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Abstract		31	

The	hyperarid	Namib	Desert	is	a	coastal	desert	in	southwestern	Africa	and	one	of	the	oldest	and	driest	32	

deserts	on	the	planet.	It	is	characterized	by	a	west/east	increasing	precipitation	gradient	and	by	regular	33	

coastal	 fog	events	(extending	up	to	75km	inland)	that	can	also	provide	soil	moisture.	 In	this	study,	we	34	

evaluated	the	role	of	this	natural	aridity	and	xeric	gradient	on	edaphic	microbial	community	structure	and	35	

function	in	the	Namib	Desert.	A	total	of	80	individual	soil	samples	were	collected	at	10	km	intervals	along	36	

a	 190	 km	 transect	 from	 the	 fog-dominated	 western	 coastal	 region	 to	 the	 eastern	 desert	 boundary.	37	

Seventeen	physicochemical	parameters	were	measured	for	each	soil	sample.	Soil	parameters	reflected	38	

the	 three	a	 priori	 defined	 climatic/xeric	 zones	 along	 the	 transect	 (‘Fog’,	 ‘Low	 Rain’,	 and	 ‘High	 Rain’).	39	

Microbial	community	structures	were	characterized	by	T-RFLP	fingerprinting	and	shotgun	metaviromics	40	

and	their	functional	capacities	were	determined	by	extracellular	enzyme	activity	assays.	Both	microbial	41	

community	 structures	 and	 activities	 differed	 significantly	 between	 the	 three	 xeric	 zones.	 The	 deep	42	

sequencing	of	surface	soil	metavirome	 libraries	also	showed	shifts	 in	viral	composition	along	the	xeric	43	

transect.	While	bacterial	community	assembly	was	influenced	by	soil	chemistry	and	stochasticity	along	44	

the	transect,	variations	in	community	‘function’	were	apparently	tuned	by	xeric	stress.	45	

	46	

Key	words:	Aridity	gradient	/	xeric	stress	/	Edaphic	desert	microbial	communities	/	extracellular	enzyme	47	

activities	/	dryland	48	

49	



4	
	

1.	Introduction	50	

Deserts	cover	more	than	one-third	of	the	Earth's	total	 land	surface,	representing	the	largest	terrestrial	51	

ecosystem	 [1].	 Worldwide,	 5.2	 billion	 hectares	 of	 desert	 lands	 are	 used	 for	 agriculture,	 of	 which	 an	52	

estimated	69%	are	either	degraded	or	undergoing	desertification	as	a	consequence	of	climatic	variation	53	

and	intensive	human	activity	[2].	Because	desert	environments	contain	a	limited	range	of	higher	plants	54	

and	animals,	soil	microbial	communities	are	considered	to	be	the	most	productive	components	of	these	55	

ecosystems	as	well	as	the	dominant	drivers	of	biogeochemical	cycling	[3,4].		56	

Compared	to	more	productive	edaphic	ecosystems,	desert	soil	microbial	communities	display	a	generally	57	

lower	diversity	 [5-7],	which	may	 limit	 their	 resistance	and	 resilience	 to	environmental	 changes	 [8].	As	58	

such,	deserts	systems	may	be	particularly	vulnerable	to	disturbances	such	as	those	linked	to	global	climate	59	

change	 [9].	Global	 change	effects	are	predicted	 to	 induce	significant	variability	 in	annual	precipitation	60	

levels	in	hot	deserts,	both	in	time	and	intensity	[10].	Such	changes	will	substantially	impact	the	structures	61	

and	functions	of	indigenous	microbial	communities,	as	water	availability	is	thought	to	be	the	main	factor	62	

limiting	biological	processes	 in	arid	ecosystems.	This	observation	has	 led	 to	 the	 theoretical	 ‘microbial-63	

centric’	TTRP	(trigger-transfer-reserve-pulse)	framework	[11],	where	precipitation	events	act	as	a	trigger	64	

to	 transfer	nutrients	 to	 soil	microbial	 communities	 (the	 reserve)	and	 lead	 to	pulses	 in	biogeochemical	65	

activities	(e.g.,	C/N	dynamics	[11]).	66	

The	Namib	Desert	of	southwestern	Africa	 is	among	the	oldest	and	driest	deserts	on	the	planet	and	 its	67	

central	section	has	sustained	hyperarid	conditions	for	at	least	the	last	5	million	years	[12].	Rainfall	in	the	68	

Namib	Desert	is	spatially	and	temporally	highly	variable,	usually	of	low	intensity,	but	increasing	gradually	69	

from	 the	 coast	 inland	 (mean	 values	 of	 15	 to	 185	mm	per	 annum	 for	 the	western	 and	eastern	desert	70	

margins,	respectively;	Figure	1	[13,	14]).	Due	to	the	cold	Benguela	Atlantic	current,	the	coast	of	the	Namib	71	

Desert	is	also	influenced	by	regular	fog	events	that	can	reach	as	far	as	75	km	inland	and	provide	up	to	183	72	

mm	(mean	annual)	moisture	(Figure	1;	[13,	14]).	This	climatic	specificity	has	led	to	a	high	level	of	faunal	73	
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and	 floral	endemism	 in	 the	Namib	Desert,	 including	 fog-harvesting	beetles	 (Onymacris,	Stenocara	and	74	

Physasterna	spp)	[15,	16]	and	dune	grasses	(S.	sabulicola)	[17].		75	

The	contribution	of	these	two	water	sources	(i.e.	rainfall	and	fog)	has	led	to	a	well-defined	gradient	of	76	

xeric	stress	across	the	Namib	Desert	(Figure	1)	[13,	14].	Moisture	source	has	previously	been	shown	to	77	

influence	Namib	Desert	hypolithic	microbial	 community	structures,	assembly	and	colonization	 [18-20],	78	

but	studies	on	the	effect	of	water/moisture	source	on	Namib	Desert	edaphic	community	diversity	and	79	

function	are	limited.	A	preliminary	transect	survey	across	the	Namib	Desert	edaphic	has	indicated	that	80	

bacterial	community	structures	are	influenced	by	water	source	(i.e.	fog	vs	rain;	[18]),	and	a	more	recent	81	

microcosm	experiment	has	established	that	water	regime	history	is	a	critical	factor	in	driving	bacterial	and	82	

fungal	community	structures	as	well	as	their	adaptation	to	water	stresses	[21].		83	

In	this	study,	we	established	a	high	resolution	190	km	west–east	transect	across	the	Namib	Desert.	Twenty	84	

sampling	 sites	were	 established	 at	 10	 km	 intervals.	 Based	 on	 a	 large	 body	 of	 long-term	 climatic	 data	85	

[13,14,22,23],	we	defined	three	distinct	‘xeric	zones’:	a	fog-dominated	coastal	zone	(the	‘fog	zone’;	sites	86	

1	to	6),	an	intermediate	‘low	rainfall’	zone	(the	‘Low	Rain’	zone;	sites	7	to	14),	and	an	inland	region	of	87	

higher	rainfall	(the	‘High	Rain’	zone;	sites	15	to	20)	(Figure	1).	Our	working	hypothesis	is	that	climate	and	88	

soil	 parameters	 across	 the	 xeric	 gradient	 should	 correlate	 with	 Namib	 Desert	 edaphic	 microbial	89	

community	structures,	as	assessed	by	T-RFLP	fingerprinting	[24]	and	shotgun	metaviromics	[25].	Similarly,	90	

gross	 microbial	 functional	 capacities,	 as	 measured	 by	 extracellular	 enzymatic	 assays	 [21],	 were	 also	91	

expected	to	respond	quantitatively	to	water	availability	from	the	coast	to	the	inland	desert	margin.	92	

93	
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2.	Materials	and	methods	94	

2.1.	Sampling	sites,	soil	sampling	strategy	and	storage	95	

Twenty	sites	were	sampled	at	10	km	spacing	across	a	west-east	transect	in	the	central	Namib	Desert	on	96	

the	22nd	and	23rd	of	April	2013,	just	before	the	beginning	of	the	rain	season.	The	transect	spanned	the	97	

three	xeric	zones	defined	by	long-term	climate	data	(Figure	1;	[13,	14,	22]:	the	‘Fog’	zone	(F;	sites	1	to	6;	98	

15-40	mm	precipitation	per	annum),	the	‘Low	Rain’	zone	(LR;	sites	7	to	14;	55-100	mm	precipitation	per	99	

annum),	 and	 the	 ‘High	 Rain’	 zone	 (HR;	 sites	 15	 to	 20;	 101-185	mm	precipitation	 per	 annum).	 Recent	100	

meteorological	 data	 obtained	 from	 two	 weather	 stations	 of	 the	 SASSCAL	 network	101	

(http://www.sasscalweathernet.org/)	 located	 in	 the	 Fog	 (Kleinberg	 station)	 and	 the	High	 Rain	 (Ganab	102	

station)	zones	of	the	transect	and	operational	in	2013,	showed	that	April	2013	was	dry	(1.4	mm	and	0.2	103	

mm	precipitation,	respectively).	Furthermore,	both	stations	underwent	a	precipitation	event	on	the	30th	104	

of	March	2013	(i.e.	approximately	three	weeks	before	our	sampling	expedition	took	place)	of	16.2	mm	105	

and	 15.7	mm,	 respectively.	 From	 April	 2012	 until	 April	 2013,	 both	 stations	 presented	 similar	 annual	106	

averaged	temperatures	(34.2°C	[±	3.9]	and	34.6°C	[±	3.5],	respectively)	and	total	annual	precipitation	(24.8	107	

mm	and	28.6	mm,	respectively).	Unfortunately,	the	Vogelfederberg	weather	station	which	is	located	in	108	

the	Low	Rain	zone	only	became	operational	in	2014.	Nevertheless,	overall,	these	data	indicate	that	the	109	

general	 climatic	 conditions	were	 likely	 similar	 for	 the	 20	 sampling	 sites	 that	were	 sampled	 along	 the	110	

transect.	111	

At	each	site,	four	true	replicate	soil	samples	were	collected	100	m	apart,	resulting	in	a	total	of	80	individual	112	

samples.	Vegetation	and	rocks	larger	than	1	cm	were	avoided	during	collection,	as	well	as	disturbed	areas	113	

such	as	footprints.	Surface	soils	(0	to	5	cm)	were	aseptically	collected	from	within	a	1	m2	quadrat	 into	114	

separate	sterile	Whirl-Pak®	plastic	bags	(Nasco,	Fort	Atkinson,	U.S.A.).	Soil	samples	were	stored	at	4°C	for	115	

soil	physicochemical	analyses,	at	−80°C	for	molecular	analysis	and	at	−20°C	for	enzymatic	activity	assays.	116	

	117	
2.2.	Soil	physicochemical	analyses	118	
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Seventeen	physicochemical	properties	were	measured	for	each	of	the	80	soil	samples	(Supplementary	119	

Table	S1).	 Soils	were	2mm-sieved	and	dried	at	60°C	overnight	prior	 to	analysis.	 Soil	 texture	 (i.e.,	Very	120	

Coarse	Sand	[VCS],	Coarse	Sand	[CS],	Medium	Sand	[MS],	Fine	Sand	[FS],	Very	Fine	Sand	[VFS],	silt	and	121	

clay	contents)	was	determined	as	described	by	[26]	and	[27].	Soil	pH	was	determined	in	a	soil	slurry	at	a	122	

1:2.5	soil	to	deionized	water	ratio	(pH	meter	Crison	Basic	+20,	Barcelona,	Spain).	Total	soil	carbon	content	123	

was	determined	using	the	Walkley–Black	acid	digestion	method	[28]	and	soil	organic	matter	content	using	124	

the	weight	loss-on-ignition	method	(360°C	for	2	h;	with	a	2	h/150°C	pre-treatment	to	remove	the	soils	125	

gypsum	 crystallized	 water;	 [29]).	 Soil	 ammonium	 (NH4
+)	 and	 nitrate	 (NO3

-)	 concentrations	 were	126	

determined	using	the	steam	distillation	and	titration	method	[30]	and	soil	phosphorus	(P)	was	estimated	127	

using	 the	Bray-1	method	 [31].	Cation	exchange	capacity	 (CEC)	was	determined	by	ammonium	acetate	128	

extraction	of	exchangeable	and	water-soluble	cations	[32].	Soil	calcium	(Ca+),	potassium	(K+),	magnesium	129	

(Mg+),	 sodium	 (Na+),	 and	 sulfur	 (S)	 were	 extracted	 with	 ammonium	 acetate	 and	 the	 concentrations	130	

measured	 by	 inductively	 coupled	 plasma	 optical	 emission	 spectroscopy	 (ICP-OES)	 (SPECTRO	 Genesis,	131	

Ametek,	Kleve,	Germany)	[32].	132	

	133	

2.3.	Enzymatic	assays	134	

The	 extracellular	 activity	 of	 five	 enzymes	 was	 assessed	 with	 chromogenic	 substrate	 analogues	 as	135	

described	 in	 [21]:	β-glucosidase	 (BG),	β-N-acetylglucosaminidase	 (NAG),	 leucine	aminopeptidase	 (LAP),	136	

alkaline	phosphatase	(AP)	and	phenol	oxidase	(PO).	These	enzymes	were	chosen	based	on	their	metabolic	137	

functions	 related	 to	 major	 biogeochemical	 cycles:	 carbon-acquiring	 enzyme	 (BG),	 Nitrogen-acquiring	138	

enzyme	 (NAG	 and	 LAP),	 Phosphorous-acquiring	 enzyme	 (AP)	 and	 lignin-degrading	 enzyme	 (PO)	 [33].	139	

Assays	were	 performed	 by	 combining	 3	 g	 of	 soil	 and	 100	mL	 50	mM	Tris-HCl	 buffer.	 Under	 constant	140	

agitation,	200	µL	of	this	soil-buffer	slurry	was	transferred	to	a	96-well	plate.	Four	replicate	wells	were	141	

used	 for	each	sample	and	controls	 for	both	substrate	analogue	and	soil	background	absorbance	were	142	
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prepared.	Plates	were	incubated	at	43°C	(the	average	daytime	soil	temperature	of	the	sampling	site	on	143	

collection	days)	in	the	dark	under	constant	agitation.	After	4h,	10	µl	of	0.5	M	NaOH	was	added	to	each	144	

well	 to	 terminate	 the	 enzymatic	 activity	 and	 the	 enzymatically	 induced	 absorbance	 changes	 were	145	

measured	using	a	Multiskan™	GO	Microplate	spectrophotometer	(Thermo	Scientific,	Waltham,	U.S.A.).		146	

The	fluorescein	diacetate	(FDA)	hydrolysis	assay,	used	as	a	proxy	of	total	microbial	activity	(e.g.,	[34])	was	147	

performed	as	previously	described	[35].	Briefly,	0.5	g	of	soil	was	combined	with	12.5	mL	of	1	×	PBS	buffer	148	

(pH	7.4)	and	0.25	mL	4.9	mM	FDA	dissolved	 in	acetone,	and	 incubated	at	43°C	for	2 h	under	constant	149	

agitation.	After	 incubation,	FDA	hydrolysis	was	halted	by	adding	40 μl	of	acetone	to	1 ml	of	soil	slurry.	150	

Samples	were	 then	 centrifuged	 at	 8800g	 for	 5 min,	 and	 fluorescence	 (490	 nm)	was	measured	with	 a	151	

portable	fluorometer	(QuantifluorTM,	Promega,	Madison,	USA).		152	

	153	

2.4.	Bacterial	community	structure	analysis	154	

2.4.1.	Metagenomic	DNA	Extraction,	16S	rRNA	gene	PCR	amplification	and	purification	155	

Metagenomic	DNA	(mDNA)	was	extracted	from	0.5	g	soil	using	the	PowerSoil®	DNA	Isolation	Kit	(MO	BIO,	156	

Carlsbad,	USA),	with	minor	modifications.	Soils	from	the	coastal/fog	sites	(i.e.	sites	1	to	6)	were	pretreated	157	

due	to	their	high	salt	concentrations	and	low	biomass	(Supplementary	Table	S1)	[36].	The	pretreatment	158	

included	three	washes	with	TE	buffer	(10	mM	Tris-EDTA,	pH	5.0)	centrifuged	for	10	min	at	7200g	prior	to	159	

mDNA	extraction	[37].	Six	parallel	mDNA	extractions	were	performed	for	the	TE	buffer	washed	soils	using	160	

the	MoBio	PowerSoil	kit	(MO	BIO,	Carlsbad,	USA)	with	a	modified	elution	step:	the	eluate	from	the	first	161	

spin	column	was	used	as	the	eluent	for	the	next	spin	column	as	previously	described	[7].	The	extracted	162	

DNA	was	stored	at	-80°C.	163	

PCR	 amplification	 targeting	 the	 bacterial	 16S	 rRNA	 gene	was	 performed	 using	 a	 T100	 Thermo	 Cycler	164	

(Bio-Rad,	Hercules,	U.S.A.).	A	standard	50	µL	reaction	volume	was	used:	0.75%	formamide,	0.1	mg/mL	165	

bovine	serum	albumin	(BSA),	1	X	DreamTaq™	buffer	(Thermo	Scientific,	Waltham,	U.S.A.),	0.2	mM	of	each	166	
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dNTP,	0.5	µM	of	fluorescent-labeled	forward	primer	341F	[38]	(5ʹ-CCTACGGGAGGCAGCAG-3ʹ),	0.5	µM	of	167	

reverse	 primer	 908R	 [39]	 (5ʹ-CCGTCAATTCCTTTRAG-TTT-3ʹ),	 0.005	 U/µL	 DreamTaq™	 DNA	 polymerase	168	

(Thermo	Scientific,	Waltham,	USA)	and	1	µL	of	metagenomic	DNA	as	 template.	The	cycling	conditions	169	

consisted	of	an	initial	denaturation	step	of	5	min	at	95°C;	20	amplification	cycles	of	95°C	for	30s,	55°C	for	170	

30s,	and	72°C	for	90s;	and	a	final	extension	step	at	72°C	for	10	min.	PCR	products	were	purified	using	the	171	

NucleoSpin®	 Gel	 and	 PCR	 Clean-up	 kit	 (Macherey-Nagel,	 Duren,	 Germany)	 in	 accordance	 with	 the	172	

manufacturer’s	protocol.		173	

	174	

2.4.2.	Terminal	restriction	fragment	length	polymorphism	(T-RFLP)	175	

Purified	 PCR	 amplicons	 (400	 ng)	 were	 digested	 using	 the	 FastDigest®	MspI	 restriction	 endonuclease	176	

(restriction	site	C^CGG)	(Thermo	Scientific,	Waltham,	U.S.A.)	for	15	min	at	37°C.	Digested	products	were	177	

purified	 using	 the	NucleoSpin®	Gel	 and	 PCR	 Clean-up	 kit	 (Macherey-Nagel,	 Duren,	 Germany)	 prior	 to	178	

capillary	electrophoresis	at	the	DNA	Sequencing	Facility	of	the	University	of	Pretoria	(South	Africa)	using	179	

an	ABI	3500	XL	Genetic	Analyzer	(Applied	Biosystems,	Foster	City,	U.S.A.).	180	

	181	

2.5.	Viral	DNA	extraction,	amplification	and	sequencing	182	

The	metaviromic	DNA	of	soil	samples	from	4	sites	(4,	7,	10	and	13;	Figure	1)	was	extracted	according	to	183	

[40],	with	slight	modifications.	Five	grams	of	soil	(pooled	from	the	4	true	replicates	collected	at	each	site)	184	

were	added	to	15	ml	of	1%	potassium	citrate	buffer	and	vortexed	at	full	speed	for	15	seconds.	The	mixture	185	

was	incubated	on	ice	for	25	min,	followed	by	three	cycles	(30%	amplitude	for	59	sec)	of	sonication	with	186	

an	ultrasonic	processor	using	a	1/16”	probe	tip.	Samples	were	centrifuged	at	3000g	at	4°C	for	30	minutes.	187	

The	supernatant	was	decanted,	transferred	to	a	new	tube	and	passed	through	a	0.20	µm	cellulose	acetate	188	

sterile	syringe	filter	(GVS).	Viruses	and	virus-like	particles	were	concentrated	by	adding	25%	PEG8000	(in	189	

1M	NaCl)	to	the	filtrate	to	a	final	concentration	of	10%	(w/v)	and	incubated	overnight	at	4°C.	Concentrates	190	
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were	centrifuged	for	30	minutes	at	32000g	at	4°C.	The	supernatant	was	decanted	and	the	viral	pellet	re-191	

suspended	 in	 300	 µl	 phage	 buffer	 (10mM	 Tris-HCl,	 10	 Mm	 Mg	 SO4,	 150	 mM	 NaCl,	 pH	 7.5).	 Viral	192	

concentrates	were	treated	with	DNase	I	(Thermo	Scientific,	cat#EN0523)	and	RNase	A	(Thermo	Scientific,	193	

#EN0531)	 according	 to	 the	manufacturer’s	 instructions.	 Viral	 DNA	was	 purified	 using	 the	Quick-gDNA	194	

MiniPrep	kit	 (Zymo	Research,	 cat#	D3025)	according	 to	 the	manufacturer’s	 instructions	and	 randomly	195	

amplified	using	the	REPLI-g	Midi	kit	(Qiagen,	cat#	150043)	according	to	the	manufacturer’s	instructions.	196	

Amplified	DNA	was	precipitated	with	isopropanol,	washed	with	70%	ethanol	and	re-suspended	in	25µl	197	

milli-Q	water.		198	

The	amplified	metaviromes	were	checked	for	bacterial	contamination	by	assessing	the	presence	of	the	199	

16S	rRNA	gene	by	PCR	amplification	as	described	above.	Library	building	for	sequencing	was	done	using	200	

the	 Ion	Xpress™	Plus	and	 Ion	Plus	Library	Preparation	 for	 the	AB	Library	Builder™	System	(Publication	201	

Number	MAN0006946).	Template	amplification	was	done	using	the	Ion	OneTouch™	2	System	(OT2)	Ion	202	

PI™	 Hi-Q™	 OT2	 200	 Kit	 (Number	 MAN0010857).	 The	 metavirome	 libraries	 were	 multiplexed	 and	203	

sequenced	using	the	Ion	PI™	Hi-Q™	Sequencing	200	Kit	(Number	MAN0010947)	using	the	Ion	PI™	Chip	Kit	204	

v3.	Sequencing	was	performed	on	 the	 Ion	Proton	platform,	 located	at	 the	Central	Analytical	Facilities,	205	

Stellenbosch	University,	South	Africa.	206	

	207	

2.6.	Data	Analyses	208	

Physicochemical	 data	 were	 normalized	 in	 Primer6	 and	 visualized	 using	 a	 correlation-based	 principal	209	

component	analysis	(PCA)	to	determine	the	dominant	environmental	gradients	of	the	transect	samples	210	

(Primer-E	Ltd,	Devon,	UK)	[41].	Functional	data	were	Hellinger-transformed	[42],	and	combined	with	the	211	

environmental	parameters	measured,	were	visualized	in	a	redundancy	analysis	(RDA)	plot	with	Bray-Curtis	212	

dissimilarity	matrices	[43]	in	Primer6	(Primer-E	Ltd,	Devon,	UK).		213	
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T-RFLP	 profiles	 were	 analyzed	 using	 Gene	 Mapper®	 software	 (Applied	 Biosystems,	 Foster	 City,	 USA).	214	

Terminal	restriction	fragments	(T-RFs)	smaller	than	50	bp	and	greater	than	600	bp	were	eliminated,	and	215	

a	baseline	threshold	of	20	fluorescence	units	was	used	to	delineate	background	noise.	Peaks	were	then	216	

binned	into	Operational	Taxonomic	Units	(OTUs)	with	custom	scripts	(standard	deviation	1.5)	using	R	[44,	217	

45].	OTU	relative	abundances	were	Hellinger-transformed	[42]	and	were	also	combined	with	the	edaphic	218	

parameters	 measured	 in	 a	 RDA.	 Variation	 partitioning	 and	 co-occurrence	 null	 model	 analyses	 were	219	

performed	as	previously	described	[24].	220	

(PERM)ANOVA	([Permutational]	analysis	of	variance)	was	used	to	identify	significant	differences	between	221	

groups	of	samples	using	R.	Using	the	PAST	v3.14	software	package,	we	tested	for	relationships	between	222	

the	‘distance	to	coast’	(km)	and	the	different	soil	enzyme	activities.	The	latter	were	ln(x+0.5)	transformed	223	

to	 achieve	 near	 normal	 distribution.	 Ordinary	 Least	 Square	 (OLS)	 was	 first	 used	 to	 evaluate	 linear	224	

relationships	between	‘distance	to	coast’	(km)	and	the	soil	enzymatic	activities.	If	unsuccessful,	we	tested	225	

for	 nonlinear	 relationships	 by	 using	 polynomial	 regression.	 A	 partial	 Mantel	 test	 was	 performed	 to	226	

evaluate	 correlations	between	 the	 functional	 (enzymatic)	 and	diversity	 (T-RFLP)	matrixes	using	R	 (999	227	

permutations).	228	

	229	

2.7.	Metavirome	sequence	analyses	230	

Metavirome	sequence	reads	were	curated	for	quality	and	adapter	trimmed	using	CLC	Genomics	version	231	

6.0.1	 (CLC,	 Denmark),	 using	 the	 default	 parameters.	 De	 novo	 assembly	 for	 each	 read	 dataset	 was	232	

performed	with	the	CLC	Genomics	assembler	suite	using	the	default	parameters.	Contigs	were	uploaded	233	

to	and	are	available	for	analysis	from	the	following	online	pipeline:	the	MetaVir	version	2	server	([46];	234	

http://metavir-meb.univ-bpclermont.fr/).	The	four	metavirome	read	datasets	are	also	available	from	the	235	

Sequence	Read	Archive	of	NCBI	under	 the	accession	no.	ERX1230691	 to	ERX1230694	 [25].	 Taxonomic	236	

composition	 by	 MetaVir	 was	 computed	 from	 a	 BLASTp	 comparison	 with	 the	 Refseq	 complete	 viral	237	
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genomes	protein	sequences	database	from	NCBI	(release	of	2015-01-05)	with	an	E-value	threshold	of	10-238	
5.	Unique	and	shared	virus	hits	were	determined	by	recording	the	occurrence	of	all	virus	isolate	hits	(contig	239	

best	blast	hit	number,	E-value	threshold	10-5,	MetaVir)	in	each	soil	sample	dataset,	and	visualized	using	240	

the	Venn	diagram	online	tool,	available	from	the	Bioinformatics	and	Evolutionary	Genomics	group	website	241	

(http://bioinformatics.psb.be/webtools/Venn/).	The	term	“viral	operational	taxonomic	unit”	(“vOTU”)	is	242	

used	here	to	describe	contigs	with	a	taxonomic	assignment	based	on	the	best	BLAST	hit	(BLASTp	query	243	

against	the	RefSeq	database,	10-5	threshold	on	the	E-value).	244	

245	
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3.	Results	and	Discussion	246	

Aridity	in	drylands	has	been	shown	to	influence	the	structure	and	function	of	soil	microbial	communities	247	

although	results	are	often	contradictory.	At	the	global	scale	(80	sites	located	on	5	continents),	bacterial	248	

and	 fungal	 diversities	 and	 abundances	 increased	with	 decreasing	 aridity	 [47]	while,	 at	 the	 local	 scale	249	

(within	the	country	of	Israel),	soil	bacterial	abundances	also	decreased	with	aridity	but	diversity	remained	250	

constant	 [48].	 Furthermore,	 while	 soil	 pH	 is	 strongly	 affected	 by	 aridity	 [47],	 microbial	 extracellular	251	

enzyme	distribution	has	been	found	to	generally	be	influenced	by	soil	pH	[49,	50]	and	not	by	mean	annual	252	

precipitations	[50].	In	the	Namib	Desert,	however,	microbial	extracellular	enzyme	activities	were	found	253	

linked	to	water	regime	histories	(riverbed	vs	gravel	plain)	and	not	by	pH	[21].	254	

These	contradictions	suggest	that	our	knowledge	of	arid	land	microbial	ecology	must	be	improved,	most	255	

particularly	as	(i)	the	vast	majority	of	dryland	ecosystem	processes	are	microbially-mediated	[3,	4]	and	(ii)	256	

predictive	modeling	shows	that	global	surface	area	of	arid	land	will	increase	[51].		This	experiment	was	257	

therefore	 designed	 to	 study	 the	 structure	 and	 function	 of	 edaphic	 microbial	 communities	 across	 a	258	

naturally	occurring	xeric	stress	gradient	(Figure	1).	259	

	260	

3.1.	Soil	physico-chemical	properties	261	

A	 principal	 component	 analysis	 (PCA)	 plot	 based	 on	 17	 soil	 	 physicochemical	 parameters	 (Figure	 2;	262	

Supplementary	Table	1)	showed	that	the	soils	from	the	three	a	priori	defined	xeric	zones	(‘Fog’,	‘Low	Rain’,	263	

and	 ‘High	 Rain’	 zones)	were	 clearly	 separated	 along	 PCA	 axis	 1	 (which	 explains	 30.6%	 of	 the	 sample	264	

variation;	Figure	2a).		The	clusters	were	strongly	correlated	with	soil	pH,	‘coarse	sand’	content	and	Ca+,	S,	265	

Na+	and	NO3
-	concentrations	(Figures	2b,	2c).	PERMANOVA	confirmed	that	the	soil	physicochemistries	of	266	

each	zone	were	significantly	different	(PERMANOVA	p	=	0.001;	Table	1),	supporting	a	previous	study	which	267	

observed	 that	within	 the	Namib	Desert	gravel	plains,	multiple	 lithologies	 (e.g.,	 schist,	granite,	 surficial	268	

cover	and	salt	crusts)	and	geological	units	(e.g.,	Kuiseb,	Salem,	Surficial	cover,	Saline	spring)	can	be	found	269	
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[52].	In	general,	the	ionic	(Ca2+,	K+,	S2-,	Mg2+,	Na+	and	NO3
-)	content	of	the	fog	zone	soils	was	higher	than	270	

in	those	of	the	rain	zones	(Supplementary	Tables	1	and	2).	We	attribute	this	effect	to	the	coastal	transport	271	

and	deposition	of	marine	aerosols	[53,	54]	rather	than	fog	input:	the	low	ionic	content	of	fog	precipitation	272	

suggests	that	fog	events	have	little	impact	on	the	soil	chemistry	[55,	56].	The	‘High	Rain	zone’	soils	were	273	

characterized	by	 significantly	higher	 soil	organic	matter	 than	all	other	 transect	 soils	 (ANOVA	p	<	0.05;	274	

Supplementary	Tables	1	and	2).	We	attribute	this	to	the	generally	higher	plant	productivity	in	this	region	275	

[57],	as	compared	to	those	of	the	Fog	and	Low	Rain	zones.		276	

		277	

3.2.	Namib	Desert	microbial	community		278	

Each	xeric	zone	showed	significantly	different	microbial	community	structures	and	bacterial	community	279	

functional	 capacities	 (PERMANOVA,	 p	 <	 0.05;	 Table	 1).	 In	 particular,	 the	 community	 structures	 and	280	

activities	of	the	fog	zone	soils	clearly	separated	from	those	of	the	rain	zone	soils,	essentially	due	to	their	281	

higher	salt,	principally	cation,	content	(Figure	3).	These	parameters	are	well-known	environmental	filters	282	

for	microbial	communities	[58].		283	

	284	

3.2.1.	Bacterial	community	structure	and	assembly	285	

The	bacterial	communities	in	the	low	and	high	rain	zone	samples	showed	higher	α-	and	lower	β-diversities	286	

than	those	of	the	fog	zone	(Table	2).	We	used	variation	partitioning	and	co-occurrence	null	model	analyses	287	

to	evaluate	the	assembly	of	the	bacterial	communities	in	the	different	xeric	zones	(Table	2;	[18,	24]).	The	288	

combination	of	spatial	(xeric	zone)	and	environmental	(soil	chemistry)	parameters	explained	37.5%	of	the	289	

variation	in	the	assembly	of	bacterial	communities	along	the	transect.		This	result	strongly	suggests	that	290	

stochasticity	plays	a	major	role	in	Namib	Desert	bacterial	community	assembly	[59].	Furthermore,	only	291	

7%	(0.026/0.375;	Table	2)	of	the	variation	of	the	bacterial	community	assembly	along	the	transect	was	292	

attributed	 to	 the	 xeric	 zonation,	 while	 soil	 physicochemestries	 explained	 53%	 (0.2/0.375;	 Table	 2),	293	
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indicating	that	the	historical	nature	and	intensity	of	their	precipitation	(fog,	light	rain	or	high	rain)	is	not	a	294	

critical	factor.	This	further	confirmed	that	local	edaphic	physicochemical	environments	are	significant	in	295	

shaping	 Namib	 Desert	 bacterial	 communities	 [52]	 and	 that	 climate	 (e.g.,	 fog)	 has	 little	 impact	 in	296	

pedogenesis	 in	 the	 central	 Namib	 Desert	 [14].	 However,	 null	 model	 analysis	 indicated	 that	 the	 co-297	

occurrence	 of	 OTUs	 was	 non-random	 (Table	 3),	 suggesting	 that	 a	 combination	 of	 deterministic	 and	298	

stochastic	 processes	 [60,	 61]	 are	 involved	 in	microbial	 community	 assembly	 along	 the	 Namib	 Desert	299	

longitudinal	 transect.	The	high	and	positive	 standardized	effect	 size	 (SES,	Table	3)	also	 suggested	 that	300	

biological	interactions	play	a	role	[62]	in	the	assembly	of	Namib	Desert	edaphic	communities.	This	would	301	

appear	to	contradict	the	results	obtain	in	our	recent	study	[24]	which	showed	that	Namib	Desert	edaphic	302	

communities	assembled	primarily	by	deterministic	processes	 (e.g.,	niche	 speciation).	However,	 in	 that	303	

study,	communities	from	highly	contrasted	soil	biotopes	(dunes,	gravel	plains,	riverbeds,	and	salt	pans)	304	

were	included	while,	here,	we	focused	on	a	single	more	homogeneous	biotope:	the	Namib	Desert	gravel	305	

plain	soils.	We	conclude	that,	depending	on	the	scale	of	observation,	community	dynamics	can	vary	(e.g.,	306	

metacommunity	vs	local	community;	[63]).	307	

	308	

3.2.2.	Namib	Desert	soil	extracellular	enzymatic	activities	309	

We	measured	 the	extracellular	 activities	of	 five	 enzymes	 commonly	used	as	proxies	 for	 soil	microbial	310	

nutrient	demand	[21,	33,	50].	Extracellular	enzyme	activities	were	calculated	as	absorbance	change	‘per	311	

g	dry	soil’	(gDS).h-1,	which	is	accepted	as	an	ecosystem-level	measure	of	microbial	activity	and	allows	for	312	

direct	comparison	of	activities	between	samples	[64,	65].		313	

Significant	relationships	between	‘distance-to-coast’	of	the	sampling	sites	and	the	activities	of	five	of	the	314	

six	enzymes	tested	were	detected	 (Figure	4);	 i.e.,	 fluorescein	diacetate	 (FDA)	hydrolysis,	β-glucosidase	315	

(BG),	alkaline	phosphatase	(AP);	leucine	aminopeptidase	(LAP)	and	phenol	oxidase	(PO)	activities.	Because	316	

of	the	strong	and	significantly	positive	linear	relationships	between	the	distance	from	the	coast	and	the	317	
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annual	rain	precipitation	(r2	=	0.94,	p	<	0.001;	data	not	shown),	the	role	of	long-term	climatic	parameters	318	

could	not	be	excluded	as	a	factor	in	explaining	the	activities	of	the	Namib	Desert	edaphic	communities.	319	

Extracellular	enzyme	activities	in	the	high	rain	zone	were	generally	higher	than	in	the	low	rain	and	fog	320	

zones	(Figure	4;	Supplementary	Table	3).	This	was	expected	as	soil	moisture	is	known	to	directly	influence	321	

the	 levels	 of	 extracellular	 enzyme	 activities	 in	 drylands	 systems	 [66]	 and	 their	 activities	 are	 strongly	322	

simulated	by	the	abundance	of	water	availability	following	rainfall	events	[67].	323	

A		significant		relationship		between		community	structure		and		function		was		found		(Mantel	test;		r	=	324	

0.2;		p	<	0.01).	This	confirmed	that	microbial	community	composition	is	critical	for	certain	processes	to	be	325	

performed	in	desert	environments	[7,20].	326	

	327	

3.3.	Viral	community	composition	328	

Multiplexed	sequencing	of	the	viral	communities	from	site	4	of	the	Fog	zone	and	sites	7,	10	and	13	of	the	329	

‘Low	rain’	zone	(Figures	1	and	5)	produced	93,519,306	reads	(~13.4	Gb),	yielding	approximately	22	million	330	

reads	per	metavirome.	The	mean	read	length	was	142.5	bp	and	the	mean	GC	content	ranged	from	54	to	331	

62%.	 Bacterial	 contamination	 in	 the	 metaviromes	 was	 negligible,	 as	 no	 amplification	 of	 rDNA	 was	332	

observed	and	no	rDNA	sequences	were	identified	by	the	MG-RAST	pipeline.	Across	all	soil	samples,	the	333	

ratio	of	taxonomically	assigned	to	unassigned	sequences	ranged	from	9.2	to	18.9%,	 indicating	a	highly	334	

uncharacterized	 pool	 of	 viral	 diversity	 and	 supporting	 the	 idea	 that	 viral	 populations	 are	 still	 poorly	335	

characterized	 in	 arid	 environments	 [68,69].	 Rarefaction	 curves	 for	 all	 metaviromes	 remained	 linear	336	

(Supplementary	Figure	S1),	indicating	that	the	datasets	substantially	underrepresented	the	complete	viral	337	

diversity	within	each	sample.	In	site	4	(fog	zone)	the	dominant	hits	were	assigned	to	Mycobacterium	phage	338	

Adler	(6.5%)	and	Rhizobium	phage	16-3	(4.4%),	both	unclassified	members	of	the	Siphoviridae	family	of	339	

tailed	phages	(Order:	Caudovirales).	Members	of	the	nucleocytoplasmic	large	DNA	virus	(NCLDV)	families	340	

Mimiviridae	and	Phycodnaviridae	were	also	common	in	the	site	4	sample	(Figure	5a).	Single-stranded	DNA	341	
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(ssDNA)	viruses	were	only	detected	in	the	Low	Rain	sites	(2.4%	in	site	7,	0.7%	in	site	10	and	6.8%	in	site	342	

13),	despite	the	use	of	a	DNA	amplification	method	biased	towards	the	detection	of	circular	ssDNA	viruses	343	

(Figure	5a).	This	 is	 in	stark	contrast	with	salt	pan	sites	 located	 in	the	‘Fog’	and	‘Low	Rain’	zones	which	344	

contained	a	high	diversity	of	ssDNA	viruses	[70],	leading	to	the	hypothesis	that	(the	hosts	of)	these	viruses	345	

are	not	well	adapted	to	edaphic	environments.	346	

Sites	10	(n	=	548	vOTUs)	and	13	(n	=	366	vOTUs)	of	the	Low	Rain	zone	presented	richer	viral	communities	347	

when	compared	to	those	of	the	Fog	zone	(site	4:	n	=	43	vOTUs;	site	7:	n	=	75	vOTUs;	Figure	5b).	This	trend	348	

being	also	observed	for	the	bacterial	communities,	which	showed	higher	α-diversities	in	the	rain	zones	349	

(Table	2),	it	supports	the	conclusion	that	edaphic	virus	communities	reflect	the	microbial	host	diversity	350	

[69].	 	Of	the	1032	 individual	vOTU	detected,	only	3	 (0.3%)	were	observed	 in	all	4	samples	 (Figure	5b),	351	

namely,	Streptomyces	phage	mu1/6,	Yersinia	phage	phiR1-37	and	Cellulophaga	phage	phi19:1),	while	295	352	

vOTUs	(66.4%)	were	exclusive	to	single	sampling	sites	(Figure	5a).	It	is	noteworthy	that	the	3	cosmopolitan	353	

vOTUs	were	all	assigned	to	viruses	infecting	bacterial	phyla	which	are	known	to	be	dominant	in	desert	354	

soils;	 i.e.,	Actinobacteria,	Proteobacteria	and	Bacteroidetes	 [4].	However,	while	Streptomyces	 spp.	are	355	

common	in	Namib	Desert	soils	[4]	and	Yersina	phages	have	already	been	detected	in	desert	soils	[71],	the	356	

detection	 of	 the	 marine	 Cellulophaga	 phage	 phi19:1	 [72]	 throughout	 the	 transect	 was	 unexpected.	357	

Marine-phage	sequences	have	recently	been	detected	in	a	~100km	inland	Namib	metaviromic	study	[73],	358	

and	our	result,	therefore,	tend	to	confirm	their	hypothesis	that	marine	fog	and	wind	play	a	role	in	the	359	

dispersal	of	(marine)	phages	into	Namib	Desert	soils.	Assuming	that	viral	community	composition	mirrors	360	

the	host	community	structure	[69,	74],	the	observation	of	marine	phage	signals	in	inland	desert	soils	is	361	

also	in	line	with	our	finding	that	both	stochasticity	(principally	via	dispersal)	and	determinism	(i.e.,	niche	362	

partitioning)	(Table	2)	are	involved	in	the	assembly	of	Namib	Desert	gravel	plain	microbial	communities.		363	

	364	

4.	Conclusions	365	
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As	initially	hypothesized,	Namib	Desert	microbial	community	structures	were	significantly	different	in	the	366	

three	a	priori	defined	xeric	zones	along	the	longitudinal	desert	transect	(Figure	3).	However,	while	soil	367	

physicochemistry	 was	 identified	 as	 a	 statistically	 significant	 factor	 in	 microbial	 community	 assembly,	368	

water	regime	history		(i.e.,	the	xeric	zonation)	was	not	determinant	(Table	2).	This	strongly	suggests	that	369	

adaptation	to	the	immediate	edaphic	environment	is	a	stronger	environmental	filter	for	soil	communities	370	

than	long	term	climatic	patterns	 in	desert	ecosystems.	We	argue	that	microbial	communities	 in	desert	371	

soils	experience	(hyper)arid	conditions	for	much	of	any	given	time	period,	and	that,	while	differences	in	372	

precipitation	 in	 the	 xeric	 zones	are	 significantly	different	 in	 terms	of	 volumetric	 loads,	 their	biological	373	

impact	 was	 not	 (Table	 2).	 Furthermore,	 precipitation	 events	 are	 generally	 highly	 localized	 in	 desert	374	

systems,	 particularly	 in	 the	 Namib	 Desert	 [14].	 Contrastingly,	 microbial	 community	 functionality,	 as	375	

indicated	by	soil	extracellular	enzyme	activities,	 increased	 from	the	coast	 inland	(Figure	4),	confirming	376	

that	long-term	precipitation	patterns	(or	different	xeric	stresses)	play	a	role	in	the	structuring	of	desert	377	

edaphic	microbial	community	functionality	[21].		 	378	
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Figure	Legends	385	

Figure	1.	Map	showing	the	distribution	of	sampling	sites	in	the	Namib	Desert	across	the	longitudinal	386	

west/east	xeric	gradient	Map	showing	the	distribution	of	sampling	sites	in	the	Namib	Desert	across	387	

the	longitudinal	west/east	xeric	gradient.	Adapted	from	[13,	14,	22].	Image	produced	using	Google	388	

Earth,	©	2016	DigitalGlobe.	389	

	390	

Figure	2.	Results	of	the	Principle	Component	Analyses	(PCA)	using	the	17	Namib	Desert	soil	variable	391	

recorded.	 a.	 PCA	 ordination	 plot.	 Correlation	 circles	 showing	 the	 relationships	 between	 the	392	

environmental	variables	and	the	first	two	PCA	axes:	the	soil	particle	sizes	(b)	and	the	chemical	descriptors	393	

(b).	 The	 descriptors	 were	 separated	 in	 two	 separate	 correlation	 circles	 for	 clarity.	 Variables	 that	 are	394	

correlated	with	the	first	two	axes	of	the	PCA	plot	are	the	most	important	in	explaining	the	variability	in	395	

the	data	set.	Vectors	indicate	the	strength	(length)	and	direction	(arrow	orientation)	of	the	variables	in	396	

the	 ordination.	 Coarse,	Med,	 Fine:	 Coarse,	Medium,	 Fine	 sand	 content,	 respectively;	 C:	 Carbon;	 CEC:	397	

cation	exchange	capacity;	Ca+:	Calcium;	K+:	Potassium,	Mg+:	Magnesium;	Na+:	Sodium;	NH4
+:	Ammonium;	398	

NO3
-:	Nitrate;	OrgMatter:	Organic	Matter	content;	Phos:	Phosphorus;	S:	Sulfur).	n	=	‘Fog	Zone’,	n	=	‘Light	399	

Rain	Zone’	and	n	=	‘High	Rain	Zone’.	400	

	401	

Figure	 3.	 Redundancy	 analysis	 (RDA)	 bi-plots	 displaying	 the	 influence	 of	 soil	 physicochemistries	 on	402	

Namib	Desert		(a)	edaphic	bacterial	community	structures	and	(b)	global	soil	functional	capacities.	Only	403	

the	 environmental	 variables	 that	 significantly	 (p	 <	 0.05)	 explained	 variability	 in	microbial	 community	404	

structures	 are	fitted	 to	 the	ordination	 (arrows).	 The	direction	of	 the	arrows	 indicates	 the	direction	of	405	

maximum	change	of	that	variable,	whereas	the	length	of	the	arrow	is	proportional	to	the	rate	of	change.	406	

n	=	‘Fog	Zone’,	n	=	‘Light	Rain	Zone’	and	n	=	‘High	Rain	Zone’.	407	

	408	
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Figure	 4.	 Relationships	 between	 the	Namib	Desert	 soil	 enzymatic	 activities	 and	 the	 distance	 to	 the	409	

coast.	When	 significant,	 the	 linear	or	nonlinear	 relationships	are	 indicated	on	 the	plot	 along	with	 the	410	

equations	and	r2	values.	Bootstrapped	95%	confidence	intervals	(1999	replicates)	border	the	OLS	linear	411	

regression	 lines.	 The	 enzymatic	 activity	 used	were	 calculated	 as	 ‘per	 g	 dry	 soil’	 (gDS).	n	 =	 ‘Fog	 Zone’	412	

activities,	n	=	‘Light	Rain	Zone’	activities	and	n	=	‘High	Rain	Zone’	activities.		413	

	414	

Figure	5.	Diversity	of	the	Namib	Desert	soil	metaviromes	in	the	four	transect	soil	studied.	a.	Family	level	415	

taxonomic	compositions	computed	from	a	BLAST	comparison	with	NCBI	RefSeq	complete	viral	genomes	416	

proteins	using	BLASTp	(threshold	10-5	on	the	e-value).	Virus	hit	numbers	were	normalized	and	converted	417	

into	ratios.	The	unclassified	category	includes	all	dsDNA	and	ssDNA	viruses.	b.	Venn	diagram	showing	the	418	

distribution	of	unique	and	shared	viral	OTUs.	“n”	indicates	the	total	number	of	vOTUs	detected	in	each	419	

site.			 	420	
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Figure	1	625	
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Figure	2	628	
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Figure	3	631	
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Figure	4	633	
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Figure	5	635	
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Supplementary	 Figure	 S1.	 Rarefactions	 curves	 of	 Namib	 soil	 metaviromes.	 Rarefaction	 curves	 were	637	
generated	based	on	a	clustering	of	 the	predicted	protein	genes.	Clustering	 (i.e.	grouping)	of	predicted	638	
protein	sequences	was	done	through	the	detection	of	conserved	domain	(using	the	PFAM	database)	with	639	
a	similarity	threshold	of	75%).	The	curve	represents	the	number	of	different	clusters	created	(y-axis)	from	640	
a	given	number	of	sequences	(x-axis).	641	
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