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ABSTRACT 6 

The connectivity of rocks’ porous structure and the presence of fractures influence the transfer of 7 

fluids in the Earth’s crust. Here, we employed laboratory experiments to measure the influence of 8 

macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of 9 

initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held 10 

permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective 11 

pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests 12 

and measured the permeability of these macro-fractured rocks again. We show that intact rock 13 

permeability increases non-linearly with increasing porosity and decreases with increasing effective 14 

pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases 15 

the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability 16 

increase induced by the macro-fracture is more significant for dense rocks. We finally provide a 17 

general equation to estimate the permeability of intact and fractured rocks, forming a basis to 18 

constrain fluid flow in volcanic and geothermal systems.  19 

 20 

Introduction 21 

The storage and transport of fluids in the Earth’s crust is of primary importance for our understanding 22 

of georesources and geohazards. In volcanic settings, fluids both circulate in hydrothermal reservoirs
1
 23 

commonly exploited for geothermal energy, and drive magma ascent and volcanic eruptions
2-4

. Better 24 

constraints of how fluids are transported in these systems will help define more accurate models, 25 
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which in turn could lead to enhanced geothermal exploitation as well as improved prediction of 26 

volcanic eruptions. 27 

All materials are inherently permeable, as permeability expresses either the diffusion speed at a 28 

molecular level or the capacity of a porous structure, at macroscopic level, to carry fluid flow. The 29 

permeability of rocks has been central to an extensive body of geoscientific studies since the early 30 

efforts of Darcy
5,6

 and is often described in terms of its relationship to porosity
7-10

. In pursuit of a 31 

simple model constraining laminar flow in conduits, the Kozeny-Carman
11-14

 relationship, or 32 

modifications therof, can commonly be employed to explain that permeability increases non-linearly 33 

as a function of porosity for a wide range of rocks
15-22

. This equation describes the evolution of the 34 

permeability-porosity relationship by applying a coefficient dependent on the dominant conduit 35 

geometry controlling the fluid flow, namely tubular (connected pores) or planar (cracks) conduits
23,24

. 36 

Previous experimental studies have invoked the existence of a percolation threshold for explosive 37 

volcanic products around 30% porosity
18,19,25

, below which rocks are considered impervious, while the 38 

percolation threshold for porous media has been mathematically modelled to 59.27% in 2D
26

 and to 39 

31.16% porosity in 3D
27

 (with circular, and spherical pores, respectively). However, other efforts have 40 

demonstrated that fluid flow is promoted at lower porosities by fractures
19,28-33

, and hence it may not 41 

be appropriate to incorporate a percolation threshold when describing the relationship of porosity and 42 

permeability. Rather, it may be necessary to use several Kozeny coefficients
16

 due to the presence of 43 

vesicles (bubbles) and fractures
15,18,22,34

, and their evolution through multiple processes [including: 44 

vesiculation
35

, shearing
30,36,37

, fracturing
4,38,39

, cooling
40

] that force pore coalescence. To describe this 45 

complexity Farquharson, et al. 
17

 proposed that the power law describing the permeability-porosity 46 

relationship can be decomposed into two regimes; a dense regime (<14 vol.% pores) for which the 47 

permeability is controlled by the connectivity of micro-fractures in the rock and a porous regime (>14 48 

vol.% pores) for which vesicles control fluid flow. Such change points have been noted in other 49 

lithologies
41

, and yet these resolutions still fail to capture the fluid flow in natural volcanic 50 

environments (and associated hydrothermal/ geothermal systems), which is channelled through 51 

structurally complex pathways, containing highly variable, heterogeneous, and anisotropic porous 52 



networks, overprinted by complex fracture networks that enhance connectivity across all scales
42-45

. 53 

The effect of fractures on the overall permeability of a rock depends on the fracture’s characteristics
46

 54 

(e.g., size, roughness), the fracture system’s geometry
1,47

 (i.e., direction of the fault with respect to the 55 

fluid flow), whether the fracture system is dilatant versus compactional
48-50

, and whether the fracture 56 

has in-filled fragmental material
32,51,52

. The presence of fractures can induce permeability anisotropy 57 

by opening localised pathways for fluid flow
1,28,46-48,53

, for example, as observed along the shear 58 

margins of ascending magma
29

. Even prior to macroscopic failure, the nucleation, propagation and 59 

coalescence of micro-fractures as material is loaded (and strained) increases the permeability, and 60 

permeability anisotropy of rocks
54,55

. The development of permeability anisotropy through damage 61 

accumulation
56-58

 can alter intrinsic properties of geothermal, hydrothermal and magmatic reservoirs, 62 

including the mode of heat transfer/ fluid flow
59

. To understand the impact of macro-fractures, Lucia 63 

60
, modelled the permeability of a system made of impermeable cubic samples separated by fractures 64 

with variable widths and determined that fracture spacing has a significant impact on the permeability 65 

of the system. In light of the importance of fractures on the development of permeable fluid flow, we 66 

hereby present the results of a series of experiments tackling the effect of fractures on permeability in 67 

rocks with variable initial porous structures (and starting permeabilities) and model the extensive 68 

dataset by adapting this cubic method
60

 to account for fluid flow through fractured rocks. 69 

 70 

Material and methods 71 

In order to assess the influence of fractures on permeability of rocks with a range of initial permeable 72 

porous networks (consisting of micro-fractures and vesicles), we selected a variety of extrusive 73 

volcanic rocks from six volcanoes (Ceboruco, Mexico; Volcán de Colima, Mexico; Krafla, Iceland; 74 

Mount St. Helens, USA; Pacaya, Guatemala; Santiaguito, Guatemala), and tested their permeability, 75 

both intact and fractured, as a function of effective pressure (calculated as the difference between the 76 

confining pressure and the average pore pressure).  77 



70 cylindrical rock discs, 26 mm diameter and 13 mm thick were cored and prepared from the 78 

samples collected. The porosity of each disc was then calculated using quantification of the samples’ 79 

volume (based on their dimensions) and determination of the samples skeletal volume using an 80 

AccuPyc 1340 helium pycnometer from Micromeritics with a 35 cm
3
 cell (providing sample volumes 81 

with an accuracy of ±0.1%). Permeability of the variously porous (1.2-41.7 vol. %) samples was then 82 

measured under ambient pressure, using a handheld TinyPerm II mini-permeameter
61,62

 from New 83 

England Research Inc., which utilises the pulse decay method by imposing air flow (746.13 ml) 84 

through an aperture of 8 mm (in contact with the sample). This method provides rock permeability 85 

determination with an accuracy >0.2 log units of permeability at low porosities, to 0.5-1 log units at 86 

higher porosities (verified by our dataset which includes 6-10 repeats of each measurement, see 87 

Supplementary Information). Then, for a subset of 7 samples (with porosities spanning 1.2 to 30.0 88 

vol. %), the permeability was measured as a function of confining pressure (5-30 MPa, at 5 MPa 89 

increments) using the steady-state flow method in a hydrostatic pressure cell developed by Sanchez 90 

Technologies. Here, confining pressure was applied by silicon oil, and water flow was induced by 91 

applying a pore pressure differential (∆P) of 0.5 MPa (inflow of 1.5 MPa and an outflow of 1 MPa) 92 

across the sample (i.e., at an average pore pressure of 1.25 Mpa), and the flow rate (Q) was measured 93 

and used to compute the permeability (k) using Darcy’s law: 94 

𝑘 =
𝑄𝜇𝐿

𝐴∆𝑃
 (1) 95 

where 𝜇 is the water viscosity, L is the sample thickness and A is the sample cross-sectional area
5,6

. A 96 

further six unconfined measurements were made in the hydrostatic cell for direct comparison with the 97 

ambient pressure measurements of the TinyPerm (see Supplementary figure 2). In these 98 

measurements, a ∆P of 0.015MPa (inflow 0.17 MPa and outflow at atmospheric pressure of 0.155) 99 

was used, and the samples were double-jacketed to prevent fluid loss (as the inflow exceeded the 100 

confining pressure). All specimens (70 measured at ambient pressure and 7 measured under confined 101 

conditions) were then axially and perpendicularly wrapped in electrical tape before being fractured 102 

using the Brazilian tensile testing method
63

 at a displacement rate of 0.25 µm/s in an Instron 5969 103 



uniaxial press. This technique generally induces one well-defined axial, tensile fracture through a 104 

diametrically-compressed cylinder
64

. [Note that the tape was used to prevent dislocation or shearing of 105 

the two main fragments generated by tensile testing and only samples with well-defined macro-106 

fractures were employed in permeability analysis]. Following this, the permeability of all 70 fractured 107 

samples was measured with the TinyPerm and for the aforementioned 7 samples (initially selected for 108 

permeability measurements in the hydrostatic cell) the permeability was again measured as a function 109 

of confining pressure in the hydrostatic cell.  110 

The relative permeability change induced by the presence of a fracture was further modelled using the 111 

theoretical formulation developed for a fractured body by Lucia 
60

 and modified herein for the effect 112 

of a variably permeable host material. Finally, thin sections of the rocks were prepared using a 113 

fluorescent dyed epoxy for microstructural analysis using a UV light source in reflected mode in a 114 

DM2500P Leica microscope.  115 

 116 

Results 117 

Permeability at ambient pressure  118 

We observe that permeability varies as a function of porosity, increasing by approximately four orders 119 

of magnitude (at ambient pressure) for intact samples across the range of porosities tested (1.2-41.7 120 

%; Fig. 1). This non-linear relationship between permeability (𝜅) and porosity (𝛷), can be described 121 

by:  122 

𝜅 = 3 × 10−17𝛷3.11 (2) 123 

which constrains the dataset with a coefficient of determination (R
2
) of 0.75. This relationship agrees 124 

well with that described in previous studies
18,19

, and suggests that it is not necessary to fit this dataset 125 

with two regressions.  126 



Using Brazilian tensile tests, we imparted a macro-fracture which resulted in a net increase in 127 

permeability for all porosities tested (Fig. 1). Across the range measured, the variability in 128 

permeability as a function of porosity (four orders of magnitude prior to fracturing) decreased to less 129 

than 2 after imparting a macro-fracture (Fig.1). The permeability of the fracture-bearing rocks (𝜅𝑓𝑟) as 130 

a function of initial porosity is described by: 131 

 𝜅𝑓𝑟 = 6 × 10−13 𝛷0.64 (3) 132 

Ultimately, the presence of a fracture modifies the relationship between permeability and porosity, 133 

with the permeability of fractured porous samples falling across a much narrower range than the 134 

permeability of the intact samples (i.e. much less sensitive to the initial rock porosity; Fig. 1). In 135 

detail, we note a relative increase in permeability of up to four orders of magnitude by imparting a 136 

fracture, as noted in previous work
33,63

. This increase is most pronounced for samples with low initial 137 

porosity (≤ 11 vol. %). Contrastingly, the permeability of the more porous rocks (≥ 18 vol. %) 138 

increases only slightly due to the presence of a macro-fracture, while intermediate porosity samples 139 

(11-18 %) show variable behaviour.  140 

 141 

Permeability at variable effective pressures  142 

For the subset of samples measured in the hydrostatic cell, the permeability of intact and fractured 143 

rocks decreases non-linearly with increasing effective pressure (Fig. 2; see also Supplementary Fig. 144 

1). When plotting the data from the hydrostatic cell in porosity-permeability space, we observe similar 145 

trends to that measured at atmospheric pressure (Fig. 1, 3a, Supplementary Fig. 3). We demonstrate a 146 

generally good agreement between measurements made using the handheld TinyPerm device and the 147 

hydrostatic cell by conducting a targeted set of measurements at ambient pressure in the hydrostatic 148 

cell (see Supplementary Fig. 2). 149 

The influence of a macro-fracture on the permeability of the rocks tested here is similar at higher 150 

effective pressures as it is at atmospheric pressure, with the permeability increase that results from 151 



fracturing being more significant in the initially denser rocks (Fig. 3a). We further see that the 152 

influence of effective pressure on permeability is most pronounced in the densest rocks (≤ 11% 153 

porosity), while more porous rocks (≥ 18%) are less susceptible to changes in pressure (Fig. 2, 3a); 154 

this supports previous studies, which examined the influence of pore closure under confining pressure 155 

on a range of rock types, suggesting the process is dominated by the closure of micro-fractures
4,65-70

.  156 

 157 

Microstructures in intact samples 158 

Microstructural analysis was conducted on thin sections impregnated with fluorescent green-dyed 159 

epoxy (highlighting the porous network of the rocks) to assess the reasons for the relative impact of a 160 

fracture on volcanic rocks at low and high porosities (Fig. 4). The rocks tested here were chosen for 161 

their chemical and mineralogical distinctions so as to widen the applicability of the findings of the 162 

influence of the porous network on permeability accross a range of volcanic rocks and environments. 163 

The porous networks of the densest rocks (Fig. 4a, b) are dominated by an intricately connected 164 

network of micro-fractures, linking the vesicles present in the rock
71

. Close examination of the 165 

photomicrographs show no overall preferential alignment (i.e., anisotropy) of the microfractures, but 166 

do highlight preferred fracture developments along planes of weakness in phenocrysts. In contrast, the 167 

porous networks of the more porous rocks (Fig. 4c,d) appear dominated by the connectivity of 168 

vesicles of different sizes and shapes. These porous rocks exhibit few microfractures, and those which 169 

are present are primarily developed in phenocrysts (Fig. 4c, d). Such a contrasting architecture of the 170 

porous networks in dense and porous volcanic rocks has been observed in other studies
24,33,72

 and may 171 

be at the origin of the non-linearity in permeability-porosity relationships discussed in previous 172 

studies
17,24,72

 and in the relative effect of a fracture on the permeability of rocks as observed here. As 173 

such, we seek to test the applicability of fracture permeability modelling to describe the permeability 174 

relationships constrained in our experiments. 175 

 176 

Fractured rock permeability analysis 177 



The permeability of fractures as a function of width can be modelled using the early work of Lucia 
60

, 178 

in which the geometrical proportion of a fracture set arrangement is applied to a cubic body. The 179 

relationship is based on the principal of a pressure differential (∆P) across a fracture with given length 180 

(L) and width (w), according to: 181 

𝛥𝑃 =
12𝜇𝜈𝐿

𝑤2   (4) 182 

where 𝜇 and 𝜈 are the viscosity and velocity of the fluid flowing through the fracture, respectively. 183 

Lucia 
60

 later modified the equation to obtain a system permeability (𝜅𝑠) formulation, which includes 184 

the area of the fracture as well as the surrounding rock: 185 

𝜅𝑠 =
1

12

𝐴𝑓

𝐴𝑠
𝑤2  (5) 186 

where 𝐴𝑓 and 𝐴𝑠 are the cross sectional areas of the fracture and the sample, respectively. Considering 187 

the host rock permeability (𝜅𝛷), our cylindrical sample geometry and the near rectangular fracture 188 

geometry (produced in this study through Brazilian tests), Equation 5 can be further modified to: 189 

𝜅𝑠 = 𝜅𝛷 +
1

6

𝑤3

𝜋𝑟
  (6) 190 

in which 𝜅𝛷 is the permeability of intact samples (each at a given porosity) and 𝑟 is the aperture 191 

radius of the permeameter (i.e., 4 mm for the TinyPerm and 13 mm for the hydrostatic cell).  192 

Using this relationship, we model the macro-fracture width (i.e., the coloured curves in Fig. 1) for 193 

rocks with different initial porosities and permeabilities. The permeability measurements on fractured 194 

samples coincide with the modelled permeability for rocks hosting a fracture of some 0.06-0.07 mm 195 

wide. We apply this analysis to the permeability obtained at each effective pressure (Fig. 3a, 196 

Supplementary Fig. 3), to constrain the evolution of fracture width as a function of effective pressure. 197 

The boxplot (Fig. 3b) shows the modelled fracture widths for our range of porosities with increasing 198 

pressure. All boxes have been defined by finding the closest modelled fracture width to each 199 

permeability measurement at each effective pressure (see Fig. 1 and Supplementary Fig. 3). The 200 



analysis suggests that the fracture closes non-linearly with effective pressure
73

, corresponding to the 201 

measured non-linear decrease in permeability, with most of the fracture closure occurring within the 202 

first 5 MPa of confinement for all samples, irrespective of initial porosity (Fig. 3b). 203 

In light of this constraint, and given the knowledge of the bulk fracture density (volume of macro-204 

fracture/ volume of host rock), we rewrite the above permeability equations to provide a general 205 

formulation for the permeability of a fractured system (𝜅𝑠) as a function of the permeability of the 206 

intact system (𝜅𝛷), bulk fracture density ( 𝜌𝑓), average fracture length (𝑙) and width (𝑤) over an 207 

area of interest (𝐴𝑖): 208 

𝜅𝑠 = 𝜅𝛷 +
𝜌𝑓𝑙𝑤

3

𝐴𝑖
 (7) 209 

This formulation, expresses the permeability evolution of the intact system and constrains the impact 210 

of fractures on the overall permeability of the system. We can further expand this formulation to 211 

include the empirical description of the effect of effective pressure on the permeability of the intact 212 

rock (Eq 8.) as well as on the fracture width (Eq 9.; see equations S2-7 in Supplementary Information) 213 

𝜅𝛷 = (2.93 × 10 −12𝑃𝑒𝑓𝑓
−1.07)𝛷(1.64𝑃𝑒𝑓𝑓

0.06) (8) 214 

And 215 

𝑤 = (2.33 × 10−22𝑃𝑒𝑓𝑓
2 − 2.67 × 1015𝑃𝑒𝑓𝑓 + 3.39 × 10−7)𝛷(5×10−4𝑃𝑒𝑓𝑓

−0.174) (9) 216 

where 𝑃𝑒𝑓𝑓 is the effective pressure in Pascals and each coefficient has different pressure dependent 217 

unit described in Supplementary Information. Thus we can rewrite Equation 7 to: 218 

𝜅𝑠 =219 

(2.93 × 10 −12𝑃𝑒𝑓𝑓
−1.07)𝛷(1.64𝑃𝑒𝑓𝑓

0.06) +220 

𝜌𝑓𝑙[(2.33×10−22𝑃𝑒𝑓𝑓
2−2.67×1015𝑃𝑒𝑓𝑓+3.39×10−7)𝛷

(5×10−4𝑃𝑒𝑓𝑓
−0.174)

]
3

𝐴𝑖
 (10) 221 



providing us with an empirical description of rock permeability as a function of effective pressure, 222 

porosity, fracture density and geometry to be tested in various applications.  223 

 224 

Discussion 225 

Understanding the permeability of volcanic rocks, and especially fractured volcanic rocks, is crucial 226 

to our models of fluid flow in shallow volcanic and hydrothermal systems
2,74

. Here, a combination of 227 

extensive permeability testing and fluid flow modelling is used to demonstrate the ability to simulate 228 

the permeability of intact and fractured rocks and of fracture closure with confinement. In our fitting 229 

of the permeability-porosity relationship, we employed a single power law (as demonstrated by 230 

previous studies
15,18,19,22,34

) as the regression is sufficient to fit the non-linear dataset accurately, 231 

without the need to invoke a change point. From microstructural examination (Fig. 4), we find that the 232 

connectivity of the porous network evolves due to the interplay of micro-cracks and few vesicles at 233 

low porosity, to enhanced pore interconnection at 11-18 % porosity (an observation which may share 234 

similarities with previously invoked change points
17

) and finally more complete coalescence at 235 

porosities ≥ 18 %. We emphasise that the porosity-permeability relationship of volcanic rocks results 236 

from a succession of processes undergone by the magma and the rock (i.e., vesiculation and pore 237 

collapse, fragmentation, sintering, shearing, cooling, contraction, etc) and as a result the porosity-238 

permeability relationship does not describe a single generation mechanism, but rather reflects a 239 

combination of the above, which may have differing importance at different porosities. As 240 

permeability measurements accrue and widen the scatter at all porosities, evidence suggests that a 241 

simple power law, with acknowledgement of the scatter, remains an effective means to estimate the 242 

permeability of volcanic systems with wide ranging porous structures. 243 

Across the range of porosities tested, the presence of a macro-fracture increases the permeability of 244 

volcanic rocks, although to different degrees, depending on the porosity of the rock. The impact of 245 

fractures on the resultant system permeability is greatest for low porosity rocks, where permeability 246 

can increase by up to four orders of magnitude, which can be ascribed to a decrease in the tortuosity 247 



of the dominant fluid pathway by addition of a macro-fracture
63

. This increase in permeability as a 248 

result of fracturing has previously been noted
33,52,75

. Here, we show that the initial porosity of the 249 

samples has little influence on the resultant system permeability once a fracture is introduced. Matthäi 250 

and Belayneh 
76

 classified the influence of a fracture on a rock permeability as either 1) fracture 251 

carries all the fluid flow; 2) fracture carries as much fluid flow as the host rock; or 3) fracture has a 252 

negligible impact on the permeability. Based on the findings presented here, we relate this 253 

classification to the relative magnitudes of permeability changes imparted by a fracture on rocks with 254 

different porosities: Regime 1 relates to dense rocks with ≤ 11% porosity; regime 2 to rocks with ~11-255 

18 % pores and regime 3 to the most porous rocks (≥ 18 %), in which the presence of a macro-fracture 256 

imparts little change on the permeability of the system (Fig. 3). Interestingly, we find that the porosity 257 

thresholds for regime changes remain unaffected by changes in effective pressure, although the 258 

magnitude of permeability increase by inducing a fracture (i.e. the fracture width) is itself pressure 259 

dependent.  260 

We provide an experimentally based, permeability model to describe the permeability of macro-261 

fractured volcanic rocks with a range of existing permeable porous structures, which, using 262 

appropriate upscaling techniques
33,77,78

, may be adapted to a range of geological systems
60

. Utilisation 263 

of the simple formulation provided may help constrain or reassess a variety of processes for which an 264 

understanding of fluid flow pathways developed via multiple processes is crucial. For example, the 265 

percolation threshold of explosive volcanic products
18,19,25

 may be modified significantly by 266 

fracturing. Previous works have demonstrated that outgassing in volcanic materials occurs through a 267 

network of fractures that localise and enhance fluid flow
19,28-33

, and gas monitoring at active volcanoes 268 

supports heterogeneous degassing models controlled by fractures in often low-permeability host 269 

rocks
74

. Further, at the volcano-hydrothermal system of Soufrière Hills volcano (Montserrat), 270 

Edmonds, et al. 
74

 surmise that cyclicity/ fluctuations in gas emissions result from fractures 271 

undergoing episodic closure or sealing, leading to permeability changes in regions with high 272 

permeability anisotropy near conduit margins
28,29,79

. Our findings concur with these outgassing 273 

observations, as pore pressure (hence effective pressure) regulates the permeability of intact and 274 



fractured rocks. In this scenario, efficient outgassing may promote the lowering of pore pressure (i.e., 275 

effective pressure increase), fostering the ability for fractures to shut and subsequently heal
80

. It must 276 

be noted that this sealing will be dependent upon any fracture infill, which may either form a rigid 277 

network serving to maintain the permeable pathway, or may be subject to compaction or sintering, 278 

influencing the evolution of permeability
32,52

. Sealing may inhibit further fluid flow and promote 279 

creation of momentarily impermeable, dense magma plugs
30,74,81

, which may then allow pore pressure 280 

build-up (i.e., effective pressure decrease), which if sufficient, may open (or reactivate) fractures or 281 

trigger fragmentation
82

. Thus, we advise testing of the formulation constrained here in anticipation 282 

that it may increase constraints on fluid migration and storage in volcanic, hydrothermal and 283 

geothermal systems. 284 

 285 

Conclusions 286 

We present a large permeability dataset, targeted to investigate the effects of porosity, fractures and 287 

effective pressure on the permeability of variably porous volcanic rocks. We observe non-linear 288 

relationships between porosity and permeability of both intact and fractured rocks as well as between 289 

the width of a fracture (and permeability of a fractured rock) and effective pressure. We propose a 290 

general formulation to constrain the permeability of intact and fractured rocks as a function of 291 

pressure, porosity and fracture density. This study aims to incorporate heterogeneities, such as 292 

fractures, in our modelling of the permeability evolution of dynamic and heterogeneous volcanic 293 

environments. 294 
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Figure Captions 520 

Fig. 1. The permeability of intact and fractured rocks. Permeability-porosity relationships (black 521 

lines) for both intact (solid circles) and fractured (open circles) samples at ambient pressure. Coloured 522 

lines represent the modelled permeability of fractured rocks as a function of fracture width and rock 523 

porosity, derived from eq. 6 (See Fractured rock permeability analysis section). The convergence of 524 

the permeability values for intact and fractured samples at high porosities indicates that the effect of a 525 

fracture on permeability lessens with porosity increase, where the fluid flow is dominated by 526 

increasingly high pore interconnectivity. The data and model suggests that the fractures 527 

experimentally generated are ca. 0.06-0.07 mm wide. 528 

Fig. 2. Rock permeability as a function of effective pressure. The data show the relationship between 529 

permeability and effective pressure for 6 of the 7 samples (intact and fractured) with a) 1.2 % 530 

porosity, b) 7.0% porosity, c) 11.0% porosity, d) 14.3% porosity, e) 20.2% porosity, and f) 30.3% 531 

porosity. The impact of fracturing on a system’s permeability is much more pronounced at lower 532 

porosities than at higher porosities. Results show that the effect of a fracture on permeability is 533 

dampened with an increase in effective pressure (beyond ca. 5-10 MPa), as shown by extrapolation of 534 

the best fit (dotted and dashed curves) of the permeability dataset conducted with the pressure vessel 535 

(circles). The last sample tested (porosity very close to the sample in e)) is shown in Supplementary 536 

Figure 1. 537 

Fig. 3. Permeability – porosity – effective pressure relationship for intact and fractured rocks. a) 538 

Distribution of permeability and connected porosity data compiled as a function of effective pressure 539 

(darker colours represent higher pressures). The dashed and dotted curves display the best fits 540 

obtained for the intact and fractured samples, respectively, at ambient pressure (from Fig. 1). The 541 

measurements conducted at pressure trend towards those made at ambient pressures suggesting 542 

fracture closure even under modest confinement. b) Boxplot showing the modelled fracture widths 543 

generated in samples with different porosities () and calculated evolution at different effective 544 

pressures. The grey zone displays the fracture width – effective pressure region  for the porosity range 545 

11-18 vol. %, using a least squares regression.. The circles show the median of the fracture width 546 

distribution obtained by finding the closest value of the best fit, at each pressure step, to the calculated 547 

fracture width for our range of porosity. 548 

Fig. 4. Microstructures of the permeable porous networks. Photomicrographs of 4 samples with 549 

varying connected porosities impregnated with green dyed, fluorescent epoxy, examined under UV 550 

light. a) The connectivity of the densest rock, an andesite from Ceboruco (CBD_0; 1.2% porosity) is 551 

primarily controlled by micro-fractures; b) The porous network of a Colima andesite with an 552 

intermediate porosity (COL_P2; 13.3%) showing a higher number of vesicles, connected to each other 553 

by micro-fractures; The connectivity of the more porous rocks from Ceboruco, c) an andesite with 554 

25.1% porosity (CBD_6); d) an andesite with 38.4% porosity (CBD_10) is observed to be primarily 555 

controlled by vesicle coalescence. 556 
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