominent place in the 51 

development of acquired resistance mechanisms [4]. Understanding the genetic structure of 52 

resistant environmental P. aeruginosa isolates is of paramount importance in order to get insight 53 

into the genetic complexity and ecological versatility of this opportunistic pathogen [5, 6]. The 54 

extensive diversity of P. aeruginosa has given rise to the evolutionary study of the bacterium 55 

using various typing methods such as Multi Locus Variable number of tandem repeats Analysis 56 

(MLVA) [7], Pulsed Field Gel Electrophoresis (PFGE) [8, 9], Multi Locus Sequence Typing 57 

(MLST) [10, 11] and recently, Double Locus Sequence Typing (DLST) [12-15]. 58 

 MLST is one of the major ‘typing successes’ of the past decade. It has been widely used 59 

in studies focusing on microbial population structure and molecular typing of clinical isolates, 60 

representing specific phenotypic and genotypic characteristics of the bacterium [16-18; 61 

http://pubmlst.org/paeruginosa]. However, the application of MLST in environmental isolates is 62 

still quite limited and it is questionable whether this method is only suitable for occasional 63 

isolates or for the entire spectrum [10, 19]. Novel sequences have been identified for the seven 64 

housekeeping genes of environmental isolates and were submitted to the MLST database, but the 65 

new ST-types could not be identified by the initial protocol [3, 16, 20]. This led to modification 66 

of the protocol, which added extra time and cost to an already expensive and time-consuming 67 

method, while at the same time the sensitivity and the reproducibility were reduced [11, 21, 22]. 68 

http://pubmlst.org/paeruginosa
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Therefore, the development of alternative methods was required in order to facilitate 69 

epidemiological and phylogenetic studies and to enable faster and cost effective, large-scale 70 

bacterial genotypic analysis. 71 

 DLST is a recently developed typing scheme based on the partial sequencing of three 72 

highly variable loci, ms172, ms217 and oprD [12]. As the combination of two loci gave 73 

resolution results only slightly lower than the combination of the three loci, the authors proposed 74 

the use of only two loci in the DLST scheme for P. aeruginosa instead of three [12]. The new 75 

sequence-based scheme was compared to MLST in a large number of clinical and environmental 76 

P. aeruginosa isolates, proving that when epidemiological and phylogenetic analyses are 77 

conducted at a local level MLST can be replaced by DLST [13]. The online publicly available 78 

DLST database (http://www.dlst.org/Paeruginosa/) uses nucleotide sequences of the two loci 79 

(ms172 and ms217) to define the DLST type [12]. The method is new and thus there is not much 80 

published information regarding both clinical and environmental isolates of P. aeruginosa [12-81 

15]. Although in Basset’s et al work the oprD locus was not selected for the final typing scheme, 82 

it has been reported as one of the important genetic markers that can be used in population 83 

studies, not only due to its contribution to carbapenem resistance but also due to its high genetic 84 

diversity [23]. It has been used for typing and for phylogenetic purposes both in clinical and 85 

environmental strains in order to reveal additional evolutionary forces that contribute to the high 86 

clonality of P. aeruginosa population [24].  87 

 At the present study all three typing schemes: the DLST scheme as it has been proposed 88 

[12], the oprD-typing scheme, and the combination of the three loci (ms172, ms217 and oprD) 89 

were applied to environmental P. aeruginosa isolates collected from various water ecosystems in 90 

Greece. Using a bacterial population chosen as to represent various resistant profiles, different 91 

http://www.dlst.org/Paeruginosa/
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sampling sites and many water types, the aims of the study were a) to evaluate the application of 92 

the DLST method in the selected environmental P. aeruginosa isolates and to elucidate the 93 

predominant clone in these habitats, b) to study the distribution of the resistant phenotypes 94 

among the DLST-types and c) to estimate the discriminatory power of the novel DLST method 95 

when a third locus was added to the initial proposed scheme. 96 

 97 

Material and Methods 98 

Bacterial isolates 99 

A well-characterized repository of 245 confirmed P. aeruginosa strains isolated during the 100 

period 2011-2014 [official monitoring sampling schedule of the “Water Analysis Department, 101 

Central Public Health Laboratory (CPHL), Hellenic Center for Disease Control and Prevention 102 

(HCDCP)] [1] was used as the pool for the tested strains. A subset of fifty-eight (58/245; 23.7%) 103 

isolates was chosen by Simple Random Sampling method (SAS 9.3) so that the final number of 104 

the isolates was representative of the total population. Criteria for the collection of isolates were 105 

a) the type of water sample, b) the isolates’ geographical distribution, c) the isolates’ resistant 106 

phenotype and d) the year of the isolation. The characteristics of the 58 isolates are presented in 107 

detail in Table S1. Two reference strains were used as control strains: a) a clinical control 108 

provided by HPA/NEQAS (the HPA External Quality Control Scheme) and b) P. aeruginosa 109 

PAO1 (Collection of Institute Pasteur CIP104116, www.crbip.pasteur.fr). 110 

 111 

Isolation of genomic DNA  112 

http://www.crbip.pasteur.fr/
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P. aeruginosa genomic DNA was extracted using the Purelink Genomic DNA mini kit 113 

(Invitrogen, UK) following the manufacturer’s instructions after 48 hours growth in Nutrient 114 

broth and Nutrient agar. 115 

 116 

Antibiotic Susceptibility testing 117 

All isolates were tested for susceptibility to 14 commonly used antibiotics belonging to four 118 

different classes: non-carbapenem b-lactams: ceftazidime (CAZ; 30 μg), cefotaxime (CTX; 30 119 

μg), cefepime (FEP; 30 μg), piperacillin (PIP; 75 μg), ticarcillin (TIC; 75 μg), 120 

piperacillin/tazobactam (TZP; 100 μg/10  μg), ticarcllin/clavulanate (TCC; 75 μg/10 μg), 121 

aztreonam (ATM; 30 μg), carbapenems: imipenem (IPM; 10 μg) and meropenem (MEM; 10 μg), 122 

aminoglycosides: amikacin (AN; 30 μg), tobramycin (TOB; 30 μg) gentamicin (GM 30 μg), 123 

fluoroquinolones: ciprofloxacin (CIP; 5 μg) according to guidelines of the Clinical and 124 

Laboratory Standards Institute Guidelines 2011/M100S21 (http://clsi.org). The interpretation of 125 

the resistant phenotypes was performed according to published literature [25]. 126 

 127 

Detection of Extended Spectrum Beta-Lactamases (ESBLs) and Metallo Beta-Lactamases 128 

(MBLs) 129 

ESBL isolates were phenotypically detected by a modified Double Disk Synergy Test (DDST) 130 

with the addition of boronic acid to the antibiotic disks, as previously described [26]; MBL 131 

detection was performed according to Giakkoupi and et al [27]. Consequently, isolates 132 

phenotypically positive for ESBL and MBL production were subjected to PCR for the detection 133 

of 10 different ESBL and 6 MBL genes (PER-1, OXA-2, VEB-1A, GES-1A, TEM-A, SHV-A, 134 

CTX-M-groups 1,2, 8/25 and 9; VIM-2, IMP, SIM-1, GIM-1, SPM-1 and NDM). PCR 135 

http://en.wikipedia.org/wiki/ciprofloxacin
http://clsi.org/
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conditions and the specific primers used for the above genes were selected from published 136 

literature [28-33] (Table S2). 137 

 138 

Double Locus Sequence Typing (DLST) and oprD-typing  139 

DLST and oprD-typing were implemented in 52 isolates of P. aeruginosa and in the selected 140 

reference strains [12]. Six isolates with resistant phenotypes R3 {Loss of oprD} and MBL 141 

{Metallo b-lactamase} were excluded from the typing procedure, as these isolates did not 142 

express the oprD-gene. However, they were included in Table S1 in order to present their 143 

significant antibiotic profile. Briefly, DNA extracts were used for PCR amplification of the three 144 

loci, ms172, ms217 and oprD using specific primers (Table S2). Standard gel electrophoresis was 145 

applied and gels stained with Gel Red (Gel Red nucleic acid gel stain 10,000x in water; 146 

BIOTIUM) were examined under UV light for the presence of one visible clear band per PCR; as 147 

it was expected, the length of DNA sequences was variable among isolates. PCR products were 148 

purified (NucleoSpin, Gel and PCR clean-up, MACHEREY-NAGEL) and were sequenced by 149 

CeMIA SA (http://cemia.eu/sangersequencing.html) using the amplification primers for the three 150 

loci (Table S2). The procedure was repeated a second time when the sequence quality was too 151 

low or no sequence was obtained. If no sequence of good quality was obtained after the second 152 

step, the result for the isolate was considered a null allele [12]. 153 

 154 

Analysis of the sequenced data 155 

All chromatograms were imported, edited and trimmed in Sequencer 5.3 156 

(https://www.genecodes.com) using the start signatures of the trimmed pattern for the three loci, 157 

ms172, ms217 and oprD, according to the protocol [12]. Trimmed sequences were subjected to 158 

BLAST for the identification of the appropriate product and then to the DLST database 159 

https://www.genecodes.com/
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(http://www.dlst.org/Paeruginosa/) for allele assignment of the genetic markers ms172 and 160 

ms217; if there was no identification for the submitted locus, the procedure for submission new 161 

alleles in the DLST data base was followed and a new locus number was assigned; the oprD 162 

sequences were searched against the NCBI data base and compared to the oprD sequence of the 163 

reference strain PAO1.  164 

 165 

Molecular epidemiological analysis 166 

• eBURST analysis and minimum spanning trees construction 167 

DLST markers are considered highly stable in the case of local phylogenetic studies [12, 34]; 168 

however, during a long-term investigation they probably undergo genetic changes [34]. In 169 

studies, as the present one, it is important to use the suitable model for analyzing sequences 170 

obtained from environmental P. aeruginosa isolates, deriving from a specific region in a three-171 

year period [34, 35]. The Global optimal eBURST analysis [35; 172 

http://www.phyloviz.net/goeburst/ accessed on 01/08/2016], proposed in the literature for 173 

analysis of DLST data of S. aureus isolates [34, 36], was chosen and the same rules and 174 

definitions in analysis were implemented.  175 

 176 

• Maximum likelihood phylogenetic analysis of the oprD 177 

Maximum likelihood (ML) phylogeny was obtained with RaxML-HCP2 v8 [37] using 178 

GTR+I+G that was identified as the best fitted model using jModelTest2 [38]. 179 

 180 

Index of diversity and concordance of the typing methods 181 

http://www.dlst.org/Paeruginosa/
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The index of diversity and the degree of congruence of the three typing schemes used were 182 

calculated using an online tool (http://www.comparingpartitions.info/ accessed on 01/09/2016). 183 

The discriminatory power of the typing methods described in the current work was evaluated 184 

using the Simpson’s index of diversity, where an index >0.90 is considered ideal indicating that 185 

the typing method is able to distinguish each isolate from all others. The concordance between 186 

the methods was estimated using the Wallace and Rand coefficients; the Rand index (R) 187 

estimates the proportion of agreement taking into account that the agreement between the 188 

partitions could arise by chance; the Wallace coefficient (W) estimates the probability that two 189 

isolates grouped in the same type by one method will be grouped in the same type using another 190 

typing technique [39].  191 

 192 

Results 193 

Antimicrobial susceptibility profiles and detection of beta-lactamase-producers 194 

The fifty-eight (58) isolates presented various resistant phenotypes (Fig. 1a). A substantial 195 

portion of the resistant isolates (9/20; 45%) was characterized as Extended Spectrum Beta 196 

Lactamases (ESBL) producers according to DDS-test (synergy between amoxicillin+clavunalic 197 

acid (AMC) and ceftazidime (CAZ) or cefotaxime (CTX)), presenting multi-drug resistant 198 

patterns (e.g. isolates 121, 174, 299, Table S1). Two isolates (266, 267, Table S1) presented the 199 

characteristic synergy between meropenem (MEM)/imipenem (IPM) and the disk with EDTA, 200 

and were characterized as Metallo Beta Lactamases (MBL) producers (2/20; 10%). The 9 ESBL 201 

and the 2 MBL producers were screened for the presence of b- lactamase genes. Out of the ten 202 

ESBL genes tested, the CTX-M-group 9 was detected in only one isolate (Table S1). None of the 203 

remaining ESBL genes was detected in any of the 9 isolates tested with the primer sets used in 204 

this study. The 2 phenotypically MBL positive isolates did not produce positive results for the 6 205 

http://www.comparingpartitions.info/
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MBL genes tested. The resistant phenotypes were distributed across all geographical areas (Fig. 206 

1b), while the Peloponnese presented the highest percentage of all the resistant profiles. ESBL 207 

isolates appeared in three geographically unrelated areas of Greece together with other resistant 208 

mechanisms (Fig. 1b).  209 

 210 

DLST analysis  211 

Fifty-four isolates (including the reference strains) were successfully typed implementing the 212 

DLST scheme. DLST was able to assign an already known allele number for 40 isolates while 213 

for 12 isolates two new loci were recognized for the ms217 marker (allele 190 and 191, 214 

http://www.dlst.org/Paeruginosa/ms217.txt). The phylogenetic analysis revealed 27 types with 215 

DLST-type 90-190 (6/54; 11.1%) being the predominant one; the second new allele 191 (3/54; 216 

5.5%) was combined with three different ms172 loci (1-191, 83-191, 10-191). Five out of the 54 217 

isolates (9.3%) presented the DLST-type 90-139; 3/54 isolates had the DLST-types 18-54, 19-218 

33, 20-105 and 55-58 respectively (5.6% each), while the rest 28 isolates were distributed among 219 

8 different DLST-types including 2 isolates each (16/54; 29.6% in total) and 12 isolates (12/54; 220 

22.22%) presenting unique DLST-types, including the reference strains: NEQAS: 32-39 and 221 

PAO1: 16-4 (Fig. 2a; Table S1). The predominant DLST-type (90-190) was present in wild-type 222 

isolates as well as in isolates with resistant phenotypes R1 deriving from Northern and Central 223 

Greece and the Ionian islands present in a variety of water samples. ESBL isolates were 224 

distributed among 7 DLST-types; 5 of them (20-105, 90-139, 55-58 and 19-162) co-existed with 225 

wild-type, non-wild-type and R1 isolates recovered mainly from the Peloponnese with no 226 

significant correlation to the types of water samples (Fig. 2a; Table S1). The allele 190 combined 227 

with other ms172 loci was also present in Attica and the Peloponnese in ESBL producers. The 228 

new allele 191 for the ms217 gene was detected exclusively in isolates deriving from thermal 229 

http://www.dlst.org/Paeruginosa/ms217.txt


 

11 

water samples from Central Greece presenting wild-type and ESBL resistant phenotypes 230 

including the CTX-M-group 9 isolate (Fig. 2b). Finally, the R3 resistant phenotype, which was 231 

present exclusively in mains water samples mainly from the Peloponnese, presented unique 232 

DLST-types (21-96, 19-91, 59-21) (Table S1). 233 

 234 

oprD-typing  235 

oprD locus was detected in 54 isolates (including the reference strains). BLAST analysis of the 236 

54 oprD genes distributed the isolates in 9 groups (G1-G9), with two groups, 1 and 4, including 237 

the majority of the isolates, with 21 and 8 isolates, respectively. BLAST search against the NCBI 238 

data base showed that the coding sequence of the group 1-oprD gene was identical to P. 239 

aeruginosa strain PA121617 (GenBank accession no. CP016214), while the coding sequence of 240 

the group 4-oprD gene was identical to P. aeruginosa strain MTB-1 (GenBank accession no. 241 

CP006853). The reference strain NEQAS was identical to P. aeruginosa strain ATCC 27853 242 

(GenBank accession no. CP015117), while the coding sequence of PAO1’s oprD gene was 243 

identical to P. aeruginosa genome assembly PAO1OR, chromosome:I (GenBank accession no. 244 

LN871187), as expected. The above results and the coding sequences of the rest oprD-groups are 245 

shown in Table S1.The ML phylogeny revealed five major clusters -A,B,C, D and H- and cluster 246 

E with the reference strain PAO1 as outgroup; only the cluster A was consistent with the initial 247 

results containing all the group 1-oprD isolates, except one (167), which presented various 248 

Single Nucleotide Polymorphisms (SNPs) comparing to the major group; it was located at a 249 

distance from the major group and it was consequently considered as a singleton (C2); the 250 

reference strain NEQAS was located in Cluster A. Cluster B was divided into five subgroups 251 

where the B3 subgroup was separated from B2 and B4 with three and two SNPs respectively 252 

(isolate 137). Cluster C was separated into four sub-clusters consisted of three different oprD-253 
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groups; finally, Cluster D was divided into four sub-clusters where the D2 subgroup was 254 

separated from subgroup D3 with two SNPs (isolate 225). Interestingly, group 3-oprD, as 255 

defined by ML analysis, was located in two different clusters (Clusters B1 and H) very distant 256 

from each other, while the rest oprD-groups tended to cluster together into small subgroups. The 257 

reference strain PAO1 was located separately from all other clusters as expected (Fig. 3a). The 258 

major oprD group-1 (cluster A) was present in all geographical sampling sites, water sample 259 

types and resistant phenotypes. Isolates in G4 (clusters B2, B3, B4) derived from four different 260 

water sample types mainly from sampling sites of the Peloponnese presenting wild-type and 261 

ESBL resistant isolates; group-3 oprD (clusters B1 and H) was present mainly in resistant and 262 

wild-type isolates deriving from mains water samples in the Attica region. For the remaining 263 

groups there was no significant correlation to the three parameters considered (geographical 264 

areas, water sample types and resistant phenotypes) (Fig. 3). 265 

 266 

DLST_n_oprD  267 

The three loci (ms172, ms217, oprD) were combined in order to examine the impact of the third 268 

loci on the discriminatory power. The DLST_n_oprD analysis revealed 43 types with a) the 269 

combination 90-190-A being the predominant one with 4 isolates, b) followed by the 270 

combination 19-33-B2 with three isolates. The e-burst analysis for the DLST and DLST_n_oprD 271 

types showed that the use of the oprD loci increased the discrimination between genetically 272 

related isolates and their phylogenetic distance (Fig. 4). DLST-types 90-139 and 90-190 were 273 

divided into three smaller clusters representing three different oprD groups. Isolates with the new 274 

allele 191 were clustered phylogenetically distant as they presented various ms172 and oprD 275 

alleles. Three isolates (174, 225, 314), which belonged to 20-105 DLST-type, now constitute 276 

three different combinations, 20-105-A, 20-105-D2 and 20-105-B4, according to their oprD 277 
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sequence (Fig. 4). Wild-type and Non-wild-type isolates tended to appear together as it was 278 

expected, while R1 isolates and ESBL producers were scattered throughout the phylogenetic 279 

tree; the same distribution was observed when the criterion was the sampling site (Fig. 4).  280 

 281 

Discriminatory power and Congruence of the typing schemes 282 

The index of discrimination, the AR and AW coefficients of congruence between DLST, oprD-283 

typing and DLST_n_oprD are shown in Table 1. The combination of the three genes increased 284 

the discrimination between the isolates tested as it was expected, while the oprD-typing 285 

presented the lowest discrimination power. The AR coefficient when DLST and DLST_n_oprD 286 

were compared was equal to 0.491, which indicates a satisfactory match between partitions. The 287 

coefficient was lower when oprD-typing was compared to DLST or to DLST_n_oprD. The fact 288 

that the AW for DLST_n_oprD ↔ DLST= 1.000 and DLST ↔ DLST_n_oprD=0.326 means 289 

that if 2 strains are in the same cluster by DLST_n_oprD, they have 100% chance of having the 290 

same DLST type, while conversely, the chance is only about 33%. This indicates that at least in 291 

the population tested, the DLST_n_oprD-typing was more discriminatory than the DLST. This 292 

was also enhanced by the AW coefficients of the {DLST_n_oprD ↔ oprD-typing vs oprD-293 

typing ↔ DLST_n_oprD} and {DLST ↔ oprD-typing vs oprD-typing ↔DLST} combinations 294 

(Table 1).  295 

 296 

Discussion 297 

To the best of our knowledge, this is the first time that an attempt has been made to elucidate the 298 

predominant P. aeruginosa clones in Greek aquatic environments using the new DLST scheme 299 

as proposed and combined with oprD-typing. The study also sought to consider the distribution 300 
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of the resistant phenotypes among the DLST-types; the discriminatory power of the three typing 301 

schemes was calculated and evaluated. The fact that the resistant P. aeruginosa isolates in such 302 

diverse aquatic environments are shown at a proportion as high as 34%, is considered worrying 303 

and surveillance of such resistant isolates is needed [40]. At the selected population tested, the 304 

main intrinsic resistant mechanism observed was the R1 phenotype which corresponds to AmpC, 305 

partially/fully derepressed with resistance to aztreonam (Table S1); high resistance to ATM has 306 

been previously reported in environmental isolates deriving from soil [41] or from hospital 307 

waste-water treatment [42], but never in P. aeruginosa isolates deriving from aquatic 308 

ecosystems. The phenotypically ESBL and MBL positive isolates did not produce positive 309 

results when tested molecularly, except in one isolate where the CTX-M group 9 β-lactamase 310 

was present; however there is published information highlighting the emergence of ESBL genes 311 

in Greek aquatic environments [1]. P. aeruginosa porin-D is a 443-amino-acid protein that 312 

facilitates the uptake of basic antibiotics, imipenem, and meropenem across the outer membrane 313 

[43]. It has been extensively reported that inactivation of porin-D due to various mutations 314 

(premature stop codons, insertion / deletion or disruption of sequences) leads to the development 315 

of resistance to imipenem and sometimes to meropenem and doripenem [18, 24, 43, 44]. 316 

Resistance to carbapenems can also arise from the production of MBLs but it is not as common 317 

mechanism as the mutation-driven resistance [43]; nevertheless it is possible that both 318 

mechanisms may coexist in a population. In our strain collection the 6 non-typeable isolates by 319 

oprD-typing presented the R3 phenotype (Loss of porin-D, 4 isolates:171,172, 263, 289) and the 320 

production of MBLs (metallo-b-lactamases, 2 isolates: 266, 267) (Table S1). However, further 321 

studies are needed to detect modifications in the protein-D and to evaluate the role of this porin 322 

in the carbapenem resistance in environmental P. aeruginosa isolates. The NCBI search revealed 323 
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that the majority of the oprD sequences were highly conserved and identical to P. aeruginosa 324 

strain PA121617, which were present in wild-type isolates and in ESBL producers, as well. The 325 

group 4-oprD sequence was identical to P. aeruginosa strain MTB-1, a strain which was reported 326 

to co-exist with Sphingomonas spp MM-1 in environments polluted by γ-HCH, an organic 327 

insecticide that has caused serious environmental problems including surface and groundwater in 328 

Greece [45, 46]. The fact that the group 4-oprD isolates derived from various habitats presenting 329 

wild-type and ESBL resistance phenotype (Table S1; Fig. 2A) requires further investigation 330 

including more water samples from the specific habitats and detailed sequencing of the oprD 331 

gene. Phylogenetic analysis was able to divide the initial 9 oprD-groups into 17 types 332 

distinguishing some isolates with various SNPs (Fig. 2b); however it was characterized by low 333 

discriminatory power and congruence compared to DLST and when combined with the DLST at 334 

the DLST_n_oprD analysis (Table 1).  335 

 DLST is a new and promising typing scheme, which was proposed in order to conduct 336 

epidemiological studies at a local level with low cost in a short time. It has been proved that 337 

DLST produces stable results even when it is applied on isolates recovered during studies with 338 

durations of months or even years [12]. At the present study the method was tested in 52 P. 339 

aeruginosa isolates recovered on a period of three years from various aquatic habitats of Greece 340 

representing a variety of resistant profiles. eBURST analysis of DLST data identified 14 DLST-341 

types and 15 singletons within 52 isolates indicating that P. aeruginosa is a non-clonal 342 

population undergoing significant recombination events which is consistent to a number of 343 

papers in the literature [5, 17, 21]. It was characterized by high discriminatory power, while two 344 

new ms217 loci (190 and 191) were recognized and subjected to DLST data base (Table S1, Fig. 345 

2b). The majority of the isolates belonged to a few dominant clones widespread among resistant 346 
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phenotypes such as DLST-type 90-190 where wild-type, atm-resistant isolates and ESBL 347 

producers hold the same allelic profile or the types 1-191, 83-191 and 10-191 with the new allele 348 

ms217-191, which were present in two wild-type isolates and in the CTX-M-group 9 isolate (Fig. 349 

2b) The latter outcomes suggest that, the circulation of acquired resistant mechanisms in these 350 

environments could be driven by their genetic profiles, and are enhanced by the following results 351 

where the combination of the three genetic markers is presented.  352 

 To increase the discriminatory power of the DLST method, a third polymorphic marker 353 

such as oprD was used. The number of types and the discrimination was increased where the 354 

isolates were clustered into 8 groups and 35 singletons (Fig. 4; Table 1). Although in Basset’s et 355 

al work [12] the oprD gene was removed from the final typing scheme, when P. aeruginosa 356 

environmental isolates are analyzed the addition of a third locus is proved to be useful for 357 

confirming or rejecting a link between pairs of isolates. Genetically closely related isolates were 358 

distinguishable by one or more events in their oprD sequence (Fig. 4), while the distribution of 359 

the resistant mechanisms among various genetic profiles was more extent.  360 

 It has been previously stated that even a single polymorphism can influence the 361 

bacterium’s fitness from a drug resistance point of view [21], while there is still a large number 362 

of intrinsic resistant mechanisms in P. aeruginosa genome that have not been described [5]. The 363 

results of the present study indicate that the variety of the DLST and DLST_n_oprD genetic 364 

profiles can act as a driving force in this extensive distribution of the resistant phenotypes in the 365 

aquatic sampling sites. This hypothesis certainly needs further study; perhaps, Whole Genome 366 

Sequencing of some resistant isolates will provide significant information regarding the 367 

relationship of the three genetic markers (ms172, ms217 and oprD) to the development and 368 

transmission of intrinsic and acquired resistant mechanisms.  369 
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 Understanding the population structure and the genetic relatedness among P. aeruginosa 370 

strains present in natural habitats is crucial for gaining insight into the ecology and wide 371 

distribution of this bacterium. The development of a typing method which will provide reliable 372 

results in a short time at low cost is essential; papers in the literature have dealt with this issue 373 

widely [19, 24, 47]. In general it is difficult to find the optimal genetic markers establishing a 374 

real phylogenetic history; ideally SNPs that are relatively rare and scattered through the genome 375 

could be more informative compared to other markers [21]. However, it seems that combined 376 

sequence based techniques support a polyphasic approach to reveal extensive variability in some 377 

genes or in a whole population [24]. In the present study, implementing a combination of the 378 

new DLST typing scheme to a typing method using a more stable genetic marker such as oprD 379 

was proved to be reliable and informative as recent events of transmission were distinguished 380 

and clusters of isolates belonging to the same clone were discriminated. The congruence 381 

calculations for the three typing schemes indicated that at least in the population tested the 382 

DLST_n_oprD-typing was more discriminatory than the DLST method. The dissemination of 383 

new mechanisms of resistance in a variety of environmental P. aeruginosa genetic profiles was 384 

observed with wild-type and resistant isolates presenting the same DLST and DLST_n_oprD 385 

types. 386 

 In two recently published studies regarding the typing of P. aeruginosa isolates recovered 387 

from the ICUs and the hospital environment, additional value on this novel typing scheme is 388 

added; the method is applied in a large bacterial population combined to Whole Genome 389 

Sequencing for epidemiological purposes highlighting the epidemic DLST-type in a short time 390 

[14, 15]; however, still there is not available any experimental work regarding exclusively 391 

aquatic P. aeruginosa isolates or isolates presenting significant antimicrobial resistance.  392 
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 This work strongly suggests that the DLST scheme is valuable in typing a carefully 393 

chosen sub-population of aquatic P. aeruginosa isolates, reducing significantly the time and the 394 

cost of the molecular analysis and providing a reliable phylogenetic study at a local level. The 395 

addition of the third loci (oprD) should be taken into consideration when the phylogenetic 396 

analysis is combined with epidemiological data such as antimicrobial sensitivity. These findings, 397 

hopefully, will have considerable impact on the study of the origin, the antimicrobial resistance 398 

and the genetic characteristics of this well-established bacterium in the Greek aquifer.  399 
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Table 1: Index of discrimination (Simpson's ID), AR (Adjusted Rand) and AW (Adjusted Wallace) 

coefficients between DLST, oprD and DLST_n_oprD (95%CI) 

Simpson's 
ID  

AR AW

DLST oprD-typing DLST oprD-typing DLST_n_oprD

DLST 0.966 0.204 
(0.000-0.423)

0.326 
(0.140-0.511)

oprD-typing 0.839 0.062 
(0.000-0.157)

0.037 
(0.000-0.100)

0.059 
(0.000-0.120)

DLST_n_oprD 0.989 0.491 
(0.230-0.780)

0.111 
(0.000-0.211)

1.000 
(1.000-1.000)

1.000 
(1.000-1.000)
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