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Environmental surveillance 
identifies multiple introductions 
of MRSA CC398 in an Equine 
Veterinary Hospital in the UK, 
2011–2016
Alessio Bortolami1, Nicola J. Williams2, Catherine M. McGowan1,3, Padraig G. Kelly1, Debra C. 
Archer1,2, Michela Corrò4, Gina Pinchbeck2, Christine J. Saunders1 & Dorina Timofte1,2

Bacterial environmental and surgical site infection (SSI) surveillance was implemented from 2011–2016 
in a UK Equine Referral Veterinary Hospital and identified 81 methicillin-resistant Staphylococcus aureus 
(MRSA) isolates. A cluster of MRSA SSIs occurred in early 2016 with the isolates confirmed as ST398 
by multilocus sequence typing (MLST), which prompted retrospective analysis of all MRSA isolates 
obtained from the environment (n = 62), SSIs (n = 13) and hand plates (n = 6) in the past five years. Sixty 
five of these isolates were typed to CC398 and a selection of these (n = 38) were further characterised for 
resistance and virulence genes, SCCmec and spa typing. Overall, MRSA was identified in 62/540 (11.5%) 
of environmental samples, 6/81 of the hand-plates (7.4%) and 13/208 of the SSIs (6.3%). spa t011 was 
the most frequent (24/38) and Based Upon Repeat Pattern (BURP) analysis identified spa t011 as one of 
the two group founders of the main spa CC identified across the five years (spa CC011/3423). However, 
3 singletons (t073, t786, t064) were also identified suggesting separate introductions into the hospital 
environment. This long-term MRSA surveillance study revealed multiple introductions of MRSA CC398 
in a UK Equine Hospital, identifying an emerging zoonotic pathogen so far only sporadically recorded in 
the UK.

Nosocomial infections are a major problem in human hospitals1, 2 yet they have not been recognised as a potential 
problem until recently in equine veterinary hospitals. However, developments of hospitalisation facilities in vet-
erinary settings have led to opportunities for transmission of nosocomial pathogens similar to those from human 
hospitals. Veterinary nosocomial outbreaks with methicillin-resistant Staphylococcus aureus (MRSA) were 
reported as early as 1999 in the United States3, followed by reports in Austria4, 5, Netherlands6, Sweden7, Israel8 
and Japan9. In addition, hospital spread and/or infections with other well-known agents of nosocomial infections, 
such as extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae2, 10–12, multidrug-resistant (MDR) 
Acinetobacter baumannii13, 14 and MDR Enterococcus spp15 have also been demonstrated in veterinary settings.

The first reports of MRSA outbreaks in equine veterinary settings were published in 1997, in a study from 
Japan which reported the occurrence of a distinct MRSA strain isolated from equine cases of metritis with a 
putative epidemiological relationship16. Subsequent studies have shown that the genotypic characteristics of most 
MRSA isolates found in the equine populations in Europe, unlike those found in small companion animals, gen-
erally differ from the common human clones4, 17, 18. However, the majority of the North American MRSA isolates 
from horses and veterinary staff belong to clonal complex (CC) 8 and have been identified as Canadian epidemic 
MRSA-5, equivalent to “USA500” or sequence type (ST)8 by multilocus sequence typing (MLST)6, 19. Canadian 
epidemic MRSA-5 (USA-500) has been frequently reported in horses in Canada, but seems to be uncommon 
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among human infections in this country and also restricted to a small number of sites when present20, 21. Although 
MRSA ST8 was also reported in horses from Ireland22 and Germany23, in Europe MRSA isolates from nosocomial 
infections in horses are mostly ST254 (a double locus variant of ST8) which also belongs to CC85, 24. However, 
the livestock-associated (LA) MRSA CC398 has recently emerged in horses, being associated with clinical infec-
tions and hospital outbreaks in mainland Europe17, including Austria5–25, Belgium26, Netherlands6, Sweden7 and 
Switzerland27. Although emerging in mainland Europe, there is only one report of MRSA CC398 in horses in the 
United Kingdom from 2009 when two horses (one of them without history of travelling outside UK), were found 
to be positive for MRSA CC398 t011 SCCmecIVa28.

Biosecurity and infection control are extremely important for equine veterinary settings and some hospitals 
have implemented rigorous programs. However, active environmental bacteriological surveillance as part of the 
infection prevention and control strategies for veterinary hospitals are rarely implemented due to concerns over 
costs and benefits. With the exception of a few studies which investigated the occurrence of MRSA infections in 
horses or equine hospitals over time29–32, long term studies (greater than three years) monitoring environmental 
MRSA in veterinary hospitals are lacking. In this study, we focus on the value of sustained monitoring of MRSA 
occurrence in the hospital environment during a five-year active environmental surveillance program designed to 
monitor the presence of MDR bacteria in an equine veterinary hospital in the United Kingdom. We also describe 
the distribution and molecular epidemiology of MRSA CC398 isolates circulating in the hospital environment 
during this period of time which was identified through this surveillance program.

Results
Samples processed and MRSA prevalence. Eight hundred and twenty-nine samples were collected 
from the equine hospital between January 2011 and May 2016, with 540 samples from environmental sites, 208 
from SSIs and 81 from hand-plates (Table 1). Overall, MRSA was identified in 62/540 (11.5%) of environmental 
samples, 6/81 of the hand-plates samples (7.4%) and 13/208 of the SSIs (6.3%). Associated with the cluster of cases 
and additional environmental swabbing, there were higher numbers of MRSA isolates obtained in 2016 (n = 55) 
with the majority of isolates obtained from the environment (n = 42), whilst a smaller number was obtained 
from the SSIs (n = 6) and hand-plates (n = 6). Selected non-duplicate isolates obtained during Jan 2011–May 
2016 and identified as CC398 by PCR [n = 38, where 27 were environmental and 11 from SSIs (all 11 obtained 
from different horses)] were used for further phenotypic and molecular characterisation. Following the SSI cases 
at the beginning of 2016, environmental follow-up swabbing was performed according to the infection control 
program. Ninety eight environmental samples and 15 SSIs were collected from June 2016–February 2017; three of 
the environmental samples (one from an anaesthetics machine Y-piece and two from stables) and two SSIs were 
MRSA positive. However, all 5 of these MRSA isolates were CC398 negative by PCR.

Susceptibility testing, detection of virulence and resistance genes. All MRSA isolates character-
ised here (n = 38) carried mecA and also showed resistance to gentamicin (36/38 were resistant and carried the 
aacA-aphD gene), but were not resistant to other aminoglycosides; all the isolates were susceptible to amikacin 
and only one isolate was resistant to neomycin. In addition, all the isolates were resistant to tetracycline (36/38 
carried tetM, whilst the remaining 2/38 isolates were positive for tetK). Only one isolate was phenotypically resist-
ant to erythromycin and erm genes encoding for inducible resistance to clindamycin were rare (ermA 3/38, ermB 
0/38, ermC 2/38). Resistance to trimethoprim-sulfamethoxazole was only present in three isolates. Biofilm asso-
ciated icaA and/or icaD genes were present in 14/38 and 37/38 isolates, respectively. All isolates were found to 
lack the lukS-PV and lukF-PV genes encoding Panton-Valentine leukocidin and the biofilm associated bap gene 
(Table 2).

Molecular characterisation. MLST typing of six selected clinical and environmental isolates obtained 
from early 2016 (four from SSIs, one from a stable and one from a computer keyboard) identified them all as 
ST398. Retrospective molecular typing was performed with the CC398-specific PCR assay on all 81 MRSA iso-
lates obtained from the active surveillance program (Jan 2011–May 2016), which identified that 65/81 (80.3%) 
MRSA isolates obtained in the past 5 years belonged to CC398. Among the isolates from 2016, all except two 

2011 2012 2013 2014 2015 2016

no.
MRSA positive 
(CC398) no.

MRSA positive 
(CC398) no.

MRSA positive 
(CC398) no.

MRSA positive 
(CC398) no.

MRSA positive 
(CC398) no.

MRSA Positive 
(CC398)

ENV samples 112 5 (2) [4.5(1.8)]* 101 2 (0) [2.0(0.0)] 102 8 (2) [7.8(2.0)] 37 2 (1) [5.4(2.7)] 57 3 (2) [5.3(3.5)] 131 42 (42) 
[32.1(32.1)]

Surgical site infections 5 1 (1) 8 0 8 0 55 1 (1) 112 4 (3) 20 7 (7)

Hand plates 34 0 0 — 0 — 0 — 0 — 47 6(4)

Total 151 6 (3) 109 2 (0) 110 8 (2) 92 3 (2) 169 7 (5) 198 55 (53)

Table 1. Distribution of MRSA positive samples (including CC398) in an equine hospital during the 
surveillance period 2011–2016. All MRSACC398 isolates obtained from 2011–2015 were included in the study; 
for isolates obtained in 2016 (January–June), in addition to this approach, two and four isolates obtained at 
different time points were included for sites sampled more than three times (one stable) and six times (one 
stable) respectively. The SSI surveillance sample size (one isolate/case) was constant throughout the study 
period. ENV: environmental. *Percentage of MRSA and CC398 obtained in each year are shown in the square 
brackets. Abbreviations: ENV, environmental.
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MRSA isolates which resulted from hand-plate sampling performed during the study period, belonged to CC398 
(n = 53/55), whilst this lineage had a lower frequency amongst the isolates from the previous years (2011, n = 3/6; 
2013, n = 2/8; 2014, n = 2/3; 2015, n = 5/7) and was not isolated in 2012.

SCCmec typing of selected MRSA CC398 isolates obtained from 2011 to 2016 (n = 38), identified 33/38 
CC398 MRSA isolates obtained throughout all years as type IVa and 2/38 (both obtained in 2015) as type IVd. 
Three isolates obtained from 2013, 2015 and 2016 were un-typeable by this method.

spa typing identified seven different spa types in the CC398 MRSA isolates with t011 being the most fre-
quent (24/38), followed by t588 (4/38), t064 (3/38), t1985 (2/38), t3432 (2/38), t073 (1/38) and t786 (1/38). Taken 
together, the MLST, SCCmec and spa typing showed that the most prevalent MRSA type present from 2011 to 
2016 in the hospital environment was CC398-IVa-t011 which was identified in 24/38 (63%) of the MRSA CC398 
isolates.

Strain Year Site (Location) CC398 SCCmec type
spa-
type spa CC

Resistance 
phenotype* Antimicrobial resistance genes

M 1 2011 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD,tetM,aacA-aphD

M 2 2011 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 3 2011 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 4 2013 ENV (Stable floor) + IVa t073 Singleton Enr, Tet mecA,icaA, icaD, tetK, ermC

M 5 2013 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 6 2013 ENV (Stable floor) + UT t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 7 2014 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 8 2014 ENV (Staff Keyboard) + IVa t786 Singleton Tet mecA,icaD, tetK, ermC

M 9 2015 ENV (Y-piece no 1) + IVd t064 Singleton Gen, Sxt, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 10 2015 ENV (Stable floor) + UT t064 Singleton Gen, Sxt, Tet mecA,icaD, tetM,aacA-aphD

M 11 2015 SSI + IVd t064 Singleton Gen, Sxt, Tet mecA,icaD, tetM,aacA-aphD

M 12 2015 SSI + IVa t588 spa CC011/3423 Gen, Enr, Tet mecA,icaD, tetM,aacA-aphD

M 13 2015 SSI + IVa t011 spa CC011/3423 Gen, Enr, Tet, Neo mecA,icaD, tetM,aacA-aphD

M 14 2016 SSI + IVa t588 spa CC011/3423 Gen, Enr, Tet mecA,icaD, tetM,aacA-aphD

M 15 2016 SSI + IVa t3423 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 16 2016 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 17 2016 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 18 2016 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 19 2016 SSI + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 20 2016 ENV (Stable floor) + IVa t588 spa CC011/3423 Gen, Ery, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 21 2016 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 22 2016 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 23 2016 ENV (Stable floor) + IVa t3423 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 24 2016 ENV (Stable floor) + IVa t588 spa CC011/3423 Gen, Enr, Tet mecA,icaD, tetM,aacA-aphD

M 25 2016 ENV (Stable drain) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 26 2016 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 27 2016 ENV (Stable wall) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 28 2016 ENV (Stable brush) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 29 2016 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 30 2016 ENV (Stable floor) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 31 2016 ENV (ICU Keyboard) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 32 2016 ENV (Y-piece) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 33 2016 ENV (Reception 
keyboard) + IVa t1985 spa CC011/3423 Gen, Tet mecA,icaD, tetM,aacA-aphD

M 34 2016 ENV (Student 
keyboard) + UT t011 spa CC011/3423 Gen, Tet mecA,tetM,aacA-aphD

M 35 2016 ENV (Hand plate) + IVa t1985 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, ermA,aacA-
aphD

M 36 2016 ENV (Hand plate) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, aacA-aphD

M 37 2016 ENV (Hand plate) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, ermA,aacA-
aphD

M 38 2016 ENV (Hand plate) + IVa t011 spa CC011/3423 Gen, Tet mecA,icaA, icaD, tetM, ermA,aacA-
aphD

Table 2. Summary of the molecular characterisation of the representative MRSA CC398 isolates from an 
equine hospital. *Resistance phenotype shown to non β-lactams antimicrobials only. Abbreviations: Enr, 
Enrofloxacin; Gen, gentamicin; Neo, neomycin; SXT, trimethoprim/sulfamethoxazole; Tet, tetracycline; ENV, 
Environment; SSI, surgical site infection; UT, Un-typeable.
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Using the default analysis parameters of BURP, the spa types identified in this study clustered into one main 
spa CC (spa CC011/3423) with two designated group founders and 3 singletons [t073, t786, t064 (Table 3 and 
Fig. 1)]. In spa CC011/3423 spa types t011 and t3423 had identical founder scores.

Hospital epidemiology of MRSA CC398. MRSA CC398-IVa-t011 was the most prevalent type identi-
fied in this study and was identified in the hospital environment and in SSIs, as well as on hand-plates in 2016. 
Retrospective analysis of archived isolates showed that the first isolation of this genotype was in 2011 when it 
was obtained from both the environment (stable floor) and from one case that developed an SSI, a pattern that 
was also seen in 2013. A single isolation of spa type t073 from a stable floor was also found in 2013. During envi-
ronmental surveillance in 2014, two different CC398 spa types were identified, where t011 was found in an SSI, 
whilst t786 was identified on a computer keyboard. Interestingly, in 2015 a cluster of CC398-IVd-t064 isolates 
was observed, where an initial isolate was obtained from the anesthetic machine y-piece, followed by the isolation 
from a stable (after three weeks) and an SSI four months later; this spa type seems to have been quickly eliminated 
from the environment and did not recur during environmental sampling. At the same time, t011 was isolated only 
once from a SSI infection during 2015 environmental monitoring.

The cluster of six MRSA SSIs in 2016 prompted increased environmental sampling and subsequently increased 
isolation from the environment. Molecular typing of the MRSA isolates obtained in 2016 identified introduction 
of four different spa types between February–June 2016 (t011, t588, t3423 and t1985) the first three of which were 
associated with SSIs indicating possible new introductions into the hospital.

Of the six MRSA positive hand-plates identified during this cluster of cases in 2016, four isolates were 
MRSA CC398, of which three were spa type t011 (one from a nurse and two from students). Another hand plate 
isolate (from a clinical staff member) was typed as t1985 and was also obtained from the reception keyboard 
two months earlier, but was not isolated from any SSIs. Overall, spa type t011 was the most prevalent type 

spa type Repeat profile
No. of 
isolates spa CCs

t011 r08-r16-r02-r25-r34-r24-r25 25 spa CC011/3423

t588 r08-r16-r02- r24-r25 4 spa CC011/3423

t1985 r08-r16-r02-r25-r34 2 spa CC011/3423

t3432 r08-r16-r02-r25-r34-r24 2 spa CC011/3423

t073 r08-r16-r02-r16-r13-r17-r34-r16-r34 1 Singleton

t786 r07-r12-r21-r17-r13-r34-r34-r33-r34 1 Singleton

t064 r11-r19-r12-r05-r17-r34-r24-r34-r22-r25 3 Singleton

Table 3. MRSA spa types and repeat profiles according to the results of Based Upon Repeat Pattern (BURP) 
cluster analysis.

Figure 1. Population snapshot of MRSA CC398 isolates (2011–2016) according to Based Upon Repeat Pattern 
(BURP) analysis results. The diameter of a dot is proportional to the number of isolates of the corresponding spa 
type. Blue dots represent group founders as defined in the Methods section.
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isolated from the environment (stable floors, stable cleaning brushes, ICU keyboard, student common room 
keyboard), as well as from the SSIs and hand-plates.

Discussion
This is the first long-term study investigating hospital epidemiology of MRSA in equine veterinary settings. 
Previous studies have shown the potential of MRSA transmission between owners and pets, or veterinary staff 
and patients, highlighting the zoonotic risks associated with this pathogen21, 33. Although MRSA CC398 or 
LA-MRSA is common amongst farmers (particularly pig farmers) in northern Europe, originally it was consid-
ered an unusual human coloniser. However, recent studies indicate that human infections with this lineage may 
be increasing in countries like Denmark where the incidence of MRSA CC398-IIa infection in people (with or 
without livestock exposure) showed an annual increase of 66% from 2004 to 2011, although this is only repre-
sented by 151 clinical cases during this period34, 35.

Our study showed that MRSA was present in several areas of the equine hospital environment and was asso-
ciated with a SSI in every year of this study. The prevalence of MRSA detected from the environmental during 
the first four years of the active surveillance program of (2011–2015) was 4% which is similar to a previous study 
performed during a non-outbreak period36, but lower than the prevalence found by Van Balen et al.31 during a 
one year long surveillance study (8.6%). Our study also found 6.3% of SSIs to be associated with MRSA infection 
whilst a large study in Germany found MRSA to be associated with 9.4% of wound infections in horses and with 
the majority of isolates typed to CC39837. However, during 2016, a cluster of SSIs cases prompted increased envi-
ronmental surveillance which identified increased MRSA contamination and indicated a persistence of MRSA 
in this UK veterinary hospital; these data triggered enhanced infection control protocols including a deep clean 
of all the intensive care stables which was successful in removing the MRSA. Staff at all levels were involved in 
the deep clean action (nurses, clinicians, senior management staff) which is in line with findings from another 
veterinary hospital study which suggests that interventions based on a general consensus amongst hospital man-
agement staff, infection control teams and clinicians are required in order to successfully remove MRSA from the 
hospital environment30.

Molecular characterisation of the isolates obtained during this five-year period (Jan 2011–May 2016) typed 
80% of the MRSA isolates to CC398 and identified the emergence of LA-MRSA CC398, in particular ST398 in 
horses in the UK. Moreover, spa typing of isolates also revealed a variety of spa types suggesting multiple intro-
ductions of MRSA CC398 over the five-year surveillance period. This finding is also supported by the BURP anal-
ysis which identified a main spa CC (spa CC011/3423) which appears to include closely related isolates and three 
singletons t064, t073 and t786 which seem to represent new introductions. Data analysis shows that the main spa 
CC (spa CC011/3423) was isolated throughout 2011–2016 whilst new introductions occurred in 2013 (MRSA 
CC398-t073-IVa obtained from a stable floor), 2014 (MRSA CC398-t786-IVa isolated from staff keyboard) and 
2015 (MRSA CC398-t064-IVd/UT, found in a SSI and in two environmental samples). In addition, BURP analysis 
showed that spa CC011/3423 had two main group founders, of which t011 was isolated throughout 2011–2016, 
whilst the second group founder t3423 (as well as the other group members, t588 and t1985) were isolated from 
the end of 2015 onwards suggesting microevolution of t011. BURP analysis indicates that mutational events 
(mainly deletions) are likely to have occurred in this period of time which resulted in spa type diversification. 
Interestingly, MRSA CC398-IVa-t011 was the most prevalent clone identified in this study with 63.2% of MRSA 
CC398 isolates typed to this clone. This is in line with findings from a recent survey conducted in Denmark, 
where 59% of the MRSA isolates from horses were typed as CC398-IVa-t011, further confirming the emergence 
of this strain in the European equine population38. Recent studies have shown that certain spa types (including 
t011) and SCCmec types (such as IV and V) are significantly associated with particular phylogenetic clades and 
that within the MRSA CC398 lineage, a sub-lineage has emerged which is designated as the “equine clade C” 
and which showed an association with colonisation and infection in horses and equine hospital personnel39. In 
addition to resistance to tetracycline (a characteristic of MRSA CC398), the equine clade C isolates also exhibit 
aacA-aphD encoded gentamicin resistance5 which had been identified in our isolates and which supports their 
typing to the “equine clinic clade”.

Data presented in this study demonstrated a pattern of MRSA environmental contamination suggesting intro-
duction or reintroduction of various MRSA strains and maintenance of strains over time in the environment, 
with some strains more persistent than others. In this study, we showed that certain MRSA CC398 spa types were 
only occasionally identified in the environment or SSIs (i.e. t073), whilst MRSA CC398-IVa-t011 was repeat-
edly isolated during the five-year study period. Whether this was the result of persistence in the environment 
or constant re-introduction, possibly due to a high prevalence of this clone in the equine population, or due to 
introduction through new staff or students transiently colonised with this clone, needs to be further investigated. 
Further studies using whole genome sequencing (WGS) are planned for the CC398 and non-CC398 MRSA iso-
lates collected during the study period to map the introduction, persistence and spread of this lineage through the 
hospital environment. In addition, WGS will provide a better understanding of MRSA evolution within the UK 
and European equine populations.

The high prevalence of biofilm-related genes icaA and icaD (36.8% and 100% respectively) in the CC398 
isolates may explain their likely persistence in the environment due to the production of biofilms protecting 
micro-organisms from disinfectant action which may have contributed to failure of decontamination prior to the 
reuse of stables. It has been previously shown that routine cleaning procedures do not reliably remove biofilms 
from surfaces, and this may explain the unexpected failure of decontamination encountered during outbreak 
episodes despite adherence to infection control guidelines40.

Identification of the main circulating MRSA-CC398-IVa-t011 on hand-plates from students and staff and work 
surfaces further emphasises the role that hand-hygiene may play in the transmission of MRSA in veterinary hospi-
tals. It is important to emphasise the importance of biosecurity and hand-hygiene practices by veterinary hospital 
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personnel, primarily their compliance with hand washing which can be often overlooked in veterinary hospitals41. 
In addition, findings from surveillance studies such as this are a reminder of the importance of compliance with 
biosecurity protocols and procedures when wearing gloves and especially, the need to change gloves at critical 
points during interventions. A recent Swedish study showed that one of the most common barriers to compliance 
with hand-hygiene in equine hospitals is an insufficient supply of hand sanitiser or lack of accessible places to wash 
hands, all which can be easily resolved when managers are supportive of the infection control team29.

In this study, both MRSA CC398 spa type t011 and t064 have been isolated from the anaesthetic machine 
y-piece, which is difficult to clean and disinfect and is included in the routine screening due to its role as a possible 
source of cross-contamination between horses. This study demonstrated that incorporating high risk areas (such 
as intensive care units) or equipment (anaesthetic machine y-piece) in routine environmental bacterial monitor-
ing, allows quick intervention and implementation of enhanced cleaning and disinfection, leading to elimination 
of likely reservoirs for veterinary hospital acquired infections.

The cluster of cases in 2016 and especially the identification of three different spa types associated with a 
small number of SSI, suggests that horses can be MRSA carriers and may have played a role in the introduction 
and movement of this bacterium within the hospital. In addition, the long-term hospital contamination and 
high prevalence of MRSA CC398 identified in this study may also suggest a high prevalence of this clone in the 
UK equine population and further work is needed to ascertain this. Here, we have used a PCR based method to 
rapidly identify MRSA strains belonging to CC398 and this provides a useful diagnostic tool for surveillance of 
colonisation/infection with this pathogen in equine clinics.

In conclusion, this study has revealed multiple introductions of MRSA in a UK equine hospital and, most 
importantly, the persistence and spread of CC398, an emerging zoonotic pathogen only sporadically recorded in 
the UK so far. The study also emphasizes the importance of sustained active environmental surveillance which 
allowed detection and monitoring of MRSA occurrence, as well as the implementation of infection control pol-
icies designed to protect equine patients, the hospital staff and the wider public from exposure to this important 
zoonotic pathogen.

Methods
Active surveillance as part of a hospital infection control program. In January 2011 an envi-
ronmental monitoring scheme was piloted for six months in a large Equine Referral Hospital (receiving 1800 
patients a year), to obtain baseline reference data for a long-term active surveillance program. The pilot study 
identified a number of hospital surfaces that can occasionally become contaminated with potential nosocomial 
pathogens and could play a role in transmission. Subsequently MRSA, MDR (resistant to three or more drug 
classes) Enterococcus, MDR and/or ESBL Enterobacteriaceae and non-fermentative Gram negative organisms 
(Pseudomonas spp., Acinetobacter spp.), and Salmonella spp. were identified as target pathogens for routine active 
environmental surveillance. Surfaces from high risk areas such as surgical theatres, intensive care units, treatment 
areas, recovery boxes, equipment (endotracheal tubes, anesthetic equipment), as well as human high contact areas 
(computer keyboards, door handles, phone handles) were included in the subsequent routine surveillance on a 
rotating basis. Surgical site infections (SSIs) were also included in the surveillance activity to monitor the involve-
ment of nosocomial pathogens in these infections.

The frequency of sampling was intended to be monthly, but ultimately this was determined by the hospital 
infection control team according to clinical load and the occurrence of clinical infection with potential nosoco-
mial pathogens. Although active environmental surveillance included screening for target pathogens (MRSA, 
MDR Enterococcus, MDR and/or ESBL Gram negative bacteria and Salmonella spp.), in this paper we focus on 
the long-term surveillance of MRSA in this equine hospital. This was a retrospective study and owner consent was 
obtained on admission of horses via generic consent which allows for diagnostic samples to be used for research. 
The environmental and hand-hygiene sampling protocols were approved by the Infection Control and Biosecurity 
Committee at the Institute of Veterinary Science when it was first implemented in 2011. Occasional hand-plate 
sampling (aiming to staff reinforce hand-hygiene) was included as part of the Hospital Infection Control policy 
and the Committee agreed that this would be voluntary and would not require informed consent from partic-
ipants. All methods were carried out in accordance with specific guidelines and regulations including relevant 
positive and quality controls.

MRSA isolates. Infection control protocols introduced as part of this program, recommended implementa-
tion of mechanical cleaning and disinfection of MRSA positive areas followed by repeated swabbing until samples 
were culture negative; this approach led to multiple isolates obtained from the same area, especially in 2016. For 
the 2011–2015 surveillance periods, only one MRSA isolate obtained from each site (i.e., stables floor, stable 
brush, anesthetic machine y-piece, computer key-boards) was included for phenotypic and molecular testing. 
However, for 2016 if one area (i.e., stable) was swabbed more than three times, two isolates obtained at two differ-
ent time points were included, or if the same area was swabbed more than six times, four isolates were included 
for molecular testing. For SSIs, only one isolate per one case was included with this approach being consistent 
throughout the study period.

Hand-plate sampling. The role of hand hygiene in the transmission of hospital acquired infection was 
monitored and hand-plate sampling was performed occasionally as part of the infection control program. This 
process was anonymous as a code was given to each plate to identify the sampled category (staff, students, clin-
ical, non-clinical area) and not individuals. Hand plating was performed randomly without prior notice during 
the mid-morning of a routine work day. Staff members did not sanitise their hands prior to sampling (unless by 
chance) in order to capture transient bacterial flora on hands during their routine activity.
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Samples, processing and antimicrobial susceptibility testing. Sterile pre-moistened electrostatic 
Swiffer® wipes (Procter & Gamble, Ohio, US) were used to sample various surfaces, using sterile gloves which 
were changed between samples. Sample collection was performed by a trained technician who used one side 
of the electrostatic wipes to sample a representative surface size (approximatively 0.5 m2), then the cloth was 
folded and placed in bottles containing 250 ml of buffered peptone water (BPW). Samples were transported to 
the on-site laboratory immediately after collection and incubated at 37 °C ± 2 for 24 hours. For MRSA isolation, 
10 µl of enriched BPW were plated directly onto a Brilliance™ MRSA 2 Agar plate and a 500 µl BPW aliquot was 
added to 7.5% NaCl Nutrient Broth with overnight incubation at 37 °C ± 2. After the enrichment step in the salt 
broth, a second Brilliance™ MRSA 2 Agar plate was inoculated as for primary cultures. Swabs collected aseptically 
from discharging SSIs were screened for MRSA using the same culture protocol as for environmental samples. 
Presumptive MRSA isolates obtained from environmental samples and SSIs were subcultured onto 5% sheep 
blood agar (SBA, all media from Oxoid, Basingstoke, UK) for further testing.

Ad hoc hand plate sampling was performed for hospital staff (clinicians, nurses, yard staff and receptionists) 
and students twice (2011 and 2016) during the five-year surveillance period. Samples were collected by impres-
sion of fingers and thumb of the dominant hand on a SBA plate and incubated for 24 hours at 37 °C ± 2. Colonies 
with morphological characteristics suggestive of S. aureus were sub cultured onto Brilliance™ MRSA 2 Agar and 
investigated further only if typical growth was present after 24 hours of incubation at 37 °C ± 2.

Antimicrobial susceptibility testing was performed by the disk-diffusion method according to the European 
Committee on Susceptibility Testing (EUCAST) guidelines42. Antimicrobial testing was performed with an 
extended panel for environmental and SSI isolates including amikacin, ampicillin, cefoxitin, ceftiofur, enrofloxa-
cin, erythromycin, gentamicin, oxacillin, oxytetracycline, penicillin, trimethoprim-sulfamethoxazole (all media 
and discs from Oxoid, Basingstoke, UK). Interpretation of susceptibility results was performed according to 
EUCAST or the Clinical and Laboratory Standards Institute (CLSI)43 for veterinary specific antimicrobials (i.e., 
ceftiofur, enrofloxacin). S. aureus (ATCC 25923) was used as quality control for susceptibility testing.

Confirmation of MRSA and molecular characterisation of isolates. Presumptive MRSA colonies 
grown overnight on SBA were used for biochemical identification using gram-positive identification plates 
(GPID) (TREK Diagnostic Systems Ltd., Cleveland, OH, USA) and to prepare cell lysates for DNA extraction 
by heating a suspension of cells at 100 °C for 10 minutes. A multiplex PCR assay targeting the femA44, nucA and 
mecA45 genes was used for confirmation of MRSA status.

Molecular typing was performed on a selection of isolates (n = 6) by MLST as previously described46. 
Confirmation of sequence type (ST) 398 by MLST in the isolates, prompted retrospective screening of all the 
MRSA isolates obtained from the environment (n = 62), SSI (n = 13) and hand plates (n = 6) in the past five 
years with a CC398-specific PCR47. Non-duplicate isolates identified as CC398 were further characterised by 
staphylococcal chromosomal cassette mec (SCCmec) and spa gene typing. SCCmec typing (type I to type V) was 
performed according to Zhang et al.48. S. aureus protein A (spa) typing was performed as previously described49. 
Amplification was followed by Sanger sequencing to identify sequence variation of the polymorphic region X of 
the spa gene and spa types were determined using the spaTyper software (http://spatyper.fortinbras.us).

Based Upon Repeat Pattern (BURP) was used to determine clonal relatedness from spa repeat regions and 
cluster spa types (spa CCs) of isolates by using Ridom StaphType (version 2.2.1) software (Ridom GmbH, 
Würzburg, Germany). The default parameters for BURP analysis were applied as previously described50. 
Interpretation of BURP clusters was performed according to Mellman et al.51 where a group founder in clusters of 
at least three different spa types, is described as the spa type with the highest founder score.

All PCR-confirmed CC398 MRSA isolates were screened for the presence of virulence genes lukS-PV, lukF-PV 
which encode the Panton-Valentine leukocidin52, for genes associated with biofilm production (bap, icaA, icaD)53 
and antimicrobial resistance genes (ermA, ermB, ermC, tetK, tetM, aacA-aphD)54, 55. Positive and negative controls 
for PCR reactions were included in each assay.

MRSA follow-up samples and environmental cleaning. Isolation of MRSA from SSI and environ-
mental samples at the beginning of 2016 was followed by a deep clean action. This involved closure of the affected 
stable blocks and a thorough clean involving removal of all items from the stable, scrubbing to remove organic 
matter using an alkaline detergent and warm water, pressure washing or steam cleaning, allowing the stable to dry, 
followed by spraying of Virkon S (1–2% solution) onto walls and floor and allowing it to dry for a minimum of 
24 hours. All associated passageways, outside areas and drains were fully cleaned and any necessary maintenance 
performed – floors and walls painting, rubber replacement/sealing etc. Horses were not reintroduced into the 
stables until re-swabbed samples were MRSA negative.

Following the last SSI positive case (May 2016), environmental samples were collected monthly to monitor the 
presence of MRSA in the environment.
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